The Dark Side of Native Code on Android

ANTONIO RUGGIA*, EURECOM, France

ANDREA POSSEMATO, EURECOM, France

SAVINO DAMBRA, GenDigital, France

ALESSIO MERLO, CASD - School of Advanced Defense Studies, Italy
SIMONE AONZO, EURECOM, France

DAVIDE BALZAROTTI, EURECOM, France

From a little research experiment to an essential component of military arsenals, malicious software has
constantly been growing and evolving for more than three decades. On the other hand, from a negligible
market share, the Android operating system is nowadays the most widely used mobile operating system,
becoming a desirable target for large-scale malware distribution. While scientific literature has followed this
trend, one aspect has been understudied: the role of native code in malicious Android apps. Android apps are
written in high-level languages, but thanks to the Java Native Interface (JNI), Android also supports calling
native (C/C++) library functions. While allowing native code in Android apps has a strong positive impact
from a performance perspective, it dramatically complicates its analysis because bytecode and native code
need different abstractions and analysis algorithms, and they thus pose different challenges and limitations.
Consequently, these difficulties are often (ab)used to hide malicious payloads.

In this work, we propose a novel methodology to reverse engineering Android apps focusing on suspicious
patterns related to native components, i.e., surreptitious code that requires further inspection. We implemented
a static analysis tool based on such methodology, which can bridge the “Java” and the native worlds and
perform an in-depth analysis of tag code blocks responsible for suspicious behavior. These tags benefit the
human facing the reverse engineering task: they clearly indicate which part of the code to focus on to find
malicious code.

Then, we performed a longitudinal analysis of Android malware over the past ten years and compared the
recent malicious samples with actual top apps on the Google Play Store. Our work depicts typical behaviors
of modern malware, its evolution, and how it abuses the native layer to complicate the analysis, especially
with dynamic code loading and novel anti-analysis techniques. Finally, we show a use case for our suspicious
tags: we trained and tested a machine learning algorithm for a binary classification task. Even if suspicious
does not imply malicious, our classifier obtained a remarkable F1-score of 0.97, showing that our methodology
can be helpful to both humans and machines.

CCS Concepts: « Security and privacy — Software reverse engineering; Malware and its mitigation; Mobile
platform security.

Additional Key Words and Phrases: Android security, Android malware, Android JNI, Android native code,
Android malware detection

1 Introduction

With more than 1.6 billion active users and a market share covering almost 75% of smartphone
operating systems, Android is the world’s most-used OS today. First introduced in 2010, Google’s
operating system has seen almost constant growth over the years and now covers the largest share
of the market. This constant growth and the increasing number of users also attracted malware
authors, and already in August 2010, the first malicious app for Android (DroidSMS. A) was detected
by security companies. Over the following years, mobile malware has evolved by following trends
in common with its more mature PC counterpart and exploring new directions intrinsically driven

Authors’ Contact Information: Antonio Ruggia, antonio.ruggia@eurecom.fr, EURECOM, Sophia Antipolis, France; Andrea
Possemato, EURECOM, Sophia Antipolis, France, andrea.possemato@eurecom.fr; Savino Dambra, GenDigital, Sophia
Antipolis, France, savino.dambra@gendigital.com; Alessio Merlo, CASD - School of Advanced Defense Studies, Rome,
Ttaly, alessio.merlo@unicasd.it; Simone Aonzo, EURECOM, Sophia Antipolis, France, simone.aonzo@eurecom.fr; Davide
Balzarotti, EURECOM, Sophia Antipolis, France, davide.balzarotti@eurecom fr.

HTTPS://ORCID.ORG/0000-0003-2435-9993
HTTPS://ORCID.ORG/0000-0003-1223-0658
HTTPS://ORCID.ORG/0000-0002-0988-9366
HTTPS://ORCID.ORG/0000-0002-2272-2376
HTTPS://ORCID.ORG/0000-0001-9547-3502
HTTPS://ORCID.ORG/0000-0001-5957-6213
https://orcid.org/0000-0003-2435-9993
https://orcid.org/0000-0003-1223-0658
https://orcid.org/0000-0003-1223-0658
https://orcid.org/0000-0002-0988-9366
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0001-9547-3502
https://orcid.org/0000-0001-5957-6213
https://orcid.org/0000-0001-5957-6213

2 Ruggia et al.

by the evolution of the Android system. For instance, the evolution of the operating system and its
support for numerous programming languages has resulted in apps written in various languages,
from Java to .NET.

Since its very first version, Android has supported Java Native Interface (JNI), a mechanism to
connect the Java language, which typically runs inside a virtual machine, and C/C++ languages,
which are instead compiled into native code. While using JNI by benign apps has brought numerous
advantages in terms of performance and resource consumption, it has also introduced numerous
challenges when used by malicious software. In fact, while apps written in Java or Kotlin are not
dependent on the device’s architecture, the same cannot be said for the native components that use
JNI. This, combined with the fact that today the Android system can run on many architectures,
introduces numerous challenges for a malware analysis pipeline. Moreover, JNI serves a variety of
different purposes. For instance, it can interact with the Android RunTime (ART) and instantiate new
objects or modify their fields. It can also perform low-level operations or be used as a trampoline
to jump back to the ART. This versatility and the additional complexity of its analysis have led
malware authors to increasingly use the native layer to hide malicious code, perform suspicious
operations, or complicate static and dynamic analysis [46, 58, 59].

At the time of writing, JN-SAF [59] and JuCify [49] represent state-of-the-art solutions to analyze
apps with native code to detect data leaks statically. However, these tools only focus on detecting
data leaks through Java and native code. In addition, they rely on Angr’s symbolic execution [57],
which often incurs in path explosion that prevents it from completing the analysis. However, despite
the native code’s growing popularity, no previous work has documented how Android malware
uses and abuses the native layer. Furthermore, current Android anti-malware engines seem to pay
little attention to the native components. For instance, we created and submitted to VirusTotal
some malicious samples with well-known publicly available exploits in the native code: half of the
samples went undetected, and the remaining were detected by just one engine.

To fill this gap, this paper presents a new approach for studying Android malware and provides
a methodology to reverse engineer Android apps that use native code, taking into account all
suspicious patterns that can be used for malicious purposes. More precisely, a malicious pattern
clearly indicates a willingness to breach security, whereas a suspicious pattern requires further
investigation to ascertain its purpose. Our methodology has been developed in collaboration with
industry experts who manually reverse-engineer Android malicious samples daily. We implemented
our methodology in ANDani, a framework to detect and tag suspicious native code usage in Android
apps. These tags are very useful because they can be imported into reverse engineering frameworks
and highlight portions of code that the analyst needs to focus on, as they may conceal malicious
code.

We decided to follow a different approach w.r.t. the state-of-the-art, and we developed our
analysis infrastructure by combining two components. The first is an extended version of the
Soot [56] framework for bytecode analysis; we improved the entry points detection and managing
concurrent execution. The second is an architecture-independent Ghidra plugin for the native
code analysis that can handle JNI data structures and propagate inferred types from JNI methods’
signatures through various functions.

In order to study the evolution of suspicious native code patterns over the years, compare the use
of native functionalities in benign and malicious apps, and understand the underlying motivation
behind possible discrepancies, we analyzed with ANDani a total of 113,476 APKs that include
native code. Such APKs are divided into two different datasets: 97, 829 malware from AndroZoo [7]
spanning from 2010 to 2021, and 15, 647 benign apps from the most downloaded apps of the Google
Play Store.

The Dark Side of Native Code on Android 3

Our measurements led to numerous insights into the use of native components. We found that
malware is more likely to trigger the native component without user interaction, especially during
the app startup and while reacting to Broadcast Receivers. For example, waiting for the mobile
phone to be charged can be a good indicator that it is the right time for malware to perform
intensive operations that would typically lead to excessive battery consumption and consequently
raise the victim’s suspicion. Native components are often employed for obfuscation by dynamically
loading and executing both Java and other native code. In particular, the malware goes native to
dynamically load and invoke methods of the Android framework that require dangerous permission
to get the user’s sensitive information in a twisted way. This creates leaps between these two
different code “worlds,” consequently making the analysis particularly difficult. Moreover, we also
report an undocumented strategy: malware exploits JNI mechanisms to load malicious or harmless
code at will, depending on environment checks. Finally, we found that malicious native libraries
are often re-used among samples for several years without the authors even bothering to change
their hash.

Our measurement study also highlighted several differences in how benign and malicious apps
use native code. To prove the usefulness of ANDani and the reliability of the tags that can be
extracted from its output, we used them to train and test a Random Forest algorithm able to classify
goodware and malware. Our results are auspicious: the classifier can distinguish between the two
classes with an average error of 0.02 and achieve an F1-score of 0.97. The output of the classification
task allowed us to discriminate suspicious behaviors that are more correlated to malware and
whose presence can hint at potential malicious patterns, thus providing valuable information to the
malware analysts. For example, we found that the way native components are triggered through
JNI contributes to nearly 50% percent of the accuracy.

In summary, this paper makes the following contributions:

We defined a detailed methodology to assist analysts in reverse engineering native code by

Android apps, which focuses on the disclosure of suspicious (potentially harmful) operations;

e We developed ANDani, a static analysis tool for Android apps to perform an in-depth behavior
analysis of all aspects related to the native code;

o We performed the first longitudinal analysis on Android malware, specifically focusing on native
code, over the past ten years and in current “top apps” on the Google Play Store to investigate
the security impact of the native code and understand its behavior;

e We highlighted novel anti-analysis techniques, against both static and dynamic analysis, that we
found in malware and goodware;

e We showed a concrete use case of suspicious tags: they obtained remarkable performances in a

binary classification task as a sole feature.

The rest of the paper is organized as follows: Section 2 discusses the technical background of
the Android app, focusing on the use of JNI; Section 3 summarizes previous works concerning
strategies to analyze Java and native code; Section 4 details the motivation and introduces our
methodology for reverse engineering an Android app with JNIL Section 5 summarize the design
and the implementation aspects of ANDani, while Section 6 and Section 7 introduce respectively
the dataset that we used for the longitudinal analysis and their results, which highlight how and
why malware uses the native code. Section 8 shows a concrete use case of the suspicious tags,
investigating how our results can improve the reliability of a binary classification task. Finally, in
Section 9 we discuss the limitations of our work and conclude in Section 10.

4 Ruggia et al.

2 Android JNI Internals

The Android system supports apps written with different programming languages and frameworks.
While apps were initially developed in Java, today, it is possible to write Android apps in Javascript
(with the Cordova framework [17], which wraps the HTML and JavaScript code into a native
app container), NET (with the Mono [45] and Xamarin [38] projects), and Kotlin, the new official
programming language for the Android platform. In cases where the app has to comply with very
stringent performance constraints or interact with low-level components of the device, Android
allows developers to introduce native components written in C and C++ into the app.

Although Android supports Java Virtual Machine-based (JVM) languages such as Java and Kotlin,
the compilation process of Android apps differs from that of regular Java apps. On Android, the
Java code is first compiled into the corresponding Java-bytecode, which is then compiled into
Dalvik-bytecode DEX (.dex extension). For the native component, instead, the Android system
provides an Android Native Development Kit (NDK), a set of tools containing compilers, debuggers,
and build systems that allow the developer to compile native code for their Android app: at the end
of the compilation process, the NDK generates native libraries as Executable and Linkable Format
(ELF) files, in the form of Shared Object (. so extension). The interaction between bytecode and the
native libraries, and vice versa, is made possible thanks to the Java Native Interface (JNI).

When all the code has been compiled, it is embedded in an Android app PacKage (APK), an
archive containing different files among which all the program’s code (such as .dex and . so files).
When the APK is installed on an Android device, another compilation step — that only affects
DEX files - takes place on the device. Dalvik-bytecode files are compiled Ahead-Of-Time (AOT)
to generate an executable app for the target device architecture. This approach brings numerous
improvements in terms of performance and battery life: since the bytecode has been compiled, the
app will not require extensive CPU usage for Just-In-Time (JIT) optimizations. Native libraries,
on the other hand, are not affected by this additional optimization step: in fact, they are already
compiled for the architecture(s) in which the app will run. This means that if an app wants to
be installed on several devices that differ in Application Binary Interface (ABI) and Instruction
Set Architecture (ISA), it must contain native components compiled for each target architecture it
wants to support. To date, Android supports the following ABIs: armeabi-v7a, arm64-v8a, x86,
x86_64: in the past the system supported ARMv5 (armeabi), and 32-bit and 64-bit MIPS, but
they are no longer supported [23].

The Android system allows an app to invoke and use native code, whether in the form of shared
objects or executable files, through four main techniques.

2.1 Native Library Loading

To allow the interaction between Java code and native components through JNI, libraries must
first be loaded into the app’s address space. An app can load these libraries by using the load or
loadLibrary methods, which are present in both java.lang.System and java.lang.Runtime
classes. The difference between the 1oad and loadLibrary methods, for both the implementations,
is that the first method requires the library name to be specified as an absolute path. In contrast,
the second requires that the name passed as an argument must not contain a file extension or path,
as the library will be automatically searched in the default path where the app is installed.

When the library is loaded, the linker calls the initialization functions. The ELF file format
defines three sections that contain code (or pointers to code) that are in charge of initialization
procedures: .pre_initarray, .init, and .initarray. The linker searches them in this order and
runs the code of the present ones. In Android, the .pre_initarray section is ignored for shared
libraries [26]. Finally, the linker invokes a JNI-specific initializer, the JNI_OnLoad function.

The Dark Side of Native Code on Android 5

2.2 Bridging Functions

The JNI allows the interaction between Java and native components. Thus, it is possible to invoke a
native function defined within a shared object from a Java method. Vice versa, the native component,
always via JNI, can interact freely with the Java counterpart. For example, the native component
can create objects, invoke methods of the Android framework or defined within the app itself, or
even modify field values: all these operations are possible thanks to the use of NI Callbacks.

In the Java code, the methods that are declared with the keyword native represent the functions
defined and exported within the shared library, accessible from the app. The redirection of the
execution flow and the mapping between the native method definition and its implementation is
all handled via JNI. In particular, when a native library is loaded, the JNI tries to resolve the native
methods dynamically and map them into the corresponding defined Java method [44].

These steps are possible thanks to the fixed structure in the naming convention of the native
methods. For instance, in the following example

1 package xx.yyy;
2 class Clazz { public native String test(int x); }

the class Clazz declares a native method test. When the shared library containing the function
is loaded, the system will search for the symbol corresponding to the function name: Java_xx_-
yyy_Clazz_test(INIEnv*, jobject, jint)

The name of the function, translated from Java to native, is made of three parts: the Java_ string,
concatenated with a mangled fully-qualified class name of the related Java class, concatenated with
the name of the method.

Furthermore, the definition of native methods requires the first additional argument always to be
a pointer to JNIEnv. Then, in the case of a static method, JNI requires the second argument to be a
pointer to the corresponding Java class (jclass); on the other hand, a pointer to the corresponding
Java object (jobject). Both the first and the second arguments are implicit, and the developer does
not directly handle them.

The third and last argument of the example, the type int defined in the Java method signature,
matches the native type jint. For a complete list of Java primitive types and their machine-
dependent native equivalents, please refer to [43].

The JNIEnv type — a struct when the shared object is written in C, or a class in C++ —
contains pointers to functions that allow the interaction between the native component and
the Android framework or the app itself. These functions are called JNI callbacks, and the most
relevant are NewObject, FindClass, GetMethodID, GetStaticMethodID, and the Callx* family
(e.g., CallVoidMethod). Through these functions, the native code can, respectively: instantiate
objects, find a reference to a class or a method, and then call a method.

Moreover, the INIEnv provides the RegisterNatives function to dynamically map a Java method
defined as native to its implementation in the shared library at runtime. However, in this case,
there is no requirement to follow a fixed naming convention. For a complete listing of all the JNI
functions, please refer to [42].

2.3 Native Activity

Developers who require their app to have high-performance in terms of execution speed, or that
need to interact with low-level system components, may decide to develop the entire app natively.
For this, the NDK introduces and supports the concept of “Android Native Activity.” The native
code implements the Android activity component, and its methods are invoked according to the
activity lifecycle functions (e.g., onCreate, onDestroy [22]).

6 Ruggia et al.

If the app does not contain any Java code, a (Java) “stub” is created at compile-time with the sole
task of loading and running the native code, since it is released in the form of Shared Objects and
therefore has to follow the entire loading process described above.

There are several requirements for the developer to create a native app: it must target an API
level greater than 8, and it must specify whether it contains Java code via the android:hasCode
attribute of the manifest. Then, each Activity defined as native must indicate in which library it is
located: the name of the shared library is specified in the android: name attribute.

2.4 Process Execution Methods

Shared Objects are not the only types of ELF that can be executed within Android apps. The Android
framework allows apps to execute shell commands, scripts, or ELF executable in a separate process
through the Runtime class, with its exec methods, or via the ProcessBuilder class and its start
method. These methods allow the app to execute binaries that do not contain, potentially, any JNI
components. The execution of these new processes takes place in a different process, and therefore
the interaction between the native component and the app is not handled by JNI. Therefore, as
JNI interaction is not present in this scenario, this category is beyond the scope of our research.
However, we analyze the scenario in which a binary or shell script executes within a function
defined in a shared library using JNI.

Lastly, we would like to point out that, for the sake of brevity, we will refer to the Dalvik-
bytecode as Java. We use this simplification to remain consistent with the Java Native Interface
and avoid specifying on every occasion the distinction with high-level code that is itself compiled
into bytecode.

3 Related work

There are mainly two areas of work relevant to this paper: the analyses focusing on the Java layer
and those considering JNI.

Java. In 2013, Octeau et al. [40] implemented Epicc, an analysis framework based on Soot - a Java
optimization framework proposed by Vallee et al. [56] - to resolve Inter-Component Communication
(ICC) in Android apps. In 2014, Arzt et al. [9] proposed FlowDroid, a dataflow analysis framework
for taint detection of the Java code of an Android app. It is a full context, object, and flow-sensitive
taint analysis which considers the Android app lifecycle. FlowDroid extends the Soot framework
and creates an app-level dummy Main class to collect all Android system events. In the same year,
Wei et al. [60] proposed Amandroid to conduct static analysis for security vetting of Android apps.
It builds a context and flow-sensitive inter-procedural control flow graph (ICFG) of the whole app
and computes the point-to information to detect several security-related problems. In 2015, Li et
al. [36] proposed a new static taint analyzer to detect privacy leaks among components in Android
apps, named IccTA. It propagates the context information among different components to resolve
call parameters and return values. In the same year, Gordon et al. [30] proposed DroidSafe, a static
analysis framework able to resolve ICC and Remote Procedure Call calls to detect potential data
leaks by tracking information flows. Then, Yang et al. [64] proposed AppContext, a static analysis
approach to extract context security-sensitive behavior to assist the app analysis focusing only on
the Java layer. In 2021, Wu et al. [61] proposed BackDroid, an inter-procedural analysis of Android
app, with the primary goal of improving the performance of the static analyzer described earlier by
implementing a novel technique named on-the-fly bytecode search which searches the disassembled
app bytecode text just in time when a caller needs to be located.

The Dark Side of Native Code on Android 7

JNLI In 2012, Yan et al. [63] proposed DroidScope, an emulation-based Android malware taint-
analysis engine used to analyze the Java and native components (x86 and ARM architectures) of
an Android app to track information leakage. In 2014, Qian et al. [46] performed the first large-
scale study on information flows using JNI. This study leverages NDroid, a novel dynamic taint
propagation tool based on QEMU, which tracks JNI and system library functions in Java and native
code. Alfonso et al. in 2016 [3] performed an extensive analysis on the adoption of the native code
on Android apps, highlighting potential usage of JNI, and proposed a new method to generate a
native code sandboxing policy automatically. The same year, Sun et al. [51] proposed TaintART,
a customized ART compiler that inserts the taint logic and retains the original ahead-of-time
optimizations that perform taint analysis to track data flow. Rasthofer et al. [47] proposed Harvester,
an hybrid analysis tool that combines static backward slicing to identify interesting code with the
execution of the code for extracting runtime values. In 2017, Alam et al. [6] proposed DroidNative, a
static Android malware detector based on the analysis of the native code. It introduces the concept
of Malware Analysis Intermediate Language (MAIL) to create a high-level representation of the
native code, which is then used to build a behavioral signatures template.

Xue et al. [62] presented Malton, a dynamic analysis platform built on Valgrind for malware
detection based on information flow tracking on Java and JNI code. In 2018, Wei et al. [59] presented
JN-SAF to conduct static cross-language dataflow analysis of Android apps to track information
leaks through the Java and the native parts. JN-SAF builts the analysis of the Java part of the app
on top of Amandroid [60]: the analysis of the native components instead — for both 32 and 64-bit
versions of ARM, MIPS, PPC, and Intel architectures — relies on the Angr’s symbolic execution
engine [57], In 2019, Lee Sungho [35] proposed a novel JNI program analysis technique that
combines the analysis of Java and C code separately to extract semantic summaries of C code from
JNI programs. In 2020, Andarzian et al. [8] proposed the CTAN framework, which extends JN-SAF
to improve its performance. The same year, Fourtounis et al. [18] proposed an approach to recover
JNI callbacks in the native code: disassemble native binaries, recover static symbol information,
and produce a model for statically linking the native callbacks. In 2021, Samhi et al. [49] proposed
JuCify, a framework that combines Android bytecode and native code into a unified model to detect
data leaks. The native code analysis is built on top of Angr, while the Java code analysis and the
unified model rely on the Soot framework.

4 Motivation & Methodology

We open this section by showing a practical example of the limitations of antivirus engines
in analyzing native code. Then, after defining what we mean by “suspicious,” we illustrate our
methodology guided by an example.

4.1 Native Components and Antivirus Software

To begin with, we show how the static module of many Android anti-malware engines often ignores
the presence of native components. In this respect, we collected famous exploits by querying GitHub
and The Exploit Database [41]. We focused on generic, weaponized, ready-to-use exploits that
compile for x86 and ARM32. We found four implementations: CVE-2011-1823 [11, 52], CVE-2014-
3153 [12, 52], CVE-2016-5195 [13, 32], and CVE-2019-2215 [14, 33]. They date to 2011, 2014, 2016,
and 2019, respectively. It is worth emphasizing that anti-malware engines are aware of these
exploits; for example, the malicious app cdde ! is labeled with the exploit name or the associated
CVE (i.e., CVE-2016-5195 is also known as DirtyCow).

1Due to space limitation, throughout the paper, we just use the first four bytes of the sha256. The complete list is in Table 8.

8 Ruggia et al.

Table 1. Evolution of detections (for those with more than zero) of our synthetic malware samples over time

VT Scan Date (Year-Month)
Hash CVE Arch 2022-08 | 2023-02 | 2023-08 | 2024-11
7383 | 2019-2215 x86 1/62 3/61 12/64 33/68
126 | 2019-2215 | ARM32 1/61 2/61 13/64 27/69
e088 | 2011-1823 | ARM32 1/61 2/62 7/64 6/68

Then, we created two native Android apps for each exploit, the first for the x86 architecture and
the second for ARM32, for a total of eight synthetic malware samples. Each app loads and runs
the exploit immediately at startup: it loads the library in the static constructor of the Application
class and calls the function in charge of running the exploit directly from JNI_OnLoad, making the
program flow to reach the exploit straightforward and trivial to analyze. The apps were signed with
the default debug key and did not use any form of obfuscation or shrinking. The resulting eight
apps were uploaded to VirusTotal and scanned with at least 61 different engines *. We repeated the
scan every year for three consecutive years, from 2022 to 2024.

In the first analysis (August 2022), three apps were detected by only one engine (i.e., samples
7383, €088, and 1f26), and we obtained no detections for the remaining five (i.e., samples b3c7,
858e, f7b9, 986, and 5bd3). We repeated the measurements twice with an interval of six months
(February and August 2023) and finally one year later (November 2024). Those initially exhibiting
zero detections remained stationary at zero, while those with one detection were detected by an
increasing number of engines, as documented in Table 1. A variation in the number of detections
over time is a well-known phenomenon. It occurs because anti-malware engines regularly update
their models and signatures to improve their detection capabilities. For example, Zhu et al. [65]
demonstrated how engines’ decisions are influenced by the labelling of other engines, leading to
collective improvements in detection.

As the current experiment employed only publicly accessible and widely recognized exploits,
without any alteration or obfuscation, the observation that 5/8 samples had not yet been identified at
the time of writing highlights a significant shortcoming in the existing commercial solutions, which
this work hopes to help. It is also noteworthy that the remaining 3/8 samples were successfully
detected within a year by a minimum of seven engines. We will therefore use this one-year range,
from the first submission to the last analysis, to test whether this condition also applies to our
malware dataset — as we will explain in Section 6.

4.2 Running Example

Listing 1. JNI example — Java side

1 package com.xmp;

2 public class MainActivity extends AppCompatActivity {

3 static { System.loadLibrary ("xmplib"); }

4 public native boolean scheck();

5 public static native String whoknows(Object obj, boolean b);

6 public String getSubscriberId (){ return "no_id"; }

7 @Override protected void onCreate(Bundle b) {

8 super.onCreate (b);

9 ActivityMainBinding bind = ActivityMainBinding.inflate (getLayoutInflater());
10 setContentView (bind. getRoot ());

11 String s = whoknows(getSystemService (Context. TELEPHONY SERVICE), scheck());
12 bind.sampleText.setText(s); } }

20n VirusTotal, the number of engines available at any given time for an analysis is variable.

The Dark Side of Native Code on Android 9

Listing 2. JNI example — Native side (C++ language)

1 jboolean JNICALL Java_com_xmp_MainActivity_scheck (JNIEnv« env, jobject thiz) {
2 return fopen("/system/xbin/sudo", "r") == NULL; }

3

4 static jstring sensitive

5 (JNIEnvs env, jclass jclazz, jobject obj, jboolean b) {

6 char« cName;

7 if (b) cName = "android/telephony/TelephonyManager";

8 else cName = "com/xmp/MainActivity";

9 jclass fclazz = env->FindClass (cName) ;

10 jmethodID method = env->GetMethodID (fclazz , "getSubscriberId", "()Ljava/lang/String;");
11 return (jstring) env->CallObjectMethod (obj, method);}

12

13 static JNINativeMethod nat_methods[] = {

14 {"whoknows", "(Ljava/lang/Object;Z)Ljava/lang/String;", (void«)sensitive },};
15

16 jint JNI_OnLoad(JavaVM« vm, voids reserved) {

17 JNIEnv+ env = nullptr;

18 vm->GetEnv(reinterpret_cast<void +>(&env), JNI_VERSION_1_4);

19 jclass clazz = env->FindClass ("com/xmp/MainActivity");

20 env->RegisterNatives (clazz , nat_methods, 1);

21 return JNI_VERSION_1_4; }

To better present our methodology, we continue the discussion guided by the code presented
in Listing 1-2, which shows an example of an Android app that displays a string to the user in a
blank Activity. The string is generated [line 1.11] from two native functions, scheck [line 1.4] and
whoknows [line 1.5] implemented in the xmplib library (loaded at [line 1.3]). The C++ code declares
three functions: JINI_OnLoad [lines 2.16-21], Java_com_xmp_MainActivity_scheck [lines 2.1-2]
and sensitive [lines 2.4-11]. The native functions reachable from the Java code are those that
respect the JNI naming convention [44] or the ones that are registered through the RegisterNatives
callback. In particular, the INI_OnLoad binds at runtime, through the RegisterNatives, the Java
method whoknows to the native function sensitive [line 2.20]. Instead, the function scheck
leverages the JNI name convention to register it and returns a boolean depending on whether
or not the file /system/xbin/sudo exists — this is a trivial but common trick to check if the
device has been rooted. Lastly, the sensitive function, depending on the value of its boolean
parameter, uses FindClass to get the reference to the user-defined MainActivity class or the
TelephonyManager of the Android framework, and, finally, invokes the getSubscriberId method
of such class. Therefore, if scheck finds the sudo file, the code logic calls whoknows with a True
argument and obtains the IMSI (considered very sensitive information) via getSubscriberId.

Although this is only an example, it shows two crucial aspects. First, these “jumps” between the
Java and the native worlds and the RegisterNatives feature significantly complicate the static
analysis, both from the perspectives of humans and machines. Second, calling a privacy-threatening
API depending on the presence of a file showing whether the device has been rooted is not a clear
malicious behavior because it depends on whether such personal data is being transmitted without
adequate notice or consent. Still, it is a suspicious case that an analyst needs to investigate more
thoroughly.

4.3 Suspicious Patterns

Through this work, we use the term suspicious pattern to describe any snippet of surreptitious
code [39] (e.g., obfuscation and anti-tampering) that abuses the JNI execution cycle. More precisely,
we define a pattern as a sequence (not necessarily consecutive because it could involve both Java and
native code) of instructions that aim at preventing others from understanding the code, regardless
of whether the effort is to uncover malicious purposes. Therefore, we emphasize that suspiciousness
does not necessarily imply maliciousness. However, if an analyst were to observe one of these

10 Ruggia et al.

#3 INI
Initialization ..o
FUHCtI?I’T_,—“— #4 >
RegisterNatives
/"‘ ‘4)
#1

#0 Load Library Archl

= Application
Lifecycle #2 "
ELF Files B #68B

Dynamic

Loading
—
o\ ||)
Native Reflection Native Call

u ArchN

[]
Android OS

#6C

p- %
l'l « Library Function

Fig. 1. JNI execution cycle

suspicious patterns, they should analyze them further as they might be used to protect harmful
code (as shown in the running example in Section 4.2).

In the next section (Section 4.4), we illustrate the methodology we developed to guide both human
and automated analysis by following the execution flow of JNI and describing the spots where
suspicious patterns might lurk. Finally, in Section 4.5, we provide the complete list (Table 3) of all
the cases we identified during our study. We also organize them into a clear taxonomy and assign
a tag to each of them. Although our list is not exhaustive, as the malware ecosystem constantly
evolves, our methodology details the methodology needed to identify new cases.

4.4 Methodology

As the first contribution of this paper, we propose a methodology to reverse engineer an Android
app that uses the JNL It has been developed through a collaborative effort between academics
and industry experts, who jointly analyzed samples, consulted malware reports, and conducted
scientific experiments. It comprises seven different Steps that characterize all the various aspects in
which the JNI native code is involved in the apps’ execution.

The execution order of runtime code is crucial to preserve when reverse engineering an Android
app that uses the JNI To closely follow the execution flow, we have broken down our analysis
pipeline into the seven main steps, as represented in Figure 1.

The very first step, Step #0, extracts the possible entry points of the app from its Manifest file to
understand the Android components (i.e., Activity, Service, Broadcast Receiver, Content Providers)
and their lifecycles. Such information is fundamental to identifying all the application components
that can be triggered and could potentially reach the JNI. For example, malware can gain persistence
by registering a Broadcast Receiver for the BOOT_COMPLETED intent filter to start each time the
device boots and loads the malicious native component. In our example, the onCreate method of
the MainActivity [line 1.7] class is an entry point.

In Step #1, the Java code loads a native library. Calls to load methods mostly occur in the static
constructor of the class that contains the native methods (e.g., line 1.3). An app can load these
libraries by using the load or loadLibrary methods of the System and Runtime classes. The load

The Dark Side of Native Code on Android 11

method requires the library name to be specified as an absolute path. In contrast, the loadLibrary
requires that the name passed as an argument must not contain a file extension or path, as the
library will be automatically searched in the default path. From a malicious perspective, the load
method can be used to hide which ELF file is loaded. This type of analysis can reveal (e.g., sample
04CE) whether a native library is not present in the APK but is downloaded at runtime once specific
conditions are met, or whether the app loads a file that is not supposed to contain executable code
(e.g., loads a PNG file as ELF file). Moreover, this approach can uncover the author’s will to hide
the actual library loaded by the app if the string passed as an argument to the load method is not
defined in the code but computed at runtime.

In Step #2, JNI automatically loads the correct library according to the device architecture.
However, malware can ship libraries with the same name, exposing and implementing functions
with different names or semantics. For instance, if malware authors knew that specific antivirus
solutions run the app in x86 emulators, they could avoid detection by restricting the malicious logic
to the ARM architecture and placing a harmless code into the x86 library. The malicious component
would evade the analysis since the sandbox will only load the x86 library. However, the malware
would show its real behavior when executed on a real device that supports ARM.

In Step #3, the dynamic linker first invokes the initialization functions of the ELF file (e.g., . init_-
array), then the JNI automatically calls the JNI_OnLoad function (e.g., line 2.18). A malicious actor
can hide the logic to perform evasive checks in the initialization functions. For example, we found
samples (e.g., @19E) using the ptrace function as an anti-debugging technique when it is loaded.

Furthermore, in Step #4, the INI_OnLoad is used to dynamically link the JNI methods through
the RegisterNatives API (e.g., line 2.22). In this way, the mapping between Java methods and
native functions is no longer statically explicit but is performed at runtime. Thus, an attacker can
perform environment checks and use the RegisterNatives to map different functions depending
on their results (e.g., 7900, discussed in Section 7).

At this point, Step #5, the Java methods can call the native functions of the loaded library (e.g.,
line 1.11). This transition is crucial as it might be impossible to determine the mapping between
methods and functions statically and as different architectures might result in different semantics.
For this reason, we designed three specific Steps (#6A, #6B, #6C in no particular order) to be followed
once the execution moves from Java to the native library. Step #6A tracks the native reflection, which
allows native code to manage Java objects through the JNI callbacks (e.g., create Java objects, invoke
Java methods, or modify fields). For example, the sensitive method of the Listing 2 [lines 2.5-13]
uses the JNI callbacks FindClass, GetMethodID, and CallObjectMethod to get a reference of the
object TelephonyManager and call its method getSubscriberId. This possibility significantly
complicates the analysis because it makes it impossible to statically determine which code will be
executed without resolving the arguments of such methods. In addition, it is also worth noting that
the native reflection can also use Java reflection features to hide methods or accessed fields. For
instance, sample 4E4B uses the getDeclaringClass method of the java.lang.reflect.Method
class to dynamically retrieve the class representing an object, and then leverages the native reflection
()FromReflectedMethod callback function) to retrieve the corresponding method from the object.

In Step #6B, the native code can dynamically load and invoke exported functions of other
libraries by relying on the dlopen and d1sym functions. This technique aims to conceal the usage of
a particular shared library from static analysis, given that it is no longer present in the dependencies.
Even if the system should prevent loading or linking those kinds of libraries since Android 7, we
found multiple samples (e.g., 1306) that use dynamic loading to load and call functions from a
library that is not present in the APK.

The last step to consider (#6C) is the use of library functions that can affect security, for instance,
by running exploits against specific subsystems or by performing environment checks (e.g., debugger

12 Ruggia et al.

Table 2. Security-relevant library calls

| Category [Library Calls
Dynamic Loading dl(v)sym, dl(m)open
Execution exec”, system, popen
File Permission *chmod*, *chown®, access
Kernel Interaction ioctl, syscall
Identity get(e)uid, get(e)gid
Memory Protection mmap, mprotect
Network socket, listen, connect, gethostbyname
Open Special File *open* <special_file_path>
Process Management kill, ptrace, fork
Monitoring inotify_*

detection). We report the complete list in Table 2, divided into nine categories: Dynamic Loading
(e.g., dlopen), Execution (e.g., system), File Permission (e.g., chmod), Kernel Interaction (e.g., ioctl),
Identity (e.g., geteuid), Memory Protection (e.g., mprotect), Network (e.g., gethostbyname), Open
Special File (e.g., open("/proc/version")), Process Management (e.g., ptrace), and Monitoring
(e.g., inotify_add_watch, because a recent work showed how an attacker can abuse inotify to
perform state inference attacks on Android [48]).

4.5 Suspicious Tags

A tag is made of the concatenations of two strings interposed by the symbol “~”; the first string is
the category, and the second is a title. Referring to our methodology, the category is one of the
steps presented in Figure 1, while the title identifies the suspicious pattern within the category.

We report all tags in Table 3. Since in Section 8 we will use them in a machine learning algorithm
for a binary classification task, we also specified their type (float or boolean) when we convert
them to numbers for the feature vector. ‘<SYMBOL>’ denotes that there is a specific tag for each
suspicious library call family (see Table 2).

To give some examples, a node tagged with NR_FINDCLASS-JAVA_REFLECTION (i.e., category:
“NR_FINDCLASS”, and title “JAVA_REFLECTION”) denotes a call to the FindClass callback and its
argument refers to a Java class related to reflection; thus, the developer is using native reflection
to use Java reflection. Also, the REGISTERNATIVES-CLASS_NOT_IN_APK tag refers to a call to the
RegisterNatives callback, but its class argument refers to a class not defined in any DEX file; thus,
that code is not available statically. Moreover, in our running example (Section 4.2), by using the
GetMethodID [line 2.11], the developer could obtain a reference to the getSubscriberId method
of the android/telephony/TelephonyManager class, which requires a dangerous permission (also
known as runtime permissions [28], i.e., permissions that allow actions which significantly affect
the system and other applications). Thus, our methodology tags this code with the NRN_METHOD-
WITH_DANGEROUS_PERM tag.

It is worth noting that suspicious tags serve three main purposes. First, they can assist a human
analyst by showing precisely which parts of the code need to be inspected because they might
conceal surreptitious code facets, such as evasive techniques, malicious behavior, or protection
mechanisms. Second, it provides automated analysis systems with target locations that could
be investigated using more costly but more precise analysis routines (e.g., symbolic execution
or dynamic analysis). Finally, the suspicious tags can improve classification tasks, as shown in
Section 8.

The Dark Side of Native Code on Android

Table 3. List of suspicious tags.

t: float computed as

of features
total

§: boolean

Step

Category

Category Description

Title

Example

#0

J_NATIVE_METHODS

Presence/absence of native methods
and the entry point from which
they can be reached

NO_NATIVE_METHOD'

NO_REACHABLET

APP_LIFECYCLE_EP'"

ACTIVITY_LIFECYCLE_EP"

EXTERNAL_DEX'

SUSPICIOUS_INTENT:

#1

J_LOAD_METHODS

Presence/absence of load methods
and the entry point from which
they can be reached

NO_LOAD_METHODS?

PATH_LOAD_METHOD"

APP_LIFECYCLE_EPT

ACTIVITY_LIFECYCLE_EP"

SUSPICIOUS_INTENT?

EXTERNAL_DEX'

NO_ELF_NAME"

ELF_IN_LIB_AND_NOT:

#2

CODE_LOCATION

Code file in suspicious location or
with extension name mismatch

ELF_IN_ARCHIVE?

DEX_EXT_MISMATCHS

ELF_EXT _MISMATCH"

#4

REGISTERNATIVES

RegisterNatives callback

UNRESOLVED_METHODS

MULTIPLE_PATHY

CLASS_NON_IN_APK'

#6A

NR_FINDCLASS

Native Reflection:
FindClass callback

ANDROID_MANAGER?

CONTEXT?

CLASSLOADER®

JAVA_REFLECTIONY

java.lang.reflect.Method

THREAD?®

SYSTEM

CRYPTO

javax.crypto.Cipher

APP_INFO$

android.content.
SharedPreferences

ZIP

ANDROID_INTERNALS

android.app.LoadedApk

STACK_TRACE?

java.lang.
StackTraceElement

EXCEPTION'

PARTIAL_RESOLUTION"

NO_RESOLUTION"

NR_METHOD

Native Reflection:
GetMethodID callback

‘WITH_DANGEROUS_PERM?>

ANDROID_MANAGER

CONTEXT"

getSystemService

SENSIBLE_INFORMATION®

getImei

CLASSLOADER?

loadClass

JAVA_REFLECTIONY

getClass

THREADY

PERMISSION®

STACK_TRACE®

getStackTrace

PARTIAL RESOLUTION'

NO_RESOLUTION"

#6B

DYNAMIC_LOADING

The tags report the usage of library
call to dynamically load and invoke
exported functions of other libraries

<SYMBOL>? (see Table 2)

dlsym(fd, "chmod")

NO_RESOLUTION®

ANDROID_DVM_ART?

libdvm.so

#6C

SUSP_LIB_CALL

Suspicious library calls

<SYMBOL>"® (see Table 2)

execve

CREATEJAVAVM

JNI_CreateJavaVM

LIB_CALL_SUSP_PARAM

Suspicious argument to
the library calls

<SYMBOL>? (see Table 2)

open("/proc/version")
open("/sys/devices")

CREATEJAVAVM

JNI_CreateJavaVM

#6A
#6C

STRING

Presence of meaningful strings

CLASSLOADER?®

ANDROID_INTERNALS®

PROPERTIES®

ro.product.cpu.abi

14 Ruggia et al.

5 Suspicious Analysis Framework

This section describes our second contribution: ANDani, a cross-architecture analysis framework
that implements our analysis methodology.

5.1 Overview

Our system receives an APK file as input and returns an Inter-Procedural Control Flow Graph
(IPCFG) with each node eventually tagged (using the suspicious tags described in Section 4.5) in
case it detects a suspicious pattern.

It first unpacks and extracts its DEX, JAR, and ELF files. This operation is performed recursively
on all the archives (e.g., ZIP, TAR) inside the APK. It also parses the AndroidManifest.xml file to
extract relevant information, such as the Android components, the required permissions, and the
various intent filters. Next, ANDani starts the analysis by computing an IPCFG for both the Java
and the native code. First, it computes the IPCFG of every code file, then merges them into a single
IPCFG, keeping track of whether the code file was found in a standard or non-standard location
within the APK. This information is crucial to identify potentially malicious code in non-standard
locations (e.g., in an archive file).

The IPCFG is based on two types of nodes: code blocks that are the traditional basic blocks that are
interrupted by function calls, and call blocks that represent the function calls or method invocations.
Moreover, our analysis also considers that from a call block of a Java native method, we can have
multiple edges to different native functions of different architectures. In the same way, when we
deal with the native reflection (see Step #6A of Section 4) where the function can take multiple
arguments (e.g., lines 2.7-11), the graph can also have different edges to Java methods.

The Bytecode module handles the IPCFG for all the bytecode components, and it is built on top
of the Soot framework [31, 56]. For the native components, the analysis is performed by the Native
module, which leverages the Ghidra [4] API to process the ELF files.

Performance. On our machine, an Ubuntu 20.04 with 64 CPUs (Intel Xeon 8160 @ 2.10GHz) and
128 GiB of RAM, we measured an average execution time of 614 seconds (std. dev. 182) for a single
APK. Such variance is due to the fact that the analysis duration of ANDani grows up proportionally
with the code (i.e., ELF or DEX files) in the APK.

5.2 Bytecode Module

The Bytecode module performs the analysis of DEX and JAR files. It is written in 1814 lines of Java
code, and it is based on the Soot framework. The module starts by translating the bytecode into
Jimple, a three-address code [5] intermediate representation that Soot needs to build the preliminary
IPCFG.

Soot suffers from many known limitations in the case of parallel and asynchronous Java classes,
i.e., those that extend or implement Thread, Runnable, AsyncTask, or Timer (we show an example
in Appendix 10.3). Such drawbacks make the IPCFG incomplete, and therefore, we had to add the
necessary code —complete with test cases— to handle them.

Once the IPCFG is computed, our system continues the analysis by identifying the calls to the
load methods that allow loading native libraries. Each time a call is found, it tries to resolve the
argument (a string) to identify which native library is loaded. For this, we perform a backward
intra-procedural taint data analysis. This is sufficient in most cases because, as we previously
mentioned, calls to load methods almost always occur in the static constructor of the class that
contains the native methods, which also references the plaintext string with the library’s name.

The system then repeats this procedure for each DEX and JAR file, and at the end of this phase,
it produces the IPCFG of the whole bytecode found in the APK. Then, the analysis identifies the

The Dark Side of Native Code on Android 15

entry points of the app by combining the information from the manifest file (e.g., the onCreate
method of the main activity) and the list of entry point methods of previous studies [9, 60]. As
the last step, the system identifies all native methods and extracts their signatures, which serve as
input to the next module.

5.3 Native Module

The Native module is written with 5198 lines of Java code, and it uses the Ghidra reverse engineering
framework API to perform headless analysis of all ELF files. The analysis leverages the Ghidra P-
code intermediate representation to model the behavior of many architectures. Since the signatures
of the Java native methods are fundamental to propagate types of information in the native code
properly, this module is executed after the Bytecode module. The output of the Native module is
the final, complete, and merged IPCFG.

The analysis performed at this stage can be divided into four different phases:

I) ELF information and JNI entry point identification. Given an ELF file, the module extracts
generic information from the ELF header (e.g., architecture, sections, segments, symbols, strings),
and it initializes the set of the JNI entry points, i.e., the native functions that can be reached by Java
code. To start, we consider as JNI entry points the functions whose symbol name respects the JNI
naming convention — i.e., symbol name starts with Java_ or JNI_ — and all ELF initializers. If we
consider the example shown in the previous section, the entry points are: JNI_OnLoad [line 2.16]
and Java_com_xmp_MainActivity_scheck [line 2.1].

IT) Entry point arguments type definition. The module iterates the entry points: for JNI_-
OnLoad and ELF initializers, if present, it creates an edge from the respective Java load method to
the first of these being called, and the others are propagated. For the Java_ functions, given the
signatures of Java native methods collected from the Bytecode module, it creates an edge from the
corresponding Java method and applies the proper JNI data type to all the input parameters. In case
a Java_ function is not found, it just applies the INIEnv* type to the first one. Once the argument
types are updated in the JNI entry point, the module propagates them to the called functions. If we
consider our initial example, in that case, we have an edge from the loadLibrary [line 1.3] to the
JNI_OnLoad [line 2.16].

However, in case the native functions are dynamically registered through the RegisterNatives
(e.g., lines 2.20-22), the function names may not start with Java_, as it is the case in our example for
the sensitive function. To handle these cases, the module searches for all RegisterNatives calls
in the code of the entry points, and, for each of them, it performs a backward taint data analysis
again on its second and third arguments. The second argument of the RegisterNativesisa jclass
object obtained from a call to the method FindClass of the JNIEnv. In turn, the FindClass takes
a string with the corresponding Java class name; it is marked as tainted and searched backward.
The third argument is a JNINativeMethod that contains the mapping between the Java methods
and native functions. Lastly, after this procedure, the module re-iterates the JNI entry points to
apply the correct data types. This phase is crucial to get the correct types, especially JavaVM and
JINIEnv since they expose all the JNI callbacks.

Following the example, the module, after correctly resolving the arguments, can now create an
edge from the Java method fun2 to the sensitive native function and apply the correct type to its
arguments.

IIT) Graph construction. At this last phase, since all the entry points and the types of their
arguments have been retrieved, the module can create and merge the final IPCFG. First, the module
follows call instructions with a depth-first strategy, propagating the types of arguments to the called

16 Ruggia et al.

functions each time and searching for interesting functions. It is worth remembering that we are
not just interested in JNI callbacks but also specific Android system library calls, as their arguments
can reveal helpful information about the app’s capabilities. The analysis of the information collected
by analyzing the arguments of these calls is discussed in more detail in Section 7.

Once the module finds an argument of interest, it marks it as tainted, and it performs a recursive
backward taint analysis on the tainted arguments to resolve them until a loop is detected or
ANDani resolves it. For example, ANDani would try to resolve the path of each opened file to detect
suspicious accesses to Linux special files, such as /proc/version to retrieve the version of the
Linux kernel [34] (sample ©259). This phase of the analysis also considers all the values a variable
can take among those that were able to recover.

In case arguments of JNI callbacks that interact with Java objects (e.g., CallObjectMethod)
are correctly resolved, ANDani creates an edge between this call block and the corresponding
block of the Java CFG. E.g., in our running example, the graph construction would add two edges
(because the argument of the FindClass is not unique) from the CallObjectMethod [line 2.11] to
the getSubscriberId method: the first to the Android framework TelephonyManager class, and
the second to the MainActivity class [line 1.6].

IV) Suspicious tagging. In the final phase, ANDani visits the IPCFG, and if it finds a match with
one of the suspicious patterns, it assigns the corresponding tag (Table 3) to the node (or nodes)
where the violation occurs. From a practical standpoint, we developed a Python script for this
purpose, with a modular architecture that is easy to extend with new patterns.

5.4 Comparision with state-of-the-art tools

During the design phase of ANDani, we investigated the state-of-the-art tools for static analysis to
understand which technologies are best to rely on.

As discussed in Section 3, most of the works focus on the Java layer and do not handle native code.
However, we noticed that there is a tool in common among the most cited works (e.g., Epicc [40],
and Flowdroid [9]): the Soot framework [56], which is still under active development [31], and
therefore it was our choice since the alternatives are no longer supported (e.g., Amandroid [60]).
However, as already discussed, we had to improve the analysis of some typical Android mechanics,
namely, the detection of entry points and concurrent execution management.

Then, for inter-language analysis, we identified JN-SAF [59] and JuCify [49]; these tools perform
taint analysis between different code layers to detect data leaks. As for the analysis of the Java
layer, the former is based on Amandroid, while the latter is based on Soot. On the other hand, they
both use Angr [57] to analyze the native layer.

We tested Angr with the same configuration of JuCify. However, from several preliminary
tests on native Android libraries taken from real-world goodware apps (the same we used in
Section 6) we discarded it because the one-hour timeout was often reached (because of the path
explosion typical of symbolic execution), thus making it unsuitable for our large-scale measurement.
Moreover, JuCify’s approach is not suitable for our needs. Using Soot, they lift Java code to Jimple,
a 3-address intermediate representation (provided by Soot); then, they extended Angr to lift native
code to Jimple so they can reason on a unified representation. The issue is that we are interested
in every single instruction in the native code, as we need as much precision as possible; instead,
JuCify just considers call instructions because its purpose is to create a call graph while we need
the interprocedural control flow graph. Regarding JN-SAF, it is no longer maintained and does
not investigate specific aspects of native code we are interested in (e.g., library calls and their
arguments). Given that it is also based on Angr, we did not investigate further and then decided to
write the analysis of native code from scratch.

The Dark Side of Native Code on Android 17

Table 4. Distribution of the AndroZoo suspicious samples

Detection Range

Year Fam.1 Fam.2 Fam.3 Singleton Total

2010/11 5.0% 5.0% 5.0% 8.4% 5,065
2012/13 5.0% 5.0% 5.0% 7.0% 15,458
2014/15 5.0% 5.0% 5.0% 16.5% 19,127
2016/17 5.0% 4.8% 4.4% 37.3% 20,268
2018/19 5.0% 5.0% 4.3% 48.5% 19,610
2020/21 3.7% 0.5% 0.5% 84.3% 18,301
Total: 97,829

6 Dataset

To perform our analysis, we built a comprehensive dataset of Android apps, which is divided
into malware samples collected over the past ten years and a goodware dataset of benign apps.
All malicious samples are downloaded from AndroZoo [7]. In addition to the file, AndroZoo also
provides the date associated with the APK file, the number of antivirus (AV) engines that detected
the app as malicious on VirusTotal (VT), and the first submission date to VT.

However, according to their documentation, most apps from Google Play have 1980 as the APK
date. Therefore, we assigned each app to a year by applying the following procedure: if a year was
present and had a plausible value, i.e., other than 1980 and between 2010 and 2021, we consider that
to be the year. Otherwise, we assign the year of the app as the year in which the first submission in
VT was performed. On the other hand, benign apps were collected among the most downloaded
apps from the Google PlayStore for each of the 50 categories [25]: 15 categories are related to
Games while the remaining 35 vary from Communications to Social.

Since this research focuses on the usage of the native component via JNI by Android apps, our
dataset consists only of apps that make use of this technology. Therefore, each app in our dataset
respects at least one of the following two constraints: it must contain a DEX file with a declaration
of at least one native method that is not defined in the standard Android libraries, or it must
contain an ELF Shared Object file with a JNI entry point method.

Goodware. We collected the package names of the 500 most downloaded free apps for each
of the 50 official Google Play Store categories. We extracted this information using Google Play
Scraper [15], and we downloaded the samples with Playstore Downloader [19]. The tool was able
to download 27, 665 apps successfully. After our pre-filtering, which only retained apps that use
native components, we were left with 15, 647 samples. The fact that more than half (57%) use a JNI
component is a clear sign that, nowadays, native components constitute a fundamental part of the
Android userspace ecosystem.

Malware. We considered “malware” any sample with at least five AV detections to minimize false
positives, as recommended by Zhu et al. [65]. Moreover, guided by the results of Section 4.1, we
downloaded the corresponding VT report, and we verified that the date of the last analysis was at
least one year after the first submission; if not, we re-submitted the sample to VT for a fresh scan.
In this manner, we incorporated a number of malicious samples that might have been overlooked
at the time of their initial submission.

Then, Androzoo does not indicate the family the samples belong to, so we had to download the
respective report from VirusTotal and determine the family via AVClass2 [50]. From a preliminary
analysis, we found that the samples, grouped by year, are overrepresented by a few families (e.g.,
among 10k random APKs 41% of the malicious samples in the year 2014 belong to just three families).

18 Ruggia et al.

We, therefore, opted to group samples by pair of years, with a maximum of 5% for each family, and
the sha256 hash of each sample belongs to just a pair of years (namely, the intersection between
the samples for each pair of years is empty).

We ended up with 97, 829 native malicious apps, whose distribution is summarized in Table 4,
where we report the percentage of the three most frequent families. It is worth noting that the
number of malware that AVClass2 cannot assign to a family (Singleton) has increased over the
years. This is due to the fact that the number of AV engines has increased, and there are more
inconsistencies in the naming convention of family labels; furthermore, we observed that in the
Androzoo dataset, the average number of detections (also by referring to updated VirusTotal reports)
in recent malware is lower than the old one.

7 Results

This section presents and discusses the results of the longitudinal measurement we conducted over
malware and goodware datasets. To better understand why malware uses native code and how it
is tied to the app’s lifecycle, we will report the results according to the seven main steps of our
methodology (discussed in Section 4.4). Since we have grouped the malware into pairs of years, we
will refer only to the highest year in the pair (e.g., 2011 refers to the pair 2010/2011) to improve
readability. For the same reason, we omit the decimal place from percentages when not strictly
necessary.

7.1 Application Lifecycle

The first question we want to answer with our measurement is when apps invoke JNI methods, i.e.,
whether the native component comes into play immediately after the application starts or whether
it is only invoked when specific conditions are met. The formulation of this question stems from
the fact that understanding whether there is a difference between goodware and malware could
help improve analysis by prioritizing the prevailing case.

For each of the native functions, ANDani first visits the Java IPCFG to verify if a native method
is reachable (we consider a method to be reachable if there is at least one block of the IPCFG that
calls such method) and, if it is, it extracts all the possible entry points of the different paths that
lead to it. This first analysis shows that among goodware, 91% of the native functions are reachable
from nearly all (99.8%) of the DEX files in the standard location. Thus, the code invoking the native
component is easy to identify and is not obfuscated nor dynamically loaded. Moreover, it is essential
to highlight how 94% of these functions are reachable only under specific user interaction with
the app, such as a click on a GUI item. Among the remaining, 4.4% of the native functions are
reachable from the lifecycle methods of Activity components, and the remaining (1.2%) is triggered
at the app’s startup, from static constructors, or other Android components (i.e., Service, Broadcast
Receiver, and Content Provider).

The picture is utterly different for malware. In fact, among malicious apps, the average number
of reachable native functions has decreased from 81% in 2013 to 21% in 2021. Moreover, the number
of reachable native code only from DEX files not located in the standard position is always higher
than 2%. These results suggest that malware uses resources loaded at runtime to invoke native
methods. Furthermore, since 2017, more than 34% of the native functions have been reachable at
the startup (i.e., directly from the Application class), with a peak of 53% in 2021. This observation is
significant because it shows how malware, unlike goodware, tries to start the native component as
quickly as possible. Comparing the 2021 percentages for both malware and goodware, we observe
that for the malicious applications, 55% of the entry points are Application (53%) or Activity (2.4%)
lifecycle methods, and only 44% are related to user interaction. This highlights once more that

The Dark Side of Native Code on Android 19

current malware mainly invokes native code at the beginning of the process and does not wait for
the user to interact with the application.

Another interesting aspect that differentiates the use of alternative entry points used by goodware
and malware concerns Broadcast Receivers. Although their use is very limited in percentage, our
data shows that malicious apps are more prone than goodware to use broadcast receivers to invoke
native functions when they are notified that the user is present, an existing app has been added or
removed from the device, an external power has been (dis)connected to the device, or the device
boots.

The final analysis measured when an app declares Java native functions that are not exposed by
shared libraries and vice versa (i.e., exported JNI entry points not declared in Java code). Our results
show that these discrepancies are much more prevalent in malware than in goodware. For instance,
in 2017, 49% of malicious apps exported JNI entry points were never declared in the Java code, and
it grew over the years until 84% in 2021. In goodware, this behavior only appears in 21% of the apps.
One possible explanation, confirmed later in this section, is that malicious apps dynamically load
Java code from native and then use this new Java code to invoke other exported native functions.
This cycle of redirection between Java and native layers is a form of obfuscation that makes static
analysis much more complicated to perform.

Observations: The native methods declared by benign apps are reachable in most cases
from the main application code, and the trigger for their execution is very often dependent
on user interaction. Concerning malware, we observed a significantly different trend: the
average number of reachable native functions from the main application codes has significantly
decreased, consequently implying a strong presence of Dynamic Code Loading. Moreover, we
noticed how the invocation of native methods is almost immediate and occurs mainly without
user interaction. Finally, malware often uses Broadcast Receivers to wait for a particular event
and trigger the native code. Therefore, during manual investigation, we need to prioritize the
analysis of code that is invoked directly and without interaction.

7.2 Load Methods

Android apps can load native libraries through the load and loadLibrary methods. We recall that
the former accepts the full path of the library, while the latter accepts only the name of the library
— which is loaded from the default folder.

The 86% of loading operations in the goodware dataset load shared libraries directly from the
standard location using the loadLibrary method. Until 2013 this was also the preferred method
among the malicious app, with more than 89% of such operations relying on loadLibrary and
only 11% on the load method. From 2013 to 2021 instead, this percentage steadily decreased, and
today the load method accounts for 42% of loading operations against 14% in goodware.

A second crucial aspect is when these libraries are loaded to make the native methods accessible.
The JNI common practice suggests loading the libraries within the static constructor so that native
methods will be immediately available and exposed to the rest of the application. We measured
this from 2011 to 2015: more than 69% of malware was loading libraries from a static constructor.
However, from 2017, we observed a change that saw samples loading libraries in other points of the
app’s execution until 2021, when 80% of malware loads native libraries from other code locations.
Goodware reinforces this phenomenon by loading libraries from different entry points, but still,
42% of loading operations are performed by static constructors.

Other interesting aspects of the Application Lifecycle analysis concern user interaction and
response to specific system events. In the first case, our experiments show that 52% of goodware
loads native libraries only in response to user interaction, while malware performs this behavior

20 Ruggia et al.

only in 16% of the samples. Moreover, malware tends to use broadcast receivers to load native
libraries in response to particular events, such as an external power having (dis)connected to the
device, an external media being (un)mounted, or the device boots.

Finally, we analyzed the names of the libraries that goodware and malware load. Our data
shows that, throughout the years, malware loads significantly more libraries related to packing
(e.g., jiagu [1]), obfuscation, encoding/encryption, or audio recording. On the other hand, a high
percentage of goodware includes libraries from well-known frameworks, such as Unity [53] and
Flutter [16].

Observations: Goodware is much more adherent to the good practices, like loading libraries
via the loadLibrary method, thus making the analysis easier — given that they are loaded from
a single location and must be present in the APK. This was the same trend observed in malware
until 2015, while it is changing in favor of the use of load method. This fact brings numerous
problems to static analyses as it may not be possible to know in advance what library will be
loaded or where it is located. In addition, recent malware is more likely to include protection
libraries, such as packers and obfuscators.

Table 5. Supported architectures over the years [%]

32-bit 64-bit x86 x86_64 32-bit 64-bit Others

Good 21 80.49 81.26 59.32 43.27 11.18 6.71 0.15
Mal’11 99.98 1.68 7.65 0.68 4.05 0.10 0.00
Mal ’13 99.99 0.33 8.92 0.13 2.59 0.04 0.01
Mal ’15 99.99 3.52 38.42 1.77 12.29 1.53 0.00
Mal ’17 99.99 30.93 65.49 22.86 17.86 9.97 0.18
Mal 19 99.96 46.42 69.98 29.31 8.90 5.36 0.50
Mal °21 99.54 78.51 87.97 45.69 2.19 1.20 1.43

7.3 ELF files

To support different architectures, APKs include ELF libraries in 1ib folder, which are in turn
divided into different subfolders, one for each architecture supported by the app. Table 5 details the
evolution of the architectures supported by malware and goodware.

Google Play introduced the App Bundle [24], a new publishing format to generate and serve
optimized APKs for each device configuration. This ensures that new applications that use native
libraries do not have to ship their APK with multiple versions of the same native library since
the correct version will be directly shipped at installation time. Despite this new feature, we
observed that 75% of the goodware still ships the same library object for multiple architectures,
and more than 11% still includes MIPS - even though it is no longer supported [23]. In comparison,
almost all malware samples include ELF files for ARM32, and the number of samples with multiple
architectures grew over the year, from 9% in 2011 to 74% in 2021. Since 2017, malware samples also
contain few ELF files that target different architectures (e.g., SPARC and PowerPC), which grows up
to 1.4% in 2021. We also observed a small percentage (about 0.1% every year) of ELF files with a
broken header section, while none of the goodware had this peculiarity. By inspecting some of
these cases manually, we identified a common technique that is used to prevent static analysis:
the authors have removed a part of the ELF header from the libraries, and the missing part is only
restored at runtime.

Afterward, we analyzed where the ELF files are located in the APK. Most of the goodware (78%)
contain ELF files only in the standard 1ib folder, while 10% ships ELF files only in non-standard
(e.g., assets folder or archives) locations. On the other hand, about 85% of the malware contains

The Dark Side of Native Code on Android 21

ELF files in a non-standard location, which reflects the high usage of the 1oad method in malware.
Moreover, malicious APKs also embed ELF libraries in archives or try to disguise the analyst by
hiding the executable with a wrong and harmless extension name (i.e., different from . so). More
than 5% of ELF files in the malware samples were extracted from an archive or have an extension
that did not match the file type. The most common wrong extension names we found are: png, jar,
sdk, and 1ib.

We also found another interesting phenomenon: since 2017, more than 1% of malware contains
an ELF file with the same name that targets the same architecture both in the standard folder and in
a non-standard location. Therefore, we decided to manually examine those ELF files with the same
name and architecture. We computed the Jaccard similarity coefficient between the set of JNI entry
points and obtained an average index of 0.7 when there should be no difference. It indicates that
the two files have very different entry points. For instance, sample 213c contains an ARM library
in both the 1ib and the assets folders. The ELF library under the assets folder exports one entry
point more than the one in the 1ib folder, and such an entry point is in charge of executing a
well-known exploit [52] to escalate privileges and obtain root capabilities. In general, from 2015,
more than 6% of such libraries (with a peak of more than 30% in 2019) implement the JNI_OnLoad
entry point only in the non-standard location.

Finally, we searched how many ELF files are shared among different malware samples and found
that the percentage of ELF files shared between at least two malicious APKs is 46% (60, 895/131, 325).
Among the top 1,000 shared ELF files, 59 (6%) have more than four detections, and some have
up to 41 detections in VirusTotal. Interestingly, among the top shared ELFs in a non-standard
location (e.g., asset folder), more than 10% has a VT detection higher than five. Moreover, 7% of
the shared ELFs are contained in different places depending on the malware. It highlights how
malware tends to include malicious executables not in the 1ib/ folder, reinforcing the results of the
previous sections that malware leverages the load method to get libraries from various locations.
For instance, the 6c6e ELF file is shared among 293 APKs, and it is loaded from the res/ folder. We
then measured the number of years in which these malicious ELFs were observed in our dataset,
and we obtained a median of four years. The most extreme case is d867 which is shared by 54
APKs from 2011 to 2021 and has 32 detections on VT. As it turns out, malware authors are not
too concerned about antivirus software and do not even try to change the hash of the malicious
components they kept reusing year after year.

Last, our data shows that 6% of the ELF files is shared between at least one malware and one
goodware sample. This highlights how malware provides goodware-like features to fool the final
user (e.g., repackaged apps), or goodware’s developers try to protect their code with obfuscation
techniques.

Observations: From these results, we can conclude how malware has adapted to support more
and more architectures. This can indicate many factors, the first of which is to try to be effective
on as many devices as possible. Changing the file’s extension is a trivial and common trick,
while removing the ELF header and restoring it at runtime is certainly more sophisticated and,
thus, less prevalent. Using the same name for different libraries is a clear sign that the dispatch
might change depending on some checks. We have noticed that the reuse of malicious native
libraries is a frequent practice that lasts over the years, showing carelessness in concealing it.
Finally, we highlighted how malware and goodware have native components in common to
protect their code from reverse engineering.

22 Ruggia et al.

7.4 Initialization Functions & JNI_OnLoad

When the dynamic linker loads a library, it first calls the initialization functions defined in well-
known ELF sections. Samples in both datasets have about the same percentages of initialization
functions distributed across sections: while the . init section is used by less than 1% on average,
.init_array is more prevalent, being present in roughly 30% of the apps.

After the ELF initialization functions are executed, JNI calls INI_OnLoad. Here we noticed an
interesting trend: while the usage of JNI_OnLoad in the goodware dataset is around 60%, the
percentage of malware that uses it had been steadily increasing over the years until 2017, after
which it remained stable at 92%. This brings another important observation: JNI_OnLoad is the
function where usually the RegisterNatives is used to register the methods dynamically, thus
hiding the mapping between Java and native functions. Therefore, it is possible that malware use
this construct more frequently, specifically to prevent the detection of which native methods are
executed by the sample. During the years, the percentage of such malware that exports only the
JINI_OnLoad as JNI entry point decreased from 48.1% to 18.1%, while, for goodware, it is stable at
around 42%. This shows that malware authors jointly use both techniques to register the JNI entry
points to hide the mapping for specific functions. Moreover, we measured the average number of
branches of the INI_OnLoad: for malware, it grew up over the years until 91 (std. dev. 131) in 2021,
while, for goodware, it is only 44 (std. dev. 110); a clear sign that this function is often abused by
malware authors and must be analyzed with particular care.

ANDani tries to resolve which methods are dynamically registered by computing the arguments
of the RegisterNatives calls. The usage of this callback in malicious apps has increased over the
years up to 71% of samples, while it accounts only for 30% of the goodware samples. We recall
that the RegisterNatives dynamically maps a Java method defined as native to its implemen-
tation in the shared library at runtime, accepting two distinct input parameters: the Java class
and the function-method mapping. ANDani resolved the mapping in 88% of the cases for benign
samples, thanks to the fact that goodware often uses hardcoded values. For malware, the percentage
decreases to 79% averaged over the years as a consequence of the fact that these samples tend
to obfuscate the parameters’ value. Conversely, resolved Java classes are approximately 60% for
goodware and 55% for malware since 2019. For the arguments we were able to resolve, we inspected
whether the related classes were defined within the code of the APK, the framework, or if they
were not present in either. We identified how the number of Java classes used in the Register-
Natives that are not present in the APK is higher in malware. In goodware, 78% of the resolved
classes point to defined references (and all the other points to Android framework classes, such as
androidx.renderscript.RenderScript), while for malware since 2019, this only accounts for
36% of the classes.

We also noticed that malware samples perform various checks (e.g., environment controls, anti-
debugging checks, etc.) and map different functions depending on their results. For example, we
identified one APK (7900), which loads a native library (32cd), and it leverages this technique to
invoke the RegisterNatives callback and to map different Java methods depending on the context
in which it is analyzed. A more detailed manual analysis revealed that the sample decrypts a string,
and if a class with the same name exists, it maps the native functions to such class; otherwise, if
the check fails, it decrypts another string and repeats the procedure.

The Dark Side of Native Code on Android 23

Observations: The investigation of the JNI_OnLoad function is a crucial aspect in the analysis
of Android malware. In particular, using RegisterNatives with different hidden arguments,
based on environment checks, with the goal of mapping different functions at runtime, can be
considered an anti-analysis technique for both static and dynamic analysis — that, to the best of
our knowledge, has not yet been documented.

7.5 Native Behavior

Finally, the native libraries (steps #6A, #6B, #6C of our methodology presented in Section 4).

Native reflection. A shared library might leverage the JNI callbacks to communicate back with
the Java world. Our measurement revealed that malware samples, especially the most recent ones,
adopt this behavior more often than goodware.

Over the years, the usage of native reflection by malicious apps significantly increased, reaching
over the 90% in 2021. On the other hand, the adoption of JNI callbacks in benign software is
present in 57.1% of the applications that use native components. In particular, among the several
JNI callbacks available, we noticed that the usage of the FindClass and GetMethodID callbacks are
about 35% higher in malicious apps than in goodware. In addition, ANDani succeeded in recovering
over 81% of the arguments for goodware for both the callbacks, while it resolved less than 68% of
FindClass and 70% of GetMethodID for malware from 2017. In half of the cases, both goodware
and malware apps access classes and methods of the Android framework, while the remaining
involve app-specific classes. About goodware, over 72% of these custom classes are present in
the APK, whereas, in malware, this happens only in 21%. This second result could indicate how
malware tries to communicate natively with Java components not present in plain within the APK.
We suppose that these classes are present in obfuscated files or retrieved from the internet and
loaded at runtime.

We investigated further the classes and methods of the Android framework accessed with the
native reflection, and we have noticed a significant difference between the apps of the two datasets.
In order of frequency, the native reflection is used by malicious apps to: load a DEX or a JAR file
through the DexClassLoader (or its superclass ClassLoader) class, get a handle to a system-level
service such as with the getSystemService method of the Context class, interact with Android
managers, inspecting incoming exceptions, and perform crypto and encoding operations. The
adoption of such techniques is approximately six times more frequent in malware than goodware,
which is less than 4%.

Concerning the analysis of the Android managers, our result shows that malware mainly interacts
with PackageManager to retrieve app information or verify the permission through the check-
Permission method, WifiManager to check the connection, and TelephonyManager to retrieve
sensitive information, such as getting the IMEI and IMSI with getDevicelId and getSubscriberId
methods. Collecting unique identifiers for the device (IMEI) and SIM card (IMS]) is a well-known
procedure malware uses to profile the victim. However, they moved this logic into the native code
over the years.

Moving to the exploitation of the ClassLoader from native code, we noticed how recent malware
loads the target Java classes by directly invoking Java methods, such as 1loadClass. This technique
can be used to replace the FindClass JNI callback, making the analysis much more complicated.
Besides, we notice that malware in 2021 tends to leverage the Java reflection technique in the native
code; for instance, the ToReflectedMethod and FromReflectedMethod callbacks are used four
times more in malware than goodware.

Moreover, it is interesting to highlight how the malicious apps natively retrieve and handle the
stack trace, using the getStackTrace method of the Throwable class to inspect its content. This

24 Ruggia et al.

technique is applied as a form of anti-hooking: by looking at the content of the stack trace, an app
can detect the presence of either the Cydia Substrate or the Xposed framework (e.g., sample 4a7e),
as both manipulate the call stack [10].

Finally, every time we found a native reflection pattern, we applied the technique described by
Aafer et al. [2] to check if the method needed: no permission, normal permission, or dangerous
permission. If the argument of FindClass could not be statically retrieved, we used the argument
of GetMethodID. In fact, the Android framework method names are often unique, and in case we
found multiple matches (like read or open), we excluded these cases from our analysis. First, more
than 10% of malware, regardless of the year but with a gradual increase in such percentage over the
years (up to 16% in 2021), invokes methods that require normal/dangerous permission; on the other
hand, this percentage is negligible for goodware. Then, on average, comparing recent malware
and goodware, we obtained respectively: 84% (vs. 94% for goodware) of the methods required
no permissions, 8% (vs. 3%) required normal permissions, and 6% (vs. 3%) required dangerous
permissions. This shows how malware abuses native reflection to perform privileged operations
and, in particular, malware invokes methods for reading SMS, accessing the location, and reading
contacts.

Observations: The inspection of Native reflection confirms and brings to light new techniques
with which malware executes dynamic code loading exploiting the native layer. While malware
increasingly tends to interact with classes that are loaded at runtime, this behavior is rarely
exposed by goodware. In addition, to make the analysis and the identification of harmful
patterns more challenging, malware tends to move malicious techniques from Java to the native
layer (such as anti-hooking or accessing sensitive user information), and they start to replace
JNI callbacks with a direct invocation of Java methods.

Library function. An ELF file might rely on external functions exposed by other shared libraries,
in which symbols are dynamically resolved or included in the ELF file during the compilation
(i.e., statically linked ELF files). Our analysis reveals that almost all the apps in the goodware and
malware datasets import 1ibc. so (which in Android include also libpthread.so and librt. so),
libm.so, and liblog. so libraries. The only noteworthy relevant differences are the 1ibz.so (a
compression/decompression library), used by 90% of malware and 6% of goodware. This discrepancy
is due to the fact that malicious apps often decompress components that will be used at runtime
(e.g., sample 05b4).

We identified several discrepancies between goodware and malware in the prevalence of usage
of security-relevant functions (Table 2). For instance, in 2011, only 3% of the malicious apps used
chmod, and 7% used mprotect, which are respectively used to change the owner of a file and the
permission of a mapped area in the memory. The use of these functions has grown steadily over
the years to the point where, nowadays, more than 59% of the samples in our dataset use the first
function, and 87% use the second.

Then, we investigated the files that are opened through the *open family. In the first case,
malware use native code to open or access the files under the /dev and /proc folders more
often than goodware. For instance, in 2021, 54% of malware and 2% of goodware opened the
/proc/version. Another common target in the proc folder is /proc/self/maps, which describes
the virtual memory in a process, and it is used by 84% of malware and 10% of goodware. Checking
the contents of the maps file by an application can provide information about injected libraries, and
it is a known technique used especially by malware to identify frameworks such as Frida. On the
other hand, identifying access to device drivers located under /dev is another crucial aspect over
the years; numerous vulnerabilities have affected that subsystem (e.g., the recent Use-After-Free

The Dark Side of Native Code on Android 25

vulnerability in the Android Binder [21]). In fact, the results highlight how recent malware is more
prone to open drivers, such as /dev/tty to read the output of processes or /dev/ashmem to share
large quantities of memory among processes, in which vulnerabilities have been found over the
years [20].

Furthermore, some malware checks device-related information or opens system shared libraries,
while the number of goodware is negligible (< 0.1%). For instance, in 2021, 10% of malicious apps
verify if an SELinux policy is enabled accessing the /sys/fs/selinux/enforce file, and 9% of
malware explicitly interacts with the /system/bin/linker to load and run a dynamic executable,
even if they are contained in a ZIP file. These are new techniques that have grown in the last years,
performed by malware to detect the environment where they are executed or evade anti-malware
controls.

Observations: The analysis reveals that malware is more prone to call security-relevant library
functions, indicating operations that require further investigation. Moreover, we highlight the
high discrepancy in the usage of 1ibz for (de)compression and network-related functions,
which are probably used to retrieve resources at runtime. Finally, malware often reads the
content of some particular files to perform environment controls (e.g., emulator/sandbox),
interacts with low-level components (e.g., linker) to bypass common checks, and runs command
line programs more frequently than goodware.

Dynamic loading of DLLs. Dynamic loading refers to the ability to load and invoke functions of
other shared objects at runtime without the need to link the library to the executable. In particular,
this technique is based on two specific library functions: dlopen to load the library and d1sym to
retrieve a pointer to the target function. The prevalence of this technique had increased over the
years, from 2011, when 24% of malware employed it, until today when the percentage is over 90%.
In comparison, around 55% of benign apps in our dataset perform dynamic loading.

Looking at libraries and functions invoked with such technique, we found that for goodware, half
of the loaded shared objects are well-known Android libraries, while more than three-quarters are
for malware. Among the remaining quarter, most of the libraries are not included in the APK - we
suppose these libraries are present in obfuscated files or retrieved from the internet and loaded at
runtime. The most common libraries that are dynamically loaded are related to (de)compression and
decryption/encryption operations; for example, the uncompress function of the 1ibz. so library is
dynamically loaded from more than 90% of malware, but only from 0.4% of goodware apps. This
finding again reinforces our idea that malware uses native components to prepare resources that
will be used at runtime to evade static analysis.

Even if some Android libraries are widely loaded from both goodware and malware, on average,
their usage is very different, and this can be used to pinpoint suspicious operations. For instance,
the libc library is loaded though dlopen by more than 30% of goodware and malware. However,
malicious apps rely more on dynamic loading to invoke 1ibc functions such as __system_prop-
erty_get to retrieve the value of device-related properties and chown to modify the owner of some
resource. In addition, we found an unconventional and rather peculiar use of these functions by
malicious applications in which few apps called dlopen and dlsym to obtain a function pointer
to dlopen and d1sym themselves, and use that later on in the execution. Lastly, we observed how
at least the 9% recent malicious apps load Dalvik and ART runtime libraries, namely 1ibdvm. so
and libart. so, but this phenomenon occurs in less than 2% of goodware — such libraries can be
(ab)used to bypass Android Runtime restrictions [54].

26 Ruggia et al.
Table 6. Left: confusion matrix; right: classification report

Goodware Malware

Metric Goodware Malware
o 99.01 0.99 | Goodware Precision 96.57 99.02
%’ Recall 99.01 96.57
: F1-score 97.77 97.78
g Accuracy 99.01 96.57
k] 3.43 96.57 | Malware
< Accuracy 97.79

Prediction outcome

Observations: Most malware abuses the dynamic loading of DLLs, and, very often, the loaded
library is “generated” at runtime, while goodware does the opposite. This reinforces the con-
sideration that malware is more prone to prepare resources (e.g., decrypt or download code)
from native code in an evasive way. Moreover, most loaded functions could hide suspicious
operations, such as (de)compression or permission management.

8 Use case: binary classification

In the previous section, we discussed the many facets of native code execution in Android apps
and highlighted core differences between how benign and malicious applications use native code.
In this section, we studied to what extent the suspicious tags assigned by our system can be used
to detect malware. This analysis allowed us to show a practical use of our methodology to extract
suspicious tags and investigate which suspicious patterns are more prevalent in malware w.r.t.
goodware as they have a more significant impact on the classification task.

For this task, we built a dataset using all the 15, 647 goodware at our disposal and sub-sampling the
same amount of malicious apps collected in 2021. We selected all samples classified as “Singleton”
(15,427) (those for which AVClass2 was unable to determine the family), and we sampled the
remaining 220 malicious apps one per family to avoid bias towards particular families. We extracted
the suspicious tags defined in our methodology for each sample and created a vector of 74 features
(62 booleans and 12 floats). In Table 3, we annotated each tag with the data type used in the vector.
We then used a Random Forest classifier due to its ability to handle numeric and categorical features
without needing encoding. We set the split criterion of the algorithm to be the Gini impurity and
tune the remaining hyperparameters (such as the number of trees, their depth, and the number
of features to consider when splitting a node) by using the Out Of Bag (OOB) error computed
during the training phase. As reported in Figures 2 and 3 in the Appendix, we obtained the optimal
OOB error when considering 141 trees with depth 32 and the sqrt as a metric to define the number
of features to test when extending a node. We used a 10-fold cross-validation approach to train
and test our classifier, each round training the model on k-1 folds and testing its performance on
the remaining fold —different for each round— to measure how well the classifier generalizes on
unseen samples. Table 6 summarizes the average performance obtained on the test sets, including
accuracy, precision, recall, and F1-score. Even though we opted for a simple classification scheme,
our results were surprising. In fact, by simply leveraging the suspicious tags to distinguish between
goodware and malware, the average error rate was 2.21%, with an accuracy, respectively, of 0.99
and 0.96 and a mean F1-score of 0.97.

The Dark Side of Native Code on Android 27

Feature importance. We ranked the features used in the classifier based on their Mean Decrease
Impurity (MDI) and reported in Table 7 the top-10 of them together with their relative importance
normalized as a percentage.

The tags belonging to the categories J_NATIVE_METHODS and J_LOAD_METHODS (the first two
steps of our methodology, which capture native/load methods in the Java code and the entry point
from which they can be reached) accounts for almost 50% of the total feature relevance. This shows
that the insights gleaned in Section 7.1 and 7.2 represent the most discriminating traits for the
classification of goodware and malware; namely, our results suggest that a reliable indicator of
malicious behavior is when an app reaches the native code without user interaction and such native
code is not statically available.

Furthermore, four of the top-10 entries belong to the category SUS_LIB_CALL, which denotes the
use of security-relevant functions within the native code. Interestingly, the most impactful are the
‘Memory Protection’ calls mmap and mprotect that are a prerequisite to execute dynamically loaded
code. Finally, the fifth entry indicates the presence of build.prop key strings. The build.prop
is a file that contains build properties and settings in the format key=value. Some contents are
specific to the device or manufacturer, while others vary according to the operating system version.
Retrieving these values significantly impacts security because attackers can fingerprint the device
and engage in evasive behavior or select a valid exploit for the system.

Classification errors. In the last part of our analysis, we investigated the root causes of classifica-
tion errors and whether those were attributable to any particular characteristics of the samples.
In our setting, we define a false positive (FP) as a classification error in which a benign sample
is labeled as malware; vice versa, the classifier produces a false negative (FN) when predicting
malware as goodware. We repeated our classification task 100 times by using independent folds for
each experiment, thus resulting in training and testing 1K different classifiers. The rationale behind
this choice is to isolate those samples that are always mispredicted as FPs (0.5% - 81/15, 647) or FNs
(3.1% - 483/15, 647). These samples were further investigated by analyzing the tags extracted with
our methodology and by resorting to manual reverse engineering for a subset of them.

When narrowing down to FNs, we detected that the model errs when the malicious logic (e.g.,
sample c227) is fully contained in classes. dex files — which is out of our scope, and it includes
well-known legitimate native libraries. For example, sample 58b3 only ships two open-source
libraries in the standard location, namely LAME to manipulate MP3 files, and a second one that
provides WebRTC capabilities. However, many samples contain the definition of some native
methods in the Java code, but do not contain the relative ELF file, neither in standard nor in
non-standard locations. The respective sample is then characterized by the sole presence of the
NO_ELF_NAME tag (J_LOAD_METHODS category), whereas almost all the other tags are missing. In
such a case, the model does not have enough information for an accurate classification.

On the other hand, we discovered that misclassifications of goodware (FPs) are mainly due
to the heavy usage of Dynamic Code loading (DYNAMIC_LOADING category) or suspicious library
calls (Table 2). In particular, almost all FPs are samples with native libraries that try to protect the
intellectual properties of the developers with integrity checks, obfuscation, and packing techniques.
By nature, such techniques generate exactly surreptitious code that represents the core of our
analysis.

28

Table 7. Top 10 features sorted by MDI score

Ruggia et al.

Tag Category Tag Title MDI score (%)
J_NATIVE_METHODS NO_REACHABLE 15.88 %
J LOAD_METHODS APP_LIFECYCLE_EP 13.17 %
J_NATIVE_METHODS APP_LIFECYCLE_EP 11.50 %
J_LOAD_METHODS PATH_LOAD_METHOD 8.87 %
STRING PROPERTIES 7.15%
J_NATIVE_METHODS ACTIVITY_LIFECYCLE_EP 5.90 %
SUSP_LIB_CALL MEMORY_PROTECTION 4.02 %
SUSP_LIB_CALL PROCESS_MANAGEMENT 3.65 %
SUSP_LIB_CALL IDENTITY 3.45 %
SUSP_LIB_CALL PERMISSION 2.83%
Average 1.35%
Standard deviation 0.24 %

Takeaways: Using only the suspicious tags extracted from native libraries for binary classifica-
tion task yielded promising results: the classifier can distinguish between the two classes with
an average error of 0.02 and achieves an F1 score of 0.97. This fact highlights how and which
native code suspicious patterns correlate more to malware vs. goodware and whose presence
may indicate a potential malicious pattern. In particular, the features extracted from Step #1
and Step #2 of our methodology account for almost 50% of the total relevance.

9 Limitations

We performed the first longitudinal analysis of native components in Android malware, which
allowed us to identify several suspicious uses related to the JNI code. Moreover, we showed how
our automatically assigned suspicious tags could pinpoint the code region to inspect and speed up
the analysis process, examining the behavior for all supported architectures. Our work significantly
differs and complements all state-of-the-art tools for both the type of analysis performed and the
goal of the analysis. In particular, ANDani is not limited only to a Java to native dataflow analysis: it
also analyzes all aspects of the native components, from the entry point analysis and the triggering
condition of JNI methods to the suspicious library function invoked by the native code. With this
design, we can improve the automatic detection of Android malware in a binary classification task
by including the native-related features extracted by ANDani. However, our implementation has all
the intrinsic limits of the static analysis, in particular, the backward taint data analysis [37] and the
fact that we are not able to analyze the code whether it is dynamically loaded (i.e., not statically
present in the APK). Given the current spread of droppers in the PlayStore [55], this is an issue
that needs to be addressed; in particular, a possible future work concerns integrating ANDani with
a dynamic analysis pipeline to analyze DEX and ELF files that are dynamically recovered.
Furthermore, in our experiment in which we submitted synthetic malware to VirusTotal, we
demonstrated that some malicious apps are not detected — and are unlikely to be detected in the
future — while for others, it is simply a matter of waiting for the AV vendors to update their databases.
This represents another intrinsic limitation faced by researchers in this field. The ability to identify
sophisticated malware is often contingent upon the willingness of companies to share the results
of their meticulous manual analysis, which is conducted using a multitude of tools and techniques.
It can be argued that this is a recognized limitation of all studies that rely on ground truth from
publicly available tools. In order to mitigate this issue, it should be noted that our work does not
claim absolute reliability of the dataset. Rather, it employs the dataset as a representative sample
with which to evaluate broader trends. This enables the identification of significant deficiencies in
existing detection mechanisms and the illustration of methods by which native payloads can evade
detection. The acknowledgment of the limitations of ground truth sources does not invalidate the

The Dark Side of Native Code on Android 29

broader insights provided by our methodology into the weaknesses of current detection strategies.
In conclusion, the findings presented in this paper are not intended to be generalized to all malware
but rather to provide evidence of a growing reliance on native code.

It should be noted that although our study focuses on native code, the presence of a malicious
component in the DEX code rather than in native libraries did not affect our measurements. In the
event that a malicious component is present in DEX, our objective was to measure any suspicious
native patterns that might be employed to disguise further malicious logic or evasive code. However,
a limitation of our measurements is that we were unable to ascertain whether and what (both good
and bad) developers are concealing through the use of such suspicious patterns. Nevertheless, our
work provides a foundation for further intriguing avenues of research.

10 Conclusions

We consider this study to be of considerable relevance in the present and future. In 2016, Afonso et
al. found that 40% (446,562/1,208,476) of goodware used JNI, while in our study (seven years later),
this percentage increased to 57%. Moreover, modern chipsets often include a Neural Processing Unit
to accelerate artificial intelligence computations; thus, Android started offering Neural Networks
APIs (NNAPI) for interacting with it [27]. However, due to performance reasons, developers can
only interact with NNAPIs through native code, making JNI an increasingly crucial component of
the Android operating system — as is also evidenced by the recent introduction of Rust [29] as a
safer alternative to C/C++.

On the other hand, malware authors are always up to speed and saw in JNI an opportunity to
hide their intentions better. In fact, the performance of our ML classifier revealed a statistically
significant distinction in the utilization of suspicious native code between malware and goodware
within our dataset.

In conclusion, with this paper, we have tried to contribute to this cat-and-mouse game, hoping
that our methodology and suspicious tags will be the building block for future research on Android
malware and its detection.

Acknowledgements

Our heartfelt appreciation to the illustrious Slasti Mormanti for is sage guidance, boundless wisdom,
and unwavering commitment during the development of this paper.

This work benefited from two government grants managed by the French National Research
Agency with references: “ANR-22-PECY-0007" and “ANR-23-IAS4-0001".

30

Ruggia et al.

References

— —_
~ (=
— —

[10]
[11]
[12]
[13]
[14]
[15]

[16
[17

—

[18]

[19]
[20]
[21]
[22]
(23

[24
[25

—_

[26]

[27]

2022. Jiagu. http://jiagu.360.cn/. Accessed January 6, 2025.

Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. 2018. Precise Android API protection
mapping derivation and reasoning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1151-1164.

Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupé, Mario Polino, Paulo de Geus, Christopher Kruegel,
and Giovanni Vigna. 2016. Going native: Using a large-scale analysis of android apps to create a practical native-code
sandboxing policy. In The Network and Distributed System Security Symposium. 1-15.

NSA National Security Agency. 2022. Ghidra: A software reverse engineering (SRE). https://ghidra-sre.org/. Accessed
January 6, 2025.

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles, techniques. Addison wesley 7, 8 (1986), 9.
Shahid Alam, Zhengyang Qu, Ryan Riley, Yan Chen, and Vaibhav Rastogi. 2017. DroidNative: Automating and
optimizing detection of Android native code malware variants. computers & security 65 (2017), 230-246.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting millions of android
apps for the research community. In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
IEEE, 468-471.

Seyed Behnam Andarzian and Behrouz Tork Ladani. 2020. Compositional Taint Analysis of Native Codes for Security
Vetting of Android Applications. In 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE).
IEEE, 567-572.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259-269.

Neil Bergman. 2015. Android Anti-Hooking Techniques in Java. https://d3adend.org/blog/posts/android-anti-hooking-
techniques-in-java/. Accessed January 6, 2025.

The MITRE Corporation. 2011. CVE-2011-1823. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823.
Accessed January 6, 2025.

The MITRE Corporation. 2014. CVE-2014-3153. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153.
Accessed January 6, 2025.

The MITRE Corporation. 2016. CVE-2016-5195. https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195.
Accessed January 6, 2025.

The MITRE Corporation. 2019. CVE-2019-2215. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2215.
Accessed January 6, 2025.

facundoolano. 2022. Google Play Scraper. https://github.com/facundoolano/google-play-scraper. Accessed January 6,
2025.

Flutter. 2022. Flutter. https://flutter.dev/. Accessed January 6, 2025.

The Apache Software Foundation. 2022. Apache Cordova Framework. https://cordova.apache.org/. Accessed January
6, 2025.

George Fourtounis, Leonidas Triantafyllou, and Yannis Smaragdakis. 2020. Identifying java calls in native code via
binary scanning. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis.
388-400.

Gabriel Claudiu Georgiu. 2022. Playstore Dowloader. https://github.com/ClaudiuGeorgiu/PlaystoreDownloader.
Accessed January 6, 2025.

Google. 2017. BitUnmap: Attacking Android Ashmem. https://googleprojectzero.blogspot.com/2016/12/bitunmap-
attacking-android-ashmem.html. Accessed January 6, 2025.

Google. 2020. Android Use-After-Free in Binder. https://googleprojectzero.github.io/0days-in-the-wild/0day-
RCASs/2019/CVE-2019-2215.html. Accessed January 6, 2025.

Google. 2022. The Activity Lifecycle. https://developer.android.com/guide/components/activities/activity-lifecycle.
Accessed January 6, 2025.

Google. 2022. Android ABIs. https://developer.android.com/ndk/guides/abis. Accessed January 6, 2025.

Google. 2022. Android App Bundle. https://developer.android.com/guide/app-bundle. Accessed January 6, 2025.
Google. 2022. Android App Categories. https://support.google.com/googleplay/android-developer/answer/9859673.
Accessed January 6, 2025.

Google. 2022. Android linker source code, call_constructors method. https://android.googlesource.com/platform/bion
ic/+/master/linker/linker_soinfo.cpp#516. Accessed January 6, 2025.

Google. 2023. Neural Networks APL https://developer.android.com/ndk/guides/neuralnetworks. Accessed January 6,
2025.

http://jiagu.360.cn/
https://ghidra-sre.org/
https://d3adend.org/blog/posts/android-anti-hooking-techniques-in-java/
https://d3adend.org/blog/posts/android-anti-hooking-techniques-in-java/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1823
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-5195
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-2215
https://github.com/facundoolano/google-play-scraper
https://flutter.dev/
https://cordova.apache.org/
https://github.com/ClaudiuGeorgiu/PlaystoreDownloader
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.blogspot.com/2016/12/bitunmap-attacking-android-ashmem.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-2215.html
https://googleprojectzero.github.io/0days-in-the-wild/0day-RCAs/2019/CVE-2019-2215.html
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/ndk/guides/abis
https://developer.android.com/guide/app-bundle
https://support.google.com/googleplay/android-developer/answer/9859673
https://android.googlesource.com/platform/bionic/+/master/linker/linker_soinfo.cpp#516
https://android.googlesource.com/platform/bionic/+/master/linker/linker_soinfo.cpp#516
https://developer.android.com/ndk/guides/neuralnetworks

The Dark Side of Native Code on Android 31

[28]

[38]
[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

[50]

[51]

[52]
[53]
[54]

[55]

Google. 2023. Permissions on Android. https://developer.android.com/guide/topics/permissions/overview. Accessed
January 6, 2025.

Google. 2024. Android Rust introduction. https://source.android.com/docs/setup/build/rust/building-rust-
modules/overview?hl=en. Accessed January 6, 2025.

Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and Martin C Rinard. 2015.
Information flow analysis of android applications in droidsafe.. In NDSS, Vol. 15. 110.

Sable Research Group. 2022. Soot - A Java optimization framework. https://github.com/soot-oss/soot. Accessed
January 6, 2025.

jonko0. 2019. Android DirtyCow. https://github.com/jonk0/GetRoot- Android-DirtyCow. Accessed January 6, 2025.
kangtastic. 2019. CVE-2019-2215 Exploit. https://github.com/kangtastic/cve-2019-2215. Accessed January 6, 2025.
Michael Kerrisk. 2021. proc.5. https://man7.org/linux/man-pages/man5/proc.5.html. Accessed January 6, 2025.
Sungho Lee. 2019. JNI program analysis with automatically extracted C semantic summary. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 448—451.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric
Bodden, Damien Octeau, and Patrick McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 280-291.

Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein,
and Le Traon. 2017. Static analysis of android apps: A systematic literature review. Information and Software Technology
88 (2017), 67-95.

Microsoft. 2022. Xamarin. https://dotnet.microsoft.com/apps/xamarin. Accessed January 6, 2025.

Jasvir Nagra and Christian Collberg. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for
Software Protection: Obfuscation, Watermarking, and Tamperproofing for Software Protection.

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon. 2013.
Effective inter-component communication mapping in android: An essential step towards holistic security analysis. In
22nd {USENIX} Security Symposium ({USENIX} Security 13). 543-558.

OffSec. 2009. The Exploit Database. https://www.exploit-db.com/. Accessed January 6, 2025.

Oracle. 2022. JNI Functions. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html. Accessed
online: January 6, 2025.

Oracle. 2022. JNI Types and Data Structures. https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.ht
ml. Accessed January 6, 2025.

Oracle. 2022. Oracle JNL https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html. Accessed
January 6, 2025.

Mono Project. 2022. Mono Project. https://www.mono-project.com/. Accessed January 6, 2025.

Chenxiong Qian, Xiapu Luo, Yuru Shao, and Alvin TS Chan. 2014. On tracking information flows through jni in
android applications. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
IEEE, 180-191.

Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting Runtime Values in Android
Applications That Feature Anti-Analysis Techniques.. In NDSS.

Antonio Ruggia, Andrea Possemato, Alessio Merlo, Dario Nisi, and Simone Aonzo. 2023. Android, Notify Me When It
Is Time To Go Phishing. In EUROS&P 2023, 8th IEEE European Symposium on Security and Privacy.

Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun, Kevin Allix, Tegawendé F Bissyandé,
and Jacques Klein. 2022. JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). IEEE, 1232-1244.

Silvia Sebastian and Juan Caballero. 2020. Avclass2: Massive malware tag extraction from av labels. In Annual Computer
Security Applications Conference. 42-53.

Mingshen Sun, Tao Wei, and John CS Lui. 2016. Taintart: A practical multi-level information-flow tracking system
for android runtime. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
331-342.

Hacking Team. 2015. HackingTeam Exploits. https://github.com/f47h3r/hackingteam_exploits/tree/master/android.
Accessed January 6, 2025.

Unity Technologies. 2022. Unity. https://unity.com/solutions/mobile/android-game-development. Accessed January 6,
2025.

Romain Thomas. 2019. Android Runtime Restriction Bypass. https://blog.quarkslab.com/android-runtime-restrictions-
bypass.html. Accessed January 6, 2025.

ThreatFabric. 2021. 300.000+ infections via Droppers on Google Play Store. https://threatfabric.com/blogs/deceive-
the-heavens-to-cross-the-sea.html. Accessed January 6, 2025.

https://developer.android.com/guide/topics/permissions/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview?hl=en
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview?hl=en
https://github.com/soot-oss/soot
https://github.com/j0nk0/GetRoot-Android-DirtyCow
https://github.com/kangtastic/cve-2019-2215
https://man7.org/linux/man-pages/man5/proc.5.html
https://dotnet.microsoft.com/apps/xamarin
https://www.exploit-db.com/
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/types.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://www.mono-project.com/
https://github.com/f47h3r/hackingteam_exploits/tree/master/android
https://unity.com/solutions/mobile/android-game-development
https://blog.quarkslab.com/android-runtime-restrictions-bypass.html
https://blog.quarkslab.com/android-runtime-restrictions-bypass.html
https://threatfabric.com/blogs/deceive-the-heavens-to-cross-the-sea.html
https://threatfabric.com/blogs/deceive-the-heavens-to-cross-the-sea.html

32

[56]
[57]

[58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

Ruggia et al.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 2010. Soot: A Java
bytecode optimization framework. In CASCON First Decade High Impact Papers. 214-224.

Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary analysis. In 2017 IEEE Cybersecurity
Development (SecDev). IEEE, 8-9.

Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep ground truth analysis of current
android malware. In International conference on detection of intrusions and malware, and vulnerability assessment.
Springer, 252-276.

Fengguo Wei, Xingwei Lin, Xinming Ou, Ting Chen, and Xiaosong Zhang. 2018. Jn-saf: Precise and efficient ndk/jni-
aware inter-language static analysis framework for security vetting of android applications with native code. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1137-1150.

Fengguo Wei, Sankardas Roy, and Xinming Ou. 2014. Amandroid: A precise and general inter-component data flow
analysis framework for security vetting of android apps. In Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security. 1329-1341.

Daoyuan Wu, Debin Gao, Robert H Deng, and Chang Rocky KC. 2021. When Program Analysis Meets Bytecode
Search: Targeted and Efficient Inter-procedural Analysis of Modern Android Apps in BackDroid. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 543-554.

Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. 2017. Malton: Towards On-Device Non-Invasive Mobile
Malware Analysis for {ART}. In 26th { USENIX} Security Symposium ({ USENIX} Security 17). 289-306.

Lok Kwong Yan and Heng Yin. 2012. Droidscope: Seamlessly reconstructing the {OS} and dalvik semantic views for
dynamic android malware analysis. In 21st { USENIX} Security Symposium ({ USENIX} Security 12). 569-584.

Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. 2015. Appcontext: Differentiating
malicious and benign mobile app behaviors using context. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 303-313.

Shuofei Zhu, Jianjun Shi, Limin Yang, Bogin Qin, Ziyi Zhang, Linhai Song, and Gang Wang. 2020. Measuring and
modeling the label dynamics of online { Anti-Malware} engines. In 29th USENIX Security Symposium (USENIX Security
20). 2361-2378.

The Dark Side of Native Code on Android

Appendix

10.1 Hash of the samples

Table 8. Sha256 of the samples mentioned in the paper

019e12c7233d7324667d9e49aba4787c67204c5c8f2c38754f469a5b600bddde

0259d084a78ddc98e663ae5799898a0afb4d021c6486chb61bdf7285731476d61

04cef547b64e459936dd243bfb19575bc905f6271c94723788000088f9e7e278

05b4c4dd8bf9f376c767330e649d725ad35c0c9c3bib2dbbfab7f39e90c5bac4

13068932cd52ffa257fa35bba7860e618416f0d53eecd7650a7700607220d4c0

1f267514222943779bdd642b9c7322a31a87d8f17790be4f31d59c2f4fade4d3

213¢997dc02dfc4e83e872243c9217c7481a18a386b4fd79c049a5e27dad97f0

32¢d907d3343c44180294a7c279c2a5f139a6ee443cbf443eb2bd663bca37cbe

4a7e913d491f715bb00b37ad5b8802a00c919070486212e8d1d1a802f4bdf6bf

4e4be579cffdd690cef4bb0d779d66ede95cfd955eb27eb797e0704f59d61e6d

58b34234bd375ac81753chb8cc793a60cf9f0a220383bf332d15ce51917488623

5bd3e6f49aaab9e7fe566d92cceb9a5701a072426434de5bb2cdbc34a7d265f2

6c6eeed1b91913db0d6232edb1979c67d6fb48ca3dasf83dc49fb565a4e5f4fe

73837b030f031d532741b7e84068aabed24e7abac118c4272005e6ecd18a17d7

79009a3bbdb9f73faa3d8b3a35306957fbd2bfb362d0c2d658079ff6a49b69e0

858ebffaa54e40cc4787280da60e5854e8776359340bdf5287e32a580878a2c0

98f6d51dffocfde3caz2aab65ec4edcdf9054900dacc@817139ff018625c83fee

b3c7aa8b70edd76d9463c458a74a8c61266b90d946e4d8b329a14b3e597142ce

c227edef2d823059f261b2101a21c4deeda2eed16671ce@6b28dde0297018550

cdde49edda06e3856755e5b847892ee91fb3ac334595328b1a742d9b898992a7

d86731c8fabed48f13fadbf761a0869697dd56bbf963028e57d35395cf217f74

€0881b869add4b86628abb53255990aabb5db2548b259ech04d03834dcf54d38

f7b906ec2ce1c39979092dbd220dobobf7fb770122c4de31e239935aa4763fea

33

Due to space limitations and readability, we never used the whole sha256, but only the first 4
bytes. In Table 8, we report each complete hash alphabetically, with the first 4 bytes in bold. Each
entry is a hyperlink to the corresponding VirusTotal webpage.

https://www.virustotal.com/gui/file/019e12c7233d7324667d9e49aba4787c67204c5c8f2c38754f469a5b600bddde
https://www.virustotal.com/gui/file/0259d084a78ddc98e663ae5799898a0afb4d021c6486cb61bdf7285731476d61
https://www.virustotal.com/gui/file/04cef547b64e459936dd243bfb19575bc905f6271c94723788000088f9e7e278
https://www.virustotal.com/gui/file/05b4c4dd8bf9f376c767330e649d725ad35c0c9c3b1b2dbbfab7f39e90c5bac4
https://www.virustotal.com/gui/file/13068932cd52ffa257fa35bba7860e618416f0d53eecd7650a7700607220d4c0
https://www.virustotal.com/gui/file/1f267514222943779bdd642b9c7322a31a87d8f17790be4f31d59c2f4fade4d3
https://www.virustotal.com/gui/file/213c997dc02dfc4e83e872243c9217c7481a18a386b4fd79c049a5e27dad97f0
https://www.virustotal.com/gui/file/32cd907d3343c44180294a7c279c2a5f139a6ee443cbf443eb2bd663bca37c6e
https://www.virustotal.com/gui/file/4a7e913d491f715bb00b37ad5b8802a00c919070486212e8d1d1a802f4bdf6bf
https://www.virustotal.com/gui/file/4e4be579cffdd690cef4bb0d779d66ede95cfd955eb27eb797e0704f59d61e6d
https://www.virustotal.com/gui/file/58b34234bd375ac81753cb8cc793a60cf9f0a220383bf332d15ce51917488623
https://www.virustotal.com/gui/file/5bd3e6f49aaab9e7fe566d92cceb9a5701a072426434de5bb2cdbc34a7d265f2
https://www.virustotal.com/gui/file/6c6eeed1b91913db0d6232edb1979c67d6fb48ca3da4f83dc49fb565a4e5f4fe
https://www.virustotal.com/gui/file/73837b030f031d532741b7e84068aabed24e7a6ac118c4272005e6ecd18a17d7
https://www.virustotal.com/gui/file/79009a3bbdb9f73faa3d8b3a35306957fbd2bfb362d0c2d658079ff6a49b69e0
https://www.virustotal.com/gui/file/858ebffaa54e40cc4787280da60e5854e8776359340bdf5287e32a580878a2c0
https://www.virustotal.com/gui/file/98f6d51dff0cfde3ca2aab65ec4edc0f9054900dacc0817f39ff018625c83fee
https://www.virustotal.com/gui/file/b3c7aa8b70edd76d9463c458a74a8c61266b90d946e4d8b329a14b3e597142ce
https://www.virustotal.com/gui/file/c227edef2d823059f261b2101a21c4deeda2ee016671ce06b28dde0297018550
https://www.virustotal.com/gui/file/cdde49edda06e3856755e5b847892ee91fb3ac334595328b1a742d9b898992a7
https://www.virustotal.com/gui/file/d86731c8fa5ed48f13fadbf761a0869697dd56bbf963028e57d35395cf217f74
https://www.virustotal.com/gui/file/e0881b869add4b86628abb53255990aabb5db2548b259ecb04d03834dcf54d38
https://www.virustotal.com/gui/file/f7b906ec2ce1c39979092dbd220d0b9bf7fb770122c4de31e239935aa4763fea

34 Ruggia et al.

10.2 Random Forest hyperparameters tuning

0.0245 4
—— RF, max_features='sqrt'
0.0240 - —— RF, max_features='log2'
—— RF, max_features='None'
0.0235 A
£ 0.02307 %
c
5 0.0225 -
5}
[aa]
O 0.0220 A
(@]
0.02151 /\WW\W/WV\,\M/\A
0.0210 A
AANNMA L
0.0205 ALY AP
100 200 300 400 500
Trees

Fig. 2. OOB error to determine the optimal number of trees and the number of features to test when splitting
a node. The optimal value for the number of trees has been chosen using the Elbow method, after calculating
that there is no performance improvement above 259 trees.

0.028 A —— RF, trees='141', max_features="sqrt’
0.027 A

0.026 -

OOB error rate
o o o
o o o
N N N
w Y w

R L L

0.022 A

0.021 A

0 20 40 60 80 100
Trees depth

Fig. 3. OOB error to determine the optimal depth of trees. The optimal value for the depth of the trees has
been chosen using the Elbow method and of trees is chosen using the Elbow method after calculating that
there is no performance improvement above a depth of 34.

The Dark Side of Native Code on Android 35

10.3 Example of Thread handling

Listing 3. Example of how start a new thread in Java.

1 class MyThreadA extends Thread {

2 void run() {

3 System.out.println("My Thread A - called");
4 }

5}

6

7 class MyThreadB extends Thread {

8 void run() {

9 System.out.println("My Thread B - never called");
10 }

1}

13 class Main {

14 static void start_thread (Thread t) {
15 t.start();

16 }

17

18 static void main(String[] argv) {

19 start_thread (new MyThreadA());

20 }

21}

Listing 3 shows a simple Java snippet where the run() method of a Thread subclass is executed
through the Thread. start() call. The code contains two Thread classes, respectively MyThreadA
and MyThreadB, but only the first one is used. The Bytecode module has been designed to consider
the context of the call and to propagate the arguments. In this example, the module is able to create
an edge from Main.start_thread to MyThreadA.run().

	Abstract
	1 Introduction
	2 Android JNI Internals
	2.1 Native Library Loading
	2.2 Bridging Functions
	2.3 Native Activity
	2.4 Process Execution Methods

	3 Related work
	4 Motivation & Methodology
	4.1 Native Components and Antivirus Software
	4.2 Running Example
	4.3 Suspicious Patterns
	4.4 Methodology
	4.5 Suspicious Tags

	5 Suspicious Analysis Framework
	5.1 Overview
	5.2 Bytecode Module
	5.3 Native Module
	5.4 Comparision with state-of-the-art tools

	6 Dataset
	7 Results
	7.1 Application Lifecycle
	7.2 Load Methods
	7.3 ELF files
	7.4 Initialization Functions & JNI_OnLoad
	7.5 Native Behavior

	8 Use case: binary classification
	9 Limitations
	10 Conclusions
	References
	10.1 Hash of the samples
	10.2 Random Forest hyperparameters tuning
	10.3 Example of Thread handling

