
Availability and Latency Aware Deployment of
Cloud Native edge Slices

Sagar Arora, Adlen Ksentini, Christian Bonnet
Eurecom, Sophia Antipolis, France

firstname.lastname@eurecom.fr

Abstract—Edge computing is one of the key technology of the
last decade, enabling several emerging services beyond 5G (e.g.,
autonomous driving, robotic networks, Augmented Reality (AR))
requiring high availability and low latency communications.
While in cloud native paradigm, highly embraced by cloud
providers, network functions and applications are decomposed
into microservices run in a container. Defacto container orches-
tration engine, namely Kubernetes, deploys multiple containers
inside a pod. The mapping between microservices and pod highly
affects the availability and latency of deployed microservices
and hence the run application. In this paper, we propose novel
availability and latency-aware deployment models for an edge
service composed of multiple applications designed as multiple
microservices. The two considered deployments are analyzed and
evaluated using experimentation and an analytical model, con-
sidering critical performance criteria for edge-oriented services,
like availability and latency requirements.

Index Terms—Cloud-native, Microservices, MEC, CNF, De-
ployment

I. INTRODUCTION

Edge computing is a critical enabler for ultra Reliable Low
Latency (uRLLC) network services [1]. The strict latency and
availability demands of the application and network functions
can be achieved by placing them at the edge of the network.
Besides low latency capability, edge computing reduces the
amount of traffic to be transported all the way to the central
cloud. Indeed, with edge computing, traffic can be treated
locally, keeping data privacy in case of machine learning
model training using data collected from sensors and actuators
or other elements.

Meanwhile, with the advent of containerization, which led
to the emergence of the cloud native principles, applications
are no longer deployed as a monolithic block but rather as
loosely coupled microservices. In the cloud native world, each
microservice is deployed as a container and managed using
container orchestration engines and platforms, like Kubernetes.
However, edge deployment has still not embraced this trend.
Indeed, the key standard of edge computing is ETSI Multi-
access Edge Computing (MEC) [2]. The ETSI MEC group
has issued several specifications covering: application packag-
ing, orchestration, and traffic redirection; but still considering
monolithic blocks when deploying applications at the edge.

This work was partially supported by the European Union’s Horizon 2020
Research and Innovation Program under the 5G!Drones project (Grant No.
857031).

ETSI MEC considers that applications are deployed in Virtual
Machines (VM) or containers but one container or VM per
application. All the process of orchestration and management
relies on this assumption, which is no longer a reality with
the emergence of cloud native orchestration platforms, highly
favoring the usage of microservices. To overcome this situation
we proposed in [3] a new edge slice orchestration framework
that allows describing multiple applications using multiple
microservices interacting with each other. In the same paper
[3] we devised a novel template, namely Edge Sub Slice
Template (ESST), aiming at defining an edge slice containing
multiple applications designed using multiple microservices.
This template eases the orchestration of containers and mi-
croservices on industry defacto cloud native orchestration
platform Kubernetes [4].

Basically, to deploy containers Kubernetes uses Pod. The
latter is the smallest schedulable entity. It provides an ecosys-
tem for multiple containers to interact. All the Kubernetes-
based platforms run containerized microservices in pods. The
latency between microservices and their availability depends
on whether they are running inside the same pod or different
pods and pods are deployed on the same machine or different.
The most preferred way to deploy microservices is one pod per
microservice i.e., a 1 to 1 mapping between microservice and
pod. But, it is also possible to deploy multiple microservices
inside one pod, i.e., 1 pod and N microservice inside it. This
can be considered as the default solution adopted in [3]. In this
context, it is important to understand what is the appropriate
solution when considering edge application constraints (i.e.,
latency, availability, etc.), but also the cost induced to the
orchestration and management. The choice of the two possible
mappings could be critical if it is not well investigated.

In this paper, we fill this gap by studying the performance
of both solutions in terms of availability, latency, and man-
agement cost. We combined analytical models and experi-
mentation to quantify the latency and availability metrics. We
described such an edge slice using our previously proposed
ESST. The paper’s contributions are:

• A detailed deployment model for mapping microservices
of an edge slice inside one pod and re-modeling the one
to one deployment model by classifying microservices as
critical and non-critical,

• Markov Chain based availability model for each deploy-
ment,978-1-6654-3540-6/22 © 2022 IEEE



• Latency analysis between microservices for each deploy-
ment model.

We used the platform measurements taken on two different
testbeds and the availability model to evaluate the availability
KPI and latency, respectively. Testbed1 is Eurecom 5G trial fa-
cility deployed in Eurecom, Sophia Antipolis, while Testbed2
is OVH1 Public cloud.

II. BACKGROUND

Microservices promote flexibility, scalability, and agility
over monolithic software design. Cloud native microservice
deployment has been recently discussed in ETSI NFV, intro-
ducing a new model known as Container Network Function
(CNF). However, the ETSI MEC group does not mention
microservices-based architecture. Hence, it can only be used
to orchestrate a monolithic MEC Application based on VM
or container. In contrast, the ESST model we have introduced
in [3] and shown in Fig. 1 provides the possibility to design
complex microservices-based MEC applications.

Fig. 1: Edge Sub Slice Template

ESST includes a list of modified versions of MEC Appli-
cation Descriptors(AppD) [5] to allow orchestrating multiple
applications containing multiple microservices on a cloud
native orchestration platform. In [3], we introduced the Edge
Sub Slice Orchestrator, which receives ESST and parses each
AppD, mapping each MEC application to a Kubernetes Pod
and microservices constituting the application to containers.
An ESST comprising M MEC applications and N microser-
vices will have M pods and N containers as per our orches-
tration modeling.

To recall, Kubernetes pod is a group of co-located con-
tainers. They share the same network namespace, separate
computational resources, and can have shared or common
storage. The pods are useful for running multiple co-located
processes with a degree of isolation, whereas containers are
built to run only a single process. The containers inside a
pod can communicate with each other using a local network,
shared memory IPC (inter-process calls), and shared volumes
if the volumes are common.

Disruptions in one container of a pod do not affect the
health of other containers inside that pod. Hence, if a container
crashes, the pod will be available with other containers, but
if a pod crashes, all the containers will crash together. In
Kubernetes, to achieve automatic handling of the pod life

1https://www.ovhcloud.com/en/public-cloud/kubernetes/

cycle, it is preferred to deploy them using controller objects.
Controllers are responsible for maintaining the desired state
of the pod with the observed state. In case of a pod failure,
they recreate the pod, and in case of container failure, it is
recreated by Kubelet, which is a Kubernetes agent running
on each node hosting pods. It is responsible for handling the
container life cycle on a node.

In Kubernetes-based platforms, Container Network Interface
(CNI) plugin [6] is responsible for creating pod interfaces, IP-
address allocation, network security enforcing, and imposing
QoS policies. Each CNI plugin uses different network models,
for example, underlay and overlay, to create a virtual network
on top of a physical network. Every CNI is designed to han-
dle intra-node and inter-node communication differently. The
performance of inter pod communication (latency, throughput,
bandwidth, etc.) depends on the network model and type of
tunneling protocol (e.g., VXLAN, IP-in-IP or Geneve, etc.)
used by CNI. In [7] the authors have assessed the performance
of various CNI plugins in terms of functionality, performance,
and scalability. They explain how different plugins interact
with the node’s network stack and how increasing the number
of pods affects the inter-pod communication.

III. DEPLOYMENT MODELS FOR EDGE SLICE

In the formation of an ESST, the number of MEC Appli-
cations and microservices depends on the edge slice template
provider or MEC Application provider. The enablers of edge
slice functionality are microservices; together, they deliver
MEC Application’s desired features. Hence, we can consider
a ESST composed of microservices mapped to containers, and
these containers can be placed inside the same pod or different
pods. These pods can run on the same machine or different
machines.

Based on this, we consider two different deployment models
for an ESST with N microservices. Fig. 2 shows a 1 to 1
mapping between MEC Application and microservices, one
container per pod. The edge slice will have N MEC applica-
tions or pods and N microservices or containers. Fig. 3 shows 1
to N mapping between MEC Application and microservices,
i.e., N containers in one pod. The slice will have 1 MEC
application or pod and N microservices or containers.

Fig. 2: 1 to 1 Mapping of MEC Applications and Microservices

In the following sub-sections, we will analyze and discuss
each deployment model, its benefits, and drawbacks con-
sidering critical performance criteria: (i) Orchestration and
management, (ii) Availability, and (iii) Low-Latency.



Fig. 3: 1 to N Mapping of MEC Application and Micro-services

A. Orchestration and Management

The process of orchestration and management is one of the
key functions in the context of containerization. It concerns the
life cycle management (LCM) of a network slice and hence
all the applications that constitute the network slice. The most
time-consuming task in the life cycle management of a slice
is slice creation. It involves fetching container images of the
microservices, scheduling, computational and storage resource
allocation, IP-address allocation, instantiation, etc.

The number of container images remains the same for
both deployment models. Containers mostly consume the
computational and storage resources, and in both deployment
models, the number of containers remains the same, so the
computational and storage resource consumption will be the
same. However, if there is a significant pod overhead2 then the
1 to N deployment model will use fewer resources than 1 to 1.
Each pod is allocated an IP-address; hence 1 to 1 deployment
model will have N IP-addresses, whereas 1 to N will have
only one IP-address.

Pod scheduling and instantiation are the two most critical
stages. They result in variable creation time for both the
deployment models. In pod scheduling, the scheduler has
to look for host machines that have enough computational
resources for these pods. In the 1 to N model, all the containers
stay in the same pod. Hence, if there is no such machine with
requested computational resources, it will result in scheduling
failure. In contrast, the 1 to 1 model can schedule pods
on different nodes; hence the computational resources can
be utilized efficiently. Once the pods are scheduled, their
Cgroups, network interfaces, etc., are created. This step’s time
depends on whether the pods are instantiated in parallel or
serial (if pods require a particular order of instantiation). The
containers inside a pod only start parallel. Thus, if the pods
are started serially, the 1 to N deployment takes less time, and
if pods are started in parallel, the 1 to 1 deployment takes less
time.

B. Availability

Availability is a critical component for any type of telecom
and vertical service, especially when the service belongs to the
uRLLC category. It measures the length of time a system or
network is functioning. In carrier-grade systems, the availabil-
ity should ensure the 5 nine uptime, i.e., 99.999% available.
To ensure availability in cloud-native systems, it is important

2https://kubernetes.io/docs/concepts/scheduling-eviction/pod-overhead/

to reduce the downtime and guarantee that all microservices,
and hence pods, are active. The different reasons that lead to
reduced availability are

• The container running the microservice died due to an
internal error (software bug, high resource consumption,
etc.) in the microservice.

• The pod died, and hence all the containers inside the pod
also died.

• The node hosting the pod died due to hardware or
software errors.

The reasons for the above failure can be voluntary or invol-
untary. In case of a node failure, pods with their containers
are immediately scheduled on another node. Therefore, a slice
will be disrupted for the time the pods are getting instantiated.

If we consider the first deployment model, i.e., 1 to 1, we
expect better availability. Indeed, if the container or the pod
died, only one microservice died, and the time to reboot 1 pod
with 1 container is very short. However, the pod needs to be
re-scheduled on another node if the node dies. If another node
is available, then the time to reboot the pod is short. Otherwise,
the downtime can be higher. In the second deployment model
(1 to N), when a pod died, all the microservices running inside
the pod died with it. This means that the time needed to
reboot the pod with all its containers depends on the number of
containers to reboot. In the 1 to 1 deployment model, the pods
can be scheduled across different nodes; even if some pods
are not available, the edge slice will be partially available.
Whereas, in the other model, if there is any disruption, the
edge slice will not be available completely; all the containers
are running in the same pod.

C. Latency

As stated earlier, latency is the critical KPI that motivates
the deployment of cloud native microservices at the edge. In
cloud native and virtualized systems, we distinguish the com-
munication latency among the microservices and the service
latency (i.e., the collective functionality of all the microser-
vices). The service latency is composed of inter microservice
latency and microservices processing time. Service latency
may increase due to the downtime if a container, a pod, or
a node dies. Regarding the communication latency, we can
assume that the 1 to N model will achieve the best performance
as all the microservices are inside the pod and use the pod’s
loopback interface or Inter Process Calls (IPC) via Unix sock-
ets that ensure merely instantaneous communications among
microservices.

In contrast, the 1 to 1 deployment model may have a
communication overhead, particularly if pods are deployed
on different nodes, which requires packets to traverse through
tunnels, which negatively impacts communication latency. One
solution that can improve the performance of the 1 to 1 model
is to use a placement algorithm that ensures that all pods are
grouped in the same node, which avoids using tunnels and
hence reduce communication latency. If the node hosting all
these pods dies, the whole slice will not be functional, im-
pacting the availability strongly. Another solution would be to



use special CNIs that use Datapath Acceleration Development
Kit (DPDK) [8] in combination with Single-root input/output
virtualization (SR-IOV) to improve latency and throughput
metrics. Most of the edge providers may choose this option
to enable low latency demanding services.

Concerning the service latency, and as discussed in the
availability section, 1 to 1 deployment model should achieve
better results in comparison to 1 to N as it minimizes the
downtime.

IV. MODELING AVAILABILITY

To evaluate the availability of both the deployment models,
we proposed to model them using Markov Chains. Let us
assume that

• An ESST is composed of N microservices
• Each microservice in a slice is categorized into critical

and non-critical. The non-critical ones provide extra
functionality/features to the slice. The critical ones are
responsible for the primary/principal functionality of the
slice.

• If a non-critical microservice dies, the edge slice will be
partially disrupted. Indeed, it can still work with limited
functionality. But, if a critical microservice dies, the edge
slice will be completely disrupted.

• The microservices have no software-related bugs, and
the computational resources needed by the microservices
are properly allocated to their container. This avoids
the failure of the microservice container due to internal
errors. We will only consider the failure of the pod
enclosing microservice container.

• We assume that the failure rate of pods and recreation rate
of pods follows an exponential distribution with rates of
f and r, respectively.

Let us denote M and K by the number of non-critical and
critical microservices, respectively. Here, N = M +K.

Fig. 4 represents the slice deployed using the 1 to N deploy-
ment model, where N microservices or containers are inside
one pod. Here, due to the compact nature of the deployment,
if the pod fails, all the containers will fail. Besides, we don’t
differentiate between critical and non-critical microservices.
We assume that the recreation period of a pod is composed of
the time needed to recreate all the containers, which can be
modeled using an exponential distribution with a rate rmax.
Similarly, the failure rate can be modeled using an exponential
distribution fmax. Therefore, we model the system with a two-
state Markov chain X = X(t), t ⩾ 0 on the two states 0 and 1;
where 0 indicates that the system is in failure, while 1 means
that the system is fully available. A transition between state 0
to 1 with the rate rmax indicates that the pod is recreated, and
a transition between state 1 to 0 with the rate fmax indicates
that the system has failed. Fig. 4 illustrates the transition graph.

In this scenario, the time a slice with N microservices will
be available corresponds to the probability to be in state S = 1
denoted by,

A = rmax/(rmax + fmax) (1)

Fig. 4: Markov chain for 1 to N deployment model

Regarding the other deployment model 1 to 1, we define a
Markov chain X = X(t), t ⩾ 0 on the state space S defined
by S = {(m, k)|m = 0, ...,M and k = 0, . . . ,K}, for every
K ⩾ 1. In this model, X(t) = (m, k) indicates that, at time
t, there are m active non-critical microservices and k active
critical microservices. While s = (0, 0) indicates that all the
pods are down, s = (M,K) indicates that all pods are healthy
and work properly. Fig. 5 illustrates the transitions graph of
the envisioned system.

Fig. 5: Markov Chain for 1 to 1 deployment model

• If a non-critical pod gets recreated while already m (0 ⩽
m ⩽ M − 1) are active and k critical containers are
active then there is a transition from state (m, k) to state
(m+ 1, k) with rate (M −m)r.

• If a critical pod gets recreated while already k (0 ⩽ k ⩽
K−1) are active and m non-critical containers are active
then there is a transition from state (m, k) to state (m, k+
1) with rate (K − k)r.

• If a non-critical pod fails when m (0 ⩽ m ⩽ M − 1) are
active and k critical containers are active then there is a
transition from state (m, k) to (m−1, k) with rate (m)f .

• If a critical pod fails when k (0 ⩽ k ⩽ K− 1) are active
and m non-critical containers are active then there is a
transition from state (m, k) to (m, k− 1) with rate (k)f .

Let Q be the infinitesimal generator matrix for the chain.
Each entry qmk such as sm, sk ∈ S and m ̸= k of the matrix
corresponds to the instantaneous transition rate from state m
to state k. Diagonal entries are chosen to ensure null rows of
Q, i.e.:

qmm = −
∑

qmk, sk ∈ S,m ̸= k (2)

The objective is to analyze the system in long run; i.e., inter-
events time are neglected over the running time of the system.



It matches the steady state behavior of the analyzed system.
∀sm ∈ S, we note πm = πmk = limt→∞ P{s(m, k)},m ∈
(0,M), k ∈ (0,K),M + K = N , the stationary probability
distribution of the chain. The Markov chain of 1 to 1 is
homogeneous, finite and irreducible process. In the steady state
of the system, we assume that the total probability flux out of
a state is equal to the total probability flux into the state. For
a state sm ∈ S:

πm ∗
∑

sk∈S,m ̸=k

qmk =
∑

sk∈S,m ̸=k

πk ∗ qmk (3)

Let π be the vector containing all model states. By com-
bining 2 and 3, we can write

π ∗Q = 0 (4)

The normalization condition of the chain is∑
sk∈S

πm = 1 (5)

Solving global balance and normalization condition equa-
tions 4 and 5 leads to determine vector π. Getting the steady-
state probabilities will allow us to determine the probability
of having m non-critical pods and k critical pods active. This,
in turn, will help to derive the availability of the 1 to 1
deployment model.

The slice applications are fully available when it is in the
state s = (M,K) i.e., all pods are running, it is denoted by
Afull

Afull = P (s(M,K)) (6)

The slice applications are available with limited capabili-
ties/functionalities when it in the state s = (m,K),∀m ∈
(0,M)

Alimited =

M∑
m=0

P (s(m,K)) (7)

In special scenarios where it is not possible to distinguish
between critical and non-critical, i.e., all microservices are
critical, we can use the Markov chain corresponding to the
1 to N model. The slice will be available when all the pods
are running.

V. PERFORMANCE EVALUATION

Latency and availability KPIs are highly dependent on the
design of the infrastructure, computational resources of the
node hosting pods, and connectivity between the nodes. To
evaluate the performance of the deployment model irrespective
of the infrastructure, we choose two Kubernetes managed
cloud environments to analyze and evaluate our proposed de-
ployment models. The testbed1 is a 5G trial facility deployed
in Eurecom. It has a production-grade Openshift Cluster with
5 bare metal worker nodes 212 CPU cores, and 372 GiB of
RAM connected via Openshift SDN-based CNI. The testbed2

is a managed Kubernetes service rented from public cloud
OVH. It has 5 virtual machine-based worker nodes with 2
vCPU and 7 GiB of RAM connected via Canal CNI.

Fig. 6 shows the Round Trip Time (RTT) to understand
the latency between microservices when they are deployed
with two different models. We used Google Remote Procedure
Call (GRPC), one of the most used protocols in microservices
architecture, Inter Process Communication (IPC) over Unix
socket, and GRPC over Unix socket. The unix socket-based
communication can only happen in 1 to N type of deployment
model as the microservices share the same network names-
pace. The * in 1 to 1 deployment model depicts communica-
tion between microservices deployed on the same machine and
without * on different machines. We also added the results of
ICMP ping for readers who specifically use ping as a latency
metric. Below conclusion can be drawn from Fig. 6

Fig. 6: Inter Microservice RTT (µS) for different models and testbeds

• Different RTT values in two testbeds is due to different
CNIs, computational and network resources associated
with the cluster.

• In both the testbeds 1 to N deployment model has
the lowest RTT as it uses loopback interface or UNIX
sockets. Accordingly, it is better to use IPC based for
latency-sensitive applications.

Fig. 7: Slice Creation Time (S) for different models and Testbeds

We created slices with 10, 20 up to 50 microservices on
both testbeds to evaluate the slice creation time. We used the



same container image for all the microservices and set the
resource requirement at 10 milliCPU and 100Mb Ram. The
slice with 1 to 1 deployment model can be created with or
without dependency between the microservices, i.e., serial or
parallel pod creation. Fig. 7 shows the slice creation time. We
conclude that,

• 1 to 1 model takes less time when the microservices
do not have any dependency among them, i.e., pods are
created parallelly.

• 1 to N deployment model in testbed1 takes less time than
1 to 1 in testbed2. This behavior is due to the different
computational capacities of the two clusters.

The pods were deployed using Kubernetes deployment
controller, which watches for the pod availability. If the pod
is not running, it immediately creates a new pod. We forcibly
deleted the pods to simulate the pod recreation in the 1 to 1
and 1 to N deployment model. Fig. 8 shows the average pod
recreation time with the increasing number of microservices.
We assume that microservices are again available once the
pods are recreated.

Fig. 8: Pod Recreation Time for different models and Testbeds

We use these values of pod recreation time to estimate the
availability for a slice with 10 and 50 microservices deployed
with 1 to 1 and 1 to N deployment model. We assume that the
pod failure rate is 100 times in a year, and it can happen at any
point in time. In table I, we calculated full availability of 1 to
1 and 1 to N deployment models using the formula derived via
solving the Markov Chains, equation 6 and 1 respectively. To
correlate availability with a number of critical and non-critical
microservices, we calculated availability for a slice with 50
microservices twice as depicted in scenarios II and III.

TABLE I: Availability of a Slice with 10 and 50 Microservices

Scenario Testbed Critical Non-
Critical

1 to 1
(Full)

1 to N

I Testbed1 5 5 99.9998% 99.9999%
I Testbed2 5 5 99.997% 99.9992%
II Testbed1 25 25 99.999% 99.9999 %
II Testbed2 25 25 99.9856% 99.9989%
III Testbed1 40 10 99.9986% 99.9999%
III Testbed2 40 10 99.9765% 99.9989%

We can draw the following conclusions from Fig. 8 and
table I,

• Computational resources of the testbed affect the pod
recreation time, which indeed affects the slice availability

• From scenarios II and III, we can see the effect of critical
microservices on the slice availability. If the majority of
the slice microservices are critical, then there are more
chances of a critical microservice getting failed. Hence,
the availability will reduce.

The 1 to N deployment model has higher availability than
the 1 to 1 model, but this is highly subjective to the availability
of a node with required computational requirements. 1 to 1
deployment has an advantage over 1 to N, which is the limited
availability. If a non-critical microservice fails, the slice will
still be available with limited functionality. In contrast, in 1
to N deployment, the slice will be completely non functional
until a suitable node is found.

VI. CONCLUSION

In this paper, we presented a novel methodology to model a
cloud native network slice defined with microservices. The two
deployment models and our approach of classifying microser-
vices into critical and non-critical are suitable for different
types of applications. Both deployment models are useful in
serving different purposes. The 1 to N deployment model
promises low latency communication and high availability
with the condition that the computational resources required
by the microservices are available all the time in one of
the cluster nodes. It might not be the case all the time. In
the 1 to 1 deployment model, availability is subjected to the
application’s design in terms of the number of critical and non-
critical microservices. This model efficiently utilizes clusters
computational resources by allowing microservices to spread
across different cluster nodes. It is suitable to use this model
for applications prioritizing availability over low latency and
can be categorized into critical and non-critical microservices.

REFERENCES

[1] A. Ksentini et al, “Providing low latency guarantees for slicing-ready
5G systems via two-level MAC scheduling,” in IEEE Network, vol. 32,
no. 6, 2018.

[2] B. Brik et al,“Service-oriented MEC applications placement in a feder-
ated edge cloud architecture”, in Proc. of IEEE international conference
on communications (ICC), Virtual, 2020.

[3] S. Arora, et al, “Lightweight edge Slice Orchestration Framework,” in
IEEE ICC 2022, May 2022.

[4] B. Burns, et al, 2016. “Borg, Omega, and Kubernetes: Lessons learned
from three container-management systems over a decade”. Queue 14, 1
(January-February 2016), 70–93.

[5] Multi-access Edge Computing (MEC); MEC Management; Part 2:
Application lifecycle, rules and requirements management,ETSI GS
MEC 010-2 V2.2.1 Feb. 2022.

[6] CNI—Container Network Interface. Accessed: Apr. 26, 2022.[Online].
Available: https://github.com/containernetworking/cni

[7] S. Qi, et al, “Assessing Container Network Interface Plugins: Function-
ality, Performance, and Scalability,” in IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 656-671, Mar. 2021.

[8] DPDK- Data Plane Development Kit. Accessed: Apr. 26, 2022.[Online].
Available: https://www.dpdk.org


