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Abstract—Network slicing has been proposed as a paradigm
for 5G+ networks. The operators slice physical resources from
the edge all the way to the datacenter, and are responsible to
micro-manage the allocation of these resources among tenants
bound by predefined Service Level Agreements (SLAs). A key
task, for which recent works have advocated the use of Deep
Neural Networks (DNNs), is tracking the tenant demand and
scaling its resources. Nevertheless, for the edge resources (e.g.
RAN), a question arises on whether operators can: (a) scale
them fast enough (often in the order of ms) and (b) afford to
transmit huge amounts of data towards a remote cloud where
such a DNN model might operate. We propose a Distributed
DNN (DDNN) architecture for a class of such problems: a
small subset of the DNN layers at the edge attempt to act
as fast, standalone resource allocator; this is complemented by
a mechanism to intelligently offload a percentage of (harder)
decisions to additional DNN layers running at a remote cloud.
To implement the offloading, we propose: (i) a Bayes-inspired
method, using dropout during inference, to estimate the con-
fidence in the local prediction; (ii) a learnable function which
automatically classifies samples as “remote” (to be offloaded)
or “local”. Using the public Milano dataset, we investigate how
such a DDNN should be trained and operated to address (a)
and (b). In some cases, our offloading methods are near-optimal,
resolving up to 50% of decisions locally with little or no penalty
on the allocation cost.

Index Terms—Distributed inference, slicing, machine learning
methodologies, resource provisioning.

I. INTRODUCTION

The advent of 5G+/6G networks has been characterized
by a number of radical architectural transformations. Vir-
tualization and slicing of communication, computation and
infrastructure resources allow operators to co-host multiple
services and tenants, with a large variety of performance
requirements and Service Level Agreements (SLAs). What is
more, 5G networks and beyond (5G+) will be characterized
by increased programmability through the use of composable
Virtual Network Functions (VNFs), executable at various
network locations (edge/core/fog). This creates a great op-
portunity for an algorithmic optimization approach, towards
(re-)designing modern cellular networks to cope with the
daunting complexity of multi-service, multi-domain, multi-
SLA emerging environments.
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Traditionally, the various network components that affect
the overall performance of a service (e.g., MAC scheduling,
transport, core computation resources, etc.) have been opti-
mized using proprietary algorithms, heuristics and simplified
models to facilitate tractability. The literature abounds with
such problem formulations that are based on several modeling
assumptions, like knowledge of key inputs and/or stationarity
(among others), which are often not satisfied in practice.
As a result, flexible model-free algorithms based on modern
Machine Learning (ML) methods have received significant
attention as an alternative way to tackle wireless network
optimization problems arising in 5G+ networks [1]. Such
methods can learn to optimize various networks tasks, oper-
ating directly on offline (e.g., supervised learning) or online
(e.g., online convex optimization) training data, without the
need for a priori limiting modeling assumptions.

An important 5G task that has been recently addressed
with data-driven methods is that of traffic prediction and
slice resource allocation with Deep Neural Networks (DNN).
In [1]–[4], the authors use a DNN to predict the Base
Station (BS) traffic, based on past traffic demand samples. In
particular, DeepCog [3], uses a DNN placed at a datacenter,
which directly predicts the amount of resources, needed
by a slice that is associated with BSs, in order to avoid
both underprovision and overprovision of the user-generated
demand—the former results in costly SLA violations, while
the latter implies the wasting of valuable resources that
another slice/tenant could have potentially used. As a con-
sequence, said regression-like problems can be tackled by
training popular DNN architectures, using an objective with
appropriately tuned under- and over-provision terms. The
main novelty in [3] (which we will also use) is the use
of a 3D-ConvNet for resource allocation. The intuition for
their choice is that time-series corresponding to different
BS demands can be highly correlated (e.g., traffic in BSs
near tram, metro, and other “commute” spots); and thus, a
3D-CNN, receiving as input an appropriately pre-processed
image-like representation of past demands, will be able to
exploit these correlations maximally.

While the previous approach is promising, the standard
assumption of a centralized implementation of the DNN
architecture faces the following two challenges, when used
to control key 5G+ network functions: First, unlike the
use of DNNs for some application-layer tasks (e.g., im-
age classification on a mobile phone device) that can be
“lazily” offloaded to a central computational cloud, the use
of DNNs for controlling 5G edge resources (e.g., allocation
of RAN resource blocks among tenants, CPU allocation
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for CRAN processing) requires significantly lower latency;
sending all required data to a central DNN, making the
decision there, then sending back the actuation message to
the desired edge components (resources for an edge VNF),
can violate these requirements. Second, constantly sending
raw monitored data, over possibly already congested links,
towards a DNN architecture lying deep in the core network
has a prohibitive network footprint and is a costly operation.
Hence, we are interested in how such DNN architectures
could be appropriately implemented in a distributed fashion
towards resolving both of the above concerns, yet without
compromising the performance advantages of the DNN.

In the context of image classification, the seminal work [5]
introduced the concept of Distributed DNN (DDNN). The key
idea behind DDNNs is to split the layers of a DNN between
different (in the geographical sense) locations, where predic-
tions can be taken at each location: e.g., locally (edge) if the
latency requirement for a decision/prediction is stringent or
the network links to the core are congested; or remotely if
additional accuracy is needed. To achieve both tasks well, one
needs to jointly train both the local and remote layers. For a
first view of the architecture we will be discussing throughout
this paper, please see Fig. 1(a).

To that end, the main goal of this paper is to propose,
train and study a distributed architecture for a data-driven
edge resource allocation problem that generalizes the one
considered in recent state-of-the-art work [3], [4]. Our main
contributions are summarized below:
(C.1) DDNNs for regression problems. We propose a
Distributed DNN architecture that can be applied to any
regression task, thereby extending the seminal work [5] that
focused on image classification tasks. We apply this idea to
a resource allocation problem that arises in slicing for 5G.
(C.2) Edge offloading mechanism for regression tasks. The
key component of our DDNN is the offloading mechanism,
placed at the edge, which decides online whether to perform
the inference instantly at the edge or offload to the remote
core cloud for additional processing. This mechanism aims
to fulfill the stringent inference time requirements by not
compromising too much the accuracy of the regression task.
To address this, we propose the following two methods:

—Uncertainty Rule: We estimate the uncertainty of the
local exit by making multiple forward-passes, using random
dropout, of the same input sample during inference. To
generate the offloading decision, the sample uncertainty is
compared to an operator-defined threshold, which is selected
based on the inference time requirements. This methodology
first appeared in our preliminary work [6].

—Optimized Rule: After training the DDNN layers, we
do a ranking of the training samples based on the resource
allocation costs of the local and remote DNN exits. This key
meta-data allows us to cast the optimization of the offloading
mechanism as supervised learning problem. To solve this, we
train a classifier which can directly differentiate easy from
hard decisions, based on the features of the sample. It is
worth mentioning that, although we apply this approach on
a regression task, the idea is more generally applicable. For
example, it could be also used on DDNNs answering image

classification queries, such as the seminal DDNN [5]1. Our
simple yet effective methodology, essentially, bypasses the
need of uncertainty estimation at the local exit.
(C.3) Extensive evaluation of DDNNs on real data. We
demonstrate that our DDNN architecture (DDNN layers +
offloading) is able to resolve a large percentage of its deci-
sions using the local lightweight model with little (resource
allocation) cost increase. In particular, the Uncertainty Rule
can operate at a regime where 40% of the decisions are
taken locally with a penalty of ≈ 3% of cost. Moreover, our
Optimized Rule almost always outperforms the Uncertainty
Rule, and often performs close to an offline optimal Oracle,
which is a baseline we defined. Importantly, we show by
means of simulation that the Optimized Rule policy manages
to distinguish correctly the “hard” samples for which the more
powerful remote layers can offer a big resource allocation
cost reduction.

Below, we list the new technical contributions of this work
which are not present in our conference paper [6].
• The Optimized Rule for offloading, which is a learnable

ML model, optimized using principled gradient descent.
• The definition of the Oracle baseline, which serves as

an upper bound for the DDNN performance.
• The significantly extended evaluation section, that in-

cludes more experiments and baselines.

Roadmap. Section II setups the problem and the objectives
of the network infrastructure provider (slice host). Section
III introduces our DDNN architecture and the variables
involved; explains DDNN inference (how it takes the resource
allocation decisions at real time) and training; and finally
showcases the targets of the early (local) exit. Importantly, in
Section IV we present our two proposed offloading method-
ologies, specifically tailored to address regression-like tasks.
Section V presents our results and insights on DDNN system
performance. Section VI and VII discuss related and future
work respectively; and Section VIII concludes the paper.

II. RESOURCE ALLOCATION WITH DNNS

In this section, we revisit how a (centralized) DNN can be
used for accurate and “safe” slice resource allocation.

A. Data-driven Edge Resource Allocation

We consider a provider whose infrastructure is a set of
interconnected servers, from which some reside at the edge of
the network and others at the core, see [7]. The provider hosts
a set of slices, where each slice consists of VNFs. Typically,
there are two types of VNFs: i) the ones executed at the edge
(e.g., baseband unit or edge caching) and others at the core,
such as user/control plane [7]. At each timeslot, a VNF is
associated to a demand value that corresponds to the amount
of computational resources (e.g., CPU, memory) it needs
from the provider. Said resource demand is a result of the
traffic generated by the users. We are interested in allocating
resources for the edge VNFs. The set of edge VNFs is denoted
by M = {1, . . . ,M}, and the true resource demand of VNF

1Uncertainty is quantified via entropy of the DNN output in [5].
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m at t as dt,m. The VNFs we consider do not necessarily
belong to the same slice; they could be viewed as generic
network elements for which we allocate resources.

By monitoring the network activity, we keep track of the
N past traffic samples of each VNF; we denote the n-th
past demand of the m-th VNF as dt−n,m. Our goal is to use
past demands to help us allocate (schedule) resources for all
the VNFs in M (e.g. a real number indicating some kind
of resource for each), before the true demand is revealed.
The provider would like our allocated resources to satisfy an
SLA related to the unknown true demand dt,m of each VNF.
The resources are allocated by a DNN, denoted by F, and
parameterized by θ. Below, we define the input-output pair
and the loss of F.
Input: At time t, the DNN receives Dt = (dt−n,m) ∈
RM×N , where m ∈M and n = 1, . . . , N . This is a snapshot
of past traffic of all M VNFs with a window of size N .
Output: We denote with yt ∈ RM the DNN output; yt,m
represents the resources allocated for VNF m ∈M.
Operator cost: At every timestep t, the following three events
take place sequentially. First, the amount of resources that
will be allocated is computed as yt = F(Dt;θ), where
F : RM×N → RM is any “prediction” architecture (to be
elaborated shortly). Then, the users’ activity generates the
true resource demand dt ∈ RM . And finally, the network
operator pays a scalar cost f(yt,dt).

Remark: It is worth stressing that with our variables D,d,y
defined, the subscript t, as we will see next, is neither relevant
for the computation of loss, nor for the DNN execution, since
all these equations involve variables of the same timestep.
Hence, to make the notation lighter, we will drop subscript t
in the remainder of the paper. We will only use k to indicate
available data in later sections, when we want to sum them
across a dataset.

B. Optimization Objective

Typically, the target in time-series problems is to give
prediction ym for some demand dm, before the latter is
revealed. The objective is evaluated as:

f(y,d) =
∑

m∈M
(ym − dm)

2
. (1)

This objective is appropriate when we consider, for example,
analytics applications. On the other hand, when allocating
resources for slices, under- and over-provision costs are by
nature asymmetric, as they capture different penalties. The
former (ym < dm) is often governed by SLAs of the operator
with the slice tenant, while the latter (ym > dm) stems from
unused resources that, for example, the operator could have
allocated to another VNF. Typically, the operator aims to
“play it safe” striving to avoid underprovisions at the cost
of wasting few resources (i.e., allocating slightly more than
the true demand).

For every VNF m, we denote the following two events:
• “u”: ym < dm for underprovision;
• “o”: ym ≥ dm for overprovision.

TABLE I: Main Notation

d VNFs demand vector, in RM

y VNFs resource allocation, in RM

D Past traffic snapshot, in RM×N

F0 First NN block at the edge
F1 Early exit NN block at the edge
F2 NN block at the cloud
z Latent variable, output of F0

yL Res. allocation of local exit, output of F1, in RM

yR Res. allocation of remote exit, output of F2, in RM

f(y,d) Cost of allocation y, when demand is d
CL Cost of local exit
CR Cost of remote exit
b∗ Critical benefit

We denote with Iu,m = {1 if ym < dm, 0 otherwise}
the underprovision indicator, and by Io,m = 1 − Iu,m the
overprovision one. The cost incurred by allocation y can be
then expressed as follows:

f(y,d) =
∑

m∈M

(
Iu,m · gu(dm − ym) (2)

+ Io,m · go(ym − dm)
)
,

where gu/o(.) : R→ R are generic non-decreasing functions.
An example of such function, fitting well the needs of the
slicing resource allocation problem, was defined in [3] as

f(y,d) =
∑

m∈M

(
cu · Iu,m + co · Io,m · (ym − dm)

)
. (3)

According to the above, a constant cu penalty is paid for
any SLA violation (left term), and the overprovisioning cost
increases linearly (right term) with co.

For a quick reference, we gather all the notation in Table I.

C. Discussion on the Chain Embedding Problem

The Chain Embedding Problem (CEP), whose most vari-
ants have been shown to be NP-hard [8], [9], has attracted
a lot of attention from the networking research commu-
nity [10]–[15] during the last decade. Its decision variables
can be decomposed as follows: (i) the placement of the VNFs
and virtual links onto the physical infrastructure, (ii) the
routing of the traffic, and (iii) the resources that need to
be allocated (e.g., CPU or memory), also called scaling, for
the processing of the continuously fluctuating traffic demand.
This work focuses on (iii), given the solutions of (i) and (ii).

Furthermore, notice that CEP’s decomposition into smaller,
more manageable, problems can be based on the timescale
that these subproblems are solved. For example, the place-
ment is solved in a longer timescale (see [4], [16]), due
to the fact that VNF migration is a costly operation that
should not occur frequently. In contrast, the scaling, whose
main target is to react on the fluctuating demands the VNF
experiences, is solved more frequently. Evidently, the scaling
and the placement/routing are interconnected problems whose
solutions would benefit if they were solved by the same
entity. To give a simplified example, a placement policy that
assigns all VNFs into a single server, such that it can barely
accommodate its assigned load, leaves the scaler little to
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no room to increase/decrease its resources according to the
fluctuating demand. Hence, in this example the placement
policy ignores the scaler, essentially rendering it ineffective.

With that being said, technically our scaling mechanism
does not require that the same entity controls all policies,
since the physical server’s resources are always capped by
some budget. (Trivially our DNN scaling mechanism could
give the maximum resources it has available). However, for
performance reasons, having a centralized operator control-
ling all policies would be beneficial.

III. RESOURCE ALLOCATION WITH EARLY-EXIT DDNNS

In this section, we discuss how an early exit turns a DNN
into a DDNN that spans two domains, edge and a remote
cloud. To this end, we first describe DDNN inference; then
explain how such a DDNN is trained to provide meaningful
allocations both in its early (edge) local exit, as well as its
remote one; finally, we discuss the role of the offloading
mechanism in reducing the DDNN inference latency.

A. Inference

We give a brief overview of the DDNN architecture during
the inference phase, see Fig. 1(a). At the edge (left part of the
figure), N past traffic samples of edge VNFs are collected,
which create the data sample d. The sample D is forward-
passed through the DNN block F0 which produces latent
variable z. Then z is sent to either:

• The early-exit layers F1, and the resource allocation is
yL (we have a local decision); or,

• The remote cloud layers F2, and the allocation is yR

(we have a remote decision).

In the example DDNN of Fig. 1(a), z is used to trigger
the offloading decision. If the offloading algorithm decides
that a quick resource decision must be taken, then resources
are based on yL (green path), otherwise on yR (red path).
Our main contribution is the offloading mechanism. We
discuss in detail the challenges and our proposed offloading
methodologies in Section IV.

We based our DNN models on 3D-Convolutional NNs
(3D-CNN), as they have exhibited good performance on a
similar time-series task [3]. However, note that here we need
to “break” the 3D-CNN in two parts. At the edge, we have a
3D-CNN F0(·;θ0), followed by Fully Connected (FC) layers
F1(·;θ1). At the remote cloud, there is another 3D-CNN with
FC layers, denoted as F2(·;θ2). For reference of the above,
please see Fig. 1. The variables involved can be described by
the following feed-forward equations:

Latent variable: z = F0(D;θ0), (4)
Local exit allocation: yL = F1(z;θ1), (5)

Remote exit allocation: yR = F2(z;θ2). (6)

From Fig. 1(a), during inference, the offloading mechanism,
using only local information (in this example z), decides
whether local exit allocation yL should be accepted (green

path) or not (red path). The operator then pays one of the
following two:

Local exit cost: CL = f(yL,d), (7)
Remote exit cost: CR = f(yR,d). (8)

Notice that (7) and (8) use the same f(·) and the same true
demand d; but they are evaluated on the corresponding yL

and yR. Next, we discuss the offline training of F0,F1,F2.

B. Training

The blocks F0,F1 and F2 must be jointly trained to
achieve an intricate tradeoff: (i) F0,F1 must be powerful
enough to correctly resolve some decisions locally; and (ii)
F0 must still act as high level feature extractors, so that
F2 can offer added value for “hard” decisions. In DDNN
architectures [5], this is commonly achieved by a weighted
objective of (7) and (8). We train these blocks (layers) in a
centralized offline manner2. In Fig. 1(b), the latent variable
z is sent to F1, which computes yL ∈ RM , and to F2,
which computes yR ∈ RM . From the training samples, we
pick a batch and perform standard backpropagation to update
θi∈{0,1,2}. The joint cost CJ of a sample is:

CJ = w f(yL,d;θ0,θ1)︸ ︷︷ ︸
local exit loss

+(1− w) f(yR,d;θ0,θ2)︸ ︷︷ ︸
remote exit loss

. (9)

Observe that CJ depends on θ0,θ1,θ2; and the weight w ∈
[0, 1] controls the importance of one exit at the cost of the
other. When w = 0, only θ0 and θ2 are updated since they
affect CJ , but θ1 is not; as a result, only yR is trained. In
the opposite case, if w = 1, only yL is trained.

Remark: We stress the following two facts regarding training
with the joint-exit objective (9):
• Training a DDNN with w = 0 is equivalent to a standard

centralized DNN with a single final exit, i.e., yR.
• Training a DDNN with w > 0 yields improved test

accuracy for yR compared to using w = 0, i.e., the
centralized case.

The latter, perhaps surprising, fact was first studied in [17],
where the authors observed that the joint-exit training acts as
a source of regularization to yR. Intuitively, by optimizing
also yL, we make it harder for yR to overfit the data. This
is discussed in the results section, where the yR of a DDNN
(trained with w > 0) is shown to perform better than the
corresponding final exit of a standard centralized DNN, such
as DeepCog [3].

C. Exploiting the Local Early Exit

The goal of DDNNs is to offer flexibility by splitting the
layers across two or more domains, giving rise to the so-
called edge-cloud continuum. A first advantage of an early
exit is the adaptive and controllable speed of inference. This
is relevant to slicing, given the stringent latency require-
ments of 5G+/6G applications. Moreover, early-exit inference

2Distributed training is an important topic, but is orthogonal to our work
which mostly targets the inference phase of the DDNN.
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Fig. 1: Signal flow for Distributed-DNN. (a) latent variable z is used by the offloading mechanism, which then triggers either local (green) or remote (red)
response. (b) Dashed lines indicate that training is carried out offline, during which, true demand d and both exits yL,yR are needed.

reduces the channel communication costs, which can be
quantified by considering the amount of data transmitted
through the channel. In our application, since a network
can host many slices with many VNFs [18], a centralized
approach, transmitting the features d to the remote cloud,
could contribute in congesting the link between the two
domains. On the other hand, DDNNs are more scalable since
they transmit latent variables, such as z, which only depend
on the DNN architecture.

Our focus in this paper is maintaining a low latency, while
minimizing the resource allocation cost. We assume that
network channel conditions are fixed; hence the Round Trip
Time (RTT), defined as the expected total time needed for
z to reach the remote cloud plus the time needed for yR

to reach back the edge, is considered fixed. This assumption
simplifies the problem, as an increase in the use of local exit
immediately suggests a decrease in latency3. For example,
early exiting 50% of the time implies avoiding 50% of RTTs.

Definition 1 (Offloading G). An online mechanism, placed
at the edge, which irrevocably decides if the inference will be
done via the early exit (yL,t) or via the remote one (yR,t).
The available information for G is only edge data, and at
time t its output is lt ∈ {0, 1}, with lt = 1 indicating to
use the local exit, and lt = 0 to use the remote cloud. In a
horizon of T samples, we denote the percentage of samples
resolved locally L = 1

T

∑T
t=1 lt.

Target (informally). The operator wishes that G takes of-
floading decisions which minimize the provisioning cost
(objective), and that keep the number of locally resolved
samples L ≥ L0, with L0 ∈ [0, 1] (constraint); the later is
used as a proxy for latency. In other words, the goal of G is
to filter online the samples for which CL −CR >> 0 (using
one or more variables out of {D, z,yL}), and to send them to
the remote cloud. The mechanism G has to solve this online
with access to limited information, which renders its target
very challenging.

To address the offloading problem, a typical heuristic is to

3This assumption also allows us to handle samples in a stateless manner.
Otherwise, if conditions are changing, actions taken now can affect future
rewards. We discuss more on this more in the future work section.

use the entropy of early exit yL [5]. The operator controls
L implicitly via a tunable entropy threshold. Setting this
threshold low means that we accept only very confident
answers from the early exit, and hence L will be low. In
the next section, we will present two ways of modeling G.
We will first explain why the vanilla entropy approach fails
in regression tasks and modify it accordingly. Then, we will
present a second method to design G, which is data-driven
and more grounded to basic optimization principles.

IV. HOW TO OFFLOAD HARD DECISIONS REMOTELY

In this section, we are assuming that layers F0,F1,F2

are optimized for the resource allocation task, and we focus
on the design of offloading mechanism G to achieve its
targets. First, inspired by the seminal work [5], we present
a novel method based on local exit uncertainty. Our main
differentiation with respect to [5] is that our DDNN predicts
numerical values that correspond to some resource, and not
classes, which makes it more challenging. Our preliminary
work [6] was the first that attempted to face this problem
(Section IV-A). Then, we propose a more principled design
of the offloading mechanism by casting its optimization as a
supervised learning problem (Section IV-B).

A. Uncertainty Rule

In this approach, the local information that is used to
produce the offloading decision, l, is yL [6]. Uncertainty
U of local layers on input D should be defined such that
low U means yL is a confident output; while high U will
urge us to forward z to F2 and use yR as our decision
instead. Such a rule came quite naturally in the context of
classification tasks [5], using entropy. However, recall that
entropy is measured over discrete support set (labels/classes),
unlike our case, where the prediction is a numerical value.

To address this issue, our starting point is recent results
in [19] and [20], where the main goal is the study of
uncertainty, regardless of the task resolved by the ML model
(classification or regression). The idea is that forward-passing
the same sample, using dropout, multiple times causes a
perturbation on yL, which can be used to estimate the
model’s uncertainty. In the context of resource allocation
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Fig. 2: DDNN with online offloading rule (the “offload” block resides at the edge). (a) The thicker F0 to F1 indicates the B forward passes needed in order
to generate YL, with which we estimate the uncertainty U . (b) The data point D is fed directly to trainable model G inside the offload mechanism.

with centralized DNNs, this technique was also used in [4];
however, its purpose there was safety. Effectively, when un-
certainty was low, the DNN returned the average of the output
allocations. Otherwise, it returned one of the conservative
output allocations, thereby avoiding underprovision events.

Unlike the above works that focus on DNNs, our main idea
is to leverage this technique as a proxy to discover easy and
hard samples. The idea is to evaluate the uncertainty U of the
local exit on D; and if U does not exceed some predefined
threshold u, we accept yL as our resource allocation; other-
wise we reject the local exit and use yR. Our approach is
carried out online and needs no offline optimization steps.
In more detail, a DDNN equipped with Uncertainty Rule
offloading is depicted in Fig. 2(a). At time t, first we forward-
pass D via F0 to get z, which we send to “offload”; moreover,
the latent variable z is sent to F1 so that yL is computed
and also sent to “offload”. Second step is to compute the
offloading decision, which is done as follows. The input D
is forward-passed B times through F0 and F1, by applying
random dropout of the neurons at those blocks. This creates
B random realizations of local exit yL; we denote the b-
th one as yb

L. Further, we denote with YL ∈ RB×M the
matrix that stacks those B realizations. (We remind that every
row of that matrix is of size M , which is the number of
VNFs we allocate resources for.) Then, uncertainty, U , is
measured using the maximum variance across the B random
realizations. In particular, we compute the variance of every
column of YL, which results in M variances, one for each
VNF. Formally, U is given below:

U = max
m∈M

{Var(ymL )}. (10)

Intuitively, this can be understood as a proxy for the worst-
case VNF prediction. Finally, we compare U to a predefined
threshold u, which is selected by the physical network
operator. If U > u, we offload to the remote cloud, otherwise
we use the unperturbed version of the local exit yL which has
been stored at the “offload” block. Notice that the threshold u
acts as a knob: u = 0 means that even very small uncertainty
U is not tolerated and the operator will trust the remote DNN
to make the resource allocation; while a high value of u
implies that the operator might accept local exit decisions that
have uncertainty, because the system could, at the moment,
have, e.g., very stringent latency requirements.

Our intuition for using this approach is the existence of
some correlation between the variance of yL and the differ-
ence CL−CR; however, there is no theoretical guarantee that
yR will be “better” (i.e. have lower resource provision cost)
if the yL confidence is low. In fact, this is not true, in general,
even for the original entropy-based metric, for classification
problems like the one in [5]. We remind, therefore, that the
target of G is to discover the 1−L0 percentage of samples for
which the cloud benefit is high and delegate them remotely,
and to this end, we propose an alternative, optimization-based
methodology in the following subsection.

B. Optimized Rule

We propose a second offloading methodology that lever-
ages the training data we have access to, which are typically
ignored by uncertainty-based methods [5], [6]. The key idea
stems from taking the target defined in Section III-C and
translating it into an optimization problem.

Formulation. The offloading task needs to be addressed by
an online algorithm. In the literature of online algorithms (see
e.g., Ski Rental [21]), a typical practice is to formalize the
offline full horizon optimization problem, in order to define
the optimal benchmark. The key step is to observe that, since
F0,F1,F2 have already been optimized, we know the local
and remote exit allocations, and therefore their associated
costs, CL and CR, for all samples in the training data.
Below, we use subscript k = 1, . . . ,K to indicate training
samples we have access to. The offline optimization problem
addressed by G then becomes as follows.

Optimization Problem (Offline).

minimize
lk

1

K

K∑
k=1

(
CL,k · lk + CR,k · (1− lk)

)
, (11a)

subject to
1

K

K∑
k=1

lk ≥ L0. (11b)

Problem (11) has a tradeoff: the higher L0 (i.e., the more
the early exit samples), the less we use the remote exit, which
will typically have better (lower) costs. We solve it with
Algorithm 1, to which we provide as inputs {CL,k}k=1,..,K ,
{CR,k}k=1,..,K and the constraint requirement L0.
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Algorithm 1
Input: L0, {CL,k}k=1,..,K , {CR,k}k=1,..,K

1: Compute b: bk ← CL,k − CR,k . b ∈ RK

2: b′ ← Sort(b) . Increasing order
3: b? ← percentile(L0,b

′)
4: return b?

Oracle-based labeling. The critical benefit b? is the value for
which L0 percent of the benefit values of the training data are
lower than b?. The idea is to use b? to create new labels, in
order to cast the optimization of G as supervised learning. In
particular, samples D for which bk < b? are labeled as “easy”
(i.e., their benefit when using the remote cloud is not too big,
and thus we can resolve locally) and the rest as “hard”. Below,
we explain first how to train an ML (supervised) model that
mimics the behavior of the offline optimal algorithm, and
then how the said model operates during inference.

Training. For our training data, we compute the critical
benefit b∗ using Algorithm 1. Then we label as “easy” the D
for which CL−CR < b∗, and the rest as “hard”. We now have
access to a new meta-dataset, whose input/output pairs are
well defined. Using this new data, we can train a classification
model that will serve as our offloading mechanism. Notice
that if the latency requirement L0 changes, the labels also
change, and we thus need to train a new Optimized Rule.

Inference time. In Fig. 2(b), we show the execution steps of a
DDNN, equipped with the Optimized Rule, at inference time.
First, D is used as input in F0 and in the offload mechanism,
where the already trained ML model lies. Block F0 produces
z which is also sent to offloading mechanism. In parallel,
the Optimized Rule computes the offloading decision, p. If
p < 1/2, latent variable z is forwarded to F1, otherwise to
F2, and the corresponding resource allocation will be used
(green or red path).

The Optimized Rule has the following advantages at infer-
ence time compared to the Uncertainty Rule:

1) Since it does not need an estimate of uncertainty (hence
no need for artificial randomness), it requires a single
forward-pass of the edge DNN blocks.

2) When it offloads to the cloud, it bypasses the execution
of F1, potentially achieving important energy savings.

V. PERFORMANCE EVALUATION

A. Preliminaries

Dataset and preprocessing. We validated the performance
of our architecture with the public Milan dataset [22], widely
used in similar studies [23]. Specifically, we use traffic (time-
series signals) seen by BSs (measured in MBs) to simulate
traffic patterns of VNFs.

To exploit the full potential of 3D-CNNs on time-series
signals, we apply a preprocessing procedure that was first
used in [3]; we restate it here for completeness. At a
high level, this procedure is responsible for taking an input
D ∈ RM×N , i.e., a 2D matrix, and transforming it to a
new D′ ∈ RMD×MH×N , i.e., a 3D tensor that will be used

as input to the 3D CNN. Notice that the transformed D′

is now a rectangular prism of size MD × MH and length
N . Essentially, this procedure aims at placing the BSs in
matrix coordinates, such that highly correlated BSs end up
neighbors, as is the case with pixels in images. Note that
this procedure applies to both centralized and distributed
inference, as its role is to transform the input D.

We begin by normalizing each time series with respect
to their min and max values. The placement is then found
in two steps. First, we compute the correlation pairs, qij ,
between BSs i and j using shape based distance [24]. Then,
let p ∈ R2×M be our optimization variable, with pm ∈ R2

indicating the location of BS m in 2D. The locations pm,
that maximally respect the BSs correlations qij , are found by
solving:

minimize
p=[p1,...,pM ]

∑
i6=j

(||pi − pj || − qij)
2. (12)

Second, we map every BS to a matrix coordinate. To do this,
we define costs cij = ||pi − yj ||22, where yj is the j-th point
of the regular 2D grid. We now need to find the assignment
of BSs to points in the 2D regular grid that minimize the
total cost. Let our optimization variable be X ∈ {0, 1}M×M
with xij = 1 meaning that BS i is assigned to point j of the
2D regular grid. Using [25] we solve:

minimize
X

M∑
i=1

M∑
j=1

cijxij

under constraints
∑M

i=1 xij = 1, and
∑M

j=1 xij = 1, ∀ (i, j),
which gives the desired assignment.

For our experiments, we randomly pick M = 49 BSs and
do the above preprocessing step. The input sample we feed
to the edge CNN is a “traffic box” of size 7×7 and length N
(window of past samples)4. We will use N = 6 and N = 25
(these values correspond to 1h, and to 4h10’ respectively).
DDNN layers. For a fair comparison against [3], we use an
architecture based on 3D-CNNs and FC layers.
• Edge: F0 is a CNN with 32 filters of kernel size 3; and
F1 a FC layer from 64 → 49.

• Cloud: F2 is a CNN with 16 filters of kernel size 5, and
two FC layers, one 128 → 64 and a 64 → 49.

where in both cases, M = 49 is the number of VNFs for
which we give predictions.

Finally, the Optimized Rule’s ML model is represented by
a 3D-CNN (32 filters) and a FC layer, 64→ 1. It is important
to stress that other classifiers (DNN-based or not) could be
trained to perform the offloading task. Nevertheless, the above
design seems like a reasonable choice since D is already
arranged as a 3D traffic box.
Objective function. We remind the reader that our goal is
to provision resources for VNFs, with asymmetric costs for
under- and over-provisioning. To this end, and without any
loss of generality, we use the objective, proposed in [3], see
(3), which captures well the nature of our target.

4Although we picked as traffic image a square grid, the methodology can
be applied to more general structures.
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Performance metrics. In this simulation, we will focus on
two metrics, where both are measured over the K test data
samples. The first is the average cost C, expressed as:

C =
1

K

K∑
k=1

(
CL,k · lk + CR,k · (1− lk)

)
, (13)

where CR,k is the allocation cost of the k-th sample when
using the remote exit yR,k; lk (defined in Section III-C)
indicates an early (local) exit decision for sample k. The
second is the percentage of test samples resolved locally at
the edge, defined as:

L =
1

K

K∑
k=1

lk. (14)

Baselines. We discuss five methods that will be used for
comparison against our proposed solutions. The first four are
DDNN-based, with layers F0,F1,F2 optimized using joint-
exit training, see (9). Later when we show a plot of results
for a DDNN, the same w > 0 was used to train all said
baselines. The last baseline is centralized.
Cloud: A DDNN which resolves all samples at the remote
cloud; that is, it uses always yR for the resource allocation.
The cost achieved by this baseline is denoted as Ccloud and
should be expected to be low (good) as it makes use of the
cloud layers for every sample; by design it has L = 0%.
Edge: A DDNN resolving all samples at the early exit, i.e.
yL. We call its cost as Cedge, and we expect that it is rather
high (bad), as it makes use of the few edge layers for every
sample; by design it has L = 100%.
Random: A DDNN whose decision to resolve a sample
locally, l, is an i.i.d. Bernoulli random variable with suc-
cess probability L0. As a result, the percentage of samples
resolved locally is (on average) simply L = L0. In our
simulations, we show results of the DDNN with Random
offloading using a L0 ∈ [0, 1]; this will return a range of
costs C, which we should expect to be between Ccloud (for
L0 = 0 offloads all the samples to the remote cloud) and
Cedge (when L0 = 1, it resolves all samples locally).
Oracle: A DDNN with access to the test set beforehand,
which solves the problem optimally offline. For a given L0,
it uses Algorithm 1, and sends to the cloud only the actually
1−L0 “hard” samples — said differently, the ones for which
CL − CR > b∗. In our simulations, we plot the resource
allocation cost for increasing L0 (or increasing b∗). We stress
that this an unrealistic, ideal and non-causal benchmark which
helps for comparison purposes mostly.

Remark on Oracle: The Oracle can outperform the Cloud
in terms of allocation cost. This can be explained by the fact
that there are samples for which CL < CR, i.e., the local
exit has lower provision cost. The Oracle will correctly use
the early exit for these samples, achieving even lower cost
compared to resolving everything at the remote cloud.
DeepCog: A DNN entirely placed at the cloud, with a single
final exit, which is not using joint-exit training. This baseline
uses the core principles of [3]: (i) traffic image inputs, (ii)
3D-CNNs, and (iii) centralized training. Since it is based on

TABLE II: List of baselines for performance comparison

Joint-exit training Cloud offloading
Cloud 3 always
Edge 3 never

Random 3 random w.p. 1− L0

Oracle 3 if CL − CR > b∗

DeepCog [3] 7 is cloud based

the remote cloud, it has L = 0 by default. We denote its cost
as CDeepCog. Notice that the key difference between Cloud and
DeepCog is that the former uses joint-exit training, while the
latter does not.

The training methods and the offloading policies for the
baselines are summarized in Table II.

B. Deep Learning Resources

Two important considerations we need to make when using
deep learning are the resources that are needed, both in
latency and energy, during the inference phase of the model.

For our experiments, we used google colab [26], a free
platform where users can develop deep learning projects on
GPU-enabled servers. Each user is allocated an NVIDIA
Tesla T4, which can execute up to 8.1 TFLOPs, with a RAM
of 16 GB [27].

Inference latency. First, we provide some data related to
latency. Notice that while the setups where such distributed
architecture could be applied may vary, below we try to
devise a scenario with realistic values, as a reference, to better
illustrate the potential latency savings. The two sources of
inference latency are the following. (A) Communication: In
a recent systems-oriented study, to emulate an edge-cloud
connection in a wide area network (e.g., via 4G or beyond),
the authors set the RTT to 42.46 ms [28]. (B) Computation:
In our case, it is the execution times for layers F0,F1,F2.
We use those layers for inference on 714 samples (our test
data) 10 times; the average times per sample are as follows:
(i) TF0

= 0.1 ms, (ii) TF1
= 0.12 ms, and (iii) TF2

= 0.23
ms. According to those values, the more samples we resolve
locally, the lower the inference latency. As an example, if
L = 30%, that would translate to an expected inference time
T = 0.3× (TF0

+ TF1
) + 0.7× (TF0

+ RTT + TF2
).

Energy and size. Second, we report some figures regarding
the consumed energy and the size of our DDNN. The former
is measured, as is common in the deep learning community,
in floating point operations (FLOPs) and multiply-accumulate
operations (MACs); while for the latter we report the number
of parameters (also called weights)5. Our DDNN architecture
consists of two models, one at the edge and one at the remote
cloud; below we report these three numbers for both. Note
that the differentiation between the two is important since the
edge is in practice more resource-constrained than the remote
cloud. To make these measurements more meaningful, and
for the sake of comparison, we provide the same data for
the well-established AlexNet model, which can be deployed
onto mobile devices [29]. From Table III, our cloud model

5In that table, “M” stands for mega.
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TABLE III: Deep learning resources

MFLOPs MMACs MParameters
DDNN-Edge 15.3 7.6 6.3
DDNN-Cloud 222.1 111.0 12.7
AlexNet [30] 2859.5 1428.4 61.1

(i.e., F2), needed 222.1 MFLOPs, indicating that it is a rather
light architecture—an order of magnitude less than AlexNet.
What is more, the edge model (i.e., F0,F1), which is actually
the resource-constrained model needs only 15.3 MFLOPs.
In fact, looking at the rapidly improving edge AI hardware
market, we observed that our architecture is much lighter than
the current hardware capabilities for edge ML. An impressive
edge AI hardware example is a recent product of NVIDIA,
called Jetson TX2, which has capabilities of 1.2 TFLOPs and
a memory of 8 GB [31].

C. Worst- and Best-Case Tradeoffs

The goal of this subsection is twofold. First, we want to
make sanity checks on the training of DDNN. In particular,
we would like to draw some conclusions on the difference
between costs of local and remote exits, (CL) and (CR). If
CR is better than CL for most samples, this implies that the
overall cost performance can benefit by offloading samples
to the remote cloud, i.e., do resource allocation using also
F2. For this, we will use the naive methods Cloud and
Edge. Second, we would like to understand the performance
limits of a DDNN. To this end, we leverage the Oracle to
answer the following question: for given L0 requirement (or
critical benefit b∗), what is the best possible combined cost
(obviously using both yL and yR depending on which one
is better) that a DDNN can achieve.

In each plot of Fig 3, we have chosen a different under-
provision penalty; in Fig. 3(a), we have cu = 0.5 and in
Fig. 3(b), we have selected cu = 10. The overprovision on
both cases was penalized linearly with co = 1; see objective
function in (3). For each objective, we train a DeepCog and
a DDNN with joint-exit training (see (9)) with w > 0. The
joint training of the DDNN corresponding to cu = 0.5 and
Fig. 3(a) was done using w = 0.2, whereas the one of
cu = 10 Fig. 3(a) was with w = 0.4. In all cases, we
used a window of past samples N = 6. The results for
different values of w > 0 do not vary much; however, we
chose to show the ones that empirically demonstrated the
most interesting performance.
Cost difference of naive methods. We compare the cost
of Cloud and Edge, using the same trained DDNN. First, in
Fig. 3(a), we can see a 14% difference between the local
and the remote exit Cedge and Ccloud, while in Fig. 3(b), the
respective difference is around 30%. This gap indicates that
for this specific task, the remote layers offer added benefit
as they achieve lower cost. Had we observed Cedge = Ccloud,
this would imply that the local layers suffice for the task.
Performance limits of DDNN. The second aim is to compare
the non-causal Oracle with the rest of the baselines.

Oracle: For increasing constraint requirement L0, every
blue diamond represents the optimal resource allocation cost
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Fig. 3: Baselines performance curves. x axis is L and y axis is cost C, for
all test data, when using the baselines of the legend.

C (in y-axis), see (13), and its corresponding percentage of
samples that was resolved at the edge L (in x-axis), see (14).
On the left, we start by demanding L ≥ L0 = 0, and almost
all samples are naturally resolved at the cloud (L is very low);
and L0 increases, more samples are resolved at the edge. We
observe the following two points. (a) Cost C is increasing
as more samples are resolved locally; and it does so in a
“convex” fashion (with upwards curvature), suggesting that
a perfect offloading rule is able to classify as “easy” only
the samples whose benefit b (of using the remote cloud) is
indeed very low, and thus the average cost C is not severely
increased. (b) With respect to DeepCog, in Fig. 3(b) we can
see a cost increase of only 6% when a huge 50% portion of
the samples are resolved locally. In addition, in the adjacent
plot, Fig. 3(a), when L = 70% of samples are resolved locally
(thus speeding up the expected inference time by a lot), the
Oracle loses nothing in cost performance; that is the y-axis
value of Oracle at L = 70% is almost the same as the C of
DeepCog which resolves all samples at the cloud (L = 0).

Random: We vary L0 from 0 → 1 and observe the cost
C increasing linearly, starting from Ccloud → Cedge. The
linear behavior indicates that this policy serves as a worst-
case performance bound; any DDNN with offloading whose
cost value lies above this line is essentially not useful6.

Implication. Comparing the Oracle with the Random, we

6It is easy to construct an even worse offloading policy, i.e., pick the exit
with the highest cost, however, this does not give a meaningful bound.
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conclude that at least the non-causal Oracle can do much
better than Random. On the contrary, if the two curves of
these two coincided, there would no hope for any DDNN
with an online offloading policy to do better. Our desire is
that our online offloading policies to have performance curves
that lie close to the Oracle.
Take-away #1. A DDNN with Oracle offloading can have the
same resource provisioning cost as DeepCog, while resolving
L ≈ 70%) of the samples quickly at the edge.
Remark on Fig. 3(a). When b∗ = 0, the Oracle resolves
around 20% of the samples locally. Hence, for 20% of the test
samples, the local exit has better (lower) cost than the remote
cloud. Notably, the phenomenon that more layers return a
worse result (higher cost) is not new, and has been coined
as “DNN overthinking”; for more details see [32]. This is
a follow-up to the remark we made on the Oracle in the
previous subsection.

D. DDNNs with our Proposed Online Offloading Policies
This subsection comprises the main body of our results,

where we present the findings for DDNNs, coupled with
our proposed offloading policies. We first explain how our
results were generated, and then investigate how our proposed
methods fare against the baselines.

We train four DDNNs (layers F0, F1, F2) using the fol-
lowing parameters. First, Fig. 4(a): cu = 0.5 (underprovision
penalty of objective function), N = 6 (window of past
samples) with w = 0.2; second, Fig. 4(b): cu = 1, N = 6
with w = 0.2; third, Fig. 4(c): cu = 10, N = 25 with
w = 0.4; and finally fourth, Fig. 4(d): cu = 20, N = 25 with
w = 0.7. In all of them, overprovision is penalized linearly
with the difference y − d. To generate our results, we pick
a trained DDNN and use an offloading policy that decides
where the sample will be resolved. We describe below how
a point (L,C) in the plots of Fig. 4 is generated.
Uncertainty Rule. First, the input D is forward-passed B
times. Then the uncertainty U is computed using (10), and
is compared to threshold u (set by the operator). This is
done for all data points of the test set. To generate multiple
performance regimes (L,C) (see Fig. 4), we started with
u = 0. For this value, all samples are exited remotely (i.e.,
L = 0%), implying no uncertainty tolerance. We gradually
increased u to 0.5; for u = 0.5, the rule exited all samples
locally, i.e., L = 100%. It should be noted that u = 0.5
was found empirically, by means of multiple simulations. In
between those extreme values, we chose a small step size
to generate multiple (L,C) points of the plots in Fig. 4.
Finally, tuning B is also not straightforward: large B might
be required to get reliable estimates of U , but in practice each
extra forward-pass incurs a cost. We show two versions of
the Uncertainty Rule, with B = 2 and B = 10. As it can
be already understood, this mechanism demands significant
tuning effort from the operator [6]; and in fact, this was
our main driving force for designing the next offloading rule
which is more principled and easier to tune.
Optimized Rule. For a given L0, we train (offline) a single
DNN model which learns to offload (to the cloud) samples

that are hard to predict. We forward-pass all the test samples,
and the DNN (i.e., the Optimized Rule) classifies every
sample as “local” or “remote” with one forward-pass. To
generate more (L,C) points, we increase L0 which leads
to an increase in L. Compared to the Uncertainty Rule, this
rule does not demand a lot of tuning. The operator only needs
to train an ML model by inserting the percentage of sample
L0 that they wish to resolve locally.

Main result: Performance curves. We investigate how our
two offloading policies, together with a trained DDNN, fare
against (a) the DeepCog, and (b) the upper (Oracle) and lower
(Random) bound baselines. In general, as one would expect,
the cost C increases as L goes from 0→ 1; in other words,
the more we allocate resources based on yL, the higher the
average cost C becomes (fewer layers).

With respect to the centralized DeepCog, as shown in
Fig. 4(a) (cyan square at L = 0%), we see the following:
(a) When the Uncertainty Rule resolves L = 40% at the
edge and its C is only 2% higher. (b) Even more strikingly,
the Optimized Rule resolves 50% of the samples at the edge,
while losing nothing in provisioning cost. In more detail, in
Fig. 4(b), an only 5% performance degradation allows the
Optimized Rule to resolve 50% of the samples locally; a
big improvement in latency. Similar merits are observed in
Fig. 4(c), where a 5% cost increase allows us to raise the
utilization of local exit to L = 40%. Finally, in Fig. 4(d),
the Uncertainty Rule resolves about 42% of samples locally
while increasing 5% of cost; and the Optimized Rule increases
the cost by 7% while resolving 58% at the edge.

We conclude by comparing our two proposed solutions,
and observe three points. First, in all of our plots, the
Optimized Rule outperforms the Uncertainty Rule. Second,
the Optimized Rule is in three out of four cases very close
to the Oracle, and in no case close to the Random. Third,
the Uncertainty Rule has more unpredictable behavior, as in
Fig. 4(a) it is close to Random and in Fig. 4(b) close to
Oracle. Representatively, in Fig. 4(b), we can observe that the
Uncertainty Rule performs close to Oracle when it makes 10
forward-passes; however, it is close to Random when B = 2
(2 samples are not sufficient to estimate U ). On the other
hand, the Optimized Rule outperforms both and is close to
the Oracle upper performance bound. Finally, in Fig. 4(c), the
Uncertainty Rule is better than Random (and actually better
as B increase), but again the Optimized Rule outperforms it
and lies close to the Oracle.

While our focus is on the cost paid by the operator, as
computed by (13); another important cost we account for
during inference is the energy in order to take the offloading
decision. Although the Uncertainty Rule performs well in
some occasions, it needs many (B = 10) forward-passes
at the local exit to estimate U , and these operations are
costly. On the other hand, the Optimized Rule does only one
forward-pass, consuming, as a result, much less energy. This
is just a hint on the issue of energy; we believe that more
detailed energy-oriented modeling should be done to study
this appropriately, and defer this for future work.

Take-away #2. The Optimized Rule exhibits an almost ideal

10



Cloud DeepCog Edge Random Oracle Uncer-2FP Uncer-10FP Opt

0.0 0.2 0.4 0.6 0.8 1.0

Local Exit Percentage (L)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

E
x
p
e
c
te

d
 S

a
m

p
le

 C
o
s
t 

(C
)

(a) cu = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

Local Exit Percentage (L)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

E
x
p
e
c
te

d
 S

a
m

p
le

 C
o
s
t 

(C
)

(b) cu = 1

0.0 0.2 0.4 0.6 0.8 1.0

Local Exit Percentage (L)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
x
p
e
c
te

d
 S

a
m

p
le

 C
o
s
t 

(C
)

(c) cu = 10

0.0 0.2 0.4 0.6 0.8 1.0

Local Exit Percentage (L)

0.80

0.85

0.90

0.95

1.00

E
x
p
e
c
te

d
 S

a
m

p
le

 C
o
s
t 

(C
)

(d) cu = 20

Fig. 4: Proposed methods plus baselines performance curves. x axis is L and y axis is cost C, for all test data, when using the methods of the legend.

behavior; it is consistently better than Random, and in many
cases it is close to the optimal Oracle.

E. Further Studies on the Optimized Rule

Having established the benefits of the proposed Optimized
Rule, we study it further. The results that follow correspond
to the case when the underprovision penalty cu = 20, and
the overprovision is linear.

-Training. In Figs. 5(a), 5(b), we see two scatter plots,
where a dot corresponds to a training sample D. In particular,
y-axis is the benefit of using the remote cloud, CL − CR;
while x-axis is the probability with which the Optimized Rule
offloads remotely, allocating resources based on yR.

In these plots, the Optimized Rule has been trained using a
single L0, which resulted to a critical benefit b∗ ≈ 100 (noted
with a black horizontal line); see Section IV-B. In epoch 1,
the samples are randomly placed as expected; this suggests
that the untrained Optimized Rule returns random decisions.
However, after 180 epochs, the desired behavior is observed:
the samples with benefit lower than the critical one (black
line) start getting probability less than 1/2 to be offloaded.
On the contrary samples with benefit higher than b∗ are sent
to the cloud, which is exactly the behavior we we wanted
to observe. Further, observe that samples with benefit much
less than b∗ are given a probability close to 0.0; whereas the
ones with a benefit much higher than b∗ are confidently sent

to the cloud, with their probability being close to 1.0. Notice
that while Fig. 5(b) implies overfitting, this is not the model
we extracted from the training; we show it in order to exhibit
that the ML model of the Optimized Rule was able to classify
accurately the training samples.

-Test. In Fig 5(c), on the y-axis we plot the cloud benefit
values, CL − CR of the test dataset plotted on time (x-
axis); the black line corresponds to the critical benefit. The
experiment we see in this plot was carried out in two stages:
(a) we compute the benefit values of the test samples offline,
which gives us the true labels (“easy” or “hard”); then we
simulate the real-time inference, allowing the Optimized Rule
to make its decisions. With green we mark the samples for
which the Optimized Rule returned l = 0, whereas with blue
the ones for which l = 1.

Take-away #3. The Optimized Rule, using only the features
of sample D, can successfully infer for the majority of
samples if the cloud benefit exceeds b∗.

Different input features in Optimized Rule DNN. It is
clearly possible to use other local signals to train the Op-
timized Rule, with the tradeoff in that case being potentially
better accuracy vs higher training time, or more expensive
Optimized Rule ML model. Although this is an interesting
topic, it is orthogonal topic to our work; nonetheless, to better
fortify our methodology, we tried other candidate signals in
order to see if significant changes will occur. Specifically
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Fig. 5: (a,b,c): Detecting samples with benefit higher than b∗ ≈ 100.0, cu = 20. Plots (a,b) depict the evolution of the training, while (c) shows the testing.
(d): Performance curves (testing) when feeding the Optimized Rule DNN different local signals as input.

TABLE IV: Latency for Optimized Rule (DNNs are on GPU)

L (%) 4.2 15.8 46.2 54.4 69.6 81.9 97.7
Latency (ms) 41.0 36.1 23.1 19.6 13.2 7.9 1.2

these were: D, z, and yL. From the three, z is the richer
one, as it is an encoded (latent) version of D; recall that
z = F0(D). To this end, we train three DNNs based on
MLPs, each receiving one of these inputs. Interestingly, as
we can see in Fig. 5(d), no major advantages were achieved
by different features, at least in this scenario; nonetheless, a
detailed investigation is of course open for future work.
Latency improvement. In Table IV we show some results
that correspond to Fig. 4(b). In particular, from that plot we
list the values of L, achieved by the Optimized Rule and of
the corresponding latency we measured. When a sample is
resolved locally, it experiences the computation latency of
F0,F1 – while when it is resolved remotely it experiences
F0,F2 and the RTT [28]. We see clearly that as L grows,
the inference latency drops; in fact, for example when the
Optimized Rule resolves L = 81% of samples locally, it has
12% higher cost than the centralized baselines (DeepCog and
Cloud), while having 5 times lower inference latency.
Local and remote exits. Finally, we consider the effect of
increasing the penalty paid cu when underprovision occurs.
In Fig. 6, we see the resource provision outputs of the edge
and the remote cloud along with the true demand. On the
left, the penalty is low, cu = 1, and hence neither exit

“worries” too much about underprovisioning. As a result, the
output looks more like the DNN exits are trying to track the
demand, rather than be safe and avoid underprovisioning. On
the right, increasing cu to 20 leads to a drastically different
resource provision, as we can see that both exits are trying
to heavily overprovision in order to avoid the penalty cu.
Notice, however, that in the latter plot it is more evident that
the remote allocation yR overprovisions less than yL.

VI. RELATED WORK

Our work applies early-exit DDNNs on a resource alloca-
tion application in slicing. Below, we discuss related art with
respect to the application and the DDNN methodology.

Resource allocation for slicing. The problem of resource
allocation has been examined by a variety of angles; it
has been addressed using DNN-based approaches [3], [4]
and stochastic control methods [33]. Additionally, slicing
has been a fruitful field of application for other data-driven
methods such as Online Convex Optimization (OCO) [23],
and Reinforcement Learning (RL), see e.g., [34], [35]. More-
over, in slicing, a more general problem is the service
function chain embedding, which deals with the placement
and reconfiguration of VNFs and virtual links on top of
the physical network infrastructure. Some works resolving
this problem typically use techniques based on algorithmic
heuristics for scalability reasons, such as [7], [10]–[15]. What
is more, fairly recently, with the resurgence of Continuous
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Fig. 6: Example VNFs true demand, edge/local exit allocation and
cloud/remote allocation; as cu increases the allocation becomes ”safer”.

Optimization, an ADMM-based algorithm framework was
proposed in [9], which exhibited fast convergence properties.

Early exit DDNNs. The viewpoint of DDNNs [5], [32], [36]–
[38] with early exit(s) is a recent and promising research
avenue with many under-explored applications. In this line
of research, a key quantity is the amount of information
transmitted to the remote layers. Recent works have proposed
systematic ways of compressing that information (see zt
in Fig. 1), e.g., by dynamically adjusting the sent features
depending on network conditions [38]–[40]. Furthermore,
on a different note, a more theoretical work was presented
in [41]. The authors, assuming that more layers imply a better
accuracy, formulated the offloading decision-making problem
as an online learning problem and managed to achieve non
trivial regret guarantees.

Progressive inference. In this approach the DNN is split
in two locations, but all samples are forward-passed through
all layers. As a result, the expected accuracy of the model
remains fixed. The first work using this approach was
the seminal measurement-oriented Neurosurgeon [29], where
the authors experimented on known architectures, such as
AlexNet [30], and explored non-trivial energy/latency trade-
offs, depending on different wireless conditions (3G, LTE,
WiFi), as well as different DNN execution units (CPU, GPU).
Another work in the same spirit is the systems-oriented
Couper [28]. Under the assumption that the whole DNN is
containerized in the device, in the edge, and in the cloud, the
authors explore practical scheduling algorithms to identify
the split layer under dynamic conditions. The application
studied in Couper is visual analytics, and there, the tradeoff
is between lost frames and latency.

Positioning. Finally we stress how we differentiate with
closely related work. Compared to [3], the novelties are: (i)
distributed inference, (ii) per VNF, rather than aggregate,
resource allocation, (iii) significant performance benefits,
both in terms of overhead/latency and often in terms of
allocation cost. With respect to [5], we differentiate at the
ML task, namely multivariate time series prediction instead
of image classification. This essentially leads to drastically
different (and less obvious) offloading policies; i.e., (i) an
Uncertainty Rule that uses dropout of the local exit during
inference, and (ii) an Optimized Rule based on supervised
learning that acts directly on the sample. Finally, and more
generally (iii), we define two baselines (i.e., Random, and
more importantly Oracle) which give a better understanding
on whether the offloading rule performs well or not.

VII. DISCUSSION AND FUTURE WORK

Our DDNN architecture is a promising solution for fast
resource provisioning, and a first step towards DDNNs for
time-series related tasks. Below, reflecting on the limitations
of our work, we discuss some avenues for future research.
Hierarchical DDNNs. The distributed inference model we
use here is fairly simple, having one early exit at the edge and
a second one at the remote cloud. Further, we have assumed
that VNF demands are collected at the edge and are processed
together in the F0 block. However, there exist hierarchical
DDNN architectures [5] where, for instance, one could have
a small DNN per VNF, to instantly do the resource allocation.
If the small DNN is uncertain, then an output of that DNN
could be sent to the collective edge F0 (as we do now) for
further processing. In some sense, this creates new local exits,
which are of different nature than the collective local we have
now; in this hierarchical model, the that F0 might receive an
incomplete view of the traffic image.
Joint optimization of DDNN layers and offloading. We
decomposed the optimization of the system in two steps:
(a) joint-exit training for the DDNN layers and the exits,
and (b) given the trained layers, the design of the offloading
mechanism. A perhaps more challenging approach is to
design an algorithm that will optimize the end-to-end system
jointly, for some specific inference latency requirement.
Distributed Recurrent NNs. We leveraged CNNs to exploit
the spatiotemporal features of the data, for more details,
interesting reads are [1], [2], [42]. Nevertheless, a more
natural alternative for such regression-like tasks involving
time-series signals is RNNs (e.g. LSTMs). A major charac-
teristic of RNNs, however, is that they use an internal state to
process a sequence of inputs, suggesting strong correlations
between consecutive samples. That recursive nature of RNNs
creates further, but interesting, complications when it comes
to i) distributing their layers, ii) training their layers, and
iii) designing the offloading algorithm. On the other hand,
the upside of using CNNs is that they treat each sample
independently (no memory or hidden state), and therefore,
their layers can be naturally split and use multiple exits.
Reinforcement Learning-based offloading. An assumption
we made in Section III-C is that channel conditions, through-
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out the period we examine, are fixed. This allows us to claim
that average RTTs are fixed. However, if this assumption is
removed, we could have more complicated situations. For
example, we can offload a hard decision to the cloud with
good channel conditions, but when the actuation signal yR,t

is sent back to the edge, the conditions have changed (e.g.,
congested core-cloud link), rendering the said offloading
decision extremely harmful in terms of latency. This more
general setup requires different modeling, and to our opinion
the correct tool is Reinforcement Learning (RL), since the
underlying problem could be essentially cast as a Markov
Decision Process (MDP). A good starting point, along this
direction, could be to model the MDP, using intuition from
the measurements and the findings of [29], where the au-
thors showed different latency and energy consumption for
different wireless connectivity.
Budgeted resource allocation. Finally, an assumption we
made is that resources y we can provision are not constrained;
the same is assumed also in [3]. In fact, resource allocation
with DNNs is challenging, due to the inherent difficulty of
imposing constraints on DNN outputs [43]. To our opinion,
OCO approaches [44] where one can readily impose and treat
(instantaneous or long-term) constraints with projections, or
primal-dual approaches, are more promising alternatives.

VIII. CONCLUSIONS

We have developed a promising DDNN framework for
the task of resource provisioning for 5G+ networks. The
proposed architecture consists of two exits: a local and a
remote, which have to be trained jointly. The joint training
forces the local exit to improve its performance, but also acts
as a regularizer for the remote one. More importantly, we
pair the DDNN with an offloading mechanism whose role is
to decide which samples are worth resolving at the remote
cloud and which not. To serve as an offloading mechanism we
proposed two methods. First, a Bayesian-inspired Uncertainty
Rule, which aims to detect the samples of high uncertainty,
and send them to the remote cloud for further processing.
Second, we formulate the offloading as an offline constrained
optimization problem, and define an algorithm that performs
a novel sample labeling; we then train an ML model (via
Supervised Learning) that tries to mimic the offline optimal
(Optimized Rule). Comparing our DDNN model with its
equivalent centralized one, we observed that it is possible
to resolve ≈ 60% of the incoming samples locally, with less
than 5% in cost performance loss.
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