
Wireless Modulation Identification: filling the
gap in IoT networks security audit

Florent Galtier1, Guillaume Auriol1,2, Vincent Nicomette1,2, Paul L. R.
Olivier1, Romain Cayre3, and Mohamed Kaâniche1

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400
firstname.lastname@laas.fr

2 Université de Toulouse, INSA, LAAS, F-31400
3 Eurecom, 450 Route des Chappes, F-06410

firstname.lastname@eurecom.fr

Abstract. The massive deployment of IoT devices comes with the cre-
ation of many wireless communication protocols designed to support var-
ious applications. However, while some of these protocols are public and
widely used, such as Bluetooth Low Energy or Enhanced ShockBurst,
the specifications of other protocols are only partially, if at all, publicly
available, making it difficult for security researchers to study them, es-
pecially for auditing purposes. In this paper, we address this issue by
presenting an innovative, easy-to-use and protocol-agnostic toolkit to
analyze unknown network communications. The toolkit is designed to
automatically infer their physical layer characteristics and and to ex-
tract the binary content of their frames. We conducted experiments to
identify the modulation parameters for various wireless communications
used by off-the-shelf devices as well as for randomly generated protocols,
considering both FSK and ASK modulations. In addition, our results
show that the proposed toolkit is capable of successfully detecting covert
channels in wireless environments. We also conducted a case study on an
undocumented proprietary wireless mouse protocol.

Keywords: IoT, Intrusion Detection, Radio Frequency Identification, Secure
Communication, Cyber-Physical Systems, Security and Privacy

1 Introduction

Industrial and home networks are increasingly relying on wireless networks, ei-
ther to ease communication, save space or reduce costs. However, such networks
are more exposed to security attacks than traditional wired networks, due to the
use of unconfined and open radio transmissions.

In such systems, attackers could easily eavesdrop on communications or in-
ject malicious transmissions among legitimate ones. In contrast, such attacks
on wired networks are mitigated by using robust communication systems and
by monitoring anomalies in transmission frames. However, auditing and moni-
toring wireless networks is hindered by the large number and heterogeneity of



2 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

protocols. They can have radically different physical layers and use specific chan-
nels to communicate, sometimes adding channel hopping. Moreover, an attacker
willing to stealthily exfiltrate data could communicate through a custom crafted
protocol designed for escaping the scrutiny of potential monitoring measures.

Extracting binary streams from known protocols is possible with available
tools [1, 2], but such methods are lacking for more generic use cases. Auditing un-
familiar wireless protocols involves laborious tasks to identify their modulations
and parameters, then to recover the binary streams and higher-layer protocols.

With the diverse protocols in IoT and numerous proprietary ones, auditing
wireless communications becomes increasingly difficult. Many IoT devices have
flaws that make them vulnerable to attacks. Furthermore, proprietary protocols
often rely on security through obscurity, further complicating audits. Securing
wireless networks is therefore a pressing challenge. Developing new tools to ana-
lyze protocols in a broader way is crucial for improving wireless security audits.

In this paper, we propose to address this challenge by designing and imple-
menting a novel modulation identification approach and analysis module suitable
for different types of modulations, and easily extensible. The proposed approach
also allows to retrieve the binary payload of known protocols, and identify fields
of interest in unknown ones. More precisely, this approach with the designed
toolkit is able to detect transmissions and infer their parameters and content,
without making any assumption. It combines reception over a wide frequency
band (for example higher than 10MHz) and different modulation detection algo-
rithms to estimate the parameters used in the transmission. This tool can then
be enriched with grammar estimation modules to become an assistant for wire-
less protocol reverse-engineering, or a covert channel attack detection system to
identify exfiltrated data. It only requires for the operator manual parameteri-
zation and estimation of the noise level beforehand, and is entirely automated
afterwards. Furthermore, the source code of the tool and the experiments will
be made public to allow reproducibility.

Overall, the following contributions can be highlighted in this paper:

– A novel approach to identify and analyze modulations in signals, infer their
parameters and retrieve basic information about the higher-layer protocols.

– An open-source tool implementing this approach.
– The validation of the approach and test of the tool on well-known as well as

on randomly generated protocols, by demonstrating its capability to detect
covert channels, and describing a full case study on a wireless mouse.

The remainder of this paper is structured as follows. Section 2 discusses the
state-of the art about wireless protocol identification and transmission detection
in wireless networks. Then, Section 3, briefly describes the theoretical back-
ground behind our tool. The implementation is presented in detail in Section 4,
and its validation on different application use cases is addressed in Section 5.
It also presents a case study on a wireless mouse using an undocumented and
proprietary protocol, and shows how our tool can help a reverse-engineer. The
limitations of and possible improvements are discussed in Section 6. Finally,
Section 7 concludes and presents future directions for our work.



Wireless Modulation Identification for IoT security audit 3

2 Related works

Automated detection of transmissions has always been a major concern in secu-
rity because of its importance in the design of security monitoring systems.

Several steps are needed to retrieve the information of interest from the sig-
nal: first, detecting when and at which frequency frames are transmitted; then,
identifying the modulation type, identifying its parameters; and finally, demod-
ulating and analyzing the binary stream to extract information on the protocol’s
frame format, and on the higher-layer content of the communications. The first
step (detection of frame transmission) is well-documented in the state of the
art, and one of the most common methods, which we also use, is based on an
amplitude threshold. Regarding the second step (identification of the modu-
lation type), several modulation detection techniques exist in the state of the
art. Some approaches such as [3] or [4] focus on specific modulations and their
unique characteristics to detect them. The main issue with these approaches
is their high false positive rates, as they ignore the other modulations. Also,
as with other protocol detection methods, their focus on specific modulations
makes them unusable in a multiprotocol monitoring context, unless a number
of them are combined. Some other works are based on the comparison of the
received signals with models of the different modulations. For example in [5]
and [6], probabilistic models of the modulations are built, and then compared
to signals, using goodness-of-fit tests such as Kolmogorov-Smirnov. The main
limitation of this type of approach is the potential difficulty of building a model
that fits a specific modulation. In this paper, we describe an approach based
on the detection of symbols in the signals by computing the autocorrelation of
different representations fitting different modulation types, allowing the addition
of extensions for new modulation types if needed. This method is simpler than
building models for goodness-of-fit tests, but it strongly depends on the hypoth-
esis that a stable periodicity can be highlighted by the autocorrelation of the
signal with the correct modulation representation. However, this hypothesis is,
in general, met with protocols using pulse-shaping filters to increase the spectral
efficiency, which are predominant.

Existing solutions take full advantage of partial to complete knowledge of a
set of protocols they want to monitor in order to ease their detection and collect
additional metadata about the transmissions. Some approaches focus on a single
protocol, and their goal is rather to detect attacks on upper layers [7]. Others
take a broader perspective, considering different possibilities and performing a
case disjunction based on protocol-dependent heuristics to identify the type of
the emissions [1, 2]. However, they do not allow detecting unknown protocols,
especially outside pre-defined channels. This exposes them to covert channel
attacks that exploit the knowledge of the monitored channels.

Other works focus on specification-agnostic anomaly detection. For instance,
in RIDS [8], the authors trained an auto-encoder in an attack-free environment to
detect unusual activities in the monitored frequencies. However, these approaches
suffer from a trade-off between detection accuracy and the amount of processed
data. This does not allow performing a deeper analysis of the anomaly beyond



4 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

the identification of its occurrence time and associated frequencies. The method
and tool presented in this paper aim at addressing the limitations of both of
these approaches in the context of a more generalized covert channel detection.

Finally, a high and growing number of works focus on the use of Neural
Networks-based classification systems to identify the modulation type, for ex-
ample [9–13]. However, such methods require huge resources for their training,
and suffer from a lack of explainability because of the black-box aspect of neu-
ral networks. Moreover, none of those methods allows reversing the modulation
parameters and recovering the binary stream, unlike the method we propose.

Our approach can be applied to a wide range of classic digital modulations,
such as standard Frequency Shift Keying, Phase Shift Keying or Amplitude
Shift Keying. Compared to the state-of-the art, our detection approach makes
minimal assumptions about the signal, relying on state-of-the-art frame and
channel detection and a dictionary containing various modulation types and
protocols to identify the physical layer used and extract the raw bitstreams.
Furthermore, its genericity allows for the easy addition of new modulations and
protocols, and the extracted metadata can be used as a set of features for auditing
unknown signals or detecting covert channel emissions.

Once the modulation parameters have been identified and the frame demod-
ulated, another important aspect of the analysis of the emissions is the inference
of the packet format. As stated by J. Duchêne in [14], a large majority of the
state of the art field-identification approaches are based on the PI Project [15], an
approach from 2004 based on the use of bioinformatics algorithms, Needleman-
Wunsch [16] and UPGMA [17, 18]. In the case of unknown protocols, we also use
them in our approach. These methods often use specific field delimiters that are
known in advance [19, 20], or make some assumptions on the protocol to sim-
plify the analysis [21]. However, the goal of our approach is primarily to extract
a maximum number of information from the protocol without intervention and
without making assumptions on the packet format. To our knowledge, one of
the most advanced approaches is Netzob [22]. It is also based on bioinformatics
algorithms to align and delimit fields, and then on applying the L* language in-
ference algorithm [23] to estimate the protocol’s grammar. However, this tool is
relatively complex, and lacks recent updates, pushing us towards implementing
a simpler and lighter approach. Finally, we can also cite some approaches using
the Voting Experts algorithm [24] to segment packets into fields. For instance,
in IPART [25], the authors introduce a specialized version of the algorithm that
allows them to do a basic reverse-engineering of industrial protocols. However,
the assumption behind this algorithm is that all packets should come from the
same protocol, which makes it more complex to implement in our case.

3 Analysis workflow

Figure 1 illustrates the three main parts of our approach: 1) detecting where the
packets are in the raw signal received from an SDR (Software Defined Radio), 2)



Wireless Modulation Identification for IoT security audit 5

analyzing the physical layer to demodulate, and 3) finally extracting information
from the demodulated stream.

3.1 Emission detection

The first step, represented by the Emission detection block, is to find where in
time and frequency the signals are emitted. We first use a simple amplitude-based
detection, called a squelch. This isolates parts of the signal with an amplitude
above a certain threshold. The squelch threshold is based on the SDR’s noise
profile, and must be evaluated beforehand on a signal containing only noise.
Then, we compute the Fourier Transform of each signal isolated this way, to
detect the presence of amplitude peaks that highlight the frequencies in use. For
each estimated central frequency, we then keep a “baseband” copy of the frame,
i.e., a version that we have re-centered on the identified central frequency.

To demodulate and isolate the different channels, we need to estimate the
bandwidth for each detected frame. We first make a coarse estimate using the
previous Fourier transform, by identifying the width of the corresponding peak.
This estimate is then used to pass the signal through a state-of-the-art Butter-
worth low-pass filter to avoid interferences from neighbouring channels. Since our
estimate is not accurate enough at this point, the considered cut-off frequency
used for the low-pass filter is twice the distance to the edge of the peak in the
Fourier transform. This results in including more noise, but prevents acciden-
tally removing interesting parts of the signal. Note that if this cut-off frequency
is too large compared to the sample rate, and in this case the Shannon criteria
would not be met, no filter is applied.

3.2 Physical Layer analysis

In this section, we explain the different steps of the Physical Layer Analysis, as
shown on Figure 1. This process is separated in two distinct workflows, one in
the general case, and another on the On-Off-Keying (OOK) modulation, which
has the particularity of using non-emission periods to code information.

General case - modulation identification In the general case, we test the
isolated signals against different types of modulation, as represented in theMod-
ulation analysis block.

To precisely estimate the bandwidth, we first identify the symbol period. For
different modulation types, we implement a first function that extracts the phys-
ical quantity corresponding to it. For example with an amplitude modulation,
the amplitude is extracted from the signal. Then, we implement a second func-
tion that projects all symbols on a single one. For instance, we take the absolute
value if the symbols are opposites.

Second, we compute the autocorrelation on this projection to highlight the
presence of periodicity, which would come from the presence of regular symbols
in the stream. Indeed, the autocorrelation is the correlation between the signal



6 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

SD
R

H
os

t

Em
is

si
on

 d
et

ec
tio

n

K
no

w
n 

pr
ot

oc
ol

 a
na

ly
si

s

O
O

K
-s

pe
ci

fic
 a

na
ly

si
s

M
od

ul
at

io
n 

an
al

ys
is

Pr
ot

oc
ol

 B
 a

na
ly

si
s

Pr
ot

oc
ol

 A
 a

na
ly

si
s

M
od

ul
at

io
n 

A 
an

al
ys

is

M
od

ul
at

io
n 

B 
an

al
ys

is

...

Time-based packet detection

Channel usage
detection

R
aw

 s
am

pl
es

re
ce

pt
io

n

In
te

re
st

-
m

et
ric

co
nv

er
si

on

Pr
oj

ec
tio

n
on

 a
 s

in
gl

e
sy

m
bo

l

Sy
m

bo
l r

at
e

id
en

tif
ic

at
io

n

...

In
st

an
t o

f
de

ci
si

on
id

en
tif

ic
at

io
n

D
em

od
ul

at
io

n

Pa
ck

et
re

co
ns

tru
ct

io
n

B
in

ar
y 

pa
ck

et
 a

na
ly

si
s

Sy
m

bo
l r

at
e

id
en

tif
ic

at
io

n
D

em
od

ul
at

io
n

Field identification and alignment

Entropy analysis

Additional field identification
heuristics

D
is

se
ct

io
n

Fo
rm

at
ch

ec
ki

ng

...

Fig. 1: Approach architecture overview



Wireless Modulation Identification for IoT security audit 7

and shifted versions of itself. Therefore, if the signal contains recurring patterns
at regular intervals, it correlates better with itself shifted by multiples of this
interval, resulting in regular peaks in the autocorrelation. When such periodicity
is found, we deduce the number of samples per symbol and bandwidth.

General case - binary stream extraction After identifying a modulation
and filtering the signal, it is possible to automatically recover the binary stream.

All signals are made of series of symbols shaped with a pulse-shaping filter,
that transforms pulses corresponding to binary data into a modulated signal.
Accordingly, we build a bench of different usual filters, and correlate each of them
with the received signal. If the chosen filter is similar to the original pulse-shaping
filter that was used, the noise correlates significantly less than the original signal,
partially reducing the noise’s impact. The quality of the correlation is evaluated
thanks to eye diagrams : all pairs of two successive symbols are overlapped in
order to see when the symbols are the farthest from each other. Eye diagram
examples in a practical case can be found in Figure 2. The correct moment of
decision for demodulation is selected where the eye-shape is the most open, thus
maximizing the distance between symbols. The correct filter is chosen where
the ratio between the height of the shape, linked to the signal power, to the
width of its lines, linked to the noise impact on the signal, is kept minimal, as it
maximizes the signal-to-noise ratio. Additionally, the eye diagrams are used to
estimate the moment of decision to demodulate the signal, which is the instant
where the signal-to-noise ratio is maximized.

indices

(a) eye diagram - correct filter

indices

(b) eye diagram - less adapted filter

Fig. 2: Eye diagrams for GFSK, with both the right filter and a less adapted one



8 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

The Figures 2a and 2b represent eye diagrams for a Gaussian Frequency
Shift Keying modulation, applying a matching filter and a less adapted one.
The eye diagram then represents the different possible transitions in rotation
speed between symbols representing binary 0 or 1. The moment of decision is
then chosen as the ninth sample of each period, because, as seen in Figure 2a,
the symbols for 0 and 1 are concentrated each in a single spot at this moment,
meaning it minimizes the risks of demodulation errors. Additionally, as seen in
Figure 2b, a less adapted filter keeps a significant amount of noise in the signal,
reducing the margin between the two symbols.

OOK-specific analysis The amplitude-detection method has the drawback
of not detecting correctly packets sent with an OOK, since this modulation
uses sequences of periods with and without emissions to code zeros or ones.
More precisely, a period without emission and the “emission” of a sequence of
zeros are similar, making it difficult to detect when a packet begins or ends
with amplitude only. Thus, we added an OOK-specific workflow, based on a
“fusion” algorithm, that builds aggregates of packets previously detected based
on their amplitudes that are near enough. More precisely, series of packets that
are separated by periods of time of the same order of magnitude as the length
of individual packets are “fused” together as a new packet. Note that the pre-
fusion packets are still present, the new “fused” packet being treated as a new one
altogether. This step is represented in Figure 1 by the Packet reconstruction
sub-block in the OOK-specific processing.

To estimate the symbol rate in this case, for a given packet, we estimate the
minimal length of an emission or non-emission period. This allows us to demod-
ulate the packet by estimating, for each of those periods, the number of times
they contain the shortest one. However, this method relies on the assumption
that the packet contains at least an isolated “1” or “0” bit, meaning the shortest
period divides all others. To be able to demodulate packets that do not meet
this condition, we also test integer divisors of the minimal size. Then, using a
score on symbol length stability (meaning how much the lengths deviate from
multiples of the estimated symbol length), we choose the most probable option.

3.3 Link Layer analysis

The Link Layer analysis was also split in two parts : one for analyzing unknown
protocols to extract information from the packet format, the other to dissect
packets according to known protocols that correspond to the received bitstream.

To facilitate the addition of new protocols, the known protocols are regrouped
in a dictionary. Each element representing a protocol is a set of functions allowing
to identify whether a binary stream corresponds or not to this protocol.

First, the received bitstream is tested against a dictionary of known protocols,
by trying to dissect the data according to the protocol’s specification, and then
evaluating if the packet is valid. Note that, by default, the protocols are chosen
depending on the modulation they should use. However, it is also possible to



Wireless Modulation Identification for IoT security audit 9

Fig. 3: Tool architecture overview

test any protocol for any modulation, in case an attacker would use a protocol
with an unintended modulation.

Then, the bitstream is analysed to try to find fields of interest. To do so,
we first need to identify fields that are at different positions due to variable-
length fields. This was done using the Needleman-Wunsch alignment algorithm,
that aligns similar fields, as used in some works of the state of the art such as
Netzob [22], a tool to assist in simple protocol reverse engineering.

Once fields are aligned, we compute their entropy to put them in three classes:

– fixed-value fields, that could correspond to addresses
– low-entropy variable fields, for instance length fields or unencrypted data
– high-entropy variable fields, or pseudo-random fields, that could cor-

respond to encrypted data

Finally, variable length fields with low entropy are tested against different
heuristics to identify more precisely their types. In the current state of our
works, two heuristics are tested : correlation between fields and packet length to
identify length fields, and linear evolution of a given field for sequence numbers.

4 Implementation

We implemented the approach into a new tool, mainly developed in C and
Python, and based on Scapy4 and the SoapySDR5 library. It consists of three
main components: a set of core libraries, a modulation dictionary and a protocol
dictionary for each modulation6. This architecture is represented in Figure 3.
Please note that this illustration doesn’t cover the particular ASK-OOK pro-
cessing, which is implemented via a set of independent methods in the tool.

4 https://scapy.net/
5 https://github.com/pothosware/SoapySDR
6 BASK: Binary Amplitude Shift Keying, BFSK: Binary Frequency Shift Keying,
QPSK: Quadrature Phase Shift Keying (4 equidistant phase values)



10 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

4.1 Core libraries

The core libraries of our implementation are split into five blocks. The first block
(SDR Reception) is a reception module implemented in C, using the SoapySDR
library for SDR control. This allows our code to be easily used with any SDR
compatible with this library. The module receives sample buffers before sending
them to the next block.

The following block (Amplitude-based detection) isolates by amplitude the
received frames. The IQ samples corresponding to the frames are analysed to
isolate the frequency channels in use, before being saved in a file for further
offline processing. The signal is then analysed by different Modulation Managers,
presented in more detail in 4.2.

Each Modulation Manager then passes the representation of the signal to the
Autocorrelation block, that aims at identifying the symbol period of a possible
frame that it would contain. If the estimated symbol period is stable enough, the
Modulation Manager then sends the signal representation along with the symbol
period to the Filter detection block.

The Filter detection block passes the signal representation through the filter
bench described in section 3 to identify the filter shape minimizing the noise and
get the moment of decision to demodulate the signal. The demodulated stream
that results from this block is then sent to the Protocol Managers (as described
in 4.3) that are linked with the current Modulation Manager, along with the
analysis for eventual unknown protocols.

Once the Protocol Managers have analyzed the binary stream, all the ex-
tracted metadata is then saved by the Metadata recording block in a structure
for further use by different applications, such as the one presented in 5.3.

4.2 Modulation Managers

To be able to transparently manage different modulations, and to allow for an
easy enrichment of our tool with new modulations, we defined an interface called
“ModulationManager”, that all Modulation Manager classes must implement. To
implement this interface, and be able to interact with the rest of the tool, those
classes need to implement four functions:

– get label: a function without arguments that returns a string, which must
uniquely identify the modulation

– get mod: a function that takes as input raw IQ samples, and returns its
representation depending on the corresponding modulation

– get modulation index: a function that takes as input the representation
from get mod and returns a measure of the distance between the symbols
for the modulation, for further use as an identifying feature

– eye diagram precomputing: a function that projects the result from get mod

on two opposite symbols to discern the moment of decision in eye-diagrams

All Modulation Managers must then be added to the modulation dictionary
of the tool to be used by the core libraries. As of now, only binary Frequency Shift



Wireless Modulation Identification for IoT security audit 11

Keying and Amplitude Shift Keying are implemented in the tool. However, it is
possible to easily add new modulations by implementing those four functions.

4.3 Protocol Managers

To validate the reception of frames from known protocols, we needed to be able
to analyse the binary streams respectively to different possible protocols, for each
modulation. We then created, similarly to the “ModulationManager” interface, a
“ProtocolManager” interface that all Protocol Manager classes must implement.
Two methods must be implemented:

– get label: a function similar to the one for Modulation Managers, that also
needs to return a uniquely identifying string for the protocol

– check protocol: a function checking whether a valid frame for the protocol
is present in the binary stream

More precisely, the check protocol function takes as inputs the raw binary
stream extracted from the signal, the symbol rate that was identified and the
frequency on which the signal was detected. If the binary stream contains a valid
frame for the protocol, the function must then return a boolean with the value
True, a Scapy class that corresponds to the frame type to compute later the
corresponding scapy packet, and the truncated binary stream. If not, it returns
a boolean with the value False and two empty values (None in Python).

For each Modulation Manager, we associate corresponding protocols7 in indi-
vidual protocol dictionaries. Once a modulation is identified and a binary stream
extracted, the stream is tested against all available protocols for the modulation.
If the binary stream matches a given protocol, its metadata is then augmented
with metadata returned by check protocol. Let us note that, if a protocol that
has not been implemented in scapy is added, it is possible to add user-defined
scapy dissectors to the tool in a dedicated directory.

As for the Modulation Managers, this dictionnary is user defined and must
be completed beforehand by implementing the needed ProtocolManagers.

4.4 Link Layer analysis

In addition to the previously mentioned Protocol Managers, all frames identified
for any given modulation are analyzed following the workflow described in 3.3.
The resulting assumptions on the different fields are then also saved as metadata
linked to the corresponding signal.

7 We have chosen to link modulations with protocols that use them, but our approach
allows linking any protocol manager to any modulation manager



12 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

5 Experiments

This section describes the experiments conducted to validate our signal analysis
approach, and to implement basic defensive algorithms based on the results. The
source of our tool, along with the code for the experiments, is openly available
on https://gitlab.laas.fr/fgaltier/wireless-analysis-toolset.

We first checked that the approach works as intended on well known wire-
less protocols. We then evaluated the accuracy of the parameter estimation on
randomly generated wireless protocols. Finally, we demonstrated the usability of
our approach in defensive applications, by building on top of it a whitelist and
blacklist-based covert-channel detection.

All our experiments were conducted using an Ettus USRP B200mini as re-
ceiver, and when needed, we used a LimeSDR USB to emit the signals.

5.1 Validation on known protocols

We first tested our approach against well known wireless protocols: 1) Bluetooth
Low Energy8, or BLE, often used by sensors or for short wireless commands,
and integrated in most modern Bluetooth chips, and 2) Enhanced ShockBurst9,
or ESB, used by several wireless keyboards. We also tested it on IEEE 802.15.4
communications in 2.4GHz O-QPSK, using a GFSK demodulator to simplify
the approach. Indeed, as it was shown in various works [26, 27], there is a func-
tional equivalence between this version of O-QPSK and a GFSK, requiring minor
changes on the demodulation process. These protocols were chosen because of
the availability of their modulation parameters, both using GFSK in the 2.4GHz
ISM band. In fact, this combination of band and modulation is one of the most
frequent in the IoT. The goal of this experiment is to validate whether our
approach is able to detect correctly emissions from well-known and widespread
protocols, without significant performance degradation compared to a traditional
receiver. As such, we compare the number of frames received correctly by our
approach and by a traditional receiver, and evaluate the errors in the estimation
of the different parameters of the emission.

For this experiment, we sent frames with known parameters with both pro-
tocols in a realistic environment with other emission sources, including BLE and
Wi-Fi communications. The signal was received by an USRP B200mini listening
at 2405MHz with a sample rate of 10Msps, during 10 seconds. Note that, even
if the duration of the capture is quite short, the trace collected actually con-
tains several hundreds of frames and is sufficiently rich to assess the relevance of
our tool. We first computed which frames a standard receiver could demodulate
with a correct CRC as a reference. We then compared the results of our approach
with these, by evaluating the difference between the number of frames that we
correctly received with the number of reference frames. For BLE experiments,
we collected several hundreds of BLE signals from the everyday environment

8 https://www.bluetooth.com/specifications/specs/core-specification-5-4/
9 As described in nRF24L01+ Product Specification v1.0



Wireless Modulation Identification for IoT security audit 13

0 1 2 3 4 5 6 7
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

re
ce

pt
io

n 
ra

te

Approach performances - BFSK

correct sequence number
correct checksum

(a) Performances of our approach on a 2-
FSK

0 1 2 3 4 5 6 7
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

re
ce

pt
io

n 
ra

te

Approach performances - ASK-OOK
correct sequence number
correct checksum

(b) Performances of our approach on a 2-
ASK (OOK)

Fig. 4: Performances versus SNR in 2-FSK and 2-ASK

of our laboratory, including phones, computers, and some smaller devices such
as smartwatches. The ESB experiments were conducted only with a dongle and
a corresponding mouse, the devices using this protocol being limited to mice,
keyboards and dongles, and also included several hundred received frames. The
IEEE 802.15.4 communications were generated using ZigBee devices, as ZigBee
uses this protocol as MAC layer. We used a XBee device, a Philips Hue Bridge
and a Philips Hue lightbulb. The ratio of frames correctly decoded by our ap-
proach over the frames correctly decoded by the hardcoded receiver is 99.7% (955
correctly received with our approach versus 958 with the standard demodulator)
for BLE and 98.8% for ESB (89 correctly received with our approach versus 90
with the standard demodulator). For ZigBee, we compared the results of our
approach with a GFSK demodulator with hard-coded carrier frequency and bi-
nary rate. In this case, we received 85 out of 85 frames with our approach. These
results show the relevance of our approach: the demodulation performances on
known protocols are very close to those with hardcoded values.

5.2 Validation on random protocols

We then tested our approach on unknown protocols, generated with random
modulation parameters. To test the efficiency of our approach on different mod-
ulations, we chose the BFSK and ASK-OOK modulations. The goal of this ex-
periment is to evaluate, on emissions with non-standard parameters, whether
our approach would still be able to detect and analyze the received frames.

This was done in two steps :

1. testing the approach on simulated emissions with controlled noise, to esti-
mate our sensitivity to the Signal to Noise Ratio (SNR)

2. testing the approach on real signals with randomly chosen parameters, to
estimate the reception quality in more realistic conditions



14 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

Table 1: Results of our approach for randomly generated modulation parameters
FSK ASK

Average
Standard
deviation

Average
Standard
deviation

reception
accuracy

94.67% / 96.14% /

frequency
error

14.1 kHz 286 Hz 9.93 kHz 116 Hz

binary rate
error

0.227 bits/s 1.04 bits/s 919 bits/s 808 bits/s

In the case of the simulated emissions, we ran our algorithm on 10 samples
of 100 packets for each modulation, each time with SNR values between 0 and 7
dB. For both modulations, the packets used central frequencies randomly chosen
between 433 and 435MHz, and the simulated reception was made at 434MHz
with a sample rate of 4Msps. The BFSK packets were using between 4 and 16
samples per symbol, and had a modulation index between 0.4 and 0.6. The ASK-
OOK packets were using between 33 and 64 samples per symbol. The results are
shown on Figures 4a and 4b.

In the case of real-life emissions, we sent packets from a YARD Stick One
(radio dongle with pre-implemented BFSK and ASK-OOK modulations) and
received them with an USRP B200 mini. The performances of our approach are
shown in Table 1. We included a checksum in the payload of the protocol, and
used it to calculate the reception accuracy by comparing the number of packets
with a correct checksum with the number of packets actually received (estimated
from sequence numbers in the first and last received packets). In the case of ASK-
OOK, we received 281 packets, among which 274 with a valid checksum. In the
case of BFSK, we received 242 packets, among which 231 with a valid checksum.

The metrics used to assess the quality of the reception are defined as follows:

– reception accuracy : proportion of frames with valid checksum

– frequency error : error on the carrier estimation

– bit rate error : error on the bit-rate estimation

Overall, the results show a very good reception accuracy of our approach for
both frequency and amplitude modulations. The frequency error and bit rate
error are also very good since their value is at the maximum several kHz for
the frequency and a few bits per second for the bit rate, whereas the bandwidth
and bitrate are in the MHz range. As a consequence, the desynchronization due
to the bitrate error only appears in frames long enough for the successive shifts
to become significant, and the frequency error being negligible compared to the
bandwidth, it is not enough to hinder the demodulation process. This is further
demonstrated by the good reception accuracy, which shows that these errors do
not generate significant bitflips.



Wireless Modulation Identification for IoT security audit 15

Fig. 5: Allowed and forbidden communication flows

5.3 Covert channel detection

We implemented a covert channel detection mechanism on top of our implemen-
tation as a real-life example of a defense mechanism. Covert channel attacks are
critical as they may take several forms, while being quite easy to deploy and dif-
ficult to detect in absence of a monitoring system listening on a large frequency
band, such as the one proposed in this paper. For example, an attacker could
visit a company and try to exfiltrate confidential information using a device
communicating with a protocol not used by the company legitimate devices and
thus likely not monitored. This scenario can even be deployed by compromising
for instance an employee’s smartwatch to make it exfiltrate sensitive data.

This experiment was carried out in a realistic office environment, with nu-
merous legitimate communications in BLE and WiFi. We did not take any par-
ticular measure to reduce the noise implied by those communications, so that
the experiment took place in real-life conditions.

For this experiment, we added a module that takes as input the metadata
from our approach, and a configuration file to specify what should raise an alert.
The configuration file uses “AUTHORIZED” and “ALERT” rules for a set of a
modulation or protocol, a set of frequencies and a bit-rate, as shown in Figure 5.
The rules are evaluated sequentially on each frame until the conditions for one
of them are met, or if none of them matches the frame, a default rule is applied,
either raising an alert for all unknown packets or for none of them.

We used this configuration file for an experiment in which we emitted ESB
frames with a commercial emitter (supposed to be illegitimate), along with BLE
frames (supposed to be legitimate) in several sequences of 10 seconds in the first
10MHz of the 2.4-2.5GHz band.

The results of this experiment confirm the relevance of our tool: out of 768
ESB frames that were sent, 659 frames raised alerts, thus with a detection rate of
85.8%. No false positives were detected during this experiment. Even if some ESB
frames were not correctly identified, this detection rate is sufficient to actually
identify the covert channel. Note that as our approach allows providing the
demodulated binary streams corresponding to the frames transmitted, it can also
be used for simultaneous detection of malicious payloads in various protocols.

5.4 Case study - Wireless 2.4GHz mouse

To illustrate the full workflow of our tool, this section presents the analysis of a
wireless mouse using a proprietary protocol. We used our tool to 1) identify the



16 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

modulation of the physical layer, and 2) reverse the resulting binary streams.
This experiment was carried out by making the mouse communicate with a com-
puter while performing different actions. We then captured the mouse’s emissions
using an USRP B200, and transmitted them to our tool.

First, we looked at several frequencies of the 2.4GHz band to detect emis-
sions from the mouse, in a realistic environment. Doing so, we identified several
frequencies on which the dongle associated with the mouse was emitting, notably
2400MHz and 2480MHz. The mouse chooses a channel among those each time
it is turned on. Our tool quickly identified that the modulation in use was a
GFSK, at 1Mbps, allowing it to extract the corresponding binary streams.

The entropy analysis performed using our tool allowed us to identify that
all packets followed a same format : first, a series of 0xAA bytes, followed by
four fixed bytes, a variable quantity of variable fields, and finally a postamble of
0xFF. We hypothesized that the fixed field at the beginning corresponds to an
address. Then, by observing that the two last bytes before the postamble had an
entropy reflecting the entropy of the previous variable fields, we assumed it to
be a CRC. Our tool also identified that the packet did not contain a size field.

Finally, some of the longest packets contained numerous 0x5A bytes, or near
values. This could highlight the use of whitening, a common practice in wireless
communications consisting in masking the data with a xor to even out the dis-
tribution of 1 and 0 bits in the packet. However, we could not immediately check
the integrity of our reception, to help validate our hypotheses on valid packets,
as we could not find the exact parameters of the CRC algorithm.

In parallel, we found that the dongle was exposed as a MosArt Semiconductor

Corp. 2.4G INPUT DEVICE, indicating that the device might use the “MosArt”
protocol identified by M. Newlin in MOUSEJACK [28]. Using the reversed pa-
rameters, we could validate the use of whitening with a repeated 0x5A byte,
along with the use of a XMODEM-16 CRC. We also validated that the format did
not contain any size field, as our tool indicated. This also allowed us to find out
some differences between our mouse’s protocol and the one reverse-enginered.

Thanks to our entropy analysis, we identified the frame sequences corre-
sponding to mouse movement and scrolling. Moreover, it allowed us to detect,
depending on the input, which field corresponded to which action. Interestingly,
this showed us that the payload of movement frames was different from MOUSE-
JACK version. Indeed, the movement coordinates were alternating between X-
coordinates and Y-coordinates bytes instead of being two contiguous two-byte
values. We also identified a seemingly empty field after the frames corresponding
to scrolling, that was not described by M. Newlin.

Overall, this case study shows the capacity of our tool to extract informa-
tion from unknown signals, to help reverse-engineering unknown protocols. It
validates the results from the previous experiments, showing the capability of
our tool to help analyzing devices. However, it also shows the need for further
work in the higher-layer analysis, notably on the detection and reverse of CRC.
To do so, we plan to integrate into our tool an error-tolerant variant of CRC
RevEng[29], a CRC algorithm finder. This could allow to automatically, with



Wireless Modulation Identification for IoT security audit 17

an heuristic to find CRC fields, or semi-automatically, by specifying the field
manually, identify the CRC parameters.

6 Limitations and discussion

Some modulation schemes use closely overlapping channels, like OFDM. This
situation introduces new technical difficulties in the demodulation process, that
need to be addressed by specific mechanisms integrated in the specifications.
Thus, our approach, without prior knowledge of the communication scheme that
was used and the associated mechanisms, or their parameters, is not suitable for
such schemes. Several approaches have been studied to detect OFDM communi-
cations and estimate their parameters, as presented in [30], which separates them
in four main categories: identification based on the inter-frame spacing, with the
help of the cyclic prefix [31] or not [32], techniques modifying the emitters to
add detectable information [33], and techniques based on the pilot symbols used
by the scheme [34]. However, since our objective is to analyze the modulation
without making any assumptions on the signal or modifying the communicating
objects, we cannot use any of those methods in our protocol-agnostic approach.
Moreover, all these approaches do not allow recovering the bitstream from an
OFDM signal in realistic conditions with unknown parameters. Indeed, it would
require to correct the channel selectivity of the wireless medium, which is done
by knowing the values sent as pilot or reference symbols, and thus an assump-
tion on the transmitted data. To our knowledge, none of the existing approaches
allow estimating the original versions of those pilot or reference symbols. How-
ever, OFDM signals still carry specific characteristics, such as the fixed-lengths
blocks separated by cyclic prefixes or guard intervals, or reference symbols. Such
characteristics could be detected by the use of methods relying on cyclostationar-
ity or autocorrelation to detect periodic repetitions, knowing usual sample rates
and OFDM block sizes. Therefore, an OFDM-specific detection module could be
built and integrated in our approach, even without going as far as to demodulate
the original data, for example for covert channel detection purposes.

Some other schemes, such as Chirp Shift Keying (CSK), used in LoRaWAN,
do not directly transmit symbols as values of specific parameters of the signal.
For example, this modulation uses “chirps”, symbols where the signal transitions
from a frequency to another, and use temporally shifted versions of those chirps
to modulate data (the shift corresponding to the value to modulate). In the
case of those modulations, it is then needed to add a translation layer to the
ModulationManager. In the example of CSK, it would amount to translating the
signal into an array containing at each instant the corresponding CSK symbol if
the chirp began at this instant. We are still integrating such modulations, and
building the corresponding translation layers, in particular for CSK.

Let us also note that frequency hopping schemes are currently supported, but
only as independent frames. Indeed, we did not integrate any means of identifying
whole communications, so each one is analyzed on its own. We plan to add such
functionality in the future, but it is not currently under development.



18 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

Finally, it is to note that our approach focuses on modulations carrying digital
data, as its goal is to translate a signal into corresponding binary streams. It is
therefore unsuitable for detecting transmissions using analog data.

We also identified several other areas for future work. During our experi-
ments, we were limited in the wideness of the band we listened to by our pro-
cessing speed. However, as explained in Section 3, it would have been possible
to maximize the efficiency of the hardware used by implementing the first steps
isolating the frames and channels in the SDR’s FPGA, which would then send to
the computer host the already isolated frames, reducing the risks of overflows in
the communication buffers between the two. Note also that this approach is not
designed to run in real-time, since we need to receive the entire frames to analyse
them, especially for the steps using the autocorrelation of the frame’s signals.
The performance of our approach can be improved by implementing the frame
and channel isolation into the SDR’s FPGA, which would reduce the amount of
data to send to the computer to allow for a larger band simultaneous reception.

Our reverse engineering module is, for now, limited to a few specific kinds
of fields, but could be augmented with more heuristics to detect other fields of
interest, in particular frequent header fields or CRC fields.

7 Conclusion

In this paper, we presented a tool and experiments to fill the gap in the current
state of the art of wireless protocol auditing and wireless covert channel attack
detection, by implementing a method for detecting and analysing the physical
layer of such wireless emissions. The different experiments we carried out show
that this tool is able to successfully retrieve data from known protocols, and to
efficiently detect the parameters of randomly generated ones. Furthermore, this
tool also allows to reverse engineer the extracted data.

This approach constitutes an important step towards the design of a unified
means for reverse-engineering the various and heterogeneous protocols that can
be used in the domain of IoT. Indeed, as of now, we lack such a tool that
would allow saving substantial amounts of time in the audit of unknown wireless
devices, and analysis of unknown emissions in a monitored environment.

For future work, we plan to investigate several topics. Regarding the physical
analysis, we plan to add a PSK analysis to complement the ASK et FSK. We also
plan to work on the extension of the tool, by enriching the reverse engineering
capabilities from the protocol analysis point of view.

Acknowledgements

This work has been partially supported by the French National Research Agency
under the France 2030 label (Superviz ANR-22-PECY-0008). The views reflected
herein do not necessarily reflect the opinion of the French government.



Wireless Modulation Identification for IoT security audit 19

References

1. A. Li, C. Dong, S. Tang, F. Wu, C. Tian, B. Tao, and H. Wang,
“Demodulation-free protocol identification in heterogeneous wireless networks,”
Computer Communications, vol. 55, pp. 102–111, Jan. 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0140366414003041

2. K. Lakshminarayanan, S. Sapra, S. Seshan, and P. Steenkiste, “Rfdump: an archi-
tecture for monitoring the wireless ether,” in Proceedings of the 5th international
conference on Emerging networking experiments and technologies, 2009, pp. 253–
264.

3. Q. Chen, Y. Wang, and C. W. Bostian, “Universal classifier
synchronizer demodulator,” in 2008 IEEE International Performance
Computing and Communications Conference (IPCCC). Los Alamitos,
CA, USA: IEEE Computer Society, dec 2008. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/PCCC.2008.4745076

4. D. Mototolea, R. Youssef, E. Radoi, and I. Nicolaescu, “Non-cooperative low-
complexity detection approach for fhss-gfsk drone control signals,” IEEE Open
Journal of the Communications Society, vol. 1, pp. 401–412, 2020.

5. A. W. Azim, S. S. Khalid, and S. Abrar, “Modulation classification based on mod-
ified kolmogorov-smirnov test,” in 2013 IEEE 9th International Conference on
Emerging Technologies (ICET). IEEE, 2013, pp. 1–6.

6. S. Hao, N. Wang, R. Sun, M. Liu, M. Dong, and H. Wang, “Modulation classifi-
cation using a goodness of fit test,” in Journal of Physics: Conference Series, vol.
1169, no. 1. IOP Publishing, 2019, p. 012068.

7. É. Helluy-Lafont, A. Boé, G. Grimaud, and M. Hauspie, “Bluetooth devices fin-
gerprinting using low cost sdr,” in 2020 Fifth International Conference on Fog and
Mobile Edge Computing (FMEC). IEEE, 2020, pp. 289–294.

8. P.-F. Gimenez, J. Roux, E. Alata, G. Auriol, M. Kaâniche, and V. Nicomette,
“Rids: Radio intrusion detection and diagnosis system for wireless communications
in smart environment,” ACM Transactions on Cyber-Physical Systems, vol. 5, no. 3,
pp. 1–1, 2021.

9. X. Liu, D. Yang, and A. El Gamal, “Deep neural network architectures for modu-
lation classification,” in 2017 51st Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2017, pp. 915–919.

10. Z. Zhang, C. Wang, C. Gan, S. Sun, and M. Wang, “Automatic modulation classi-
fication using convolutional neural network with features fusion of spwvd and bjd,”
IEEE Transactions on Signal and Information Processing over Networks, vol. 5,
no. 3, pp. 469–478, 2019.

11. S. Peng, H. Jiang, H. Wang, H. S. Alwageed, Y. Zhou, M. M. Sebdani, and Y. dong
Yao, “Modulation classification based on signal constellation diagrams and deep
learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30,
pp. 718–727, 2019.

12. N. E. West and T. O’Shea, “Deep architectures for modulation recognition,” 2017
IEEE International Symposium on Dynamic Spectrum Access Networks (DyS-
PAN), pp. 1–6, 2017.

13. T. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal
classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, pp.
168–179, 2017.

14. J. Duchêne, C. Le Guernic, E. Alata, V. Nicomette, and M. Kaâniche, “State of the
art of network protocol reverse engineering tools,” Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1, pp. 53–68, 2018.



20 F. Galtier, G. Auriol, V. Nicomette, P. Olivier, R. Cayre, and M. Kaâniche

15. M. A. Beddoe, “Network protocol analysis using bioinformatics algorithms,” Toor-
con, vol. 26, no. 6, pp. 1095–1098, 2004.

16. S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal
of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0022283670900574

17. R. R. Sokal and C. D. Michener, “A statistical method for evaluating systematic
relationships.” Univ. Kansas, Sci. Bull., vol. 38, pp. 1409–1438, 1958.

18. M. Nei, F. Tajima, and Y. Tateno, “Accuracy of estimated phylogenetic trees from
molecular data,” Journal of molecular evolution, vol. 19, no. 2, pp. 153–170, 1983.

19. W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol reverse
engineering from network traces.” in USENIX Security Symposium, 2007, pp. 1–
14.

20. J. Antunes, N. Neves, and P. Verissimo, “Reverx: Reverse engineering of protocols,”
2011.

21. W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent adaptive
replay of application dialog.” in NDSS, 2006.

22. G. Bossert, F. Guihéry, G. Hiet et al., “Netzob github repository,” 2012. [Online].
Available: https://github.com/netzob/netzob/tree/master/netzob

23. D. Angluin, “Learning regular sets from queries and counterexamples,” Informa-
tion and computation, vol. 75, no. 2, pp. 87–106, 1987.

24. P. Cohen, N. Adams, and B. Heeringa, “Voting experts: An unsupervised algorithm
for segmenting sequences,” Intelligent Data Analysis, vol. 11, no. 6, pp. 607–625,
2007.

25. X. Wang, K. Lv, and B. Li, “Ipart: an automatic protocol reverse engineering tool
based on global voting expert for industrial protocols,” International Journal of
Parallel, Emergent and Distributed Systems, vol. 35, no. 3, pp. 376–395, 2020.

26. R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche, and G. Marconato,
“Wazabee: attacking zigbee networks by diverting bluetooth low energy chips,”
in 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2021, pp. 376–387.

27. S. Pasupathy, “Minimum shift keying: A spectrally efficient modulation,” IEEE
Communications Magazine, vol. 17, no. 4, pp. 14–22, 1979.

28. M. Newlin, “Mousejack, keysniffer and beyond: Keystroke sniffing and injection
vulnerabilities in 2.4 ghz wireless mice and keyboards,” DEFCON, 2016.

29. G. Cook, “Crc reveng website.” [Online]. Available: https://reveng.sourceforge.io/
30. M.-R. Oularbi, S. Gazor, S. Houcke, and A. Aissa-El-Bey, “Ofdm system identifi-

cation using pilot tone signature,” in International Workshop on Systems, Signal
Processing and their Applications, WOSSPA. IEEE, 2011, pp. 95–98.

31. M. Oner and F. Jondral, “On the extraction of the channel allocation information in
spectrum pooling systems,” IEEE Journal on Selected Areas in Communications,
vol. 25, no. 3, pp. 558–565, 2007.

32. A. Bouzegzi, P. Ciblat, and P. Jallon, “New algorithms for blind recognition of
ofdm based systems,” Signal Processing, vol. 90, no. 3, pp. 900–913, 2010.

33. P. D. Sutton, K. E. Nolan, and L. E. Doyle, “Cyclostationary signatures in practical
cognitive radio applications,” IEEE Journal on selected areas in Communications,
vol. 26, no. 1, pp. 13–24, 2008.

34. F.-X. Socheleau, S. Houcke, P. Ciblat, and A. Aı̈ssa-El-Bey, “Cognitive ofdm sys-
tem detection using pilot tones second and third-order cyclostationarity,” Signal
processing, vol. 91, no. 2, pp. 252–268, 2011.


