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Abstract—The Bethe Free Energy (BFE) has been found to
be closely connected to various message passing algorithms.
Studies have indicated that the BFE shares stationary points
with message passing algorithms like Belief Propagation (BP)
and Expectation Propagation (EP). Generalized Approximate
Message Passing (GAMP) algorithms have demonstrated sig-
nificant efficacy in signal recovery. Nevertheless, they may en-
counter convergence issues. EP algorithms start from a factored
approximate posterior in an exponential family. They update a
factor by fitting an exponential family pdf to a approximate
posterior which is obtained by replacing one approximate factor
by the original (prior) factor. The remaining factors form
the approximate extrinsic. Hence extrinsics are obtained by
marginalizing the product of all pdf factors except for the
prior. A marginal posterior is then obtained by combining
the extrinsic with the prior. Low complexity algorithms like
GAMP in turn obtain the extrinsic from the posterior. In this
paper, we explore the BFE within the context of Generalized
Linear Models (GLMs). Applying a BFE based EP approach
leads to the re(G)VAMP algorithm which provides asymptotically
exact marginal posteriors based on asymptotically Gaussian
extrinsics. It also provides equivalent Gaussian priors and hence
an equivalent overall Gaussian linear model, which allows the
application of large random matrix theory. We show how on the
other hand how Large System Limit (LSL) based approximations
in BP lead to GAMP. When derived from the BFE of the GLM,
GAMP algorithms combine two asymptotic LSL simplifications
which are asymptotic Gaussianity of extrinsics and large random
matrix theory based asymptotic variance computations. The LSL
simplifications allow to relate extrinsic messages to posterior pdfs
by first-order Taylor series expansion based perturbations. We
also apply LSL approximations to the variances of the various
Gaussians involved, which in fact leads to a rederivation of a
fundamental LSL theorem describing the deterministic limit of
posterior variances. These insights should facilitate the extension
of AMP to more complex settings such as bilinear models.

I. INTRODUCTION

Sparse signal recovery is a fundamental problem in signal
processing with a wide range of applications. Many of these
problems can be framed as the task of estimating a latent
vector x based on a correlated observation vector y [1]. In
the Bayesian framework, the complexity of Canonical Methods
such as MMSE and MAP experiences exponential growth as
the dimension of the problem grows.

By exploiting the structure of the models, graphical model
based methods prove to be effective. Belief Propagation (BP)
transforms the global inference problem into a local inference
problem as outlined by [2]. Loopy Belief Propagation (LBP)
extends BP by directly employing BP on a factorization
scheme for p(x|y) that may involve loops [3]. In comparison
to BP, LBP can be considered as an approximation method.
A limitation of (L)BP is that the (iterative) updating scheme
leads to pdfs that correspond to the product of a large number
of messages, leading to high complexity. To address this issue,
Expectation Propagation (EP) was introduced [4]. EP has
been shown to share a similar updating scheme as (L)BP,
but for computational efficiency, the messages in (L)BP are

projected into a suitable member of the family of exponential
distributions [4].

A. Prior Work

In both [1] and [5], the authors unify EP and BP within
the framework of minimizing variational free energy. They
demonstrate the close relationship between the fixed points of
various message-passing algorithms and the stationary points
of Bethe Free Energy (BFE).

EP can serve as an inference method in the linear Gaussian
model. However, the computational cost in terms of the mes-
sage count is quadratic in the data size. Approximate Message
Passing (AMP) [6] builds upon EP, but through the application
of large system approximations (LSA), it effectively reduces
the number of messages to the order of the data size, providing
a more computationally efficient approach.

In [7], the authors investigated the fixed points of the Gener-
alized AMP (GAMP) algorithm for generalized linear models
(GLMs). They discovered that GAMP shares the same fixed
point as the stationary points of the Large System Limit Bethe
Free Energy (LSL BFE).

The Component-Wise Conditionally Unbiased (CWCU) Min-
imum Mean Squared Error (MMSE) estimator is introduced
in [8] and rederived in [9] for both joint Gaussian models and
linear models. This concept was also used in [10], where the
authors call it individual bias compensation. The connection
between CWCU MMSE estimation and extrinsic information
is explored in [11] specifically for linear Gaussian models.

B. Main Contributions

Building upon the works of [1] and [12], we present the ap-
proximate BFE corresponding to a joint factorization scheme.
We observe that the reGVAMP algorithm, introduced by [12],
can be understood as an iterative approach aimed at identifying
the stationary points of the proposed BFE. Consequently, this
work offers insights into the fixed points of reGVAMP.

The reVAMP method proposed by [13] operates under the
assumption of linear Gaussian measurements. In situations
where the Gaussian noise is uncorrelated, reVAMP can be
considered as a specific instance of reGVAMP.

We also present an alternative derivation of the LSL BFE.
Through the application of large system approximations to
the stationary points, we substitute certain moment constraints
with their equivalent in the large system context. Moreover,
the new variance constraints suggest separable approximated
posteriors.



II. BETHE FREE ENERGY OF THE GENERALIZED LINEAR
MODEL

In this section, we first give a short introduction to BFE.
A. Bethe Free Energy (BFE)
Consider a pdf factorization

p(a,y) < [ [ fau (o), (1)

[e3
where x, is a subvector of x. In case of a tree-structured
factor graph, an alternative equivalent form is [2]

H p(Ta)
L p(w) Mt

where M; is the number of subvectors x,, that contain x;. In
(2), the p(x,,) and p(x;) are the exact factor (subvector) resp.
variable marginals.

The concept of variational free energy suggests that to infer
the marginals from a tree structured p(x,y) given in (1), we
can use as trial distribution

p(zly) = 2

qu [e% T v
Go(x) = Hw—(];)_l (3)
Hi en (xl) ¢
The true marginals can be obtained by [1]
min x zo (Ta)l;
L ITLSe. (2
“)

st.Va,Vi € Ly, gz, (z;) = /q% (xq)das,

where we define the shorthand notation (for arbitrary nonnega-
tive functions ¢, p) D(q||p) = [ ¢(z)In % ( )dx and x; denotes
all « except z;. The free energy can be expanded as

F= ZD[qmu(wa)llf%(%)HZ(Mi—l)H[qm(xi)L (5

where H(.) denotes entropy in nats. Note that this represen-
tation only holds for a tree structured distribution. For general
graphs that contain loops, (2) no longer holds. Thus, in cases
with loops, (5) is only an approximation of the variational free
energy. The expression (5) is instead called Bethe free energy.

III. BFE OF THE GLM FOR BP
We consider a GLM with

p(@)=ITY, p(x:), 2= Az, p(ylz) = [}, ply;1z),  (©)

where the ratio N/M is a constant for large system con-
siderations. We interpret the linear mixing as a conditional
probability

p(z|x) = 0(z — Ax). 7

From this general linear model, a joint (loopy) factorization
scheme comes up naturally:
p(z,zy) < p(z,y,2) = p(y|z)d(z — Az)p(x).  (8)
According to the definition of BFE (5), the associated BFE
based on the joint factorization scheme (8) is calculated [1] as
F = Dlge()|lp(2)]+Dlgz(2) [p(y|2)]+ > Hlga, (:)]

©
+ Dlbe a(x,2)[8(z — A@)] + ) Hg:, ()],

J

where G, Gz, bz 2, ¢z, and g, are only approximate posteriors
because of the loops in the factor graph. Since we need
to minimize the BFE given by (9), the distribution function
bz z(x,z) must be of the form

bez(x,2) = by(x)0(z — Ax),

to avoid an infinite value of the KLD, leading to
Dby »(z,2)||0(z — Ax)] = —H[bg]. For BP, the BFE (9)
needs to be minimized w.r.t. marginal consistency constraints
Ge(Ti) = bz(®i) = qu, (%), qz(25) = q.;(zj). Given the
independent priors for x, z, minimization of the BFE leads
0 gz(x) = [, ¢a,i(%:), ¢2(2) = [, ¢s,5(2;). Furthermore,
the maximization of H [b,] under marginal constraints leads to
be(x) = [, bx,i(z;). Together with the marginal constraints,
this leads to the cancellation of the entropy terms in x in the
BFE, which becomes F' =

Z Dgy, (z:) Hp(ﬂfi)HZ Dlg-, (z;)|Ip(y; Izj)HZ Hlg, (%))
i J J an

which needs to be minimized under the constraint z = A x.

(10)

A. Expectation Propagation (EP) (Minka style)
Consider again a factorization of the joint pdf

T y) = Hpa(ma)

a
where the x, are (possibly overlapping) subsets of x.
We’re not interested in how p, () depends on y. EP posterior

approximation [14]:
= Z ];[Qa(xa)

similar to p but the ¢s(x,) are in an exponential family
F with sufficient statistic ¢(x). Then g(x) is also in this
exponential family (closure under pdf multiplication/division)
Alternating updating: for any g, with gz(x H av(xp)

b#a
q(x)/qa(a),
Pa(x) = Z%lpa(wa) ga(),

12)

13)

tilted posterior approximation

aa(w) = arg (_Ig,nelr}__D(ﬁtLH%) = Proj]:{ﬁa}
: Bg, o(x) = Ep, ¢(x)
Ga(xs) = @u(x)/gz(x) local KLD moment matching
(14)

Extremes: g, () fully factorized, ¢ (,) = [[; ¢ai(2;), or not
at all, g,(x). What is sually overlooked: the tilted posteriors
Da(x), which are outside the exponential family, could be
better approximations than ¢(x).

B. Bethe Free Energy (BFE) Minimization

Introduce two sets of approximating factors, ¢,(x,) at factor
level and g;(x;) at variable level.

. . H 9a(Ta)
min, D(q||p) with ¢(z) = =—*—<5—, p = p(z,y)
! I1; (g i)Vt
under consistency requirements: ¢, (z;) = q;(z;), Vi,a € N;
where N; ={a: z; € 2o}, N; = NG|, No ={i: z; € z,}.
BFE
D(qllp) = F5({ga},{@:}) ZD (dal[Pa) +Z



with entropies H(¢q) = — [ ¢(x) Ing¢(z) dz. Lagrangian with
consistency and normallzatlon constramts

L():FB( +Z /\af%twa)dxa_l)

+ Z (h x’L dl’L - 1)
:N;>1

+ Z Z /)\az le QI z) /QQ(wa) dma\i) d.’L‘l
itN;>1 a€N;

Solving for extrema yields:
qa(wa) = pa(ma) eXP[)\a -1+ Z /\az(xz)]

i€N,
qi(i) = expl g (1 = Xi + Z Aai (7))
aeNi
C. BFE Minimization: Belief Propagation (BP)
Introduce Aai(z:) = Inmya(x;),

then Belief Propagation cycles through the updates

Masi(®5) = [ qa(a) dTar; /Misa(T;)
= fpa(wa) H mj—m(xj) dwa\i
FEN\i
Misa(®i) = [leenia Me—i(@i)
with
Qa(wa) Npa(wa) H mi—)a(xi)
1E€EN,

:pa(wa) H H mcﬁz(x)

1€EN, ceN\a
x;) ~ H Ma—i(T
GGNi
At the level of the messages, everything is at variable level.
The multivariate factors p, only appear as multivariate in their
approx’s g,. The BFE entropy terms are non-convex = convex
majorizer:
Fp(q) < Fg(q)
=30 D(qallpa) + 32 (Ni = 1) (H (g:)+D(illg; ™))

= Z D(gallpa) — ZL(N —1) fdxzqz (z:) lnqt 1(%)
where the qt ! are the ¢; from the previous iteration ¢ — 1.
Majorization does not require a double loop, unlike [15].

) (= masi(xi) Mmisa(z;) , Ya € Ny)

D. BFE Minimization with Moment Constraints: Expectation
Propagation (EP)

BP can be untractable due to products of pdfs. Relax consis-
tency constraints q,(z;) = ¢;(x;), Vi,Va € N; to moment
constraints for some sufficient statistics ¢(x) for exponential
family of pdfs F

leads to messages in JF, which is closed under pdf multipli-
cation. The only change in BP to get EP:

Proj}'{f da(Tq) dxa\i}
Mi—a (xz)

If one removes the projection operation, EP falls back on
BP. In EP only exponential family messages propagate. At

ma—n'(zi) =

Pz,
Py;lz; 4@— 6(z; — a?x)
Pz;
T
Pynrlzm @ 6(21\1 - aMx)
pIN

Fig. 1. Factor Graph for the GLM used by GAMP.

convergence one gets also the ¢;(z;) in the exponential family,
but the ¢,(x,) are more general due to the presence of
the original factor p,(x,). BFE perspective: EP also involves
defining {q,}, {¢:}, resulting BFE.
BP and EP can be extended to mix with VB, by adding a
factorized portion to the BFE posterior model to be plugged
into the VFE, leading to e.g. mixed EP-VB algorithms, see
[16], [17].
E. Minka-EP vs BFE-EP
Factorization of joint pdf p(x,y) =[], pa(x.) EP posterior
approximation [14]  ¢(x) = 2 [], qa(®,) similar to p
but the gs(x,) are in an exponentiqul family F with sufficient
statistic ¢(x).
Minka-EP: tilted posterior approximation

5a(m) = %ap<L(ma) QE(Q’J),

Ga(®) = arg min D(pallq,) = Projr{pa}

: Bz, o(z) = Eg, ¢(2)

Extremes: ¢, (¢, ) fully factorized, ¢, (o) = [, gai(2:), or not
at all, g, (). BFE-EP:

Projr{[ ga(®a) dwayi}

Mia(T;) ’

Mia(Ti) = HCG/\/’i\a Me—yi(T4)

Ma—i(T;) =

qa(ma) Npa(wa) H mi—)a(xi)

1€EN,
=pa(@a) [[ [ meila)

i€NL cEN\a

)~ H Ma—i(Ti) (= Ma—i(Ti) Missa(zs), Ya € N;)
CLENL'

Minka-EP = BFE-EP iff ¢M"ke(g,)

¢5" (xa) = g " (2a)

IV. GAMP FrROM LSL BELIEF PROPAGATION

In reGVAMP [11], [12], extrinsics in the GLM are built from
the equivalent Gaussian linear model, which introduces equiv-
alent Gaussian priors from Gaussian posterior approximations
and Gaussian extrinsics.

GAMP exploits LSL simplifications of reGVAMP for a
random A with i.i.d. signs which leads to

(1) Gaussianity of extrinsics (also in reGVAMP), and

(i) independence of marginals (extra w.r.t. eGVAMP).

(ii) leads to the large system simplifications of the variances,
avoiding covariance matrix inverses. But also posterior and

Hi Qai ($Z), then



extrinsic estimates Z, z and r, p that are constructed by
combining decoupled pieces of information. These estimates
are non-linear MMSE and CWCU MMSE estimates in
general. Extrinsics are not obtained as linear perturbations
of corresponding MMSE estimates because those are not
necessarily close to each other. Rather the interplay between
x and z is exploited with perturbations due to the small
effect of a single term in A in the LSL. In both reGVAMP
and GAMP, we have:

Gaussian extrinsics: N (x;r, 7,.), N (z;p, 7p), and

Posterior marginals proportional to: pg(x) N(x;r, 7)),

Pylz(y|z) N(z;p,7p)  with  Gaussian  approximations

N(z;z,7.), N(z;Z,7.). reGVAMP considers the joint
pdf factorization into M + N + 1 factors
M

p(z,z,y) = 6(z — Ax) pr x;) prk‘zk (yel2zx) (15)
=1 k=1

where 0(z — Ax) = HkM:1 §(zx —alz), AT = [a;---an].
This leads to a factor graph without cycles. The factor graph
considered determines the associated Belief or Expectation
Propagation algorithms for minimizing the Bethe Free Energy
[S]. GVAMP on the other hand considers the following joint
pdf factorization into 2M + N factors

p(x,2,y) pr ;) Hpmzk (ykl2) 6(2x — aim) (16)
which leads to the factor graph in Fig. 1 which does contain

cycles. Message passing in the GLM scalar level factor graph
of Fig. 1 alternates between the following message updates:

x) Hmmk(xm) dzpdxs
m#n

M (Tn) ~ [ P(Yr|2k) 0 (21— Ak

mnk(xn) ~ Pz, (an) H mMin (xn) (17)
i#k

where ~ denotes equality up to a normalization factor. This

results in:

marginal posteriors: my, () ~ Pz, (n) [[; Min(Tn),

extrinsic zy : ~ fé(zk —Ap.x) [, mn i (zn) de,

extrinsic @, : ~ [, myn(zn).

Like reGVAMP, GAMP uses Gaussian approximations for ex-

trinsics (see [11], [12], [18]). . This requires Gaussian models

for the messages. GAMP applies Gaussian approximations in

2 steps: (middle expression = prior x Gaussian extrinsic)

Mio,n (Tn) —>/ (ykl2k) 6(2k— Ag @) [ [ domoe () dords
m#n

— 4k, n( n):N(xnaxk na'rkm,) (18)
mn,k(mn — pz H qz n xn
i#k
— an(xn) = N(xn, fn,kv Tr:f,k) (19)

This will lead to the Gaussian extrinsics and approximate
posteriors:
extrinsic zy :

€21 (Zk) = N(Zk;pkaTlf) ~ fé(zk - Ak,:x) Hn Qn,k(xn) dz,

extrinsic @, : ey, (Tn) = N (Tp;Tn, 75) ~
marginal posteriors:

qz,, (-Tn) ~ p(xn) €z, (xn)s qzy, (Zk) ~
A. Output Node

We get for the incomplete extrinsic for zy:

Hi qin (xn),

p(yklzk) ez, (2k)-

ek,n(zk|xn) = N('zhpk,n +Ak,nxna Tlf,n)
~ [6(zk—Ap.) [ [ gk (@m) dom

m#n

(20)

with pi.n = A7 Tak, T, = Sk Ty ~ Skn Ty
Deﬁnepk —Ak Z. ) = Dk :pk*Aknfnk

And Tk n= ’Tk Sk nThy & where Tk Sk, T

Neglectmg terms of order Skn, we get N(zk;pk’n +
Agnn, Tlf’n) ~ N (zi; pk+ Ag @, 1) With T,, = 2, — T,

Then mk,n(xn) X Zz(pk + Ak,7L§na Yk, T]f) with

_ 2
Zo(p,u,m) = [ pyvlz) e 705 de
Z/ —
algipzzzzfzsz Tpp prv\zy|) “ e
5 Z// /
Ol — —1y=F — (zf)z =—(1- Tz/TP)/TP

Then up to second order in Ay ,,Z,, (Laplacian approximation
in MAP case, Gaussian moment matching in MMSE case), a
single measurement extrinsic for x,, becomes: Inmy 7,(a:n)

~ P ()an 9%InZ 2 ~2
Nanz(pkaykaTk)+ zAknxn+ 2 0p2 ZAkn n

A2

kn n'

=c' + [spAkn + Ak’nTk Zp] Ty —

Now Inmy, x(z,) = ' +Inp,, (xn)+zln M0 (Tn)
i#k

=c'+Inp,, (xn)—#h(zn—%,k)z

T}k - S%ﬂ;]ﬁ (ST, 7o =21)

k T
T A _ T
(spA%n TS5,

and 7, 1 = T,

B. Input Node

We now get for the approximate posterior
2

PPN A T _
T2 Tn) = Tn + 7)) S AL, -

M (Tn) = ﬁpw () e T F ) yith
(r,7r) fpr — _;M)das
7, 282 fxm ydo = E(z|r,7.) = & = Z(r, 7,,)
8— ==

Now, with r,, = Z,, + 77, sTA:,n, we can write
Tnk & Tp + T sTAE n="Tn — Ty, Sk Apn. We get similarly
for the mean 7, of mn,k(xn):

/x\n,k = /x\n(rn,k7 7—771‘) = /x\n({rn - 7—5 Sk Ak,n» 7—777“,)

~

~ o = _
N Tn(Tn, 7)) — orn T (rn, 7)) T Sk Akn = Tn — T3 51 Ag

Plugging this in, we get

Pk = A, Tk = Ay T — Sy Ty sp = Ap, & — 7}, sp
which completes the message passing. We may note that the
variance derivations in the LSL of BP are equivalent to the

large random matrix analysis of the MSE of LMMSE in the
equivalent Gaussian linear model.



V. CONCLUDING REMARKS

In this paper, we studied the BFE of GLMs using a joint
factorization scheme. This factorization allows us to extract ap-
proximate priors and likelihood. We rederived the reGVAMP
algorithm from the point of view of alternating minimization
of a LSL version of a desirable KLD. The asymptotics here
involve only the CLT for extrinsics. We then derive the GAMP
algorithm by directly introducing LSL simplifications in the
LBP algorithm. This leads us to relate extrinsic messages to
posterior pdfs by first order Taylor series expansion based
perturbations. We also apply LSL approximations to the vari-
ances of the various Gaussians involved, which in fact leads to
a rederivation of a fundamental LSA theorem describing the
deterministic limit of LMMSE posterior variances.

In [7], the authors investigated the fixed points of the Gener-
alized AMP (GAMP) algorithm for GLMs. They discovered
that GAMP shares the same fixed point as the stationary points
of the Large System Limit Bethe Free Energy (LSL BFE). In
[19] we then proposed AMBGAMP which is guaranteed to
converge. The work here builds upon the works of [1], [20],
[19], [21], [12].

The variance predictions in (AMB)GAMP are based on a
sign i.i.d. model for A, which leads to decorrelation and
Gaussianity after multiplication of a vector with A or AT,
similar to spreading and despreading in CDMA. Another
somewhat popular model for A is the Right Rotationally
Invariant class, in which (only) the right singular vectors
of A are modeled as random, and in particular as Haar
distributed. This is the motivation for Vector AMP (VAMP)
[22]. To keep complexity low however, VAMP has to restrict
diagonal covariances to multiples of identity, which e.g. is not
useful for Sparse Bayesian Learning [23]. GAMP-style low
complexity algorithms can be derived also, but they require
some correction terms in the variance predictions, stemming
from the Haar distribution [24], [25].
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