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Abstract—The accurate sensing and positioning capabilities
foreseen in 6G have great potential for technology advancements
in various domains, such as future smart cities and industrial use
cases. Channel charting has emerged as a promising technology
in recent years for radio frequency-based sensing and localiza-
tion. However, the accuracy of these techniques is yet far behind
the numbers envisioned in 6G. To reduce this gap, in this paper,
we propose a novel channel charting technique capitalizing on
the time of arrival measurements from surrounding antennas
along with their locations and leveraging sensor fusion in
channel charting by incorporating laser scanner data during the
training phase of our algorithm. The proposed algorithm remains
self-supervised during training and test phases, requiring no
geometrical models or user position ground truth. Simulation
results validate the achievement of a sub-meter level localization
accuracy using our algorithm 90% of the time, outperforming the
state-of-the-art channel charting techniques and the traditional
triangulation-based approaches.

I. INTRODUCTION

Positioning techniques in wireless networks traditionally
rely on channel parameter estimation methods like Received
Signal Strength Indicator (RSSI), Time of Arrival (ToA), Time
Difference of Arrival (TDoA), and Angle of Arrival/Departure
(AoA/AoD) [1], [2]. These parameters help triangulate or
trilaterate a device’s position while Channel State Information
(CSI) offers a more comprehensive approach by considering
detailed channel properties and environmental effects on the
signal. This method is particularly effective in complex indoor
environments where dense multipath propagation and NLoS
conditions are dominant. Direct CSI positioning methods are
divided into two categories, supervised and unsupervised [3].
Supervised learning, particularly fingerprinting (FP) methods,
relies on a pre-established database of signal characteristics
like CSI or Multi Path Components (MPC) as features col-
lected at known UE locations. This database is used to train
a model that can later predict the location of a device based
on its observed CSI or features, making it highly effective
in environments with stable signal patterns. Unsupervised
learning, on the other hand, does not require a pre-labeled
dataset. Instead, it estimates a mapping directly from the
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collected data for an objective function. This approach is
valuable in dynamic environments where it is impractical to
create and maintain an extensive labeled dataset, offering the
flexibility to adapt to changes in the environment over time.
Although CSI provides a comprehensive view of wireless
signal propagation from the transmitter to the receiver, in-
cluding the effects of environmental factors (e.g., scattering,
fading, and reflection), this detailed information results in
high-dimensional data, making analysis in positioning systems
challenging. Channel Charting (CC), an innovative approach
in wireless networking, seeks to create a map or chart of the
wireless medium using CSI, enabling the precise localization
and tracking of devices within complex environments [4].
CC is one of the applications of manifold learning, a non-
linear dimensionality reduction technique, that plays a vital
role in interpreting CSI data. Manifold learning effectively
uncovers the low-dimensional structures hidden within high-
dimensional CSI datasets. This refines signal propagation
properties, resulting in more precise perceptions of wireless
signal interactions with their surroundings. The primary ob-
jective in dimensionality reduction is to map data from a
high-dimensional space (D) to a lower-dimensional space (d)
(where d << D), with two key objectives: i) The mapping
should maintain the proximal relationships among data points,
and ii) It should effectively generalize to new and unseen
data. Non-parametric CC techniques such as Multidimensional
Scaling (MDS), Isometric Mapping (ISOMAP), and Principal
Component Analysis (PCA) perform well in simplifying high-
dimensional data while retaining critical structures [5]. MDS
focuses on preserving pairwise distances, ISOMAP extends
this by maintaining geodesic distances on a manifold, and
PCA captures the maximum variance through orthogonal
principal components. However, these methods often fail to
accurately predict unseen data as they do not learn a general
mapping function from the original high-dimensional space to
the reduced space. Instead, they are entirely dependent on the
specific dataset they are applied to, and any new data requires
recalculating the entire model, making them unsuitable for
prediction in dynamic environments. Conversely, parametric
approaches like deep learning-based methods are adept at
learning a mapping function that can be applied to novel,
unseen data. This capacity to extend CC to previously unseen
CSI data is a significant advantage over traditional strategies.



Despite the recent advancements in self-supervised CC using
deep metric learning in [6]-[18] (Explained in section II), they
still struggle to match the precision achieved by supervised or
traditional triangulation methods even in line-of-sight (LoS)
(See section V). Thus, in this paper, we developed a novel
CC algorithm, leveraging neural network and data fusion to
accurately localize the user. Specifically, our contributions are:

o A neural network-based CC function to accurately local-
ize users while preserving global geometry.

o We enhanced localization accuracy using data fusion with
depth data only during the training phase.

e Our algorithm is self-supervised, utilizing nearby antenna
a.k.a Transmission Reception Point (TRP) locations, CSI,
and depth data during training without requiring labels.

o Our method achieves a sub-meter localization accuracy
using two LoS TRPs in 90% of the time, superior to the
state-of-the-art and traditional triangulation methods.

II. RELATED WORK

Channel charting for localization in wireless networks has
been used for the first time in [6] from a single base station
(BS) with multiple antennas, and in [7], [8] from multiple
massive MIMO BSs in space. Since CC relies on dimension-
ality reduction of the CSI, [9] and [10] used autoencoders
to improve this task. A Siamese neural network in [11], [14]
is proposed that takes random pairs of CSI to first learn a
local channel chart and then transform it to the global form
using a subset of labeled data as reference points in a semi-
supervised manner. In this method, the Euclidean distances
of the Channel Impulse Response (CIR) measurements are
used as a dissimilarity metric. To overcome the limitations of
the Siamese loss function with a Euclidean distance metric, a
triplet-based loss is used in [12], [13] to learn the similarity be-
tween triplets of CSI data based on the distance of other side-
informations such as the relative recording timestamps. Au-
thors of [15], [16] combined CC with the classical localization
approaches, taking ToA and AoA measurements to improve
the global channel chart. Although the CSI measurements can
contain rich information, none of these CC studies exploiting
only CSI data have surpassed the performance of traditional
triangulation-based methods, even when LoS conditions are
present. In [17], velocity estimation and topological map data
are used for the global transformation of the CC. However, the
global consistency of this algorithm relies on the length of the
trajectory taken by the user. Also, the map-matching algorithm
in this study works only if a unique match of the channel
chart exists in the map. Finally in [18], by proposing a loss
function containing a bilateration loss including multiple BSs
with known locations and a triplet loss, a self-supervised CC
is made in real-world coordinates. Motivated by this, in this
paper, we leverage sensor fusion and the location of the nearby
TRPs in the training phase to enhance localization accuracy.

III. SYSTEM MODEL

In this paper, we consider two phases of training and testing.
For both phases we assume an indoor scenario where a mobile

user, a.k.a UE, transmits Up Link Sounding Reference Signals
(UL-SRS) to a base station' with M distributed TRPs with
fixed and known locations x,, € R3,Vm € [1, M] placed in
the environment. The UE follows a trajectory with a duration
of N time steps. The UE location at each time step n is
assumed unknown and denoted by u,, € R3,n € [1, N]. The
height of the UE is presumed to be fixed during its trajectory.
The UE and TRPs are equipped with single antennas operat-
ing in Orthogonal Frequency-Division Multiplexing (OFDM)
transmission mode with total C' sub-carriers. The estimated
CSI of the link between the m-th TRP and the UE location
u,, (yet assumed unknown) at time step n over all sub-
carriers is denoted by h,, ,, € CC. We obtain the CIR vector
Wpn € CC by applying an inverse discrete Fourier transform
on each CSI vector. Consequently, we denote W,, € CM*¢
as the CIR matrix which is the concatenation of CIR vectors
over all TRPs at time step n. During the training phase, the
UE is equipped with a 2D laser scanner to collect depth
measurements in addition to CSI, while during the test time,
the algorithm only uses the CSI measurements, and no laser
scanner is required, hence reducing the sensor requirements
and the complexity as well as saving the energy in the testing
phase. It is worth mentioning that, the algorithm remains
self-supervised during both train and test phases and the
only difference is the type of measurements available at each
phase. The depth measurements collected by the laser scanner
at time step n during the training phase are denoted by
£, = {(ry,é1),Vk € [1,K]} € RE*X2 where K is the
number of points at each scan of the laser scanner, 7, and ¢y
are the relative distance and the angle of each scanned point,
respectively, in the laser scanner body coordinate frame which
we assume to be the same as the UE coordinate frame.

A. Data Preprocessing and Feature Extraction

To increase the robustness of the algorithm, we preprocess
and extract certain features from the measured CIR. Since the
majority of the received power is usually concentrated in the
first few taps, we only consider the first C' columns of the
CIR matrix. The truncated CIR is denoted by W,, € CM*C,
Therefore, the main input of our algorithm is computed
as Y, = |W,| € RM*C where |.| is the element-wise
absolute value operator. We assume that the UE and TRPs
are synchronized akin to [19] using Round Trip Time (RTT).
We then estimate the ToA of the LoS path between UE and
TRPs at time step n by detecting the largest peak among the
columns of Y,,. Equivalently, we can write:

T & arg max y ™), (1)
c€[1,C]

where yfim)(c) is the element of matrix Y,, at row m and

column ¢, and 7,,, is the measured ToA corresponding to
the LoS path (i.e. the largest pick of the CIR vector) between
the UE and the m-th TRP at time step n. The ToA of all
TRPs and the UE at time step n in a vectorized form is given

'Our algorithm can be generalized to multiple BSs without a tight syn-
chronization between them, as well as to multiple UE scenarios.



by Tn = (Tim,+ ,Tarn) € RM. Furthermore, we exploit
the additional measurements provided by a 2D laser scanner,
which is available only during the training phase, to estimate
the UE displacement between two different time steps. To this
end, we employ the well-known Iterative Closest Point (ICP)
algorithm for processing the laser scanner data. Due to limited
space, we omit the details of the ICP algorithm and we refer
to [20] for more information. We denote the estimated UE
displacement between time steps n and n’ using ICP algorithm
and utilizing laser scanner data by Tn,n/.

B. Deep Channel Charting

Given the CIR dataset, it is possible to find a mapping func-
tion fo : RM xC _ RP that transforms the CIR matrix Y,, to
a lower dimension D < 3 as a proxy to the locations, a.k.a
pseudo-position, of the user as @, = fo(Y,). Deep neural
network has proven to be a good candidate for estimating the
mapping function fg, as fg is a complicated and non-linear
function. Various methods have been introduced in the litera-
ture to find the mapping function using deep neural networks.
These methods range from supervised to unsupervised [6]—
[18]. In this paper, we build a channel chart algorithm upon
the bilateration loss function akin to [18] and by capitalizing
on ToA measurements and the location of the TRPs. We
extend this method further by incorporating laser scanner data
to improve the accuracy of localization. Note that, the TRP
locations and laser scanner data are only required during the
training phase. Moreover, our approach is self-unsupervised
and will provide a global scale representation of the user’s
location in the global coordinate frame very close to the
ground truth as opposed to the pseudo-position of the user.
In the following section, we elaborate on our approach.

IV. CHANNEL CHARTING USING DATA FUSION

In this section, we seek to learn a channel chart function
fo given a training dataset Dy = {Yn, Tn,Xm, £n; V0, m}.
We assume that the pilot signal sent by the UE is received
at all TRPs. As expressed in [18], from the received CSI,
when we compare the relative received powers at TRPs for
a given UE, the TRPs closer to the UE tend to receive a
signal with higher power under LoS conditions. Let’s denote
the received power at TRP m from the UE at time step n with
Ym.n = 201og(|[hy, m | 7)., where ||.|| 7 is the Frobenius norm.
Therefore, we can write:

’Ym,nc > ’ym,’rlf + F7vncanf 6 [1a N]7 (2)

where n.,ny are time steps chosen such that the UE location
at time step n. is closer to TRP m than when the UE is at time
step ny. In other words, n.,ns should satisfy the following:

1Xm — || < [Xm — Uy, B 3

where ||| is the Euclidean norm. The constant I" imposes
that the received power differs at least by I'. From (3), we
can constitute the following bilateration loss function:

Lorneng = max([Xm = fo (Yo, )| = [%m = fo (Yn, )| +d,0),
“)

where d > 0 indicates that the UE at estimated location
fo(Yy,) is closer to TRP m than the UE estimated location
Jo(Yr,) by at least d meters. Assuming that the TRPs are LoS
to the UE at all time steps, finding a fg that minimizes (4) will
ideally satisfy inequality (2). However, in a realistic scenario,
there is no guarantee that the power-distance relation holds,
as also indicated in [18]. Moreover, the loss in (4) might be
equal to zero for a vast majority of (n.,ns) pairs, depending
on the value chosen for d, rendering it sample inefficient for
learning fg. To tackle this problem, since we can estimate
the ToA at each TRP, therefore we can have an estimate of
d per measurement at each time step. Consequently, we can
reformulate the loss function in (4) as follows

Loy = (xm—=fo(Yn )| = 1%m— fo (Yo )|+ dm.n.ny ),
(%)

with
dm,nc,nf = ITm,nf - Tm,nc| v, (6)

where v is the speed of light, and |.| represents the absolute
value operator. Please note that, the loss function in (5)
is specified per each measurement pair and is not sparse,
resulting in a more sample-efficient training process. However,
the expression in (5) is a differential loss function with respect
to the UE location in two time steps and can bring ambiguity
to the UE location estimate, hence not preserving the global
geometry features. To solve this issue, we redefine Efn,nc,n ;
by splitting it into two additive parts as follows: '

l:b é ‘Cm,nc + ‘Cm,nju (7)

MM, Ny

where
fo(Yn)ll — Tm,n V)Q- ¥

Furthermore, We can formulate a separate loss function for
the UE locations at time steps n.,n; as follows:

Lon; = (1fo(Yn,) = fo(Yu, )l = un, —un )%, (9

where the first part of this loss function (||fe(Yn,) —
Jo(Yn,)|) represents the displacement between two estimated
UE locations at time steps n.,ny, and the second part
(llay, — wy,,|[) is equivalent to the true UE displacement.
Therefore, minimizing (9) will result in preserving the relative
displacement between the estimated UE locations in two
different time steps. However, the second part of this loss
function is not available. To tackle this problem, we exploit the
measurements obtained from the laser scanner. We reformulate
the loss function (9) by incorporating the laser scanner data
as follows:

‘szc,nf = (HfO(Ync) - fG(Ynf)”

where Tnmn ; is the estimated UE displacement between
two time steps n.,ny using laser scanner data and the ICP
algorithm [20].

Finally, the total loss function including the CIR radio
measurements and the laser scanner data is given by:

Lo, = L0 + A o

m,Ne,Nf Ne,Nf~ne,nyg

Em,n = (me -

_Tnc,nf)zv (10)

(1)
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Fig. 1: Diagram of training and test phases of our algorithm.

where A, n, is a coefficient that determines the impact of the
loss pertaining to the laser scanner data. It is worth mentioning
that the ICP algorithm might fail to estimate the displacement
between two time steps if the depth measurements in two
corresponding scans are very different. Therefore, to mitigate
this error, we choose the value for A, ,, to be small when
n. and ny are far in time.

Finally, the total loss function for all TRPs and overall time
steps is given by:

M
L= > > Lonem

ng,ne.€[1,N]m=1
ny#ne

(12)

A neural network can then be trained to obtain a channel
chart function fg by minimizing £ and using training dataset
Dy. We denote the trained channel chart neural network
model by fg=, where 6* is the optimized parameters of the
neural network model after training. Consequently, the trained
channel chart function can be used to estimate the UE location
in a global scale coordinate frame owing to (7). This approach
is self-supervised as it does not require labeling during the
training or evaluation/test phases.

A. Offset Estimation

The UE location estimated using the channel chart neural
network model (fg=) trained in the last section might deviate
from the ground truth by an offset. This might happen when
a small set of TRPs (less than 3 TRPs) is available, which
can introduce an ambiguity to the UE location estimate and
result in getting stuck in a local minima. To tackle this
problem, given a trained channel chart model, we formulate
the following optimization problem to calculate the offset in
the estimation:

N M
b* = argmbin Z Z [Tmn (D) = Tmn

n=1m=1

; 13)

where b € R? is a bias vector to be estimated, and 7, ,(b) is
the estimated ToA between the m-th TRP and the UE location

at time step n and taking into account the bias vector b. Using
the trained channel chart model, 7, ,(b) is given by:

o (Ya) = b) = Xl

v

Tmon (D)

Solving (13) will find a bias vector, minimizing the error
between the estimated ToA and the measured ToA, thus
improving the localization accuracy. We solve (13) using
the training dataset D, and employing the Particle Swarm
Optimization (PSO) technique [21]. We denote the optimized
bias vector by b*.

Finally, the UE location estimate at time step n by taking
into account the bias vector is given by

i, = for (Yn) — b

Note that (Y,,, b*) are sufficient to estimate the UE location
during the test time. A diagram illustrating the overall pro-
cedure of our proposed CC algorithm during the training and
test phases is shown in Fig. 1.

(14)

5)

V. EVALUATIONS AND RESULTS

To evaluate our proposed method against existing state-of-
the-art approaches, the following benchmarks were employed:

o Classical PSO: We compared the results with an exten-
sion of the classical TDoA-based localization algorithm
in [22], where the PSO technique [21] is instead used to
triangulate and estimate the UE location given the TDoA
measurements from the surrounding TRPs.

« Siamese Neural Network [14]: Uses pairs of CSI mea-
surements and their corresponding Euclidean distances
as a dissimilarity metric, preserved in a 2-D encoded
latent space. This technique is semi-supervised since the
estimated latent space requires a linear transformation to
the global coordinate frame using a subset of CSI data
labeled with true UE locations.

« Triplet-based Neural Network [12]: It encodes triplets
of CSI into a 2-D latent space and similar to Siamese, is
semi-supervised and utilizes some labeled data.

o Triplets + Bilat. [18]: Employs a self-supervised ap-
proach using known TRPs locations and their received
power in a combined triplet and bilateration loss function
to train a model in the global scale coordinate frame.

The performance of the CC models is assessed through both
quantitative and qualitative methods. Quantitative key metrics
include Continuity (CT) (ensuring spatial relationships are
preserved in lower-dimensional space), and Trustworthiness
(TW) (ensuring charted similarities reflect true proximities)
as detailed in [23]. In addition, the CDF of the localization
error at the 90th percentile (CE90), indicates localization
accuracy and the spread of errors across locations. Qualita-
tively, evaluating the charted space through visual inspections
against expected wireless environment geometries helps verify
if the model accurately identifies meaningful patterns and
relationships within the data.

In our simulations, we consider an indoor factory sce-
nario where there is a UE transmitting UL-SRS signals with



(a) Ground truth (b) Laser scanner

Fig. 2: True trajectory (a) vs. the estimated trajectory using
only the laser scanner data (b), during the training phase.

100MHz bandwidth and 122.88 MSamples/sec sampling rate
in sub-6 GHz frequency to M = 2 LoS TRPs with a
fixed height of 8 m. For the sake of comparison, the training
and testing trajectories are similar to the datasets from [14]
and IPIN competition 2023 Track 7, both recorded in the
Fraunhofer IIS L.ILN.K. hall, where the measurements are
taken in an approximately 20 x 15m? area. Nevertheless,
we reconstructed the CIR data from the above trajectories
in Matlab using a 3D map-based Ray-Tracing toolbox to
simulate the laser data in the same environment. In Fig.
2a, we depicted the actual trajectory followed during the
training phase, and Fig. 2b shows the reconstructed training
trajectory using only the laser scanner data incrementally
and using the ICP algorithm [20]. It’s important to note
that, the reconstructed trajectory based on laser scanner data
is prone to errors due to measurement drift and coordinate
differences as the true user locations are unknown (see Fig.
2). Consequently, this trajectory cannot be used directly,
making approaches like fingerprinting infeasible. In Fig. 3a
and 3f, we illustrated the true trajectories followed by the
mobile UE during the testing phase. We also define the global
coordinate frame as the coordinate frame used for recording
ground truth trajectories. The test datasets corresponding to
the test trajectories shown in Fig. 3a and 3f are denoted by
Dataset 1 and Dataset 2, respectively. We choose the first 49
elements of the CIR matrix, therefore the dimension of the
input to our CC network is as Y,, € R2%%9 The height of
the UE is assumed known and equal to 1.5m and remained
constant during both the training and test phases. Therefore,
we estimate the UE location in the 2D space. > We simulated
a 2D laser scanner during the training phase, which provides
depth measurements with a resolution of 0.6 degree in the
angular domain, and an accuracy of 5 cm for ranging. Both
depth and CIR measurements are collected every 20 ms. The
architecture of the encoder-based neural network used for the
CC function is similar to [14] and summarized in Table I.
In addition, We selected A, ,, = 5 when |n. —ns| < 500,
otherwise Ap,_ n, = 0.

In Fig. 3b to 3e the results of channel charts for test Dataset
1, and in Fig. 3g to 3j, the results related to test Dataset 2 for

2Qur algorithm can be generalized to 3D UE localization without limit.

different benchmarks are shown. For better visualization, plots
are color-coded in RGB values normalized between [0, 1.0],
whereby points with color values closer to 1.0 indicate more
accuracy or smaller error in position estimate compared to the
ground truth. It is worth mentioning that the location estimate
provided by our proposed algorithm is in the global coordinate
frame, very close to the ground truth. This is owing to using
the ToA measurements along with the TRPs locations and the
laser scanner data during the training phase.

Furthermore, the value metrics introduced in Sec. V for
the test datasets and different benchmarks are compared in
Table I which clearly shows that our proposed algorithm
outperforms the benchmarks. Also, we compared the results
with the Classical PSO benchmark which is a classical TDoA-
based localization method as described in Sec. V. It is worth
mentioning that, to triangulate the UE using such traditional
algorithms, at least 3 TRPs are required, as opposed to 2 TRPs
used in our algorithm. Despite using 3 TRPs, the localization
accuracy of the classical method is inferior to our algorithm.

In Table II, we also present the results related to an addi-
tional experiment that we conducted by running our algorithm
without utilizing the laser scanner data, which is equivalent
to set /\nmnf = 0,Vng,ny. The results confirm that the
incorporation of laser scanner data can significantly improve
the accuracy of localization.

TABLE I: Embedding Model Architecture Summary

Layer Output Dimension  Kernel Size  Activation
Conv2D (8, 2,49) (3, 3) ReLU
Conv2D (8, 2,49) 5, 5) ReLU
Conv2D (8, 2,49) 8, 8) ReLU
Conv2D (16, 2, 49) (10, 10) ReLU
Flatten (1, 1568) - -

Fully Con. (1, 200) - ReLU
Fully Con. (1, 100) - -

Fully Con. (1, 2) - -

TABLE II: 2 TRPs Comparison of Our Model with State-of-the-Art
over Datasets 1 and 2

CT T™W CE90 [m]
Model 1 2 1 2 1 2
Classical PSO 0987 0978 0986 0.984 1.59 1.45
Siamese [14] 0.996 0994 0994 0.991 3.08 224
Triplets [12] 0.993 0994 0992 0994 229 1.35
Triplets+Bilat. 0991 0980 0990 0964 24.14 22.16
(18]
Ours (no Laser) 0.995 0.992 0995 0991 3.98 3.81
Ours 0.998 0996 0997 0.995 0.94 0.97

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel channel charting method
that uses ToA measurements from nearby TRPs along with
their locations. In addition, we leveraged sensor fusion by in-
corporating laser scanner data during the training phase of the
algorithm. Our algorithm is self-supervised during the training
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Fig. 3: Figures (a) to (e) are the results for test Dataset 1, and figures (f) to (j) are the results for test Dataset 2.

and test phases, requiring no geometrical models or user
position ground truth. Simulation results demonstrated that our
algorithm achieves sub-meter level localization accuracy 90%
of the time, surpassing the state-of-the-art channel charting
techniques and the traditional triangulation-based approaches.
Channel charting leveraging data fusion is still in its infancy
and requires further investigation. For future research, we will
extend this work by exploring NLoS scenarios as well as
exploiting additional measurements, such as AoA. Moreover,
Anen ; can be selected more dynamically.
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