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Abstract—Vehicular Knowledge Networking (VKN) is a
paradigm where vehicles exchange knowledge instead of data.
Named Data Networking (NDN) is a resilient architecture
for sharing data between vehicles without information about
the hosting vehicle. NDN might not be adapted for sharing
knowledge, as the peculiar complexity of knowledge requires
knowledge-driven NDN functions as well as a specific simula-
tion environment enabling joint knowledge perception, inference
and reasoning. In this paper, we present an open-source co-
simulation framework connecting NDN, traffic, dynamic control
and perception simulators for knowledge perception & inference,
and with an AI-as-a-Service (AIaaS) platform for knowledge
reasoning. This paper notably describes new interfaces and
functions between the NDN daemon and the AIaaS micro-services
for handling interest naming, caching and forwarding between
knowledge producers and consumers. We demonstrate the benefit
of the proposed framework and knowledge-specific extensions
through an AI-driven vehicular intersection management.

Index Terms—Vehicular Knowledge Networks, Named Data
Networking (NDN), AI models, simulation, ns-3, SUMO, CARLA.

I. INTRODUCTION

The rapid advancement of Cooperative Connected Auto-
mated mobility (CCAM) and Cooperative Intelligent Trans-
portation Systems (C-ITS) has spurred interest in efficient
vehicular networking paradigms. Vehicular Ad-hoc Networks
(VANETs) — self-organizing wireless networks between ve-
hicles - have been developed to share data between vehicles
in stringent vehicle-to-vehicle (V2V) environments. VANETs
are optimized to share data between known endpoints (address
or geographic location). Named Data Networking (NDN), as
a content-centric approach, provides a promising alternative
by shifting the focus from endpoint to content names. By
identifying data by its name rather than by its location,
this paradigm is particularly well suited for vehicular data
exchange in highly dynamic environments.

In parallel, the rise of Artificial Intelligence-as-a-Service
(AIaaS) platforms has democratized access to advanced ma-
chine learning and AI capabilities, offering scalable and cost-
effective solutions for deploying and managing AI models. As
described in Nadar et al. [1], AIaaS platforms leverage cloud
infrastructure and sophisticated semantic reasoning mecha-
nisms to provide on-demand access to AI services, harnessing
the power of AI without the need for extensive infrastructure.

With increasing AI capabilities, vehicles are increasingly
capable of generating knowledge e.g. AI models. Vehicu-

lar Knowledge Networks (VKN) [2] are therefore a novel
paradigm where vehicles exchange knowledge rather than
data. Several studies demonstrated the pertinence of VKN
for CCAM or C-ITS, such as vehicular risk assessment [3],
content placement for vehicular micro-clouds [4], or decen-
tralized machine learning orchestration [5]. Harnessing AIaaS
functionalities to NDN protocols could be an enabler to fulfill
the promises of VKN.

In the context of CCAM or C-ITS, AI models play a critical
role in enabling adaptive decision-making processes, such as
collision avoidance, dynamic route planning, and autonomous
vehicle control. However, the exchange of large AI models
between vehicles in a VKN poses unique challenges. The
traditional NDN architecture is not optimized for handling
large data objects, such as AI models, due to limitations in
caching and forwarding strategies. Existing NDN research
indeed primarily focuses on the exchange of smaller, sensor-
based data or traffic-related information [6], leaving a gap in
the efficient management of larger, knowledge-driven content
such as AI models.

To address these challenges, we propose NDN4VKN, a
novel framework designed to support the efficient exchange
of AI models in VKN. Our approach builds on NDN and
integrates a distributed AIaaS platform, originally conceived
as a centralized system, into a decentralized vehicular envi-
ronment. This integration enhances the functionality of core
NDN components such as the Pending Interest Table (PIT),
Content Store (CS), and Forwarding Strategy, optimizing them
for knowledge-centric applications in dynamic vehicular sce-
narios.

In this work, we also introduce a multi-layered simulation
environment that synchronizes ndnSim1 for NDN protocols
and network-level simulations, SUMO2 for vehicular mobility
modeling, and CARLA3 for high-fidelity AI training and per-
ception tasks. The proposed framework not only facilitates the
exchange of AI models between vehicles but also dynamically
adapts to changing vehicular contexts, improving the overall
efficiency of vehicular knowledge networking.

Our contributions are threefold: First, we describe the archi-
tectural integration between the NDN stack and the AIaaS plat-
form creating the NDN4VKN platform; second we introduce

1https://ndnsim.net
2https://eclipse.dev/sumo/
3https://carla.readthedocs.io/en/stable/



our methodology for building our co-simulation framework
facilitated by TraCI (Traffic Control Interface). Finally, we
demonstrate the feasibility of AI/ML model exchanges within
NDN4VKN. The platform is available as open-source on
EURECOM Gitlab: https://gitlab.eurecom.fr/cats/ndn4vkn and
is developed as a multi-Docker container platform.

The rest of this paper is organized as follows: Section II dis-
cusses related work in NDN. Section III outlines the proposed
NDN4VKN architecture. Section IV details the knowledge-
driven NDN extensions. In Section V, we illustrates a proof-
of-concept of the NDN4VKN framework. In Section VI we
conclude and shed light on future direction in NDN and VKN.

II. LITERATURE SURVEY

NDN is defined as a future internet architecture by the
IETF Internet Research Task Force (IRTF) and is investigated
by a dynamic community. The principles and challenges of
NDN are well described by Saxena et al. [7], with specific
details on NDN forwarding challenges by Farhan et al. [8] or
NDN naming conventions by Nurhayati et al. [9]. Vehicular
networking being a major use case for NDN, significant work
has been pursued towards Vehicular NDN as surveyed by
Khelifi et al. [6].

In particular, at the forwarding table level, Jaebeom et
al. [10] proposed a TOPology aware CCN protocol (TOP-
CCN) that relies on Multiple Point Relay (MPR) based packet
flooding, where Publisher MPR (PMPR) merge content an-
nouncements, and flooding is restricted by hop counts and
MPR nodes to reduce multiple content announcement. Kato, et
al. [11] depicted implementation details of an NDN MANET
over the ndnSIM simulator as well as its performance in ad-hoc
networking. At the PIT management level, Zafar, et al. [12]
introduced a dynamic and context-aware strategy for man-
aging the PIT in Vehicular NDN architectures. The primary
contribution of the paper lies in addressing the scalability
and efficiency challenges associated with PIT management in
highly dynamic vehicular environments. The paper however
did not consider the impact of complex NDN naming typically
observed in VKN.

Campolo et al. [13] were among the first to evaluate
the feasibility and implication of NDN for AI orchestration,
followed by a more recent study by Hail et al. [14]. However,
they remained at a conceptual level and did not address the
impact of semantic reasoning and knowledge graph description
of modern AI models.

From a simulation environment perspective, the ndnSim4

platform connects and adapts an NDN software library (NDN
Fowarding, CS and PIT) with ns-3, which emulates nodes
and wireless links. ndnSim has therefore been a valuable
evaluation platform for NDN research. When investigating
Vehicular NDN, realistic mobility is missing. Arajo et al. [15]
therefore presented NDN for Inter-Vehicle Communication
(NDN4IVC), interconnecting ndnSim and the traffic simulator
SUMO. When applying NDN for CCAM or VKN, additional
features are required, such as realistic sensor perception,
vehicular control and knowledge reasoning.

4https://ndnsim.net/current/

In [1] Nadar et al. proposed a centralized AI-as-a-Service
architecture (AIaaS) called Infrastructure-Assisted Knowledge
Management (IAKM), highlighting the potential of delivering
AI models as services through a cloud-based system. This cen-
tralized design enabled efficient deployment, management, and
access to AI models, ensuring scalability and ease of mainte-
nance within a single infrastructure. The authors demonstrated
how AI models could be effectively semantically named, and
shared between multiple AI actors.

Figure 1: IAKM - Centralized aspect

However, as depicted in Fig. 1, the centralized nature of
this architecture introduces certain limitations, especially in
vehicular domains which demand low latency, high through-
put, and the ability to scale in a more dynamic, geographically
distributed manner. Accordingly, leveraging edge AI and NDN
to bring networking and computing decisions closer to vehicles
drives the development of distributed AIaaS platforms, en-
hancing both the performance and scalability of decentralized
AI services..

III. NDN4VKN

In addition to NDN protocols and vehicular mobility, VKN
requires sensor perception, vehicular control as well as knowl-
edge reasoning functions. Table I presents VKN functional
requirements compared with two leading simulation platforms
(ndnSIM and NDN4IVC [15]) as well as the proposed frame-
work.

VKN Functions ndnSIM NDN4IVC NDN4VKN

M
od

ul
es

Network simulator: ns-3 ns-3 ns-3
Networking NDN NDN NDN

Mobility simulator N/A SUMO SUMO + CARLA
Driving Control N/A N/A ROS + PID

Perception N/A N/A radar, LIDAR, camera
Map N/A SD-Map HD-Map

N
D

N

Interest naming uri uri SPAQL
Interest matching Exact Exact Knowledge Reasoning

CS Storage Rand,LRU Rand,LRU Knowledge
policy: LFU, FIFO LFU, FIFO Graph

Content type: String String AI/ML
object object model

Knowledge N/A N/A Share, Train, Infer

Table I: NDN4VKN vs Current Simulators



NDN4VKN interfaces key modules and simulators to sup-
port VKN as depicted in Fig. 2. The first key module is
ndnSim, which interfaces the network simulator ns-3 with
ndn-cxx, which provides key NDN primitives (NFD and
application layer APIs). NFD is a key module supporting NDN
core functions, including the Content Store (CS), Forwarding
Information Base (FIB), and Pending Interest Table (PIT).
Within ndnSim, ns-3 enables large-scale NDN simulations,
but ndn-cxx itself is a software library supporting experimental
studies. The second key module, is the traffic simulator SUMO
modeling vehicular mobility and providing realistic traffic
scenarios. ndnSim and SUMO are interconnected via the TraCI
interface.

While the first two described modules are similar to
NDN4IVC, NDN4VKN adds two critical modules. The first
is CARLA, an open-source simulator for autonomous driving
perception and control. It supports flexible specification of
sensor suites and realistic environmental conditions through
HD-Maps. CARLA is connected to SUMO and ndnSim via
TraCI to share perception and environmental data to the
NDN application layer for knowledge training. Knowledge is
used by CARLA for inference on sensor, environmental or
control functions. Accordingly, a dedicated interface has been
designed to connect CARLA to the NDN application layer for
sharing knowledge or inferring knowledge from CARLA data.

The second module is the AIaaS platform IAKM. As
ndn-cxx, IAKM is not a simulator but a software library
providing key functionalities for knowledge reasoning. Within
NDN4VKN, the IAKM is directly connected to the NVF, with
dedicated APIs to the NDN CS, PIT and FIB. Within ndnSim,
the IAKM contains one instance of each ns-3 node in order
to be available at each NDN entity (producer, consumer and
router).

Through the described NDN4VKM framework, AI agents
(as application layer entities) do not need to request data
via NDN to train a model, but can share AI models via
NDN with selected AI agents closest to the data required for
training. AI agents may also query other AI agents via NDN
for knowledge related to a particular unknown environment.
And through CARLA and the IAKM libraries, NDN4VKN
allows evaluating the true knowledge accuracy in a particu-
lar context. NDN4VKN therefore provides primitives and a
flexible simulation environment for VKN.

Figure 3 shows such multi-layer and multi-hop features of
VKN and the role played by the various NDN4VKN modules
or NDN functions.

IV. KNOWLEDGE REASONING FOR NDN

In this section, we describe the key NDN extensions for
Knowledge reasoning provided by the interconnection with
the IAKM.

A. From Knowledge to Interest Naming

As described in [2], knowledge naming is critical to VKN.
Knowledge names correspond to metadata describing their
meaning and usability context. In [1], knowledge is described
and identified by a Knowledge Graph (KG), such as an RDF

Figure 2: NDN4VKN: Framework overview

Figure 3: Multi-layers VKN framework in NDN

graph. This graph structure is better suited than domain-
specific hierarchical NDN naming as it allows flexibility in the
naming structure and support inter-domain reasoning. While
KG may be described by JSON-LD objects, mapping must be
provided to respect the structure of NDN interest packets.

Nadar et al. proposed in [1] a method to convert JSON-
LD described KG into MQTT topics by extracting full key
paths from the JSON structure of the KW. While this method
is straightforward, it significantly increases the name size, as
depicted in Fig.4 a⃝, where the name size reaches 245 bytes.
We introduce an alternative mechanism that reduces the AI
name size in NDN Interests. The proposed method, which is
implemented by an IAKM knowledge translation microservice
and illustrated in Fig.4 b⃝, produces a more compact name
of 182 bytes by using S and E to denote the beginning
and end of nested objects, respectively. This optimization im-
proves efficiency in resource-constrained vehicular knowledge
networking environments.

NDN4VKN provides a flexible API between AI agents in
the application layer and the IAKM knowledge translation
microservice to translate a knowledge name into a NDN
interest. This IAKM microservice is also used to identify a
given knowledge by its NDN interest.



Figure 4: Bidirectional mapping of AI metadata in the Knowl-
edge Graph with NDN Interest (Serialization/ Deserialization)

B. Forwarding Strategy: Semantic Geo-Routing

In Named Data Networking (NDN), forwarding strategies
are pivotal for determining how Interest packets are routed
through the network to retrieve the desired data packets. These
strategies directly affect the network’s performance, including
its scalability, efficiency, and ability to manage resources
effectively. However, the existing forwarding strategies have
limitations in handling dynamic vehicular networks, where
mobility and context-awareness are crucial. In [10] Jaebeom,
et al. proposed a Topology aware CCN protocol (Top-CCN) to
reduce multiple content announcement overhead and broadcast
storming problem. This proposal is technically a proactive
state-full ad-hoc routing protocol, which is not efficient in
highly dynamic vehicular networks. Stateless approaches, such
as geo-routing are better suited to select optimal relays assum-
ing the presence of a location service to obtain the geolocation
of the destination node. NDN4VKN provides both mecha-
nisms through the interaction between the NDN FIB and the
IAKM as depicted in Fig. 5. First, a semantic location service
leverage KG descriptions to match a knowledge usability con-
text and HD-Map topology. As an example, knowledge suited
to T-intersections should be located there and accordingly
through HD-Map reasoning, the semantic location service will
extract the GPS coordinates of the most suitable T-intersection
in the area. Second, default a greedy forwarding mechanisms
is defined at the FIB to select the relay node providing the
best geographical progress toward the destination.

Fig. 6 illustrates a traffic scenario where a car identified
as C is approaching a complex T-intersection and requires
knowledge to handle it. Vehicle C queries its HD-Map for
semantically T-shape intersection within a R1 range similar to
the required knowledge. Once obtained by the IAKM, it selects
the most optimal geo-relay within a R2 range providing the
maximum geographical progress. Knowledge reasoning plays
here a critical role, as not any T-shape intersection match
the usability context of the required knowledge. Through
knowledge reasoning, the IAKM is able to identify the mostly
likely one.

C. Semantic-Based Interest Matching

Given the strict NDN naming structure, NDN interest
matching is limited to quasi-exact matches. Knowledge bear-

Figure 5: Extending NDN FIB with IAKM

Figure 6: GeoRouting implementation in ndnSIM

ing more subtle features requires a semantic proximity metric
to describe how semantically close one piece of knowledge
is to a target interest. NDN4VKN introduces an enhanced
matching mechanism through our semantic API platform.
Traditional NDN relies on exact matches between Interests
and Data, which can be restrictive due to the variability in
how Interests are expressed across different nodes. A semantic
analysis that transcends exact component matching is pre-
sented in [1], which we interconnect with NDN in NDN4VKN
. By understanding the underlying meaning within Interests,
the IAKM Context-Alignment-Function (CAF) microservice
facilitates a more flexible and context-aware retrieval process
that uses Natural Language Processing (NLP) to align the large
language expressions with IAKM ontology. This approach
promotes more efficient and relevant data retrieval, aligning
with the semantic intent of Interests rather than their precise
specifications.

For example, consider a scenario where a vehicle
A sends an Interest regarding a roundabout with the
specifics ”4 legs” and ”30 meters radius”, expressed
as /ai/model/map/roundabout/legs/4/radius/30. If the Content
Store (CS) of Vehicle B holds data with a name like
/ai/model/map/round-intersection/exits/4/width/30, which se-
mantically corresponds to the same information, the traditional
exact match mechanism would fail to retrieve the data be-



cause of the mismatch in Interest naming. In contrast, the
NDN4VKN provides API between the IAKM and an AI agent
at the application layer to perform a semantic-based reasoning
between the knowledge name and the Interest description.

D. Towards Context-Aware Content Store Management

The Content Store (CS) acts as a cache that temporarily
holds data packets to facilitate NDN content retrieval with-
out querying the original producer. CS management policies
in NDN like Least-Recently-Used (LRU), First-In-First-Out
(FIFO) or Random, rely on static parameters like access fre-
quency and recency. When considering knowledge, it becomes
more challenging. For example, let’s consider three pieces of
the same knowledge (e.g. same IA model): one trained in a
context corresponding to an T-intersection A, and one trained
in a context corresponding to a T-intersection B bearing 80%
similarity with T-intersection A. Storing both models might
significantly impact the capacity of the CS and reasoning
would be required to assess the interoperability of knowledge
for T-intersections A and B, keeping only one in CS. Similarly,
when receiving a third undertrained knowledge with 60%
similarity with the T-intersection A, the CS might decide to
cache it in addition to the existing knowledge due to its higher
accuracy but lower proximity. In the end, the CS ends up with
three copies of the same knowledge, whereas traditional NDN
would only keep one.

In NDN4VKN, the IAKM optimizes the CS by relying
on semantic reasoning on the KG representation of the In-
terest and KG describing knowledge stored on the CS. The
NDN4VKN dedicated APIs supporting knowledge reasoning
are depicted on Fig. 7 and briefly described next.

• CS Find function - a GET method triggering semantic
reasoning on availability of a given knowledge in the
CS and returning knowledge semantically closest to the
Interest.

• CS Insert function - a POST pushing knowledge into the
CS and triggering IAKM semantic reasoning on duplicate
content.

• CS Delete function - triggers IAKM semantic reasoning
on the pertinence of a given knowledge in the CS.

NDN4VKN provides a default implementation of CS
knowledge reasoning for VKN. NDN4VKN is yet a toolbox
to extend CS management for knowledge networking.

E. Context-aware PIT management

The Pending Information Table (PIT) is a key player in
finding content in Named Data Networking (NDN). Due to the
limited opportunities offered by current memory technologies,
PIT size is a bottleneck. The stored PIT Entry (PITE) is
removed either when the PIT Entry Lifetime (PEL) expires or
the vehicle with PITE receives the required Data packet. When
considering knowledge, the situation is more complicated.
Taking the same example as before, assuming that an existing
PITE corresponds to knowledge training for T-intersection
A and that a new Interest packet is received for knowledge
corresponding to a T-intersection B, bearing 60% similarities
with A. Given the context similarities, should the vehicle

Figure 7: Extending NDN CS with IAKM

assume that the current PIT entry is sufficient, or should it
store both entries, potentially overloading the PIT table? A
second challenge occurs when the vehicle receives knowledge
and needs to assess whether to remove the corresponding PIT
entry. Assuming a vehicle receives knowledge corresponding
to T-intersection C bearing 80% similarity with A and trained
at 40%, would a PITE corresponding to the T-intersection A
be satisfied and therefore deleted, or should the vehicle hope
to get better knowledge later and keep the PITE? A third
challenge is PIT priority avoiding PIT overflow. In case one
PITE needs to be removed, how should the vehicle choose
between the three different PITE entries previously described,
and how to compare with PITE for different knowledge?

NDN4VKN interfaces the NFD PIT entity with the IAKM
via three APIs described in Fig. 8 and briefly described below.

• PIT Proximity Match - a GET method triggering semantic
reasoning on the semantic proximity between an Interest
packet and available PITE.

• PIT Add Entry - a POST method creating a new PITE and
triggering IAKM semantic reasoning on duplicate PITE
entries.

• PIT Erase function - triggers IAKM semantic reasoning
on PITE prioritization in the PIT.

Related to the GET method, NDN4VKN additionally pro-
poses a ProximityMatch function as an alternative to the ex-
isting ndnSim ExactMatch method, as depicted in Fig. 9. The
NDF PIT entity provides a find function to match an Interest
packet with a PIT entry and a lookup function to remove PIT
entries upon corresponding knowledge reception. NDN4VKN
connects the NFD PIT entity to the IAKM via a GET method
and a ProximityMatch function. The latter function applies
knowledge reasoning on PIT entries, Interests and Knowledge
by merging their KG description and computing a proximity
metric. A threshold is defined to decide if the PIT find/lookup
is successful or not. NDN4VKN finally also defines a multi-
parameter PIT prioritization, where the ProximityMatch is one
of them, but also extracts from the PIT KG description the



related application description. For instance, a safety-related
PITE would bear a higher priority compared to a traffic
efficiency PITE, and within a similar class, a PITE entry with
a higher proximity metric would bear a higher priority.

NDN4VKN provides a default KG proximity metric, pri-
ority threshold and multi-parameter PIT priority function.
NDN4VKN also provides a toolbox to extend PIT manage-
ment for VKN with different values or functions.

Figure 8: Extending NDN PIT with IAKM

Figure 9: Proximity-based matching in PIT

V. EXPERIMENTATION: SYNCHRONIZATION AMONG
PLATFORMS

In this section, we illustrate how NDN4VKN can be ben-
eficial to support VKN. In this proof-of-concept, we aim
at improving the efficiency of knowledge caching in the
Content Store (CS) and enabling PIT dynamic management
to optimize communication in a vehicular environment. To
achieve a comprehensive toolset for Vehicular Knowledge
Networking (VKN), we simulate vehicular mobility using the
SUMO simulator, while AI model training and inference are
performed using the CARLA simulator. Although CARLA is
utilized for more granular perception and AI-based vehicle
control in this study, the proposed toolset is not restricted
to CARLA; AI models can be trained or inferred using

data from other simulators, such as SUMO or any external
application. All modules described in Fig. 2 are interconnected
and controlled via a ndnSim scenario, and a close to reality
vehicular scenario involving mobility, control and perception
is reproduced. Without loss of generality, Knowledge takes the
shape of an AI model.

A. Experiment setup

The simulation environment is composed of several compo-
nents, each designed to replicate a specific aspect of vehicular
networking, mobility, information perception and AI process-
ing. Below are the key components and configuration:

• SUMO - it is configured to model an urban block
including a T-Intersection.

• CARLA - it is configured to closely model the T-
shaped intersection as an HD-Map as well as all vehicles
approaching. Vehicles are synchronized with SUMO ve-
hicles. Each CARLA vehicle is equipped with a sensor
suite (cameras, LIDAR). Vehicular sensors as well as the
HD-Map enables NDN4VKN to model vehicular control
based on AI inference or AI training.

• ndnSIM - used for NDN network layer, it models
the wireless link and communication channel between
vehicles, and provides NDN primities connected to the
IAKM.

• IAKM - used for any reasoning over knowledge at NDN
functions (CS, PIT, FIB) required during the simulation.

The simulation was conducted in a Linux environment, uti-
lizing Ubuntu 20.04.6 as the operating system. The following
simulator versions were employed: ndnSIM v2.9, SUMO 1.19,
and CARLA 0.9.12. Table II details the specific setup and
configurations used in ndnSIM components to facilitate the
exchange of AI models in network packets. Without loss of
generality, this proof-of-concept is based on WiFi V2X, as
5G NR SL is not available in the current version of ndnSIM.
Additionally, modifications were made to the MSDU (MAC
Service Data Unit) aggregation settings to accommodate the
substantial size of ML models. We leveraged the Aggregated-
MSDU (A-MSDU) feature, which packs multiple MSDUs into
a single MPDU (MAC Protocol Data Unit), reducing protocol
overhead and enhancing throughput.

Table II: Platform Configuration

Component Configuration
Network Device IEEE 802.11p
Nb. of Producer/Consumer 1/1
Propagation Loss Model Range propagation loss model
WiFi max-queue-size 50k p
Vehicle Radio Range (max) 200 m
Wifi max-queue-delay 50 s
MTU size 8096
LP- MaxFragments 10k
Reassembly Timeout 5 s
Language (CXX) C++ (17)
Routing Protocol OLSR, Semantic-georouting
Content Store Size optimized-IAKM (no-limit)
Simulation time 120 s



B. Coupling Network and Mobility Simulators

To realistically capture the dynamic nature of vehicular
networks, we couple SUMO with ndnSIM by synchronizing
the mobility events from SUMO with the network operations
simulated in ndnSIM. Every vehicle in SUMO corresponds to
a node in ndnSIM, where vehicles generate Interest packets
for AI models based on their surrounding context (e.g., safety
alerts, traffic conditions, navigation). The vehicle’s location,
speed, and trajectory in SUMO directly influence the propa-
gation of Interest packets within ndnSIM, allowing to evaluate
the impact of vehicular mobility on NDN performance. In
the designed scenario, a vehicle approaching a roundabout
in SUMO generates an Interest for AI model data related
to managing that intersection, which is then disseminated
through the NDN-based vehicular network. This coupling is
also available in the NDN4IVC [15] platform.

C. Synchronizing SUMO with CARLA

To realistically model driving control and sensor perception,
we connect the simulator CARLA to SUMO via TraCI,
so that vehicles in CARLA are synchronized with SUMO.
Sharing TraCI, ndnSIM may therefore also interact with
CARLA to train or infer AI models exchanged via NDN
leveraging CARLA HD-Map and vehicular sensor suites.
The synchronization between CARLA and SUMO provides
hierarchical granularity of the simulation, where a large-scale
urban environment is simulated by SUMO, whereas only a few
vehicles in a target intersection are simulated by CARLA. The
large-scale SUMO scenario allows, in turn large-scale NDN
networking to observe the impact of AI model dissemination
on NDN CS, PIT and FIB entities.

Figure 10: TraCI-Based Co-Synchronization

D. Exchanging AI models over VKN

Without loss of generality, we defined an urban environment
with two vehicles, one producer and consumer. The producer
trains an AI model based on its driving dynamics on a
target intersection. The consumer requests such AI model for
AI inference on vehicular control safely driving through the
intersection. We finally included 23 additional vehicles on

SUMO in order to simulate traffic in the urban area. As AI
model, we used a Random Forest Classifier (RFC) due to its
robust ensemble learning capabilities, and which is designed
to decide if a vehicle should enter a T-intersection based on its
perception of the dynamics of other vehicles. The producer has
an empty AI model and drives through the T-intersection using
CARLA auto-pilot, names the model according to the inter-
section context and start training the model. Once completed,
the AI model is saved in the producer CS store. From SUMO
trajectory planning, the consumer identifies that it needs to
cross through the target T-intersection. Accordingly, it extracts
from SUMO the semantic description of the T-intersection and
builds a AI Intersect packet, which is disseminated via NDN.
Upon reception of the AI model, the consumer may proceed
through the intersection. If it does not receive the model on
time, it will simply stop at the intersection.

The proposed AI model [1] aims to avoid collision. Ac-
cordingly, as shown in Fig. 10, we identify a Collision-Spot
in the road waypoints where the paths of the ego and the
target vehicles intersect, and then we define a control area (in
red) where the ego vehicle must exercise caution, specifically
by according priority to the target vehicle. Building upon this
identification, we can precisely define four key features that
form the foundation of the AI model:

• f1: Time-To-Collision of ’target’ vehicle. Using speed
and distance metrics, we determine the time interval
before the ego vehicle reaches the identified collision
point.

• f2: Time-To-Collision for ’ego’ vehicle. Using speed and
distance metrics, we determine the time interval before
the ego vehicle reaches the identified collision point.

• f3: speed of the ego vehicle
• f4: normalized float distance in [0,1] interval for ’ego’

vehicle within the red control area.
While the ego vehicle is in the control area, data collection is

performed at each time step to capture the 4 input features and
the control tag. As output label for RFC model, we pick up the
label according to the mapping table defined in Table III using
the pair of (throttle & brake) of actual dynamic control. Once
the ego vehicle leaves the control area, the ego vehicle trains its
ML model using the collected dataset where the combination
of features helps the model learn patterns and make accurate
predictions.

The outcome of the proof-of-concept is that the consumer
managed to pass through the T-intersection, demonstrating the
following aspects of NDN4VKN: (i) the producer managed to
train a AI model; (ii) the AI model was correctly named and
reasoned by the IAKM to correctly deliver it to the consumer;
(iii) the consumer received the AI model before reaching the
intersection, demonstrating efficient NDN dissemination; (iv)
the consumer’s driving dynamics were correctly applied by
CARLA to travel through the intersection.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a knowledge-driven simulation
framework for vehicular knowledge networking. We first intro-
duced an architectural integration between the key components



Dynamic Control
Throttle Break Label (decision)

0.0 < t ≤ 0.1 0 t1
0.1 < t ≤ 0.2 0 t2

..... ..... .....
0.6 < t ≤ 0.7 0 t7

0 0 n
0 0.0 < b ≤ 0.1 b1
0 0.1 < b ≤ 0.2 b2

..... ..... .....
0 0.6 < b ≤ 0.7 b7

∗RFC model has 15 labels: 7/7 levels for throttle/break and neutral

Table III: Mapping control (throttle,break) to decision

of the Named-Data-Networking (NDN) stack and an AI-as-a-
Service (AIaaS) platform to support knowledge reasoning in
NDN. We then presented a co-simulation framework interfac-
ing our knowledge-driven NDN architecture with state-of-the-
art simulators modeling vehicular mobility, sensor, and control
for vehicular knowledge perception and inference. We finally
applied the proposed knowledge-driven simulation framework
in a proof-of-concept, successfully exchanging AI models
between vehicles - AI trainer (Producer) and AI inferring
(Consumer) - through ad-hoc communication within an NDN-
based network.

Released in open-source to the community, the knowledge-
driven simulation framework is expected to be a key enabler to
support research in Vehicular Knowledge Networking (VKN),
providing missing bricks from current state-of-the-art NDN
simulation platforms, such as knowledge reasoning or inte-
grated knowledge perception and inference.

In our future work, we intend to integrate and evaluate
the impact of advanced knowledge-driven mechanisms in
NDN core components in large-scale scenarios. We also plan
to explore the integration of additional AI capabilities and
perform real-world validations.
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