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Abstract. Facial Emotion recognition (FER) is an extensively studied
computer vision task that aims at identifying and categorizing emotional
expressions depicted on a human face, such as anger, fear, or happi-
ness. Due to the subjective nature of feelings, deep learning models may
struggle to learn implicit information about a person’s emotions, leading
to inaccuracies in existing methods. In this work, we aim to estimate
microexpressions—small facial movements that can indicate underlying
feelings, as described in the Facial Action Coding System (FACS)—from
face videos, as these facial movements provide explicit information that
is more easily perceivable by deep learning architectures. Furthermore,
despite the evolution of FER technologies driven by advancements in
neural network architectures and the exploration of new sensing tech-
nologies, there is a significant shortage of datasets that leverage these
emerging modalities, which limits the progress of research in this field.
In our study, we aim to explore and compare the feasibility of using
different input data modalities, visible, thermal, and event, as training
and testing data for a CNN baseline network by presenting a pioneering
dataset that integrates these three modalities, each annotated with de-
tailed Facial Action Units (FAUs) present in the FACS. Our proposed
Visible, Event, and Thermal Face Dataset for Micro Expression Recog-
nition (VETEX) containing 2506 face videos is available upon request.

Keywords: Event Data · Thermal Spectra · Face Dataset · Microex-
pression · Facial Emotion Recognition · Tri-modal dataset.

1 Introduction

Face videos are nowadays a key element in many applications, ranging from
automatic face recognition—currently one of the most active research areas in
computer vision —to soft biometric prediction and health information estima-
tion [21]. In addition, human faces reveal information about a person’s emotional
status, which has driven researchers to explore the possibility of automatically
detecting those emotions. Facial Emotion Recognition (FER) technologies aim to
detect human feelings from face videos, typically using computer vision and deep
learning architectures. However, several studies have highlighted that measuring
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emotions can be challenging due to the metaphysical and personal nature of feel-
ings [14]. Indeed, the authors of state-of-the-art datasets for FER have pointed
out the difficulty of annotating data, as subjects often report different emotions
than those the authors intended to convey. This reinforces the need for double
annotation—one considering the user’s labeling and another following their a
priori video-emotion assignment [6]. A more objective component can be found
in microexpressions, which are subtle and fast movements, sometimes performed
involuntarily. The fastest of them have been reported to manifest between 1/25
and 1/5 of a second [5]. Furthermore, certain microexpressions such as smiling
or frowning, are also defined as one or a combination of several Facial Action
Units (FAUs) and have been linked to emotions in the official Facial Action Cod-
ing System (FACS). Therefore, in this work, we propose that the FER problem
can be approached more objectively by detecting FAUs, thereby eliminating the
subjective component of feelings.

FER models have traditionally based their estimations on RGB videos. De-
spite these networks reaching a significant level of maturity with practical suc-
cess [14], deep learning approaches based on visible spectrum images are affected
by compromising factors such as occlusion and illumination changes [21]. In ad-
dition, traditional cameras have a low frame rate and dynamic range, which
may be a barrier to human expression understanding [5]. RGB cameras, which
typically operate at a maximum of 25/30 frames per second (fps), inherently
struggle to capture microexpressions that manifest in short timespans of up to
1/25 of a second and might face great difficulties with FAUs recognition.

Various types of sensors have been explored in FER, including depth and
3D cameras [9], event-based data [6] and thermal imaging [15]. Event cameras,
which are bio-inspired sensors, differ from traditional cameras by producing asyn-
chronous events at individual pixels where illumination changes occur, rather
than generating streams of synchronous frames [6] significantly reducing motion
blur and showing higher dynamic range. They offer several advantages: extremely
high temporal resolution and low latency (both in the microsecond range), a
very high dynamic range (140 dB compared to 60 dB in standard cameras),
and low power consumption [11]. Besides, event data representations have been
highlighted in the literature as intrinsically protected data with a heightened
level of security which is a critical advantage for high-security applications [3].
Furthermore, research has demonstrated how thermal imaging can be superior
to visible imaging under challenging conditions such as the presence of smoke,
dust, and the absence of light sources [10]. Thermal imagery works by detecting
electromagnetic radiation in the medium-wave infrared (MWIR, 3 − 8µm) and
long-wave infrared (LWIR, 8− 15µm) spectra [24], where skin heat is detected.
This capability allows thermal images to effectively handle low illumination and
certain types of occlusions. Besides, event data representations have been high-
lighted in the literature as intrinsically protected data with a heightened level
of security and efficiency in processing, which is a critical advantage for battery-
powered devices or high-security applications [3].
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However, despite the promising future of event and thermal input data in
many applications, including preliminary studies that have shown their suit-
ability for FER, emotion recognition through thermal and event-based videos
remains a problem not widely addressed in the literature due to a lack of data.
In the case of event-based data, several attempts have been made to generate
synthetic event-based datasets to address this data shortage [12]. Nevertheless,
no work has directly compared these three modalities, and no dataset allows for
a fair comparison under similar conditions. In addition, AI-based models heavily
depend on larger volumes of data for their training, and the list of face datasets
in spectra other than RGB is limited. Therefore, in this article, we present the
Visible, Events, and Thermal Face Dataset for Micro Expression Recognition
(VETEX), the first release of a RGB, thermal, and event tri-modal dataset. To
advance towards more accurate FER models and because we believe in the po-
tential of alternative imagery compared to RGB, our main contributions are as
follows:

– We present our VETEX Face Dataset, which includes 2,506 videos from 20
different subjects, totaling approximately 2.75 hours of video per modality,
suitable for various facial processing tasks, including FER;

– We propose the first study, to the authors’ knowledge, that compares the
potential of RGB, event, and thermal data for microexpression estimation
using a baseline 3D CNN architecture;

– We evaluate the suitability of different input data under various illumination
conditions: studio lights and no artificial light sources, resulting in natural
light videos that might be poorly illuminated.

The rest of the paper is organized as follows: Section 2 presents advancements
in the field of FER, and lists existing datasets containing thermal and event-
based face videos. In Section 3, we provide a detailed presentation of our newly
collected VETEX Face Dataset. Section 4 presents a comprehensive description
of the methodology used in our experiments, as well as the experimental results
of our data comparison for microexpression estimation, including a study on the
impact of different illumination conditions. Finally, Section 5 summarizes the
article and concludes with future directions for our work.

The VETEX Face Dataset is publicly available upon request.

2 Related Work

Deep learning-based FER systems are traditionally trained on datasets acquired
in the visible domain or, more recently, with data in the thermal spectrum or
event-based data. In this section, we present existing face datasets containing
thermal and event data, besides various studies focused on FER that have con-
sidered these input data modalities.
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2.1 Face Emotion Recognition

FER is a technology that analyses facial expressions from static images and
videos to estimate information about a person’s emotional state. Traditionally,
seven emotions are targeted: happiness, sadness, anger, surprise, fear, disgust,
and neutrality [29]. FER has played a significant role in cognitive psychology
research, and numerous studies have focused on automated FER due to its prac-
tical significance in crowd emotion monitoring [28], driver safety assistance [7],
and human-computer interactions [8].

Recent advancements in Facial Emotion Recognition (FER) have extended
beyond the visible spectrum to explore the potential of thermal and event-based
data, offering new solutions for detecting microexpressions under challenging
conditions. One interesting research in the thermal domain combines gait in-
formation from the visible spectrum with facial data from thermal imaging, im-
proving emotion recognition through the integration of body movement cues [17].
In another paper, Wang et al. [26] proposed a visible-thermal facial expression
database and conducted experiments to analyze the relationship between facial
temperature and emotion. More recently, Nguyen et al. [22] introduced a new
dataset that enhances the understanding of emotional intensity by categorizing
each emotion into three levels: low, medium, and high.

Event-based cameras, known for their high temporal resolution and low la-
tency, have also gained attention in FER. Barchid et al. [4] established the first
application of event cameras for FER using synthetic event data, leveraging
Spiking Neural Networks to surpass traditional visible domain methods. Fur-
thermore, Berlincioni et al. introduce the NEFER dataset [6], having visible and
event data pairs, that showcases the effectiveness of event data in capturing rapid
facial microexpressions that are often missed by conventional cameras.

2.2 Existing Relevant Datasets

Microexpression recognition has become an increasingly important study area
within emotion recognition research. However, the available datasets remain lim-
ited, especially when considering multimodal approaches. While several datasets
have been developed for FER across different modalities, only a few focus specif-
ically on microexpressions. Moreover, many facial expression datasets have cen-
tered on the visible spectrum. RGB datasets, such as CAS(ME)² [23], CK+[19],
and JAFFE[20], are the most commonly used for microexpression analysis. De-
spite the abundance of RGB datasets, they are inherently limited by sensitivity to
lighting conditions and occlusions. To address these challenges, recent research
has started exploring alternative modalities, such as thermal and event-based
data, which offer more robust emotion detection capabilities across diverse en-
vironments.

The LVT Face Dataset [21] expanded the scope by introducing both RGB and
thermal data, enabling the study of facial biometrics across different modalities
and exploring how fusing these modalities can enhance performance. In the field
of FER, two of the earliest and most commonly used datasets were the IRIS [1]
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and NIST-Equinox [2] datasets, which offered RGB-thermal data collected under
varied lighting conditions and head positions. As the FER got more popular,
richer datasets were proposed like the NVIE dataset [26] containing 215 subjects,
each displaying six expressions, and most recently, the KTFEv2 dataset [22]
which comprises seven emotions induced by watching video clips on a screen.
More recent contributions include the release of the NEFER dataset [6], which
introduced both RGB and event data, enabling comparative studies between
these two modalities. Additionally, NEFER is well-suited for face detection tasks
due to its inclusion of bounding boxes and landmark annotations. However, like
most other datasets, NEFER does not include thermal data, leaving a gap in
fully exploring the advantages of a tri-modal approach.

Table 1 compares relevant face datasets based on key attributes such as
the number of videos, users, modalities (RGB, Thermal, Event), lighting con-
ditions, landmarks, and annotations. While numerous RGB-only datasets have
been extensively studied, they are not included here due to their abundance [18],
allowing us to concentrate on datasets that explore alternative modalities. Con-
sequently, the table highlights the unique contribution of our proposed VETEX
dataset. To our knowledge, it is the first dataset to offer a tri-modal approach
(RGB, Thermal, and Event) in the field of FER. Our dataset, VETEX, marks a
significant advancement as the first tri-modal microexpression dataset, incorpo-
rating RGB, thermal, and event-based data. Unlike previous datasets, VETEX
is also annotated with microexpressions composed by one or more Facial Action
Units (FAUs) rather than direct emotional labels. This allows for a more gran-
ular analysis of facial muscle movements, which can be mapped to emotions,
providing a richer resource for microexpression recognition research. Addition-
ally, our dataset includes data collected under various lighting conditions and
from participants both with and without glasses. This diversity enables com-
prehensive testing of the dataset’s robustness against challenging scenarios like
low-light environments and occlusions, further enhancing its utility in real-world
applications.

3 Dataset Description

In this section, we first introduce the recording setup of the dataset and the
characteristics of the acquisition devices. We then detail the data collection pro-
tocol and present the final composition of the dataset. Additionally, we provide
visual examples of frames from the different modalities included in the VETEX
dataset.

3.1 Acquisition Material

To create a comprehensive multi-modal microexpression dataset suited for com-
paring different data input modalities, we simultaneously collected three types
of facial data: RGB, thermal, and event data. Additionally, unlike other existing
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Table 1. Comparison of relevant face datasets considering RGB, event and/or thermal
modalities. The table provides an overview of datasets in terms of year, modality,
number of videos, users, and annotations.
*These datasets are composed of frames, not videos.

Year Dataset # Videos # Users Modality Light Landmarks Annotations
RGB TH EV Conditions

- IRIS [1] 4228* 30 ✓ ✓ × ✓ × Emotions

2007 NIST [2] 1919* 600 ✓ ✓ × ✓ × Emotions

2010 NVIE [26] - 215 ✓ ✓ × ✓ × Emotions

2022 DFME [30] 10,045 97 ✓ × × × ✓ Emotions

2018 TFAD [16] 2500* 90 × ✓ × ✓ ✓ Landmarks/MicroExp

2022 DFME [30] 10,045 97 ✓ × × × ✓ Emotions

2022 Becattini et al. [5] 455 25 ✓ × ✓ × × Pos/Neg/Neutral

2023 LVT [21] 416 52 ✓ ✓ × ✓ × Biometrics/eHealth

2023 NEFER [6] 609 29 ✓ × ✓ × ✓ Emotions

2023 KTFEv2 [22] 1120 30 ✓ ✓ × × × Emotions

2024 VETEX (Ours) 2506 30 ✓ ✓ ✓ ✓ × MicroExp

FER-oriented datasets, we aimed to verify generalization under different lighting
conditions. Therefore, we captured videos in two different scenarios: with studio
lights ensuring good illumination and under natural light conditions where the
face might not be well illuminated.

The visible and thermal facial data were obtained using the dual sensor of
the FLIR Duo R camera, developed by FLIR Systems. This camera is specifi-
cally designed to capture visible and thermal images simultaneously, providing
precise spatial and temporal alignment for accurate data pairing. The visible and
thermal sensors of this camera consist of a CCD sensor with a pixel resolution
of 1920×1080 and an uncooled VOx microbolometer with a pixel resolution of
640×512, respectively.

For event data, we employ the DAVIS346 event camera with a frame size of
346×260 due to its high temporal resolution and low latency, which are critical
for detecting rapid microexpressions. This camera also features a high dynamic
range of 120 dB, allowing it to perform well under various lighting conditions
and capture subtle aspects of microexpressions that might go undetected in other
modalities.

The image and video acquisition took place in an indoor environment with
the ambient temperature set to 25°C. To control the lighting conditions during
data acquisition, we used two studio lights placed symmetrically on either side
of the setup, securing consistent illumination on the face and enhancing the
visibility of facial features. The setup included a white wall as a background, a
chair positioned at a fixed distance of 0.25 meters from the cameras, and a high
desk to guarantee that both cameras were securely positioned, fixed, and aligned
during recording. This arrangement minimized movement artifacts and ensured
that the captured data was of high quality and that the faces were centered in
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Fig. 1. Flir Duo R camera (left) and DAVIS346 event camera (right).

the frame of both cameras, facilitating accurate microexpression analysis across
the three modalities.

3.2 Collection Protocol

Each of the 20 volunteers participated in one acquisition session. Before the ac-
quisition process, volunteers were requested to fill out and sign consent forms.
During the recording session, subjects were asked to perform seven different mi-
croexpressions defined by units in the Facial Action Coding System (FACS).
FACS is a comprehensive framework that categorizes facial movements into dis-
tinct FAUs, with each FAU corresponding to a specific muscle movement in the
face, such as raising the eyebrows or wrinkling the nose. These FAUs serve as
the building blocks for identifying and analyzing facial expressions.

Table 2 lists the 27 Action Units (AUs) in the FACS. The seven microexpres-
sions performed by the participants are combinations of FAUs as presented in
Table 3: Smile (FAU 12), Brows Up (FAU 1), Nose Wrinkle (FAU 9), Open Mouth
(FAU 25), One-Sided Lip Raise (FAU 10), Frown (a combination of FAUs 1, 2,
and 4), and Chin Raise (FAU 17). These particular FAUs were chosen for their
distinctiveness and their relevance to multiple emotions. By focusing on these
FAUs, our dataset not only captures the physical movements but also allows for
the exploration of how these movements correlate with different emotional states,
providing a deeper understanding of microexpressions. Table 3 presents our pro-
posed association between the selected microexpressions and the corresponding
facial action units.

Each of the seven selected microexpressions was recorded six times per partic-
ipant: three times under natural lighting and three times under studio lighting.
This results in a balanced dataset, with approximately 120 videos per microex-
pression for each modality. For consistency and to avoid bias, we instructed
participants only on the specific facial actions from the FACS codebook, with-
out any reference to the underlying emotions these actions might represent. For
example, they were asked to "raise eyebrows" without associating the action with
emotions like fear or surprise. This approach ensured that the dataset captured
pure facial movements rather than subjective emotional interpretations.
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Table 2. Facial Action Units defined in the FACS. Each FAU is the result of a con-
traction or relaxation of one or more muscles.

AU Name

1 Inn. brow raise

2 Out. brow raise

4 Brow lower

5 Upper lid raise

6 Cheek raise

7 Lower lid tight

9 Nose wrinkle

10 Lip Raise

11 Nasolabial

12 Lip corner pull

14 Dimpler

15 Lip corner depressor

16 Lower Lip depressor

17 Chin raise

18 Lip stretch

20 Lip tighten

23 Lip press

25 Lips part

26 Jaw drop

27 Mouth stretch

Table 3. Proposed microexpressions in the VETEX Face Dataset and their link to
FACS FAUs.

Microexpression FACS # FACS Name

Smile 12 Lip corner puller

Brows up 1 Inner brow raiser

Nose wrinkle 9 Nose wrinkler

Open mouth 25 Lips part

One side lip raise 10 Upper lip raiser

Frown 1+2+4 Inner brow raiser
Outer brow raiser
Brow lowerer

Chin raise 17 Chin Raiser
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For the synchronization of the two cameras, we employed a verbal instruction
method during the recording session. Both cameras were set to record simulta-
neously, with the two experiment conductors initiating the recording at the same
time after one of them gave a verbal instruction. Similarly, once the recording
had started, one conductor would give a verbal cue to the participant, prompting
them to perform the instructed facial action. Once the action was completed,
the recording was stopped. During the recording process, the FLIR camera was
connected via HDMI to a monitor, and the event camera was linked to a laptop
running DV processing software, allowing real-time visualization of the recording.
This setup ensured that the captured data met the research quality standards.
If any issues were detected, such as misalignment or lighting inconsistencies, ad-
justments were made before proceeding to the next recording, and the affected
sample was discarded.

3.3 Dataset Composition

The multi-modal VETEX dataset comprises a total of 2,506 videos of an average
time of 4 seconds, distributed across three distinct modalities: 837 RGB videos,
828 thermal videos, and 841 event data videos. The final database comprises a
total of approximately 2.75 hours of video per modality. In the rare case where
a recorded video from one modality was corrupted, only that specific video was
discarded, while the corresponding videos in the other two modalities remained
in the database. The recordings were collected from 20 participants, represent-
ing a diverse demographic group. The participant pool includes 15 males and 5
females, all within the age range of 20-30 years, and spans 10 different nationali-
ties. To ensure the dataset’s representativeness, 8 out of the 20 participants wore
eyeglasses, introducing variability in facial appearance and potential occlusions,
which further enriches the dataset.

The dataset is structured to facilitate comparisons between lighting condi-
tions. For each participant and each microexpression, videos 1, 2, and 3 corre-
spond to studio lighting, while videos 4, 5, and 6 correspond to natural lighting.
To maintain a clear focus on facial movements, the dataset is annotated pri-
marily with expression labels corresponding to the facial action units, without
additional metadata. This approach emphasizes the raw facial dynamics, allow-
ing for a pure analysis of microexpressions across the different modalities and
lighting conditions. Example images from our dataset can be shown in Fig. 2.

4 Preliminary Assessment of the Dataset

In this section, we present the methodology followed in our work to compare
the three spectra (RGB, thermal, and event) for the task of microexpression
recognition. We also present our experimental results and evaluate the robustness
of each modality under different lighting conditions.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Example frames from our VETEX dataset displayed in visible (left), event
(center) and thermal (right) spectra. Frames (a-c) are recorded under studio light
conditions; Frames (d-f) are recorded under natural light conditions.

4.1 Experimental setup

Methodology To assess the relevance of our dataset and evaluate the perfor-
mance across these modalities, we conducted a series of experiments using a
3D CNN network, which was trained from scratch on video frames. The choice
of a 3D CNN was driven by the nature of our dataset, which includes RGB
and thermal videos, requiring a network capable of processing spatiotemporal
information and capturing spatial patterns in video frames. We believe that this
architecture choice delivers a good trade-off between a state-of-the-art network
and a model capable of processing three different types of input data, to provide
a fair comparison between the three spectra. Moreover, to incorporate event data
into this network, we utilized the Temporal Binary Representation [13], which
converts event streams into black-and-white frames, where a white pixel indi-
cates at least one activated event within the frame in the selected time window.
This representation is particularly effective for our purpose because it simplifies
the event data into a format that highlights motion changes over time.

Implementation details: To ensure the robustness and reproducibility of our
experiments, we carefully implemented the proposed methodology using consis-
tent frameworks and parameters across all modalities.

The 3D CNN model was trained from scratch based on the implementation
provided in [25], without any prior pre-training. The input frames were reshaped
to a size of 116x116, and random flipping was applied to some of the frames.
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For training, we performed a subject-exclusive split of the dataset to avoid any
advantage due to data leakage. The training and test sets of VETEX consist of
14 and 6 people, respectively. To facilitate a fair training process and avoid bias
by gender, we ensured an equal distribution of male and female volunteers in
the train and test data splits. The 3D CNN was trained for 100 epochs with a
learning rate of 0.001 and a batch size of 4.

For the event data preprocessing, we applied the EvFlow [27] denoising tech-
nique to remove any noise introduced by artificial lighting. Additionally, we
transformed the event data into temporal binary frames using the same imple-
mentation as Innocenti et al. [13], with a window size of 15,000 and 8 bits. As
for the thermal data the .TIFF files were converted into grayscale .AVI to be
processed by the network. The RGB videos were processed in their initial .AVI
format by the 3D CNN.

4.2 Results

Table 4 presents the performance of the 3D CNN for the two illumination condi-
tions considered in the VETEX Face Dataset as well as the overall accuracy for
each of the three data modalities. The results show that both event and thermal
data outperform RGB in microexpression recognition, with event data improving
performance by 12% and thermal data by 20% over RGB. Notably, thermal data
achieved the highest overall accuracy at 34.81%. Moreover, thermal data con-
sistently delivered the highest accuracy across both studio and natural lighting
conditions. It is noteworthy that even without dedicated light sources, thermal
data achieves state-of-the-art performance, likely due to its reliance on heat sig-
natures rather than visible light. On the other hand, event data demonstrated a
slight drop in accuracy under studio lighting conditions (26.98%) compared to
natural lighting (27.55%), which might be due to overexposure noise introduced
by artificial lighting. In the case of RGB data, an interesting behavior was ob-
served, as the performance remained at 14.51% across both lighting conditions.
This consistency could be attributed to the already low accuracy, which is simi-
lar to random classification when seven classes are present, as has been reported
in other FER scenarios [6].

Overall, the results presented in this section highlight the significant advan-
tage provided by the thermal and event modalities, even under varying environ-
mental conditions.

5 Conclusion

This article introduces the multi-modal VETEX Face Database, containing ap-
proximately 8.24 hours of video from 20 different subjects under two different
lighting conditions. The database comprises a total of 2,506 videos across two
unconventional modalities in addition to RGB—thermal, and event—collected
simultaneously using a paired visible-thermal camera (FLIR Duo R) and a
DAVIS346 event camera. This dataset is designed to allow for the comparison or
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Table 4. Evaluation of the baseline microexpression estimator on the VETEX test
set for the three different input data modalities. Overall accuracy is reported, along
with accuracy under two different lighting conditions: Studio and Natural. Accuracy is
reported in % .

Modality Total Accuracy Studio Lighting Acc. Natural Lighting Acc.

RGB 14.51% 14.51% 14.51%

Events 27.27% 26.98% 27.55%

Thermal 34.81% 32.25% 35.77%

fusion of the three data types in different facial processing tasks, such as FER.
To the best of our knowledge, this is the first database providing visible-thermal-
event face recordings, targeting subjects performing seven different microexpres-
sions as defined by the facial action units in the Facial Action Coding System.
The selected microexpressions can be associated with underlying emotions for
FER, and they are not influenced by the subjective nature of feelings facilitating
the task of deep learning models.

Experiments conducted on this novel dataset using a 3D CNN baseline demon-
strate the superiority of thermal and event data over the visible spectrum. The
images captured with the thermal camera deliver the best performance in both
illumination conditions considered, as the thermal camera is able to specifically
capture the subtle variations in heat signatures on the face, which can correspond
to microexpressions. The event modality also proves successful in microexpres-
sion estimation, confirming that its high temporal resolution is better suited
for capturing small facial movements than traditional RGB cameras. It is also
proven that event data performs better in natural lighting conditions, where it
captures details that might otherwise be missed in other domains. Building on
these promising results, future work will explore the three modalities consid-
ered in the database in a fusion scenario, where the thermal and event data add
different layers that complement the classic RGB spectrum.
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