
DRL-enabled SLO-aware Task Scheduling for
Large Language Models in 6G Networks

Abdelkader Mekrache
EURECOM

France

abdelkader.mekrache@eurecom.fr

Adlen Ksentini
EURECOM

France

adlen.ksentini@eurecom.fr

Christos Verikoukis
University of Patras and ISI/ATH

Greece

chverik@gmail.com

Abstract—With the rapid advancement of telecommunications,
6G networks are expected to become more intelligent and
capable of making autonomous decisions. Artificial Intelligence
(AI) will play a crucial role in achieving this, particularly
through the use of Large Language Models (LLMs). These
models are increasingly being adopted for networking tasks
due to their advanced capabilities in coding, reasoning, and
language processing. LLMs have significant potential to support
the development of autonomous networks by reducing or even
eliminating the need for human intervention. However, LLMs
are computationally expensive, which necessitates their shared
use across different 6G applications, i.e., a single LLM might
be required to perform multiple tasks within a 6G network. To
this end, routing tasks to the appropriate LLMs presents several
challenges: (i) the arrival time of tasks is unpredictable, (ii) tasks
must meet specific deadlines, which are part of the Service-
Level Objectives (SLOs), and (iii) each LLM may perform better
on different types of tasks, leading to varying task scores. In
this paper, we propose a Deep Reinforcement Learning (DRL)
approach for routing tasks to a set of LLMs (task scheduling).
Our goal is to maximize task scores while ensuring their deadlines
are met. Evaluations conducted under real-world conditions show
that our DRL-based approach outperforms traditional methods
like Round-Robin (RR) and random scheduling.

Index Terms—6G networks, autonomous networks, AI, LLMs,
DRL, SLO, task scheduling.

I. INTRODUCTION

6G, the next generation of wireless communication technol-

ogy, is anticipated to be more intelligent and cognitive, incor-

porating cutting-edge innovations to meet future connectivity

demands. A key pillar of 6G, as emphasized by standardization

bodies like 3GPP and ETSI, is the integration of Artificial

Intelligence (AI) to enable autonomous and self-evolving

networks [1]. This is crucial for managing advanced 6G use

cases that conventional approaches cannot handle. To this end,

multiple 6G concepts will rely on AI, including Zero-touch

network and Service Management (ZSM), which facilitates au-

tonomous anomaly detection and resolution, and Intent-Based

Networking (IBN), which enables intent-driven autonomous

networking [2]. In this context, various AI approaches are

being investigated for different 6G challenges (e.g., anomaly

detection, resource allocation, and task scheduling), all aimed

at realizing these advanced 6G concepts.

Recently, with the rapid expansion of Generative AI

(GenAI), Large Language Models (LLMs), advanced AI sys-

tems capable of understanding and generating human-like text,

have attracted significant attention for their applications in

networking problems [3]. These models, such as OpenAI’s

closed-source GPT series and the open-source Llama and

Mistral series [4], excel in various tasks, including coding, rea-

soning, and language processing. This makes them particularly

well-suited for networking tasks that involve, for example: (i)

coding, for generating network code from 3GPP standards [5];

(ii) reasoning, for autonomous anomaly resolution based on 6G

Key Performance Indicators (KPIs) to enable ZSM [6]; and

(iii) language processing, for intent-based human-network in-

teractions to enable IBN [7]. However, LLMs face challenges

due to their large size and high computational demands, which

complicate their deployment in 6G networks. To address this,

LLMs must be shared across multiple 6G tasks. By leveraging

in-context learning, where different prompts (inputs) are used

without altering the LLMs’ weights, these models can handle

diverse tasks concurrently [3].
In a shared set of LLMs across various 6G applications,

each task must be completed with a high score within a

specified deadline. This deadline is defined as part of the

Service-Level Objectives (SLOs). Since some LLMs excel, for

example, in reasoning while others are better at language tasks,

selecting the most suitable LLM for each task, while consid-

ering task deadlines and the load on each model, is essential.

This presents a multi-objective optimization problem aimed

at maximizing task scores and minimizing task latencies. The

challenge is further complicated by the unpredictable tasks

arrival times, varying task types, and the uncertainty of score

calculation (which are only possible once the task response is

generated), making this optimization problem difficult to solve.

To address this, we propose a Deep Reinforcement Learning

(DRL)-based approach for LLM task scheduling that seeks to

jointly maximize task scores and minimize task latencies. The

DRL agent observes the load on the LLM queues, as well as

the type and deadline of arriving tasks within a given time

window, and then routes each task to an appropriate LLM. To

the best of our knowledge, this is the first work to leverage

DRL for SLO-aware LLM scheduling, taking into account

different types of tasks in a 6G network setup.
The main contributions of this work are manifold:

• We model the multi-objective optimization problem and

the objective function to maximize task scores and min-

imize task latencies.

• We introduce a DRL-based solution to address the afore-

mentioned objective function of the optimization prob-

lem. The state space includes the task load on each LLM’s

queue, as well as the type and deadline of the arriving

task. The action involves routing the arriving task to one

of the LLMs, and the reward is formulated according to

the objective function.

• The proposed DRL solution is designed to handle multi-

ple tasks with varying types and arrival patterns, i.e., the

DRL agent is trained only once and then deployed, re-

gardless of the number of tasks and their arrival patterns.

• We evaluate the solution in a realistic setting by deploying

four open-source LLMs on two Nvidia A100 GPUs with

40GB of vRAM. The realistic tasks and their evaluations,

i.e., score computation, are sourced from [8], and task

arrivals are simulated using a Poisson distribution.

The rest of the paper is organized as follows: Section II

describes background on LLMs and DRL and related works.

Section III introduces the problem formulation. Our proposed

solution is presented in Section IV and evaluated in Section V.

Finally, we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we present background on LLMs and DRL.

We then review existing literature on LLMs serving.

A. Large language models

LLMs are token generators based on the transformer ar-

chitecture, i.e., given a sequence of text, they predict the

next token, enabling them to generate responses to questions,

produce code, and perform various other tasks. In 2023,

OpenAI launched ChatGPT, a closed-source LLM designed for

public use. Since then, interest in LLMs has increased, driving

significant efforts from the open-source community to narrow

the gap between the GPT series and open-source alternatives.

Existing open-source LLMs differ in their response mecha-

nisms, i.e., each LLM has a token generation speed depending

on its architecture, and each excels at certain types of tasks

over others, depending on their training methodologies. Today,

powerful open-source LLMs, both large and small, such as

the Llama and Mistral series [4], are widely available. These

LLMs can perform numerous tasks depending on the context

provided in the input, utilizing a technique known as in-context

learning [3]. This approach allows LLMs to adapt to new

tasks using context alone (prompt), without the need for fine-

tuning, facilitating the sharing of LLMs across different use

cases. In this context, LLMs are gaining significant attention in

the telecommunications sector, where they are being applied

to various use cases [5, 6, 7]. As a result, managing LLM

serving, especially task scheduling across multiple LLMs, has

become an important optimization problem that needs to be

investigated.

B. Deep reinforcement learning

RL is one of the most successful AI methods, closely

resembling human learning. It has been successfully applied

in various areas, such as continuous control systems and

games [9]. The core idea of RL involves an agent interacting

with an environment to make informed decisions, receiving

rewards after each action. The agent’s goal is to learn a policy

that maximizes cumulative rewards over time as it transitions

between different states. However, traditional RL methods

have faced significant challenges when dealing with large

state and/or action spaces. To address these challenges, Deep

Learning (DL) was combined with RL in 2013, leading to the

development of Deep Q-Learning (DQN) [9], a type of DRL.

DQN uses a neural network to approximate the Q-function,

which maps state-action pairs to the expected return of taking

a specific action in a given state. This allows the agent to select

actions that maximize expected rewards, even in complex

environments with vast state spaces. DRL, particularly DQN,

has shown great promise in overcoming the limitations of

traditional RL methods, making it a crucial approach for tasks

requiring efficient decision-making in complex environments

[10]. In this context, DRL has produced very promising results

in task scheduling optimization problems [11]. In our work,

the state includes the load of tasks on each LLM queue, as

well as the type and deadline of arriving tasks, resulting in a

very large state space. Therefore, traditional RL alone would

not be sufficient in this case.

C. Related works

The topic of LLM serving is relatively new, with recent

research exploring various aspects of the field. For instance,

Liu et al. in [12] address the assignment of tasks to appropriate

closed-source LLMs as a multi-objective optimization prob-

lem, aiming to minimize costs while maximizing performance.

They employ a heuristic approach to route tasks to specific

LLMs; however, their reliance on closed-source LLMs and

focus on minimizing API costs presents a notable limitation

in the context of SLO-aware 6G networks, as they do not

consider task deadlines. In another study, researchers in [13]

propose Aladdin, a heuristic-based scheduler designed to route

tasks to a set of LLMs to meet task SLOs. However, this

method depends on predicting the output length of LLMs

before scheduling, which is challenging in fast-changing 6G

networks. Generally, heuristic-based schedulers struggle with

dense task arrivals, making them less suitable for the high-

density environments of 6G networks. As an alternative, DRL

has shown promise in rapidly changing environments. In [14],

DRL is used to route tasks to a set of LLMs. However, this

approach faces difficulties when applied to LLM serving in

6G networks, as it requires an estimate of the task arrival

rate in the state space, an estimation that is particularly

challenging in the demanding and heterogeneous applications

of 6G networks. Additionally, their reward computation is

based on model accuracy, which is not an effective metric for

evaluating LLMs. In contrast, our DRL approach differs from

the aforementioned methods by considering different types of

tasks and remaining agnostic to task arrival rates. Moreover,

we adopt a more realistic reward computation methodology

for each type of task based on the framework proposed in [8].

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system composed of a set of m LLMs,

denoted as L = {�1, �2, . . . , �m}. Each LLM �j has an

associated queue with a capacity Cj and a token generation

speed δj (tokens per second). The system receives a set of n
tasks, denoted by K = {k1, k2, . . . , kn}. Each task ki arrives

at time ti, has a specific deadline τi, and can generate different

output token lengths Pi,j while achieving varying scores Φi,j

depending on which LLM �j processes it. The assignment of

tasks to LLMs is represented by the binary decision variable

xi,j , where xi,j = 1 if task ki is assigned to LLM �j , and

xi,j = 0 otherwise.

The objective of the system is to maximize the total score

obtained from processing the tasks while minimizing penalties

associated with tasks that miss their deadlines. The objective

function is initially formulated as follows:

max

n∑
i=1

m∑
j=1

xi,jΦi,j−σ

n∑
i=1

m∑
j=1

xi,j max

(
0, ti +

Pi,j

δj
− τi

)
(1)

Here, the first term maximizes the total score achieved by the

system, while the second term imposes a penalty for tasks that

exceed their deadlines, with σ being the penalty factor.

To eliminate the use of the max function, we introduce

an auxiliary variable zi,j . The new objective function is

formulated as follows:

max

n∑
i=1

m∑
j=1

xi,jΦi,j − σ

n∑
i=1

m∑
j=1

xi,jzi,j (2)

Here, the auxiliary variable zi,j is defined through the follow-

ing constraints:

zi,j ≥ ti +
Pi,j

δj
− τi ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m},

zi,j ≥ 0 ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m}
(3)

This optimization problem is subject to several constraints:

First, the binary assignment constraint enforces the nature of

the decision variable xi,j , ensuring that it takes only binary

values:

xi,j ∈ {0, 1} ∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m} (4)

This constraint ensures that each task is either assigned to

a specific LLM or not, preventing fractional assignments and

ensuring clear decision-making in the task assignment process.

Second, the task assignment constraint ensures that each

task is assigned to exactly one LLM. This is mathematically

expressed as:

m∑
j=1

xi,j = 1 ∀i ∈ {1, 2, . . . , n} (5)

This constraint guarantees that no task is left unassigned or

assigned to multiple LLMs, ensuring that each task has a clear

and unique processing route.

Thrid, the queue capacity constraint restricts the number of

tasks assigned to any LLM at any given time to be within its

queue capacity:
n∑

i=1

xi,j ≤ Cj ∀j ∈ {1, 2, . . . ,m} (6)

This constraint ensures that the number of tasks allocated to

a particular LLM does not exceed that LLM’s queue capacity.
Finally, the deadline constraint requires that the time taken

to complete each task respects its deadline. This can be

expressed as follows:{
ti +

Pi,j

δj
≤ τi if xi,j = 1,

No constraint imposed if xi,j = 0.
(7)

To eliminate the explicit conditional logic, we introduce a large

constant M. The updated constraint becomes:

ti +
Pi,j

δj
≤ τi + (1− xi,j)M,

∀i ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m}
(8)

Here, M is a large constant that effectively deactivates the

constraint when a task is not assigned to an LLM (xi,j = 0).
From this formalization, we can classify the task scheduling

optimization problem for LLM serving as a Mixed-Integer Lin-

ear Programming (MILP) problem. However, predicting key

variables such as output token length Pi,j , task arrival times

ti, deadlines τi, and scores Φi,j , is particularly challenging

in fast-varying 6G networks. This unpredictability highlights

the need for adaptive scheduling strategies that can respond

to dynamic conditions rather than relying solely on static

optimization techniques.

IV. DRL-ENABLED LLMS TASK SCHEDULING

As mentioned earlier, solving the optimization problem effi-

ciently without prior knowledge of task information and output

token length is challenging. For this reason, we propose a DRL

approach as it abstracts the complexity and stochastic nature

of the environment, allowing for efficient and quick decision-

making that adapts to task arrival patterns and changes in

the set of LLMs. Furthermore, DRL develops the ability to

learn over time and adapt to various unseen situations. In the

remainder of this section, we will describe the key components

of RL, i.e., state space, action space, and reward function,

followed by an explanation of the DRL approach employed,

i.e., DQN.

A. RL key parts
As seen in Fig. 1, the DRL agent interacts with the envi-

ronment to identify the appropriate task scheduling tactics. At

each time t, the agent observes a state st and executes the

appropriate action at, allocating task k to LLM � according

to the policy π. The state-action function, also known as

the Q-function Q(st, at), which a deep neural network can

approximate, can decide this policy. The environment’s state

is transited to st+1, and each agent receives a reward of rt. In

our situation, the reward function is established by maximising

each task score while satisfying tasks deadlines.

\

Reward

State

Action

Task type 1
Task type 2

Task type 3

Task type 4

LLM queue

LLM

DRL agent

UEs

gNB

Edge
/Cloud

Fig. 1: DRL-enabled task scheduling for LLMs serving in 6G networks design.

1) State: The state st at time t includes: (i) The queue sizes

qj for each LLM �j ; (ii) The information about the newly

arriving task, i.e., its type κi; and (iii) The task deadline τi.
Formally:

st = (q, κi, τi) | q = (q1, q2, . . . , qm) (9)

This state design enables the DRL agent to remain agnostic

to variations in task arrival rates and the set of LLMs in

the system (token generation speeds). This flexibility ensures

that task routing remains efficient for realistic scenarios in 6G

networks, where LLMs can be updated or replaced, and task

arrival rates can change rapidly.

2) Action: At time t, the action at involves assigning the

incoming task ki to one of the LLMs �j . The action is defined

as:

at = j for j ∈ {1, 2, . . . ,m} (10)

Where at = j indicates that the task ki is assigned to LLM

�j , meaning xi,j = 1 for the selected LLM �j , and xi,k = 0
for all other LLMs �v where v �= j.

3) Reward: The reward rt at time t is computed based on

the completion of tasks assigned at previous time steps that

finish exactly at time t. It accounts only for tasks that complete

at this time, excluding those whose rewards were computed in

earlier steps. The reward can be expressed as:

rt =
n∑

i=1

m∑
j=1

Φi,jI

(
t = ti +

Pi,j

δj

)
xi,j (11)

Here, I
(
t = ti +

Pi,j

δj

)
is an indicator function that equals 1

if the task ki assigned at time ti to LLM �j finishes at time t
and 0 otherwise. The variable xi,j indicates that task ki was

assigned to LLM �j at time ti. Thus, rt ensures that only

tasks completing at the current time contribute to the reward.

Once a task’s reward has been computed at t, it is excluded

from future time step rewards. This reward design enables the

DRL agent to adaptively learn and optimize its routing strategy

in response to the dynamic conditions of 6G networks, where

task completion times and scores may vary significantly based

on the LLM used.

B. DRL approach

DQN is ideal in the context of this problem due to its

ability to effectively manage large state and action spaces

while ensuring stability and convergence through experience

replay and target networks [9]. In DQN, the objective is to find

the policy π∗ that maximizes cumulative rewards, represented

as:

π∗ = argmax
π

E

[∞∑
t=0

γtrt

]
, (12)

where γ is the discount factor, starting from any initial state s0.

The Q-function Q(s, a; θ) estimates the expected cumulative

reward for taking action a in state s and subsequently follow-

ing the optimal policy. DQN addresses this by approximating

the Q-function using a neural network with parameters θ,

which is trained by minimizing the loss function:

L(θ) = E

[
(yt −Q(st, at; θ))

2
]
,

yt = rt + γmax
a′

Q(st+1, a
′; θ−).

(13)

Here, the target yt includes the immediate reward rt and

the discounted maximum future reward predicted by a target

network with parameters θ−. This target network, which is

periodically updated, helps stabilize training and enables the

Q-function to converge more effectively.

At each time step t, the action at is chosen based on an

ε-greedy strategy. With a probability ε, a random action is

selected to encourage exploration, while with a probability

1− ε, the action maximizing the Q-value is chosen to exploit

learned knowledge. ε will decrease over time during the

learning pushing the agent to explore the environment at the

beginning of the training and driving it to exploitation over

time. After executing the action, the reward rt is obtained,

and the transition (st, at, rt, st+1) is stored in the replay buffer.

This buffer allows the agent to sample previous transitions ran-

domly during training, helping to break correlations between

samples and stabilize learning. This overall approach promotes

convergence and enables DQN to learn optimal policies in

complex environments.

V. PERFORMANCE EVALUATION

The section is structured into three subsections: Experiment
setup, which details the experimental setup; Experiment re-
sults, which presents and analyzes the performance of the DRL

approach; and Experiment conclusion, which offers additional

insights related to the experiment.

A. Experiment setup

Our experimental setup includes three machines hosting the

DRL-DQN agent and the LLMs. The first machine, equipped

with a 12th Gen Intel(R) Core(TM) i7-12700, is dedicated

to the training and inference of the DRL agent. The two

remaining machines, equipped with an Intel(R) Xeon(R) Gold

6240R CPU and an NVIDIA A100 GPU (40GB vRAM), are

dedicated to the LLMs environment. Each GPU machine is

used to deploy two LLMs, resulting in a total of four LLMs

for evaluation. These four LLMs use the Instruct versions of:

phi3-3.8b, gemma2-9b, qwen2-7b, and llama3-8b. The DRL-

DQN agent interacts with the LLMs using API calls. This

interaction is facilitated by the Ollama1 framework, which

serves the LLMs, while the Langchain2 library is used for

the interaction. Meanwhile, the DRL-DQN agent is trained

using the Stable Baselines library [15]. Realistic tasks are

derived from [8] and their arrival pattern is simulated using the

Poisson distribution with a parameter λ. This latter indicates

the mean number of tasks arriving per second. From [8], five

types of tasks were considered: ‘reasoning’, ‘coding’, ‘math’,

‘data analysis’, and ‘language’. Table I present the parameters

regarding DRL-DQN, LLMs and tasks information.

TABLE I: Setup parameters.

Parameter Value

Replay buffer size 50, 000

Minibatch size 32

Hidden layers 2

No. of neurons [128, 128]

Activation function [ReLU, ReLU]

Optimizer Adam

Learning rate 0.001

Discount factor γ 0.99

Epsilon decay 0.1 (initial) to 0.05 (final)

Step per Episode 30

Number of total steps 10, 000

Time step 1s

LLM temperature 0

LLM top p 0.95

LLM repeat penalty 1.15

LLM queue size 10

Task deadlines 10s

Training Task arrival rate (λ) 1

Testing Task arrival rate (λ) 0.5, 1, 2, 4, 8

1https://ollama.com
2https://www.langchain.com

B. Experiment results
Fig. 2 presents the convergence evaluation of the DRL-

DQN agent throughout the training process. The x-axis denotes

the training steps corresponding to various episodes, with

each episode consisting of 50 steps, resulting in a total of

334 episodes. The y-axis represents the score, defined as the

cumulative rewards obtained during each episode. Analysis

of the reward curve indicates a gradual increase over time,

converging after approximately 5,000 training steps. These

results show that the DRL-DQN agent successfully identified a

policy that outperforms earlier iterations in training, ultimately

achieving a high reward score.

Fig. 2: Convergence evaluation of DRL-DQN during training.

The resulting policy from the aforementioned training is

evaluated against two baselines: (i) Round-Robin (RR), a

well-known and powerful scheduling baseline that optimizes

resource utilization by allocating tasks in a cyclic manner.

This approach ensures that all LLMs receive equitable task

allocation; and (ii) Random, which selects LLMs randomly

without any strategic consideration. We conduct experiments

with the three approaches over 30 episodes while varying the

task arrival rate over time using five different λ values: 0.5,

1, 2, 4, and 8. We record the average reward (sum of the

task scores) across all 30 episodes. Additionally, we track the

average number of tasks for which deadlines were satisfied

across all 30 episodes. The results are shown in Fig. 3.
In subfigure 3a, we present the average rewards achieved

by each approach over the 30 episodes. The DRL-DQN agent

consistently outperforms both the RR and Random methods,

demonstrating its effectiveness in learning a superior schedul-

ing policy. While the RR method shows stable performance,

it does not reach the reward levels of the DRL-DQN agent.

This is because the RR method ensures equitable routing

among LLMs, but the varying generation times of the LLMs

limit overall performance. The DRL-DQN agent surpasses

RR by learning the token generation speeds of the LLMs

and identifying faster models based on its experience, even

when the set of LLMs is updated. In contrast, the Random

method exhibits variability in performance due to its lack

of strategic task allocation. On the other hand, subfigure 3b

illustrates the average number of tasks for which deadlines

were satisfied across the 30 episodes. Here, the DRL-DQN

(a) Task scores for different task arrival rates (λ). (b) Satisfied deadlines for different task arrival rates (λ).

Fig. 3: Performance comparison among DRL-DQN, Round-Robin, and Random scheduling methods.

agent significantly outperforms the baselines in deadline sat-

isfaction. For instance, for λ = 1, it achieves 89%, compared

to 76% (RR) and 41% (Random). Similarly, for λ = 2, it

achieves 61%, versus 43% (RR) and 36% (Random). The RR

method performs reasonably well; however, it does not reach

the performance level of the DRL-DQN agent. The Random

method, in contrast, results in a notably lower rate of deadline

satisfaction, highlighting its inefficiency in task scheduling.

C. Experiment conclusion

Task scheduling for LLMs is a relatively new area that has

recently gained attention in research. This is not a simple

task that traditional heuristics can easily resolve in the rapidly

evolving landscape of 6G networks. Therefore, as experimental

results have shown, DRL-based solutions are effective in

optimizing task scheduling for LLMs. It can learn the dynamic

nature of the environment, such as task arrival patterns and

LLMs token generation speed, and adapt to these factors to

develop an effective scheduling policy. However, several con-

siderations need to be addressed in future works. These include

optimizing energy consumption, as LLMs require significant

energy for inference and serving due to their computational

demands. Additionally, strategies for balancing the use of

Small Language Models (SLMs) at the far edge with larger

LLMs at the edge or in the cloud should be considered.

Although SLMs may have lower performance scores, they

consume less energy and have faster execution times.

VI. CONCLUSION

As 6G networks evolve to become more intelligent, the

integration of AI, particularly LLMs, will be crucial in achiev-

ing these capabilities. However, their computational demands

necessitate efficient task scheduling strategies to optimize their

performance across multiple 6G use cases. To this end, this

paper introduced a DRL-based scheduler, aiming to maximize

task scores while adhering to latency constraints. Our eval-

uations, conducted under real-world conditions, demonstrate

that our proposed approach outperforms traditional scheduling

methods such as RR and Random. These results highlight the

potential of DRL in enhancing the efficiency and effectiveness

of LLMs within 6G networks. Future research directions will

focus on tuning the DRL agent to simultaneously optimize

execution time, task scores, and energy consumption. Addi-

tionally, the DRL environment will be extended to incorporate

SLMs at the far edge, and LLMs at the edge and cloud.

ACKNOWLEDGMENT

This work is supported by the European Union’s Horizon

Program under the SUNRISE-6G (Grant No. 101139257) and

6G-DALI (Grant No. 101192750) projects.

REFERENCES

[1] Muhammad K Shehzad et al. “Artificial intelligence for 6G networks:
Technology advancement and standardization”. In: IEEE Vehicular
Technology Magazine 17.3 (2022), pp. 16–25.

[2] Estefania Coronado et al. “Zero touch management: A survey of
network automation solutions for 5G and 6G networks”. In: IEEE
Communications Surveys & Tutorials 24.4 (2022), pp. 2535–2578.

[3] Hao Zhou et al. “Large language model (llm) for telecommunications:
A comprehensive survey on principles, key techniques, and opportu-
nities”. In: arXiv preprint arXiv:2405.10825 (2024).

[4] Kilian Carolan, Laura Fennelly, and Alan F Smeaton. “A Review of
Multi-Modal Large Language and Vision Models”. In: arXiv preprint
arXiv:2404.01322 (2024).

[5] Azzedine Idir Ait Said et al. “5G INSTRUCT Forge: An Advanced
Data Engineering Pipeline for Making LLMs Learn 5G”. In: IEEE
Transactions on Cognitive Communications and Networking (2024).

[6] Abdelkader Mekrache et al. “On Combining XAI and LLMs for
Trustworthy Zero-Touch Network and Service Management in 6G”.
In: IEEE Communications Magazine (2024).

[7] Abdelkader Mekrache, Adlen Ksentini, and Christos Verikoukis.
“Intent-based management of next-generation networks: an LLM-
centric approach”. In: IEEE Network (2024).

[8] Colin White et al. “LiveBench: A Challenging, Contamination-Free
LLM Benchmark”. In: arXiv preprint arXiv:2406.19314 (2024).

[9] Volodymyr Mnih et al. “Playing atari with deep reinforcement learn-
ing”. In: arXiv preprint arXiv:1312.5602 (2013).

[10] Kai Arulkumaran et al. “Deep reinforcement learning: A brief survey”.
In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–38.

[11] Conghao Zhou et al. “Deep reinforcement learning for delay-oriented
IoT task scheduling in SAGIN”. In: IEEE Transactions on Wireless
Communications 20.2 (2020), pp. 911–925.

[12] Yueyue Liu et al. “OptLLM: Optimal Assignment of Queries to Large
Language Models”. In: arXiv preprint arXiv:2405.15130 (2024).

[13] Chengyi Nie, Rodrigo Fonseca, and Zhenhua Liu. “Aladdin: Joint
Placement and Scaling for SLO-Aware LLM Serving”. In: arXiv
preprint arXiv:2405.06856 (2024).

[14] Siddharth Jha et al. “Learned Best-Effort LLM Serving”. In: arXiv
preprint arXiv:2401.07886 (2024).

[15] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement
Learning Implementations”. In: Journal of Machine Learning Research
22.268 (2021), pp. 1–8. URL: http://jmlr.org/papers/v22/20-1364.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

