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Abstract

Pangenome graphs can represent all variation between multiple ref-
erence genomes, but current approaches to build them exclude
complex sequences or are based upon a single reference. In
response, we developed the PanGenome Graph Builder (PGGB),
a pipeline for constructing pangenome graphs without bias or
exclusion. PGGB uses all-to-all alignments to build a variation
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graph in which we can identify variation, measure conservation,
detect recombination events, and infer phylogenetic relationships.

Keywords: pangenomes, genome alignment, variant detection, comparative
genomics, chromosome evolution, phylogenetics, population genetics

Pangenome graphs compactly represent complete genomes, their homologies
(sequence similarities), and all forms of variation between them [1–4]. They
allow us to identify variation, measure conservation, detect recombination
events, and infer phylogenetic relationships, making them valuable tools for
studying sequence evolution and variation in diverse species [5, 6]. However,
existing methods for constructing pangenome graphs [7, 8] are biased due to
their reference and tree-guided approaches [5, 9], which can lead to incom-
plete and unstable representations of genetic variation [10]. By adding only
sequences that are sufficiently similar to the reference genome, these meth-
ods prune regions that are highly variable structurally (section E), such as
centromeres and other satellite sequences [7, 8]. Inductive biases result from
techniques to mitigate computational complexity [5, 7], or from a goal to struc-
ture the resulting graphs so that they are easier to use during read alignment
[8]. Although approaches for unbiased whole pangenome graph construction
have been proposed and are capable of scaling to whole genome analyses [10–
12], these often lead to complex and difficult-to-use graph models or introduce
new complexity for downstream analyses due to the effects of the specific k-mer
length and other parameters [12]. Projects which build resources on tree and
reference-based alignment methods [5, 13] would benefit from the availability
of unbiased, reference-free whole genome alignments to control the quality of
their results.

To overcome these limitations, we propose the PanGenome Graph Builder
(PGGB), a reference-free pipeline to construct unbiased pangenome variation
graphs [10]. Its output presents a base-level representation of the pangenome,
including variants of all scales from single nucleotide polymorphisms (SNPs) to
structural variants (SVs). The constructed graph is unbiased, i.e., all genomes
are treated equivalently, regardless of input order or phylogenetic dependen-
cies, and lossless: any input genome is completely retained in the graph and
may be used as a frame of reference in downstream analysis. PGGB makes
no assumptions about phylogenetic relationships, orthology groups, or evo-
lutionary histories, allowing data to speak for itself without risks of implicit
biases that may affect inferences made from the graph. PGGB is implemented
as a modular shell script, integrating independent components via standard
text-based file formats, which provides a template for future pangenome con-
struction methods. The method, developed and applied over several years
within the Human Pangenome Reference Consortium (HPRC) [18, 19], has
proven to be accurate and scalable to hundreds of genomes, as confirmed by the
broader bioinformatics community [20–22]. Here, we describe the specific inno-
vations in the three main phases of the algorithm: alignment, graph creation,
and graph normalization. We then use cross-validation with MUMMER4 [23]
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Fig. 1: PGGB and applications. (A) PGGB’s algorithms/data flows. Primary
flow (red) proceeds from FASTA to alignment, graph induction, smoothing, to nor-
malization with GFAFFIX [14], ending with the final variation graph (orange).
Optional outputs (blue): statistics, variant calls, and 1D/2D graph visualizations. (B)
1D pangenome graph visualization using 16 haplotype-resolved primate assemblies
homologous to human chromosome 6. T2T-CHM13 annotations (Major Histocom-
patibility Complex, p-arm, centromere, q-arm) are shown. Black indicates that the
path traverses the graph in the forward orientation, while red indicates that it
traverses in the reverse. The p-arm region with the MHC is inverted in gibbon.
Centromeric regions appear largely dissimilar among many species, except between
chimpanzee and bonobo, and between the orangutans. (C) 2D visualization, rendered
with the same human chromosomal annotations in GFAESTUS [15], shows possible
circularization of the graph due to structural variation or homogenization between
subtelomeric regions. (D) Using ODGI [6], we extract a pairwise distance matrix
based on in-graph Jaccard metrics over shared base pairs. This distance matrix yields
a phylogenetic tree that matches previous results based on SNPs [16]. We posit that
the greater phylogenetic distances reflect the inclusion of the centromeres—which fea-
ture low rates of recombination and tend to diversify rapidly by near-clonal evolution
[17]—in our distance computation.
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to demonstrate the accuracy of our approach across a wide range of species
that differ greatly in genome variation and scale (Table 1). In cases with suit-
able data, we compare genome variation captured by the graphs to variants
identified by conventional reference-based methods (Section B.5). Finally, we
study the openness of constructed pangenomes, a biological parameter which
describes the degree to which new genomes are expected to contribute new
sequence (F).

PGGB begins with sequence alignment (Figure 1A). The method supports
any type of genomic sequence data in FASTA/Q file format (sequencing reads,
genes, genomes, or a combination of these). To avoid reference and order bias,
we use an all-to-all alignment of the input sequences. This approach aligns
sequences directly to each other, enabling each sequence in the pangenome
to serve as a potential reference to describe variation. Problematically, this
requires all-to-all comparisons that scale quadratically with the number of
included genomes [10]. For this reason, PGGB uses WFMASH [24], which
reduces costs by mapping and aligning in the space of sequence segments rather
than single base pairs. WFMASH first applies an extension of MASHMAP
[25] to obtain homology mappings, by default using seeds of 5 kbp to find
similarities of 25 kbp or more at 90% average nucleotide identity. WFMASH
then uses a generalization of the bidirectional Wavefront Algorithm (BiWFA)
[26, 27] that aligns the sequences by comparing segments of 256 bp rather
than single characters. This algorithm, BiWFλ—so named because it replaces
character match with a callback function λ that matches segments—obtains
a final base level alignment by splicing together “incepted” alignments over
the 256 bp segment pairs that lie in the optimal alignment path. Our use of
WFMASH ensures that the alignments that structure the graph feature long-
range collinearity that is insensitive to repetitive, shorter similiarites found
between transposons and satellite sequences. Although WFMASH alignments
have an ideal structure for its operation, PGGB can build the graph using any
set of user-defined alignments in PAF format.

The second step—pangenome graph induction—converts a collection of
genomes and pairwise alignments into an equivalent variation graph. We
achieve this with SEQWISH [10], a tool specifically designed to scale graph
induction to whole pangenomes in low memory. At a high level, SEQWISH
merges all DNA base-pairs that are matched together in the alignments into
a single node in the output graph. This process also compresses transitively-
matched base-pairs. For example, if A, B, and C are characters in input
sequences and → represents a character match, A → B → C would result in a
single node in the output graph that also implies the transitive match A → C.
Each input genome is then fully embedded in the graph as a path, recording
graph edges where nodes occur successively in the path.

The SEQWISH graph recovers transitive homology relationships that may
not be present in the initial alignment set (Figure 1A). This property allows us
to apply random sparsification to reduce the complexity of very large alignment
problems. We first compute the all-to-all homology mapping with WFMASH,
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which is quadratic but highly efficient due to its use of sketched representa-
tions of the mapped sequences. To greatly reduce runtime for large numbers
of input genomes, we only compute the pairwise alignments for a random sub-
set of the mappings. Our goal is to retain enough mappings that we expect
the alignment graph to be fully connected locally at each homologous locus in
the pangenome. To determine a safe threshold for sparsification, PGGB uses
a heuristic based on the Erdős–Rényi random graph model. For a random
graph with N nodes, this model predicts that as N → ∞ the graph is almost
certainly fully connected so long as pairs of nodes are connected with prob-

ability Pconnected > (1+ϵ) lnN
N (where ϵ is a small constant) [28]. We thus set

a sparsification parameter that uses a hash of each mapping record to drop
mappings with a probability Psparse ≫ Pconnected to ensure that while some
edges are removed, connected component encompassing critical homologous
relationships is preserved. This lets us reconstruct all transitive relationships
in the variation graph without needing to directly compute all pairwise align-
ments, avoiding the expected O(N2) costs implied when Psparse = 1. This
dramatically reduces the runtime of alignment and graph induction with negli-
gible effect on accuracy (Table 1), e.g. 10× increase in the number of genomes
requires only 44× increase in runtime—rather than 100×.

Graph building completes with SMOOTHXG (Figure 1A), an iterative
post-processing step specifically designed for PGGB that locally compresses
and simplifies the pangenome variation graph. Although the SEQWISH graph
presents a complete, lossless model of the input genomes and their homolo-
gies, in our experience it often presents complex local motifs that can cause

Pangenome Size (bp) Compr. Time (h) Mem. (GB) N(SNVs) F-score
athaliana82 11052471644 36.28 204.06 130.59 572924 0.920053
ecoli50 255615162 11.50 0.93 19.93 56296 0.977863
ecoli500* 2562798947 23.75 41.39 210.87 60243 0.967453
hsapiens90.chr6 15508376475 86.88 18.46 137.72 147580 0.975822
mouse36.chr19 2150650973 11.68 3.80 28.66 166734 0.940177
primate16.chr6 2661626374 8.12 5.60 37.05 2309269 0.947453
scerevisiae142 1702093905 57.12 20.46 119.68 61439 0.971758
scerevisiae142* 1702093905 45.17 10.11 80.25 61232 0.972030
soy37 36673233537 21.51 99.73 37.54 1302099 0.942402
tomato23 18691283883 19.73 22.34 42.06 861654 0.967951

Table 1: Performance of PGGB with pangenomes across species.
For each pangenome, we report its size, the compression ratio (pangenome sequence
length divided by graph size), the PGGB runtime, the maximum memory usage
of PGGB, the average number of SNVs (across all haplotypes except the one used
as reference) identified with MUMMER4 that we used to evaluate SNVs identified
with PGGB, and the average F-score (across all haplotypes except the one used as
reference) computed using MUMMER4’s SNVs as ground truth. The name of each
pangenome indicates the species and the number of haplotypes. All runs were per-
formed on machines equipped with AMD EPYC 7402P 24-Core, 378 GB of RAM,
and a 1 TB Solid-State Drive. All PGGB runs were executed with 48 threads.
*Erdős–Rényi random sparsification activated.
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problems for diverse types of downstream analysis (Section B.2). A key issue
is that pairwise alignments derived across input sequences are not mutually
normalized, leading to different representations of small variants like indels
in low-complexity sequences, which in turn generate complex looping motifs
that are difficult to process. We mitigate this issue by removing short matches
from SEQWISH’s input alignments. This reduces complexity, but also creates
a graph that can be locally “under-aligned” and does not represent all local
pairwise relationships. To resolve this, we apply a local realignment kernel, par-
tial order alignment (POA) [29–31], across all parts of the graph. By default,
we do so at a scale of around 1kbp, which is smaller than most nonlinear pat-
terns of structural variation found in genomes [18, 32]. This allows the PGGB
graph to represent complex structurally-variable loci as simple loops through
a single copy of duplicated sequences [18]. The kernel is applied to regions that
are extracted from a 1-dimensional graph embedding [6, 33]. This embedding
orders nodes in the graph so that their distance in the order best-approximates
their distance in the genomic paths of the graph. SMOOTHXG first learns this
embedding, then obtains partially overlapping segments of the graph (blocks)
to which it then applies POA. The realigned blocks are “laced” back into a
complete variation graph. We iterate the entire SMOOTHXG step multiple
times (3 by default) to limit edge effects that can occur near block boundaries,
progressively refining the learned graph embedding. As a final normalization
step, we apply GFAFFIX to compress redundant nodes [14] and use ODGI to
make a final sort for the modified graph [6].

PGGB provides outputs that support immediate interpretation, quality
control, and downstream applications. Using ODGI, it produces basic graph
statistics, such as size, node count, and base content. ODGI creates 1D and 2D
visualizations that provide intuition about the structure of the entire graph,
with the 1D view showing the relative alignment of paths into the graph struc-
ture, and the 2D view showing high-level features of the graph topology. Both
can be applied at the scale of multi-gigabasepair graphs. Optionally, PGGB
provides graph statistics and diagnostic plots in a MultiQC report [34]. We also
provide an option to call variants [1, 35] from the graph to produce a phased
description of embedded haplotypes in variant call format (VCF). Variants
called directly from the graph can include large nested genetic sites, leading
to incompatibility with many applications. To address this, PGGB decom-
poses complex nested variation into a minimal reference-relative representation
using BiWFA [36]. This allows PGGB to provide input to analyses based on
small variants, leading to compatibility with numerous downstream applica-
tions based on genomic variation. PGGB is thus a multi-sample variant caller
for whole-genome assemblies.

PGGB has been applied and validated at large scale in projects in the
HPRC [18], where it additionally has provided the first sequence-based evi-
dence for systematic recombination between heterologous acrocentric human
chromosomes [19]. Here, to demonstrate PGGB’s broad utility, we present
results from its application to a variety of diverse pangenome and comparative
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genomic contexts (Table 1, Figure 1, Supplementary Figures F13, B4, B5, B6,
D7, F11, F12, F13). We provide information on runtime and resource require-
ments, showing that even for hundreds of small genomes, PGGB can provide
a variation graph within hours. Larger genomes in general require partition-
ing to maximize parallelism and ensure that total compute requirements fit in
standard commodity servers (Section B.3). Due to lack of ground truth, qual-
ity evaluation on real data can be difficult. For validation, we compare PGGB’s
output with SNPs detected by MUMMER4 [23], a current standard approach
for pairwise whole genome alignment. These show cross validation F-scores
>92% across all tested contexts, indicating that the method performs equiva-
lently to existing standards. The difference between PGGB and MUMMER4 is
driven by different alignment representations in regions with very close SNVs
(Section G). However, while MUMMER4 provides only pairwise comparisons
with a target reference, PGGB yields a full all-to-all comparison between
genomes that leads to completely new bioinformatic analysis modalities.

Many downstream applications that are typically based on polarization
of variants (e.g. SNPs) relative to a single reference genome may be directly
implemented in the space of variation graphs built with PGGB and similar
methods. This follows from two basic concepts: in the variation graph, nodes
are alleles, while genomes can be simply understood as vectors of allele counts.
Methods based in this vector space allow us to simultaneously consider all
classes of variation in downstream analyses, without reference bias. As proof
of principle, we put forward a phylogenetic tree constructed directly from dis-
tances measured within a pangenome variation graph of 16 complete assemblies
of chromosome 6 from the great ape family (Figure 1D), which matches estab-
lished phylogenies of the Hominoidea clade based on manually curated sets
of SNPs that exclude structurally variable regions [16]. We have also success-
fully applied this method in yeast, where a comparison of phylogenetic trees
built from MUMMER’s SNVs against the reference and PGGB graph’s nodes
showed that the latter correctly infers the phylogeny in a number of cases where
both haplotypes from the same genome are brought together (Section D). We
also noticed that the same approach when applied to the primate graph made
with Minigraph-Cactus led to a different phylogenetic tree (E9).

PGGB is a new, modular, and conceptually straightforward approach to
understanding sequence relationships between many complete genomes in both
pangenomic and comparative genomics settings. Our approach provides a
general framework for genome graph building techniques which we expect
researchers will upgrade and extend in the future. A cluster-scalable Nextflow
implementation is already in progress [37]. By making it easy to build vari-
ation graphs, PGGB opens the door to diverse downstream population and
evolutionary genetic methods that can consider all classes of sequence variation
simultaneously. This will allow us to develop a comprehensive understanding
of the links between sequence variation, phenotype, and evolution in an era
where the complete assembly of genomes becomes routine.
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Online content. PGGB is available at https://github.com/pangenome/
pggb. Code used for experiments can be accessed at https://github.com/
pangenome/pggb-paper. Pangenomes are available at https://doi.org/10.
5281/zenodo.7937947.
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Appendix A Data

Lists of all accessions for all pangenomes are reported in the Supplementary
File 1.

A.1 A. thaliana

We downloaded the assemblies from Genbank [38], considering those that
resolved the genome with 5 contigs, one for each chromosome, and remov-
ing the contigs representing mitochondria and plasmids. Furthermore, we also
included GCA 028009825.1, obtaining the final set of 82 assemblies.

A.2 E. coli

We downloaded the assemblies from Genbank [38], considering those that com-
pletely resolved the genome. From these, we randomly selected 500 and 50
assemblies.
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A.3 H. sapiens

We downloaded the assemblies from [18], considering contigs belonging to chro-
mosome 6, obtaining the final set of 90 haplotypes (from 47 individuals plus
two reference genomes, that is CHM13 and GRCh38).

A.4 M. musculus

We downloaded the assemblies from Genbank [38], considering those that
resolved the genome at chromosome level, obtaining the final set of 36
assemblies.

A.5 Primates

We downloaded the assemblies for Gorilla gorilla, Pan paniscus, Pan
troglodytes, Pongo abelii, Pongo pygmaeus, Symphalangus syndactylus released
by the Telomere-to-Telomere consortium. To this set, we also included 3 human
genomes, that is CHM13 and GRCh38, which are haploid, and both MATER-
NAL and PATERNAL haplotypes of the HG002 v1.0.1 assembly, totaling a
final set of 16 haplotypes.

A.6 S. cerevisiae

We downloaded 142 assemblies from [39].

A.7 Soybean

We downloaded 38 assemblies from [40] and [41], covering the following species:
Glycine soja, that is wild soybean, and Glycine max, that is cultivated soybean.

A.8 Tomato

We downloaded 23 assemblies from [42], covering the following species:
Solanum lycoperscium, Solanum pimpinellifolium, and Solanum lycopersicum
var. cerasiforme.

Appendix B Methods

Here we provide details about components which are not described in other
publications. Our primary focus is on SMOOTHXG, the algorithm that PGGB
uses to locally normalize and simplify the graph produced by previous phases
(alignment with WFMASH and graph induction with SEQWISH). Through
a series of passes over the pangenome, SMOOTHXG reshapes the graph
to reduce local complexity and underalignment. This resolves key problems
encountered in earlier attempts to implement all-vs-all alignment based graph
construction [10, 43], which typically resulted in very complex, looping, graph
motifs at small scales, and graph redundancy or loss of alignment sensitiv-
ity caused by match filtering. We additionally describe the evaluation method



Building pangenome graphs 11

we use in our cross-validation experiments where PGGB graphs are compared
with SNPs determined by MUMMER4.

B.1 SMOOTHXG

SMOOTHXG requires a GFA pangenome graph as input, for example, the out-
put from SEQWISH. The raw SEQWISH graph is globally unsorted and might
be locally unaligned. SMOOTHXG sorts and normalizes the graph preserv-
ing nonlinear complex global structural variation. Detailed steps are described
subsequently.

Preprocessing. A Path-Guided Stochastic Gradient Descent (PG-SGD)
algorithm optimizes the one-dimensional (1D) node order of the graph to
best match the nucleotide positions in the embedded paths. A grooming step
ensures that for each node, the node orientation follows the consensus node
orientation of all path steps visiting the node. A 1D topological sorting of the
graph completes the overall sorting steps. Finally, the graph is chopped so
that each node contains a relatively small number of base pairs (SMOOTHXG
default: 100 bp), preserving node topology and order. Node chopping prepares
the graph for more exact cut points during the block creation process described
in the next section. Since blocks are constrained by a maximum length, without
cutting nodes, having long nodes could lead to the formation of large blocks
that do not properly represent the local variation of all genomes in the graph.
To draw an analogy, consider the task of evenly distributing smaller pieces of
an object into various containers. Smaller parts are inherently easier to allocate
properly. Similarly, shorter pieces of sequences (the pangenome graph nodes)
are more conveniently distributed into blocks, ensuring a more uniform rep-
resentation of the genomes in the graph. However, nodes that are too small
increase the requirements for keeping the graph in memory and working with
it. Chopping nodes to have a maximum length of 100 bp is a trade-off between
creating uniform blocks and the hardware requirements for working with the
chopped graph.

Create blocks. The smoothable blocks are discovered by iterating over all
nodes following the previously calculated order. A node is added to a block if its
addition does not exceed the: 1. total path length limit of a block, 2. the max-
imum edge jump limit of a block, or 3. the maximum block length. Blocks are
broken at likely Variable Number Tandem Repeat (VNTR) boundaries. The
VNTR detection is based on a statistical analysis using the autocorrelation.
Autocorrelation (aka serial correlation) measures the similarity of a sequence
with a lagged version of itself. When applied to nucleotide sequences, this helps
to identify repetitive regions. This approach is probabilistic and relies on sta-
tistical thresholds to identify potential VNTRs. Here is a breakdown of the
key steps:

1. Autocorrelation calculation: We calculate the autocorrelation of the
nucleotide sequence for different lag values (i.e., lengths of the repeat
unit).
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2. Statistical analysis: We calculate the mean and standard deviation of
the computed autocorrelation values. Then, we transform these into Z-
scores, which are measures of how far and in what direction individual
observations are from the mean, expressed in units of standard deviation.

3. Identification of likely VNTRs: We identify putative VNTRs by look-
ing for peaks in the Z-scores. A peak in the Z-scores indicates a lag length
where the autocorrelation is significantly higher than average, indicating
a strong repetitive pattern, then suggesting a repetitive region.

Furthermore, blocks are broken to ensure that the path ranges within each
block do not exceed the maximum sequence input size for the POA step
described in the next section. By default, we do so at a scale of around 1kbp,
which is smaller than most nonlinear patterns of structural variation found in
genomes.

Smooth each block. For each block, padding extends each block to the
left and right. This improves the local alignment at the boundaries of each
block. The k-mer plus min-hash approach ensures that only unique sequences
are passed to the POA step, which can significantly reduce runtime. POA is
applied to each block, applying by default the following scoring model: 1 for
matches, 19 for mismatches, 39 as gap opening penalty, 3 as gap extension
penalty, 81 as gap opening penalty of the second affine function, 1 as gap
extension penalty of the second affine function. Such scores are tuned for low
divergence sequence alignments, as blocks are built to have locally similar
sequences. Optionally, this step generates a multiple sequence alignment in
MAF format for each block. After the sequence alignment, the padding is
removed (block trimming), and then the block is saved for later integration
into a full graph.

Lace blocks into the smoothed graph. The smoothed blocks are laced
together to the final pangenome graph following their initial input order. As
a final step, the graph is unchopped to restore the maximum possible node
lengths in the graph.
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Fig. B1: Overview of the algorithmic steps in SMOOTHXG.
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B.2 Graph normalization

SMOOTHXG is specifically designed to locally compress and simplify the
raw SEQWISH variation graph which often presents complex local motifs
that increase graph complexity. To explicitly demonstrate its efficacy, we
built pangenome graphs representing 90 human chromosome 6 with and
without applying SMOOTHXG. The graph obtained without SMOOTHXG,
despite having fewer nodes than the graph obtained by applying SMOOTHXG
(209420591 versus 212423296), has regions where the depth and degree (num-
ber of edges) of the nodes are significantly greater (Figure B2). These regions,
typically centromeres and other satellite sequences, cause problems for differ-
ent types of downstream analyses, hindering the performance of all possible
operations applied to the graph.
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Fig. B2: SMOOTHXG locally compresses and simplifies the raw SEQWISH’s graph.

Importantly, SMOOTHXG applies a series of graph sorting algorithms
that sort the graph node in a way that better reflects the genome variation
embedded in the graph. As an example, we report a representation of the
complement component 4 (C4) subgraph extracted from the chromosome 6
pangenome graph (Figure B3). We only show 8 haplotypes (GRCh38, CHM13,
and 3 diploid individuals) for simplicity. Figure B3a represents the C4 graph
extracted from the pangenome graph built without SMOOTHXG. Node order
is not optimal, so the underlying genome variation is still not clearly visible.
By applying to such a graph several graph sorting algorithms (implemented in
ODGI and applied in SMOOTHXG), the visualization in Figure B3b improves,
but we still have a complex graph topology which is difficult to sort cleanly,
due to local motifs that are often present in the raw SEQWISH’s graph. Figure
B3c represents the C4 graph extracted from the chromosome 6 pangenome
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graph built with SMOOTHXG. Both node order and graph topology properly
represent genome variation present in such a region.

(a)

(b)

(c)

Fig. B3: Graph normalization effect on complement component 4 (C4)
pangenome graph complexity. Each bar represents a haplotype and black lines
on the bottom represent the graph topology. Paths are colored by using the Spectra
color palette with four levels of node depths: white indicates no depth, while gray,
red, and yellow indicate depths 1, 2, and greater than or equal to 3, respectively. a)
C4 subgraph extracted from the chromosome 6 graph built without SMOOTHXG.
b) C4 subgraph extracted from the chromosome 6 graph built without SMOOTHXG
and sorted. c). C4 subgraph extracted from the chromosome 6 graph built with
SMOOTHXG. The two references present two different allele copies of the C4 genes
(red = 2X coverage), both of them including the HERV sequence. The entirely gray
paths have one copy of these genes (grey = 1X coverage). HG01071#2 presents three
copies of the locus (orange = 3X coverage), of which one contains the HERV sequence
(gray in the middle of the orange).

B.3 Sequence partitioning

Pangenome graphs can represent the mutual alignments within a collection of
sequences. Due to dispersed sequence similarities caused by transposons, copy
number variants, and segmental duplications, a clean partitioning of sequences
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into isolated components is typically not possible. However, breaking the prob-
lem of building the graph into smaller parts is important for reducing the
difficulty of computing the pangenome graph. This leads us to need to par-
tition the construction problem. To do so, before applying PGGB, we can
perform community detection with the input sequences to uncover the under-
lying structure of their mutual relationships and gather group of sequences
that share common properties. For example, the identified communities (or
groups of sequences) may correspond to the distinct chromosomes present
within the input genomes. By incorporating reference genomes into the set of
input sequences, we can leverage the reference annotations to effectively par-
tition sequences by chromosome. Once these groups of sequences have been
identified, we can then partition the sequences by community and apply PGGB
on each group separately.

To simplify the sequence partitioning process for users, we provide such a
workflow as a dedicated shell script called ”partition-before-pggb”. Here is a
summary of its key steps:

1. Homology detection. We perform pairwise mapping of the input
sequences with WFMASH [24] to identify homologous regions, specifically
focusing on their location, size and estimated identity. We do not require
base-level alignment; by omitting this step, we accelerate the homology
detection.

2. Mapping graph construction. We use the homology map to build a
mapping graph. In contrast to a variation graph, each node in a mapping
graph represents an input sequence, with edges representing mappings
between these sequences. The edges are weighted, with each weighting
factor given by the product of the length of the mapping and its estimated
sequence identity.

3. Community detection. We apply the Leiden algorithm [44] to detect
the underlying communities present in the mapping graph. In the context
of community detection, a community is a group of nodes within a larger
graph that are more densely connected to each other than they are to the
rest of the graph. The Leiden algorithm aims to maximize modularity by
partitioning a graph into distinct, densely connected sets of nodes. Mod-
ularity is a measure to quantify the strength of the division of a graph
into communities. It evaluates the density of links within communities
compared to the density of links between communities. A higher modu-
larity indicates a stronger and more defined community structure within
the graph. By using a weighted mappping graph, we place more emphasis
on the strongest homologies for community detection.

4. Command generation. For each community, we generate a complete
PGGB command line in order to run it on each set of sequences separately.
This eases the analysis and reduces the computational burden of building
pangenome graphs.

It is important to highlight that if it is already known that the input
sequences present particular rearrangements, such as rare chromosomal
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translocations, it may be advisable to skip the sequence partitioning and
conduct the analysis with the full set of sequences.

B.4 Validation experiments

To evaluate the accuracy and reliability of our pangenome graph construc-
tion and variant calling methods, we designed a cross-validation approach
that allowed us to compare the results obtained from the graph-based method
(PGGB) against those generated by the widely-used pairwise alignment tool,
NUCMER, in MUMMER4 [23].

The cross-validation process begins with the extraction of FASTA
sequences from the pangenome graph GFA and preparation of reference
sequences. Next, variants are identified using both PGGB (with VG) and
NUCMER (via a MUMMER4 script), generating a VCF file for each haplotype
to ease comparison using the RealTime Genomics toolkit.

These variant files are then compared and evaluated, focusing on regions
where both methods are able to call variants, an aspect that we found to be
important in the HPRC cross-validation studies, wherein DIPCALL was used
to find consistently-alignable regions in which comparisons were conceptually
sound [18]. Finally, we collect metrics and statistics for further analysis and
visualization. To simplify reproducibility, here we provide a detailed summary
of the evaluation process:

1. Extract sequences in FASTA: The script extracts the reference paths
in the GFA file and creates a new FASTA file containing these sequences.

2. Identify variants with PGGB: The script then identifies variants in
the pangenome graph using the vg deconstruct tool with appropriate
options for haplotype-based variant calling from the graph and complex
allele decomposition with BiWFA and VCFLIB. The final variants are
saved in a VCF format file.

3. Pre-process the PGGB-based VCF files: For compatibility with
NUCMER, we pre-process the VCF files, normalizing alleles, removing
insertions and deletions larger than 1 base pair, and removing the ALT
allele if it is not present in the haplotype.

4. Identify variants with NUCMER: The script performs a pair-
wise sequence alignment between the reference and each contig in
the pangenome using NUCMER. The script extracts SNPs from the
NUCMER delta file using the show-snps command and generates VCF
files for each aligned contig.

5. Merge variants by haplotype: The script then merges all VCF files
for each haplotype generated by NUCMER to create a multi-haplotype
VCF file.

6. Variant evaluation: RTG Tools’ vcfeval is used to evaluate the per-
formance of PGGB-based variants and NUCMER-based variants by
comparing true positives, false positives, and false negatives in shared
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callable regions. This is done for both “non-waved” and “waved” (BiWFA-
normalized) PGGB-based VCF files, allowing for a direct comparison of
the performance of these variant calling methods.

7. Collect statistics: The script computes summary statistics, such as pre-
cision, recall, and F-scores for each haplotype and writes them to TSV
files. It also calculates the total number of variants called and the ratio
of evaluated variants for both NUCMER and PGGB-based methods.

8. Organize output: Finally, the script organizes the output data, includ-
ing VCF files, evaluation results, and statistics, into a specified output
directory.

Although imperfect due to our lack of ground truth in the context of
whole-genome alignment, this method provides a way to approximately com-
pare the existing standard for whole-genome pairwise alignment, MUMMER4,
with PGGB. We focus on SNPs and omit comparison of structural variation
for diverse reasons. First, we found extracting SVs from MUMMER4 output
to be problematic and poorly-supported. Second this issue remains difficult
in genomics due to the multiple near-equivalent representations that a given
structural variant allele may have. However, we have addressed these topics
in the context of the HPRC paper [18], where significant resources were avail-
able to drive an independent evaluation of PGGB and other graph building
methods. The SV validation method used in [18] involved comparing the SVs
represented in the pangenome graphs (Minigraph, MC, and PGGB) to a truth
set of SVs called from PacBio HiFi reads aligned to GRCh38 using three dif-
ferent SV discovery methods: PBSV, Sniffles with Iris, and SVIM This study
found PGGB to accurately represent SVs relative to other graph construc-
tion approaches. However, SV comparison remains an ongoing challenge in the
field, as multiple equivalent representations of the same variant are possible
[45]. Continued work is needed to establish robust benchmarking procedures
for SV calling in pangenome graphs.

B.5 Small variants benchmark

To further evaluate the quality of genome variation captured by the pangenome
graphs, we compared the variants called from the graphs to variants identified
from PacBio HiFi reads by DeepVariant [46], a state-of-the-art reference-based
pipeline that uses a deep neural network to call genetic variants from next-
generation DNA sequencing data.

1. Identify variants with PGGB: The script then identifies variants in
the pangenome graph using the vg deconstruct tool with appropriate
options for haplotype-based variant calling from the graph and complex
allele decomposition with BiWFA and VCFLIB. The final variants are
saved in a VCF format file.

2. Pre-process the PGGB-based VCF files: We pre-process the VCF
files, normalizing alleles, removing insertions and deletions larger than 50
base pair, and removing the ALT allele if it is not present in the haplotype.
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3. Variant evaluation: RTG Tools’ vcfeval is used to evaluate the per-
formance of PGGB-based variants and DeepVariant-based variants by
comparing true positives, false positives, and false negatives in shared
callable regions. This is done for “waved” (BiWFA-normalized) PGGB-
based VCF files, allowing for a direct comparison of the performance of
these variant calling methods.

4. Collect statistics: We compute summary statistics, such as precision,
recall, and F-scores for each sample and writes them to TSV files.

Comparing small variants from the pangenome graphs to the DeepVariant
reference-based sets, we observed high levels of concordance that varied, as
expected, by the relative complexity of the genome (repeat content). This is
true for the 3 species investigated, that is H. sapiens B4, A. thaliana B5, and
tomato B6.

Appendix C PGGB parameter settings

PGGB exposes adjustable parameters that affect the structure of the graph
representing the input sequences.

Notably, modifying the mapping identity parameter (-p) significantly
changes the alignment’s sensitivity. A low mapping identity increases the sen-
sitivity, resulting in more compressed graphs. It is recommended to change
this parameter depending on how divergent are the input sequences. To esti-
mate the sequence divergence in the pangenomes, we use mash [47]. Mash is an
alignment-free method that allows us to quickly derive a distance metric, the
Mash distance, which estimates the mutation rate between two sequences. By
calculating the Mash distance between all possible pairs of the input sequences,
we can obtain the maximum distance, and therefore an estimation of the
divergence in the pangenome. We recommend specifying a mapping identity
threshold close to 100 − max distance%. For example, if the input genomes
have a maximum divergence of 2%, we can run PGGB by specifying a map-
ping identity threshold of 100 − 2% = 98%. However, it should be noted that
if users are interested in modeling even older homologies in the final graph, a
lower value than the suggested one may be specified.

The segment length parameter (-s) determines the minimum sequence
length for the initial mapping step performed by WFMASH. This parameter
works in conjunction with the mapping identity (-p) to establish the struc-
ture of the final pangenome graph. When WFMASH performs the mapping
step, it only considers segments that meet the specified segment length and
have an approximate identity greater than or equal to the mapping identity
minimum. The choice of segment length depends on the characteristics of the
sequences being used and the presence of repeats in the pangenome. For smaller
pangenome graphs or those with few repeats, a lower segment length can be
used. By default, we use a segment length of 5000 bps. For larger contexts
or those with many repeats, setting a higher segment length helps in building
not-too-complex graphs. By setting a long segment length, the final graph will
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Fig. B4: Precision, recall, and F1-score of small variants in the H. sapiens chromo-
some 6 pangenome graph relative to HiFi–DeepVariant calls. Comparisons are made
whole-chromosome and then stratified by the GIAB (v.3.0) genomic context. The
44 samples evaluated are colored by superpopulation. AFR = African, AMR = Ad
Mixed American, EAS = East Asian, SAS = South Asian.
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Fig. B5: Precision, recall, and F1-score of small variants in the A. thaliana
pangenome graph relative to HiFi–DeepVariant calls. Comparisons are made whole-
genome and then stratified by genomic context. Easy and Hard regions exclude and
include, respectively, rDNA, centromere, and Trasposable Elements. The 64 samples
evaluated are colored by population. The low precision for Lor-16 and Met-6 is due
to the high heterozygosity of these 2 samples.

have a more linear structure, representing long collinear regions of the input
sequences. As a general guideline, the segment length should be larger than
the size of common repeats in the pangenome, such as transposons.

The minimum match length parameter (-k) determines the minimum length
that matches in the WFMASH alignment must have to avoid being filtered out
by SEQWISH for graph construction. Filtering short matches reduces graph
complexity while creating locally under-aligned regions in the graph that are
subsequently fixed by SMOOTHXG. By default, alignment matches shorter
than 23 bps are discarded. Higher values, such as 47 bps or 79 bps, help
reduce graph complexity in difficult regions of the genomes, like alpha-satellites
and centromeres. For more divergent genomes, it is advisable to not increase
these values too much. In such cases, genomes may not share long alignment
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matches due to the accumulation of multiple mutations over time. Then, set-
ting a too-high minimum match length can result in the loss of the majority of
the alignments and affect the representation of the relationships between the
genomes in the final graph.

An explanation of other PGGB parameters can be found online at
https://pggb.readthedocs.io/.

Appendix D Phylogeny

We consider the nodes of pangenome variation graphs as alleles, and work
with simple counts of these alleles in genomes. This approach projects the
pangenome into a matrix form that can readily be utilized in diverse, and
standard, downstream population genetics applications (D7). Compared to
traditional SNP-based trees using the S288C reference, our method more accu-
rately clusters related haplotypes, specifically affecting CKB, AIF, and BPK
strains. The clustering observed in PGGB’s data reflects the closely related
evolutionary trajectories of the two haplotypes in a phased diploid genome
[39]; e.g. CKB-h1 and CKB-h2, respectively refer, to the first and the second
haplotype of the CKB strain.

Appendix E Comparison with
Minigraph-Cactus

Minigraph-Cactus (MC) relies on Minigraph’s graph [7], which only includes
variations of at least 50 bps, and applies the Cactus aligner [48] on those
graphs to produce base-level pangenome graphs. MC relies on choosing a ref-
erence sample that anchors the entire graph and is treated differently than the
other samples. In particular, the reference sample is never clipped. We applied
MC (version 2.7.0) to build graphs for all pangenomes in this study. MC’s
graphs exclude, on average, 1.8% (in H. sapiens chromosome 6) to 22.1% (in
E. coli) of the sequence of the pangenome investigated E8. For the primate
pangenome, MC built a graph that resembles the genome used to anchor the
graph during its construction (GRCh38), while the sequence clipping removes
all centromeres, a big part of gibbons’s haplotypes, and leads to a differ-
ent graph-based phylogenetic tree E9. For the A. thaliana pangenome, MC
clipped both centromeric and not centromeric sequence (E10a), with the not
centromeric regions containing several kinds of genes (E10b).

Appendix F Pangenome openness

We used PANACUS [49] to calculate the coverage and pangenome growth
curve (with estimated growth parameters) for base pairs with quorum thresh-
olds 0, 1, 0.5, and 0.1. The E. coli pangenome growth curve, made with 500
genomes, is far from showing signs of saturation, with each new genome adding
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a significant amount of new sequence in the pangenome (F11). On the con-
trary, the tomato pangenome is relatively much more closed, with a growth
curve close to saturation (F12). The graphs thus recover coarse, species-level
evolutionary parameters which we anticipate based on prior studies [50, 51].

Appendix G PGGB and NUCMER alignment
differences

The athaliana82 pangenome displays the lowest F1-score (0.920053) when
comparing SNVs called by PGGB to those called by NUCMER. This is primar-
ily due to a high number of false negative SNVs, that is SNVs that are called by
NUCMER but not by PGGB. As shown in G14, the athaliana82 pangenome
has the highest density of very closely spaced SNVs, with many SNVs located
less than 2 bp apart. PGGB (which relies on WFMASH alignments) and
NUCMER handle these regions differently due to the underlying alignments
they use. In particular, NUCMER allows for more mismatches in its align-
ments, leading to calling a higher number of close SNVs compared to PGGB.
G15 provides an illustrative example using IGV, showing a region where the
NUCMER alignment contains several close SNVs, while the WFMASH align-
ment (used by PGGB) represents the variation differently, resulting in fewer
called SNVs. This issue also affects the other analyzed pangenomes, but to
a much lesser degree. The athaliana82 pangenome, with its particularly high
density of nearby SNVs, is the most impacted, resulting in the lowest overall
concordance between PGGB and NUCMER SNV calls.

Appendix H Random graph model for
mapping sparsification

PGGB can employ a random sparsification approach to reduce the com-
putational complexity of all-vs-all pairwise alignments. This is particularly
important for large datasets, where the number of pairwise comparisons grows
quadratically with the number of genomes.

Although this sparsification can reduce sensitivity, when large numbers of
homologous genomes from the same or related species are aligned, transitive
recovery of pairwise relationships due to the graph induction step ensures that
even if we retain only a fraction of the total mappings, all genomes will still
be aligned to each other in all homologous regions.

The sparsification procedure is applied to the mapping graph, which repre-
sents the pairwise mappings between all genomes in the dataset. Each node in
the mapping graph represents a genome (or haploid copy), and edges represent
mappings between these genomes.

When reasoning about the sparsification process, we focus on a local region
of the mapping graph corresponding to a homologous region between different
genomes. Let’s define the key components within this local region:
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• N : number of nodes in the local region of the mapping graph (representing
haploid genome copies)

• E: number of edges in the local region of the mapping graph (representing
mappings between genomes in the homologous region)

When our input alignment is completely all-to-all, the graph would be

complete, with E = N(N−1)
2 ≈ N2. This graph will be fully connected, and

when we build a pangenome graph from this region, we would expect it to
contain a single component with all genomes due to walks over a minimal
set of nodes. Although mappings are generally very cheap to compute, it is
very expensive to compute the entire set of alignments. Thus, we sparsify the
mapping graph by randomly removing pairwise mappings. This reduces the
amount of pairwise alignment that must be done to compute the input for
graph induction in seqwish.

We must determine how many edges we can remove in the mapping graph
without disrupting its connectivity. If the mapping graph becomes uncon-
nected, homologous regions will not align to each other in the pangenome graph
due to mapping sparsification. To determine a suitable threshold for connec-
tivity, we build on the Erdős–Rényi random graph model. The Erdős–Rényi
model predicts that as N approaches infinity, a random graph with N nodes is
almost certainly fully connected as long as pairs of nodes are connected with
a probability Pconnected > (1 + ϵ) lnN

N , where ϵ is a small constant.
We set a sparsification parameter that uses a hash of each mapping record

to drop mappings with a probability Psparse ≫ Pconnected. This ensures that
while some edges are removed, the giant component encompassing critical
homologous relationships is preserved with high probability.

Specifically, PGGB uses the following heuristic based on the Erdős–Rényi
model to set the sparse mapping fraction (n is the number of haplotypes):

Psparse = min(10 × ln(n)

n
, 1) (H1)

This allows PGGB to reconstruct all transitive relationships in the variation
graph without needing to directly compute all pairwise alignments, avoiding
the expected O(N2) costs that would occur if Psparse = 1. This dramatically
reduces the runtime of alignment and graph induction with negligible effect
on accuracy.

The choice of the sparsification factor balances the trade-off between graph
completeness and computational efficiency. PGGB uses a default value that has
been empirically observed to work well across a range of datasets. This random
sparsification approach is unbiased, as it does not rely on any prior knowledge
of the relationships between genomes. It provides a principled way to reduce
computational complexity while preserving key homology information in the
pangenome graph construction process.

We anticipate that further improvements to this sparsification procedure
may be yielded through the application of neighbor joining trees over sequence
similarity metrics in conjunction with randomly sampled alignments from the
complete mapping graph.
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Fig. B6: Precision, recall, and F1-score of small variants in the tomato pangenome
graph relative to HiFi–DeepVariant calls. Comparisons are made whole-genome and
then stratified by genomic context. Easy and Hard regions exclude and include,
respectively, Transposable elements. The 5 samples evaluated are colored by group.
BIG = S. lycopersicum, big-fruited tomato; CER = S. lycopersicum var. cerasiforme,
cherry tomato; PIM = S. pimpinellifolium, the progenitor of cultivated tomatoes.
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Fig. D7: Pangenomic phylogeny in yeast. We compared the phylogenetic trees of 142
yeast genomes: one created using single nucleotide variants (SNVs) via MUMMER
(”NUCMER”) and another generated from graph data using node-coverage vectors
(”PGGB”). Both trees largely align, but the PGGB-based tree correctly groups hap-
lotypes from several diploid assemblies (in red).
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Fig. E8: Removed pangenome sequence in Minigraph-Cactus’ graphs. Labels for ref-
erence samples and a few outliers are reported. In the E. coli pangenome with 500
samples, two extreme cases are present (not shown) which could be misassemblies:
GCA 902141745.2 (VRES-hospital6495300 strain, 170 kbps, flagged by GenBank
as too small and with unverified source organism) was completely clipped, while
GCA 025790905.1 (2020CK-00232 strain, 5.6 Mbps, flagged by GenBank as con-
taminated and with unverified source organism) lost 92.78% of its sequence. In
the primates graph, gibbon’s haplotypes (mSymSyn) lost more than 20% of their
sequence.
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Fig. E9: Primate pangenome graph with Minigraph-Cactus. (A) 1D
pangenome graph visualization using 16 haplotype-resolved primate assemblies
homologous to human chromosome 6. T2T-CHM13 annotations (Major Histocom-
patibility Complex, p-arm, q-arm) are shown. Black and red indicate regions,
respectively, in forward and reverse with respect to the pangenome sequence (the
sequence obtained by concatenating all graph nodes). The p-arm region with the
MHC is inverted in Gibbon. Centromeric regions appear all clipped, except for
GRCh38, as it was used by MC to anchor the pangenome graph. (B) 2D visualiza-
tion, rendered with the same human chromosomal annotations in GFAESTUS [15].
(C) Using ODGI [6], we extract a pairwise distance matrix based on in-graph Jaccard
metrics over shared base pairs. This distance matrix yields a phylogenetic tree that
does not match previous results based on SNPs [16] and obtained with the PGGB
graph, probably due to MC’s sequence clipping.
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Fig. E10: Minigraph-Cactus removes centromeric and gene-containing not
centromeric regions in A.thaliana. The graph was made with 82 genomes, using
Col-CC-v2 (GCA 028009825.2) as a reference to anchor the graph, and annotating
the genomes assembled from HiFi reads (65 in total). a) Amount of sequence clipped
by Minigraph-Cactus, classified as centromeric or not centromeric. b) Loci classifi-
cation in the clipped not centromeric sequences.
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Fig. F11: Pangenome growth curve with estimated growth parameters and coverage
histogram for the E. coli pangenome made with 500 samples. Sample ranks on the
x-axis are omitted. Only the fitted curves are visualized.
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Fig. F12: Pangenome growth curve with estimated growth parameters and coverage
histogram for the tomato pangenome made with 23 samples.
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Fig. F13: Non-reference sequence annotation in the A. thaliana
pangenome. The PGGB pangenome graph was made with 82 genomes, annotating
the ones assembled from HiFi reads (63 out of 65, as we were unable to annotate
IP-San-9 and IP-Sln-22 because of a bug in the Extensive de novo TE Annotator
[52]). We used Col-CC-v2 (GCA 028009825.2, proposed as the next version of Ara-
bidopsis thaliana reference) as a reference to define the non-reference sequences)
as a reference to define the non-reference sequences. Col-CC is the Col-0 Commu-
nity Consensus assembly, which was generated by integrating high-quality genome
assemblies of 13 different Col-0 accessions from different groups worldwide using
HiFi reads. These 13 Col-0 accessions include GCA 946499705.1, which is part of the
A. thaliana pangenome we considered. The consensus approach used to create Col-
CC-v2 explains the low amount of non-reference sequences observed for the Col-0
assembly included in our analysis (that is, GCA 946499705.1).
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Fig. G15: NUCMER allows for more mismatches in SNV clusters. Inte-
grative Genomics Viewer (IGV) visualization ([53] of the alignment between 2
A. thaliana accessions, GCA 946406525.1 against GCA 028009825.2. Variants are
expressed using GCA 028009825.2 as the reference genome. The figure shows a region
on chromosome 1, GCA 028009825.2#1#CP116280.1:3,201,732-3,201,785. From top
to bottom, the tracks show the SNVs called by PGGB, SNVs called by NUCMER,
false positives (SNVs called by PGGB but not by NUCMER), false negatives (SNVs
called by NUCMER but not by PGGB), WFMASH alignments (on which PGGB
relies) and NUCMER alignment.
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T., Li, J., Ye, Z., Du, Y., Huang, S.: Genomic analyses provide insights

https://doi.org/10.12688/f1000research.19630.2
https://doi.org/10.12688/f1000research.19630.2
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1186/s13059-019-1720-5
https://doi.org/10.1186/s13059-019-1720-5
https://doi.org/10.1038/nbt.4235
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1101/gr.123356.111
https://doi.org/10.1101/gr.123356.111
https://github.com/marschall-lab/panacus
https://github.com/marschall-lab/panacus
https://doi.org/10.1128/jb.00619-08


42 Building pangenome graphs

into the history of tomato breeding. Nature Genetics 46(11), 1220–1226
(2014). https://doi.org/10.1038/ng.3117

[52] Ou, S., Su, W., Liao, Y., Chougule, K., Agda, J.R.A., Hellinga, A.J., Lugo,
C.S.B., Elliott, T.A., Ware, D., Peterson, T., Jiang, N., Hirsch, C.N.,
Hufford, M.B.: Benchmarking transposable element annotation methods
for creation of a streamlined, comprehensive pipeline. Genome Biology
20(1) (2019). https://doi.org/10.1186/s13059-019-1905-y

[53] Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lan-
der, E.S., Getz, G., Mesirov, J.P.: Integrative genomics viewer. Nature
Biotechnology 29(1), 24–26 (2011). https://doi.org/10.1038/nbt.1754

https://doi.org/10.1038/ng.3117
https://doi.org/10.1186/s13059-019-1905-y
https://doi.org/10.1038/nbt.1754

	Online content
	Data
	A. thaliana
	E. coli
	H. sapiens
	M. musculus
	Primates
	S. cerevisiae
	Soybean
	Tomato

	Methods
	SMOOTHXG
	Graph normalization
	Sequence partitioning
	Validation experiments
	Small variants benchmark

	PGGB parameter settings
	Phylogeny
	Comparison with Minigraph-Cactus
	Pangenome openness
	PGGB and NUCMER alignment differences
	Random graph model for mapping sparsification

