
1

On Combining XAI and LLMs for Trustworthy
Zero-touch Network and Service Management in 6G
Abdelkader Mekrache, Member, IEEE, Mohamed Mekki, Member, IEEE, Adlen Ksentini, Senior Member, IEEE,

Bouziane Brik, Senior Member, IEEE, Christos Verikoukis, Senior Member, IEEE.

Abstract—Research: Zero-touch network and Service Manage-
ment (ZSM) is a key pillar in 6G networks. It allows the 6G
management and orchestration framework to operate the net-
works without external (e.g., human) intervention. To effectively
achieve ZSM, advanced network management procedures are
required to detect and resolve anomalies within the 6G network
autonomously, which usually requires Artificial Intelligence (AI)
and Machine Learning (ML) models. However, relying solely
on AI can raise concerns about trust due to their lack of
explainability. Indeed, as these models are not explainable, it
is difficult to understand and trust their decisions. To overcome
this limitation, this paper introduces a novel pipeline for ensuring
trustworthy ZSM in 6G networks by combining: (i) AI for
detecting anomalies; (ii) eXplainable AI (XAI) to identify the root
causes of anomalies using feature importance analysis; and (iii)
Large Language Models (LLMs) to generate user-friendly expla-
nations and suggest/apply corrective actions to resolve anomalies.
A use case is presented using XGBoost as AI, SHAP as XAI,
and Llama2 as LLM to address Service Level Agreement (SLA)
latency violations within cloud-native 6G microservices. Evalua-
tion results obtained through real experiments demonstrate the
framework’s efficiency in scaling cloud resources to prevent SLA
violations while providing understandable explanations to users,
thereby enhancing trust in the system.

Abstract—Industry: Zero-touch network and Service Manage-
ment (ZSM) is key to achieving fully autonomous 6G networks.
This paper presents a trusted approach that combines Artificial
Intelligence (AI), eXplainable AI (XAI), and Large Language
Models (LLMs) to provide ZSM insights and actions. Tested in
realistic cloud-native 6G environments, it successfully prevents
Service Level Agreement (SLA) violations in microservices ap-
plications.

Index Terms—ZSM, 6G, AI, XAI, LLMs, trust, microservices.

I. INTRODUCTION

The emergence of demanding 6G applications like au-
tonomous vehicles and eXtended Reality (XR), along with
diverse Quality of Service (QoS) requirements, has signif-
icantly increased the complexity of Network Management
Systems (NMSs). This complexity emphasizes the necessity of
developing the Zero-touch network and Service Management
(ZSM) concept, which aims to completely automate and
manage future networks without external interventions, such
as human interventions. To tackle this challenge, the European
Telecommunications Standards Institute (ETSI) established the

A. Mekrache, M. Mekki, and A.Ksentini are with EURECOM, France
(e-mail: abdelkader.mekrache@eurecom.fr, mohamed.mekki@eurecom.fr,
adlen.ksentini@eurecom.fr).

B. Brik is with the Computer Science Department, College of Computing
and Informatics, Sharjah University, UAE (e-mail: bbrik@sharjah.ac.ae).

C. Verikoukis is with ISI/ATH, University of Patras, Greece (e-mail:
chverik@gmail.com).

ZSM group in December 2017. According to their document
[1], ZSM-enabled NMSs prioritize the detection and prediction
of network anomalies, aiming to resolve them autonomously
without human intervention. This approach enables intelli-
gent, autonomous, self-healing networks capable of making
informed decisions to resolve anomalies independently. An
illustrative example within a typical 6G network involves
detecting Service Level Agreement (SLA) violations, such
as latency or throughput issues within cloud applications
and subsequently identifying the root causes behind these
violations. For instance, the system might recognize that insuf-
ficient resource allocation (e.g., CPU or RAM) is causing the
application’s performance to degrade. The solution would then
involve autonomously adjusting these resources to mitigate
latency or throughput issues, all managed by the NMS without
requiring human intervention.

The process of ZSM anomaly resolution involves three
steps: (i) detecting anomalies, (ii) extracting the root cause
of anomalies, and (iii) resolving the anomalies based on the
detected root cause. To address these steps, the research com-
munity heavily relies on advanced Artificial Intelligence (AI)
methods for anomaly detection [2]. However, ZSM-enabled
NMS requires not only detecting but also resolving these
anomalies, which necessitates understanding their root causes.
This becomes challenging with opaque AI models that lack ex-
plainability. For example, using deep learning-based anomaly
detection modules provides predictions without insights into
how these neural networks arrived at these predictions. To
address this limitation, eXplainable AI (XAI) solutions have
emerged in research, offering insights into the root causes
of anomalies [3]. These models provide information about
which features contributed the most to the predictions, thereby
revealing the root cause of the anomaly. For instance, if
the CPU feature contributed the most to the latency SLA
degradation, it indicates insufficient CPU resources for the
given application. In this context, Mekki et al. in [3] used
XAI to explain AI predictions and dynamically scale CPU
and RAM resources of a microservice application based on a
simple heuristic that leverages XAI values to enable ZSM.

However, XAI often presents explanations in numerical
values that may be challenging for users with limited domain
knowledge to interpret, impacting the trustworthiness of ZSM
systems. User-friendly explanations, on the other hand, aim
to generate human-understandable explanations, ensuring they
are understandable to diverse users and increasing trust in
ZSM’s autonomous decisions. Fortunately, with rapid advance-
ments in Generative AI, Large Language Models (LLMs) offer
a promising solution. These models can generate human-like

2

text in various human languages [4], making them an attractive
choice. Moreover, LLMs excel in reasoning tasks without
requiring additional training [4], which can be leveraged to
resolve anomalies, enabling trustworthy ZSM autonomously.
Thus, LLMs should be explored for decision-making problems
in 6G networks (e.g., resolving anomalies).

To address the aforementioned challenges, we extend the
work in [3] by proposing a trustworthy ZSM-enabled NMS
design based on a novel anomaly detection and resolution
pipeline: AI|XAI|LLM. Furthermore, we present a pipeline’s
use case wherein the NMS dynamically scales cloud resources
(e.g., CPU and RAM) for a microservice application with spe-
cific SLA latency requirements. To achieve this, we employed:
(i) XGBoost [5] as the AI model to predict SLA latency vio-
lations; (ii) SHAP [6] as the XAI model to provide numerical
explanations of these anomalies, revealing their root causes;
and (iii) Llama2 [7] as the LLM to generate human-friendly
explanations using natural language. Subsequently, we con-
sider two scenarios: if ZSM is enabled, Llama2 autonomously
resolves the anomaly; otherwise, it offers recommendations on
how to resolve the anomaly, requiring user intervention. The
main contributions of this paper are as follows:

• ZSM-enabled NMS: We propose a novel anomaly detec-
tion and resolution pipeline to effectively enable trustwor-
thy ZSM in NMSs by leveraging the latest advancements
in AI. This pipeline integrates AI|XAI|LLM.

• Dynamic scaling use case with ZSM: We implemented
the proposed pipeline on a real-world 6G NMS use case
to dynamically scale cloud resources for a microservice
application. This implementation employed XGBoost [5]
for AI, SHAP [6] for XAI, and Llama2 [7] for LLM.

• Real-world deployment and testing: The use case was
deployed on an edge computing cluster managed by
Kubernetes. Llama2 was deployed on a single NVIDIA
A100 GPU. Comprehensive real-world tests, including
multiple LLM evaluations, were conducted to optimize
performance for this specific use case.

The remaining sections of this paper are structured as
follows: Section II describes related works and background.
In section III, we illustrate the pipeline-based system’s archi-
tecture and use case. Section IV showcases the demonstration
setup and results. Section V presents future research directions.
Finally, section VI concludes the paper.

II. RELATED WORKS AND BACKGROUND

In this section, we briefly overview related works and the
background of each pipeline component. Then, we present the
differences between existing solutions and our approach.

A. AI

AI-based methods have been widely used in networking
anomaly detection tasks. For example, in [8], the authors
proposed an anomaly detection method using the XGBoost
classification algorithm to enhance network security by accu-
rately identifying and classifying traffic anomalies. XGBoost
[5] is a powerful AI technique that constructs an ensemble
of decision trees to achieve high accuracy in classification

tasks. However, these AI methods’ lack of interpretability is a
significant limitation. These models are often considered black
boxes because they provide predictions without transparent
insights into their decision-making process, making it difficult
to understand the underlying causes of anomalies. As a result,
XAI methods have been employed to provide interpretable
explanations for the predictions made by these AI models.

B. XAI
Several XAI techniques exist and can be classified into

global (explaining the entire model) or local (explaining
specific predictions). One popular choice is SHapley Additive
exPlanations (SHAP) [6], which functions as both a local and
global XAI method. It operates by decomposing the output of
a model into the sums of the impact of each feature, thereby
calculating a value that represents the contribution of each
feature to the model’s outcome. These values are used to
understand the importance of each feature and explain the
model’s results. SHAP is widely utilized in the literature,
particularly in the context of root cause analysis.

C. LLMs
LLMs are being developed to support a wide range of

tasks, including text generation, machine translation, question
answering, and information retrieval [4]. Although LLMs
can achieve high performance on many Natural Language
Processing (NLP) tasks, they are not explicitly designed for
network management tasks. Two main approaches are used to
adapt LLMs to other specific domains: supervised fine-tuning
and in-context learning [4]. The first one involves refining the
model’s performance by training it on specialized datasets,
while the second (e.g., zero-shot and few-shot learning) is
an alternative approach by giving the knowledge in the input
(prompt) without altering the LLM’s weights. This adapts
the LLMs to new tasks without requiring the fine-tuning
computation complexity.

D. XAI & LLMs vs Our approach
Recent developments have extended the focus of XAI

towards LLMs, wherein multiple strategies are employed to
integrate XAI with LLMs. These strategies are explained
in [9]. The 9th strategy in the latter concerns using LLMs
to generate user-friendly explanations for XAI outputs. Our
work builds upon this strategy by further exploiting LLMs’
reasoning capabilities for anomaly resolution [4]. Additionally,
some research works utilize LLMs for anomaly detection and
explanation [10]. Furthermore, the authors of [11] proposed
creating Large Multi-Model Models (LMMs) specialized for
wireless systems, enabling dynamic network adaptation and
improving logical reasoning. These models can be applied to
use cases such as reasoning about anomalies in the network.
However, they will rely solely on LLMs for anomaly detection
and resolution, which leads to triggering the LLMs more
frequently, resulting in significant energy consumption. Our
approach, on the other hand, only requests the LLM when
anomalies are detected. This is achieved by employing smaller
AI and XAI modules to handle KPI reasoning, thus effectively
mitigating the energy consumption problem.

3

User portal

User-friendly explanations + recommendations

Monitor

XAI model 2Monitoring
System

AI model n XAI model nPrediction

XAI model 1Prediction

LLM

Explanation

Explanation

Explanation

6G Infrastructure

Anomaly Detection Engines (ADEs)

Update configurations if ZSM is enabled

Monitoring System (MS)

Prediction

Prediction

Prediction

KPIs

AI model 1

AI model 2

Analytics Engine (AE)

High-level architecture

SHAP

MS

Llama
2

cpu_limit, cpu_usage
ram_limit, ram_usage

XGBoost

E_
pr

om
pt

D_
pr

om
pt

0 || 1

Update Configurations

User portal

 Monitor

Yes

ZSM
enabled ?

Explanations + recommendations

Dynamic scaling use case

6G Infrastructure

Prediction

E_output

D_output

Fig. 1: LLM-enabled trustworthy ZSM architecture design and use case.

III. SYSTEM DESIGN

In this section, we present the high-level architecture of the
ZSM framework and illustrate its practical application through
a use case involving the scaling of cloud resources (i.e., CPU
and RAM) for 6G microservices.

A. High-level architecture

The ZSM framework features a closed-control loop for
managing 6G services, as illustrated in Fig. 1. It consists of
three layers: (i) 6G Infrastructure, which includes cloud/edge
clusters and radio units supporting 6G services. It encompasses
components like the 6G Core Network, RAN cloud solutions,
and wireless base stations; (ii) NMS Anomaly Detection and
Resolution, this module autonomously detects and resolves
anomalies in the infrastructure, such as issues in base stations
or cloud clusters. It operates above the infrastructure layer;
(iii) User Plane, this top layer involves users deploying 6G
services and interacting with the NMS. For instance, users
deploying XR services may require a core network and a set
of edge applications with specific SLA latency and throughput
to support XR requests. These users also receive human-like
explanations from the NMS regarding detected anomalies,
recommendations to resolve them, or actions taken by the
NMS if ZSM is enabled.

As shown in Fig. 1, the design of the NMS consists of three
stages: (i) Monitoring System (MS), the MS collects KPIs from
the 6G infrastructure, including network latency, packet loss,
and resource usage metrics. These KPIs are essential for the
ADEs to identify anomalies; (ii) Anomaly Detection Engines
(ADEs), the ADEs use AI to detect anomalies and XAI to
provide numerical explanations. Each ADE focuses on specific
anomalies, such as QoS issues or security threats, and uses
XAI to explain feature contributions; (iii) Analytics Engine
(AE), the AE processes outputs from the ADEs, using an LLM
to reason about predictions and explanations. It provides com-
prehensive explanations for root causes and suggests actions.
If ZSM is enabled, the LLM can autonomously execute these
actions without human intervention.

B. Dynamic scaling use case

This use case ensures that CPU and RAM resources for
a given microservice application are dynamically adjusted to
prevent SLA latency violations. For this purpose, we employed
XGBoost as the AI model, SHAP for XAI, and Llama2 as the
LLM. Scaling up is performed using the pipeline as illustrated
in Fig. 1, whereas scaling down is implemented using a simple
heuristic. Below, we describe the scaling-up process, and for
more information about scaling down, readers can refer to [3].

1) XGBoost as AI: As depicted in the right-side of Fig. 1,
XGBoost receives cloud monitoring KPIs from the MS, i.e.,
CPU and RAM-related information. This data predicts whether
the application will violate the SLA latency. To achieve this,
we trained it using the dataset of a microservice application
presented by Mekki et al. [12]. First, we labeled the dataset’s
entries as SLA latency violated (y=0) or not (y=1) when the
response time is lower or higher than a given threshold. In our
case, and based on the experimental data from the dataset, we
determine the threshold by measuring the application’s latency
when it is allocated more resources than required. This value
represents the optimal response time that the application can
achieve. Then, training is performed using CPU and RAM
information as inputs, with SLA violation labels as the output.

2) SHAP as XAI: The XAI module of the ADE relies on a
local explanation method based on SHAP to calculate feature
importance scores that influence XGBoost’s output. Negative
values indicate that a feature drives the model’s output towards
0, while positive values indicate that a feature drives the output
towards 1. For example, if the CPU usage has a score of -2.56,
it means that the CPU usage value pushed the model towards
output 0 (SLA not respected) with a score of 2.56. Conversely,
if the RAM limit has a score of +0.99, this indicates that the
feature pushed the model towards output 1 (SLA respected).

3) Llama2 as LLM: Llama2 is employed as the AE. This
model is trained using in-context learning, where knowledge
is injected into the prompts. From Fig. 1, we can see two
prompts corresponding to two LLM tasks. E prompt contains
information on how SHAP operates, alongside the values

4

of XGBoost and SHAP. The objective is to prompt Llama2
to employ deductive reasoning to interpret these values and
provide a human-readable explanation to the user, along with
recommendations on how to mitigate the SLA violation.
Deductive reasoning is used here because it involves apply-
ing general rules to specific instances to draw conclusions,
i.e., given SHAP values, Llama2 can apply implicit rules to
deduce the root causes and suggest appropriate mitigation
strategies. The reasoning can be expressed through the fol-
lowing rules: (i) XAI values ⇒ deduce the root cause; and (ii)
x is the root cause ⇒ increase the limits of x. For example, if
the SHAP values show that CPU usage is a significant factor in
SLA violations, the model can deduce that increasing the CPU
is necessary. Secondly, if ZSM is enabled, D prompt provides
the E output with some instructions to Llama2 to perform
Named Entity Recognition (NER) and extract the values in
a JSON format acceptable by the infrastructure (D output).
We opted for task decomposition into two tasks (i.e., first
reasoning to generate E output, then NER to extract D output)
because combining them resulted in more generation errors.

IV. PERFORMANCE EVALUATION

In this section, we first describe the evaluation setup. Fol-
lowing that, we outline three evaluation steps: (i) one for the
entire framework, where we present the dynamic scaling use
case results; (ii) the second for evaluating LLMs’ reasoning
capabilities; and (iii) the third for assessing the trustworthiness
of E output. Finally, we present the evaluation conclusion.

A. Evaluation setup

Our experimental setup, illustrated in Fig. 2, includes two
machines hosting the Kubernetes-based cluster and the Llama2
LLM, respectively. The first machine, equipped with an In-
tel(R) Xeon(R) Silver 4314 CPU (2.40GHz), runs Ubuntu OS
22.04.3 LTS and Kubernetes to manage a single-node cluster
hosting the MS and ADE components. The second machine,
with an Intel(R) Xeon(R) Gold 6240R CPU (2.40GHz) and
an NVIDIA A100 GPU (40GB vRAM), also runs Ubuntu OS
22.04.3 LTS and NVIDIA CUDA driver version 545.23.06. It
uses Docker to run the Llama2 LLM facilitated by textgen-
webui. The LangChain framework handles LLM prompt
preparation, with parameters set to a maximum of 2000 tokens,
a temperature of 0.1, and a repetition penalty of 1.15.

Llama2 cuda-toolkit

go-server
(Microservice App)

xai-autoscaler
(ADE components)

Prometheus-k8s
(MS)

Grafana

Namespace Namespace
Kubernetes Machine

GPU Machine

Visualize
Metrics

HTTP Load
Generator

Fig. 2: Evaluation setup.

B. Evaluation: Dynamic scaling framework

1) Scenario: We initially configured the microservice appli-
cation with 0.25 CPU cores and 256 MB of RAM. To evaluate
performance under load, we used ApacheBench to generate
high volumes of concurrent HTTP requests. The stress tests
involved executing a predefined pattern of requests five times,
with varying rounds of concurrent clients (c) and total requests
(n): 15 rounds with 50 c and 200 n, 10 rounds with 100 c and
400 n, 15 rounds with 300 c and 500 n, and 20 rounds with
50 c and 50 n. This pattern is illustrated in Fig. 2. Throughout
the tests, we monitored CPU and RAM using Prometheus, as
well as the LLM’s E output and D output. For performance
comparison, we executed two additional approaches: the state-
of-the-art scaling method based on XAI and heuristic decision-
making from [3] (denoted “xai-heur”) and a basic heuristic
approach without the XAI module (denoted “no-xai”), also
from [3]. The key distinction is that our approach (“xai-
llm”) allows flexible resource allocation, while the heuristic
approaches use fixed values. Additionally, “no-xai” does not
use an XAI module to provide the root cause, thus updating all
resources (both CPU and RAM) when a violation is predicted.

2) Results: From Fig. 3, it is evident that CPU and
RAM allocation adapt dynamically to the application load.
For instance, the RAM limit increases with usage dur-
ing heavier loads, and the CPU behaves similarly. The
XGBoost|SHAP|Llama2 pipeline efficiently manages this dy-
namic scaling (demo: https://youtu.be/1CoDNVWJcqA). Ad-
ditionally, before updating resources, Llama2 generates ex-
plainable, human-like E output. Two examples are shown at
the top of the figure at times t1 and t2: one for updating
RAM and the other for updating both CPU and RAM. This
notification is sent to users to enhance trust in the pipeline’s
decisions. The system then extracts the new configuration
from this text and generates D output in a JSON structure,
enabling efficient resource updates. However, minimal errors
in CPU allocation occurred (e.g., at t3). Therefore, we evaluate
Llama2’s role in this pipeline in the next subsection. For more
information on XGBoost and SHAP, readers can refer to [3].

In Fig. 4, we compared our approach (“xai-llm”) with
“xai-heur” and “no-xai” by calculating the mean CPU and
RAM allocations for each (n, c) pair. We found that all three
approaches yielded similar latencies but with different resource
allocations. The “no-xai” method generally allocates more
CPU and RAM due to the absence of the XAI module, which
results in less efficient resource use. In contrast, our approach
prioritizes RAM during dense requests, possibly because the
LLM, trained to understand the impact of insufficient RAM
on system stability, allocates more to prevent failures. For
CPU allocation, our approach generally uses less, except
in dense requests where it allocated more than “xai-heur”.
Averaging these allocations across all (n, c) values, “xai-llm”
ranks first in CPU allocation, followed by “xai-heur”, and
then “no-xai”. Conversely, “xai-heur” ranks first in RAM
allocation, followed by “xai-llm”, and then “no-xai”. Overall,
these results demonstrate that the LLM can effectively serve
as a decision-maker, competing with state-of-the-art scaling
methods while offering user explanations.

5

The root cause of the SLA latency violation lies in both RAM and CPU. To prevent future SLA violations, it is recommended
to increase the allocated resources for both RAM and CPU. This would result in updating the previous limits as follows:

CPU limit from 0.8 to 1.25, and RAM limit from 256M to 384M.

The root cause of the SLA latency violation is due to insufficient RAM allocation. To prevent future SLA violations, it
is recommended to increase the allocated RAM, resulting in a new RAM limit of 700M

LL
M

ou
tp

ut
s

{"ram_limit":700}

{"cpu_limit":1.25,
"ram_limit":384}

E_output D_output

Fig. 3: Dynamic CPU and RAM scaling in response to microservice load.

0

200

RA
M
(M
B)

0.0

0.5

CP
U
(m
)

(200, 50) (400, 100) (500, 300) (50, 50)
(n, c) values

2500
5000
7500

La
te
nc
y
(m
s)

xai-llm
xai-heur
no-xai

xai-llm xai-heur no-xai

Fig. 4: CPU and RAM allocation comparison.

C. Evaluation: LLM reasoning & decision-making

1) Scenario: In this scenario, we focused exclusively on
cases where anomalies were predicted by XGBoost. We gen-
erated 100 random allocations for CPU and RAM, with values
ranging between 0.25 and 2 cores for CPU, and between
128 MB and 2 GB for RAM. Alongside these allocations,
we randomly assigned SHAP values between -5 and 5 to
each feature. We evaluated the performance of various open-
source LLMs and OpenAI’s GPT-4 on generating E output
and D output. The LLMs were executed on all the generated
samples for evaluation. During this process, we calculated the
Score of each LLM on this test: +1 if the generated JSON
contained the correct new configuration, which entails: (i)
generating a correct JSON structure; (ii) including a feature
in the JSON if its SHAP value is negative; and (iii) ensuring
that the JSON value is greater than the randomly assigned
value. A Score of +0 was assigned if these conditions were not
met. Additionally, we categorized errors made by the LLMs
as follows: (i) JSON errors, indicating failure to generate a

correct JSON structure; (ii) Amount errors, where the new
CPU or RAM limit was lower than the initial values; and
(iii) Features miss, where a feature with a negative SHAP
value was missing from D output. We also monitored the
LLMs’ execution times: Explanation time and Update time
for E output and D output generation, respectively.

2) Results: Fig. 5 presents the scores and mean gener-
ation times for various LLMs on given tasks, highlighting
both E output and D output. OpenAI’s GPT-4 achieved the
highest score (91/100). Among open-source LLMs, Llama2
70B scored 89/100 with 1 JSON error, 4 Amount errors,
and 6 Features miss, making it the best open-source LLM
for these tasks. Its execution time is 5.9 seconds (s) for
E output and 2.6s for D output, resulting in an E2E time
of 8.5 s, longer than most LLMs due to its size. CodeLlama
13B was the second-best with a score of 73/100 and an E2E
time of 5s. Vicuna 30B scored 57/100 but had an E2E time
of 17s. Phi2, despite being smaller (2B parameters), scored
41/100. Google’s Gemma 7B scored 0/100 with 100 JSON
errors. Overall, Llama2 70B scored highest among open-
source models, but its size and E2E time are significant. If
these values are critical for other decision-making systems,
CodeLlama 13B offers a good balance.

D. Evaluation: LLM’s trustworthiness

1) Scenario: In this scenario, we evaluated the semantic
quality of the E output generated by each LLM to assess the
comprehensibility of the texts and the trust users are likely
to place in them. We used several established metrics for
this evaluation: (i) BLEU, assesses n-gram precision between
generated and reference texts, with higher scores indicating
better fluency and adequacy; (ii) METEOR, measures qual-
ity considering exact word matches and semantic similarity
using stemming and synonymy, providing a comprehensive
evaluation of fluency and semantic fidelity; (iii) ROUGE-L,

6

0 20 40 60 80 100
Test percentage (%)

gemma-7b
llama2-7b

mistral-7b
codellama-34b

falcon-7b
llama2-13b
phi2-super

viccuna-30b
codellama-13b

llama2-70b
gpt4

0 2 4 6 8 10 12 14 16
Generaton time (s)

Score JSON errors Amount errors Features miss Explanation time Update time

Fig. 5: LLMs scores and E output-D output generation times for the dymanic scaling use case.

focuses on the longest common subsequence of words between
generated and reference texts, reflecting content overlap and
sequence similarity; and (iv) BERTScore, evaluates token-level
semantic similarity using contextualized embeddings from
BERT. Reference texts for these metrics were generated by
10 experts, representing the ideal E output. High scores on
these metrics indicate that an LLM produced well-explained
and coherent text according to experts’ expectations.

2) Results: Fig. 6 illustrates the aforementioned metrics
applied to each LLM and sorted from highest to lowest scores.
Among the evaluated models, Llama2 with 70B parameters
achieves the highest metrics scores, indicating that it consis-
tently produces text semantically similar to domain experts’
expectations. Therefore, we can confidently conclude that
the E output from Llama2 is trustworthy, enabling reliable
ZSM. Surprisingly, Phi2 ranks second in the metrics rank-
ing, which suggests that it also generates high-quality text
that is closely aligned with expert expectations. While the
BERTScore across most LLMs is approximately 0.7, indicating
a high degree of semantic similarity with expert texts, the
variations in wording choices are evident as shown by BLEU,
METEOR, and ROUGE-L metrics. However, overall, nearly
all LLMs generate text that closely matches in meaning
(high BERTScore), albeit with differences in wording. Notably,
Llama2 70B stands out as the model-producing text that aligns
most closely in wording with user expectations.

E. Evaluation conclusion

We divided the performance evaluation section into three
steps. Fig.3 demonstrates a real-world execution of the
pipeline, showcasing its efficiency in predicting SLA viola-
tions and providing timely updates with human-readable out-
put (demo: https://youtu.be/1CoDNVWJcqA). This illustrates
the potential for LLM-based trustworthy ZSM in 6G networks.
Given the minimal errors made by the LLMs, we further eval-
uated the decisions made by these models as depicted in Fig.5.
Our analysis identified Llama2 with 70B parameters as the best
choice among open-source LLMs, particularly when execution
time is not overly constrained. The explanation generation
time is 5.9 s, allowing for comprehensive and explainable
text generation, while the update time is approximately 2.3

s when ZSM is enabled. Additionally, Fig. 6 showcases the
comprehensibility of the generated text using well-known
metrics, providing insights into the trustworthiness of these
texts. Llama2 ranks highest, indicating it produced text closest
to expert expectations. From these explorations, we conclude
that LLMs in ZSM can enable trust and powerful decision-
making in 6G networks. However, there are some limitations
to overcome, which we present in the next section.

V. LIMITATIONS AND FUTURE DIRECTIONS

Our work has successfully demonstrated the feasibility of
relying on LLMs to enable trust in 6G ZSM frameworks.
However, to achieve truly robust LLM-based decision-making,
several areas still require future development.

A. Faster LLM inference

From Fig. 5, the main drawback of the LLMs is the long
generation time. As this latter is not very scarce in our use
case, it can be very important in low-level decision-making,
such as in URLLC services. In such use cases, decision time is
very important to be close to zero. However, relying on LLMs
makes this latter very slow. Therefore, LLM generation time
must be investigated to minimize it. Indeed, there are efforts in
the literature aimed at increasing LLM inference speed [13].

B. Telecom-aware LLMs

From Fig. 3, LLMs play a key role in the ZSM framework
by providing trust and facilitating decision-making. However,
these models require training to understand the problem
context, relying on in-context learning, which increases the
prompt’s information content, thus increasing generation time.
To address this, the community should focus on developing
Telecom-aware LLMs. These models would inherently under-
stand Telecom problems, reducing the need for detailed con-
text information, hence reducing generation time. Additionally,
Telecom-aware LLMs can better identify and reason about
Telecom-related anomalies across technological domains, an
area where generic LLMs struggle without extensive context.
While researchers in [14] have presented an initial framework
for Telecom-aware LLMs, further research is needed.

7

llama2-70b phi2-super viccuna-30b codellama-13b falcon-7b gpt4 llama2-13b codellama-34b mistral-7b
0.00

0.25

0.50

0.75

Me
tr
ic
s
Sc
or
es

0.25

0.510.47

0.74

0.21

0.49
0.40

0.72

0.21

0.50
0.39

0.70

0.20

0.50
0.38

0.70

0.19

0.430.45

0.71

0.17

0.48
0.39

0.69

0.12

0.40
0.33

0.69

0.07

0.280.29

0.62

0.07

0.270.30

0.61

BLEU METEOR ROUGE-L BERTScore

Fig. 6: LLMs metrics score.

C. Green LLMs

From Fig. 5, the best-performing open-source LLM for our
use case has 70B parameters. This large model is power-
consuming. To address this issue, researchers should focus on
developing Small Language Models (SLMs) with fewer pa-
rameters (e.g., 1B) that can match the efficiency of their larger
counterparts. SLMs require significantly less power, making
them environmentally friendly. Although the quality of current
SLMs is continuously improving, they are not yet capable
of fully replacing larger models. Therefore, the community
should invest in the development of SLMs. Additionally, the
power consumption challenge of LLMs can be tackled through
advanced energy-efficient techniques [15], which should also
be further investigated to reduce power usage.

VI. CONCLUSION

In this paper, we presented a comprehensive framework for
achieving trustworthy ZSM in 6G networks. Our approach
integrates AI for anomaly detection, XAI for root cause
analysis, and LLMs for generating user-friendly explanations
and implementing corrective actions. The performance eval-
uation demonstrated the pipeline’s effectiveness in predicting
and addressing SLA violations, delivering timely updates and
human-readable explanations that enhance user trust.

ACKNOWLEDGMENT

This work is partially supported by the European Union’s
Horizon Program under the 6G-Bricks (Grant No. 101096954)
and the 6G-Intense (Grant No. 101139266) projects.

REFERENCES

[1] Anon, “Zero-touch network and service management (ZSM); Require-
ments based on documented scenarios,” 2021. [Online] [Accessed: 29-
Mar-2021].

[2] S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez,
and B. Rubinstein, “Machine learning in network anomaly detection: A
survey,” IEEE Access, vol. 9,152379–152396, 2021. DOI: 10.1109/AC-
CESS.2021.3126834

[3] M. Mekki, et al., “XAI-Enabled Fine Granular Vertical Resources
Autoscaler,” in Proc. 2023 IEEE 9th International Conference on Net-
work Softwarization (NetSoft), pp. 161–169, 2023. DOI: 10.1109/Net-
Soft57336.2023.10175438

[4] Y. Chang, et al., “A survey on evaluation of large language models,”
arXiv preprint arXiv:, 2023.

[5] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting sys-
tem,” in Proc. 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 785–794, 2016. DOI:
10.1145/2939672.2939785

[6] S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model
predictions, vol. 30. 2017, Advances in Neural Information Processing
Systems.

[7] H. Touvron, et al., “Llama 2: Open foundation and fine-tuned chat
models,” arXiv preprint arXiv:, 2023.

[8] D. Niu, et al., “A Network Traffic anomaly Detection method based
on CNN and XGBoost,” in Proc. 2020 Chinese Automation Congress
(CAC), pp. 5453–5457, 2020. DOI: 10.1109/CAC51589.2020.9327030

[9] X. Wu, et al., “Usable XAI: 10 Strategies Towards Exploiting Explain-
ability in the LLM Era,” arXiv preprint arXiv:, 2024.

[10] J. Su, et al., “Large Language Models for Forecasting and Anomaly
Detection: A Systematic Literature Review,” arXiv preprint arXiv:, 2024.

[11] S. Xu, et al., “Large multi-modal models (LMMs) as universal foun-
dation models for AI-native wireless systems,” arXiv preprint arXiv:,
2024.

[12] M. Mekki, N. Toumi, and A. Ksentini, “Microservices configurations and
the impact on the performance in cloud native environments,” in Proc.
2022 IEEE 47th Conference on Local Computer Networks (LCN), pp.
239–244, 2022. DOI: 10.1109/LCN53696.2022.9843385

[13] P. Nawrot, et al., “Dynamic memory compression: Retrofitting LLMs
for accelerated inference,” arXiv preprint arXiv:, 2024.

[14] H. Zou, et al., “TelecomGPT: A Framework to Build Telecom-Specific
Large Language Models,” arXiv preprint arXiv:, 2024.

[15] J. Stojkovic, et al., “Towards Greener LLMs: Bringing Energy-Efficiency
to the Forefront of LLM Inference,” arXiv preprint arXiv:, 2024.

BIOGRAPHIES
Abdelkader Mekrache is a PhD candidate at EURECOM’s Commu-

nication Systems Department. His primary focus is on advanced network
management frameworks in next-generation wireless networks under the
supervision of Prof. Adlen Ksentini. He is an active participant in collaborative
research and notably contributes to the OAI project, as well as multiple
European projects, including 6G-Bricks, 6G-Intense, and Sunrise-6G.

Mohamed Mekki obtained his PhD from EURECOM, where he now
works as a researcher. He specializes in the Cloud Edge Computing Contin-
uum, focusing on utilizing containerization and WebAssembly technologies
to enhance the automated management of applications, while also considering
energy consumption and carbon footprint optimization. His work contributes
to several European projects, including AC3, 5GDrones, and MonB5G.

Adlen Ksentini is a professor in the Communication Systems Depart-
ment at EURECOM, leading activities on softwarization, 5G/6G, and edge
computing. His research focuses on network virtualization, Software Defined
Networking (SDN), and edge computing for 5G/6G networks. He has partic-
ipated in several H2020 and Horizon Europe projects, including 5G!Pagoda,
5GTransformer, MonB5G, and Sunrise-6G. Currently, he is the technical
manager of 6G-Intense and AC3, working on zero-touch management and the
Cloud Edge Continuum. His expertise includes Markov Chains, optimization
algorithms, and Machine Learning (ML). He is also a member of the OAI
board of directors, overseeing Core Network and O-RAN activities.

Bouziane Brik is an Assistant Professor at Sharjah University. He has
been (still) working on resources management and security challenges of
5G/6G network slicing in the context of H2020 European projects including
MonB5G, 5GDrones, InDiD, and 5G-INSIGHT. His research interests also
include 5G and Beyond networks, Explainable AI, and machine/deep learning
for wireless networks.

Christos Verikoukis received his BSc and MSc degrees from Aristotle
University of Thessaloniki in 1994 and 1997, and his PhD from the Technical
University of Catalonia (UPC), Barcelona, in 2000. He is currently a professor
at the University of Patras and an affiliated faculty member with ISI/ATH. He
has published over 160 journal papers, 240 conference papers, co-authored 5
books, and holds 4 granted patents. He is the EiC of IEEE Networking Letters
and a member of the IEEE ComSoc GITC. He has coordinated 20 EC and
nationally funded projects.

