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The evolution towards 6G architecture will shift com-
munication networks, with artificial intelligence (AI) 
playing a key role. This white paper examines the in-
tegration of Large Language Models (LLMs) within 
6G systems. Their ability to grasp intent, reason, and 
plan, and execute commands will redefine network 
functionalities and interactions. An essential compo-
nent is the AI Interconnect framework, designed to 
facilitate AI operations within the network. Building 
on the evolving state-of-the-art, we present a new 
architectural perspective for the next generation of 
mobile networks. Here, LLMs will work together with 
pre-generative AI and machine learning (ML) algo-
rithms. This union combines old and new methods, 
merging established approaches with AI technolo-
gies. We provide an overview of this evolution and 
explore the applications arising from such an integra-
tion. We envisage an integration where AI becomes 
central to future communication networks, offering 
insight into the structure and function of a 6G network 
centered on AI.

Index Terms
6G, Generative AI, Large Language Model (LLM), 
Generative Pre-trained Transformers (GPT), AI Inter-
connect, Edge Intelligence, Open RAN (O-RAN), AI RAN
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AI’s potential is evident across sectors, especially in 
telecommunications. As AI’s role in telecom has grown, 
the term ”AI-native telco” has become popular. Recent 
contributions from industry and academia outline the 
path for mobile networks and 6G architecture [1], [2], 
[3], describing an AI-native system with trustworthy AI 
capabilities. These systems integrate AI into their de-
sign, deployment, operation, and maintenance. Their 
hallmark is a data-centric, knowledge-driven environ-
ment where data is produced and used to develop AI 
functionalities, supporting applications across various 
use cases and domains [4], [5]. This shifts from stat-
ic, rule-based systems to adaptive, learning-oriented 
AI models. Large Language Models (LLMs), especial-
ly Generalized Pretrained Transformers (GPT) [6], [7], 
[8], are tools for understanding intent, creating plans, 
and executing instructions [7]. This capability is en-
hanced by prompt engineering, programming LLMs via 
prompts [9]. Thus, they are essential components of fu-
ture networks and applications.
 
In this white paper, we advocate for an AI-native 6G 
network that seamlessly integrates a diverse range of 
LLMs, allowing for their dynamic selection, provision-
ing, updating, and creation. Central to this vision is the 
AI Interconnect, which streamlines AI-centric opera-
tions within the network. By incorporating AI directly 
into the network, we anticipate marked improvements 
in areas such as radio and network optimization, priva-
cy and security via tailored AI and resource selection, 
enhanced accountability through meticulous AI op-
eration monitoring and audit trails, and meeting strin-
gent latency and other network-specific criteria. Such 
advancements are poised to be invaluable for domains 
like the Internet of Things (IoT), robotics, smart cities, 
and autonomous systems, to name a few.

This white paper was developed through a collaborative 
process, starting with an open call for contributions. 

Proposed contributions were reviewed by the editorial 
team and incorporated into the document, ensuring di-
verse perspectives and expertise. Additionally, a set of 
reviewers provided detailed comments to enhance its 
quality and depth. Adopting the form of a review, this 
white paper provides a comprehensive exploration of 
the topic, synthesizing existing knowledge while pro-
posing new directions to advance the field. The primary 
goal of this white paper is provide a vision grounded in 
ongoing innovations, that could guide research and de-
velopment efforts, and outline actionable insights that 
align with the future needs of 6G technologies and their 
applications.

Editors: 
Lauri Lovén, Miguel Bordallo López, Roberto Morabito, 
Jaakko Sauvola, Sasu Tarkoma

Reviewers: 
Marja Matinmikko-Blue, Marcos Katz, Shahriar 
Shahabuddin, Mehdi Bennis

Contributors: 
Markus Abel, Constantino Alvarez Casado, Rico 
Berner, Mickaël Bettinelli, Kaj Mikael Björk, Michele 
Capobianco, James Gross, Tri Hong Nguyen, Pan Hui, 
Ijaz Ahmad, Panos Kostakos, Abhishek Kumar, Mika-
Petri Laakkonen, Xiaoli Liu, Zhi Liu, Le Nguyen, Huong 
Nguyen, Basak Ozan Ozparlak, Ville Pietiläinen, Susanna 
Pirttikangas, Stéphan Plassart, Sampo Pyysalo, Soheyb 
Ribouh, Jari Rinne, Mehdi Safarpour, Alaa Saleh, Olli 
Silvén, Harry Souris, Xiang Su, Roope Suomalainen, 
Athanasios V. Vasilakos, Aleksandr Zavodovski, Qi 
Zhang, Peng Yuan Zhou, Alireza Zourmand

Introduction 1
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Motivation
In June 2023, the International Telecommunication 
Union’s Radio Communication Sector Working Party 
5D (ITU-R WP 5D) approved the Framework Recom-
mendation for IMT-2030 [10], marking a significant step 
towards 6G. This framework, shown in a wheel-shaped 
diagram, outlines six usage scenarios supported by 
four design principles: (i) sustainability, (ii) security, pri-
vacy, and resilience, (iii) connecting the unconnected, 
and (iv) ubiquitous intelligence.

Including AI and Communication among the six key 
usage scenarios, along with the focus on ubiquitous 
intelligence, indicates that 6G’s promise extends be-
yond improvements in speed and reliability. It envisions 
a paradigm where AI-driven autonomous systems, dy-
namic network configurations, and edge intelligence 
become standard. This direction is exemplified by the 
concept of ”AI-native Telecom,” where AI becomes 
central to hardware and software network components 
[11]. Such integration is expected to enhance network 
efficiency and adaptability. Moreover, combining AI 
with 6G is set to enable new applications and services 
– from ultra-reliable low-latency communication to im-
mersive augmented realities – highlighting AI’s essen-
tial role in future communication [6], [7], [8], [12], [13], 
[14], [15], [16].

However, moving towards this AI-enhanced networked 
future presents challenges. The complex nature of tele-
com and network ecosystems introduces difficulties, 
especially regarding cross-layer and seamless interop-
erability among AI-enabled components. Despite these 
hurdles, the pursuit of innovative AI solutions, including 
foundational models like GPTs [6], continues. This trans-
formation requires rethinking traditional engineering 
approaches, leading to data-centric, knowledge-driv-
en ecosystems [17]. In this evolving landscape, LLMs 
and GPTs can have a significant impact, particularly as 
we address the requirements and demands of 6G – a 
domain where meeting requirements for connectivity, 
capacity, latency, mobility, and reliability becomes in-
creasingly challenging without AI [17].

AI Interconnect: A Glimpse
The AI Interconnect is a framework designed to enable 
seamless integration, orchestration, and optimization 
of AI operations within the 6G network, facilitating 
dynamic interaction between AI models and network 
components. Building on this AI-centric paradigm shift 
in telecommunications, our proposed AI Interconnect 
framework aligns seamlessly with the vision of AI-na-
tive networks. It anticipates and addresses the require-
ments pertinent to distributed AI operations, such as 
prompt processing and the effective selection and ex-
ecution of LLMs. This aligns with the broader objective 
of fostering trust in the operation of AI frameworks, par-
ticularly in the context of the 6G architecture. Moreover, 

as we move forward in this direction, it is essential to 
holistically consider the myriad engineering implica-
tions introduced by this evolution, ensuring that we are 
not just technologically equipped but also strategically 
positioned to leverage the transformative power of AI in 
telecommunications.

Contextual information, network and computing ele-
ments, state machines, and feedback loops are indis-
pensable in ensuring optimal network performance, 
resilience, and adaptability. Feedback loops, such as 
the MAPE-K (Monitor-Analyze-Plan-Execute over a 
shared Knowledge) model [18], allow these network 
elements and components to continuously monitor 
their performance, analyze the collected data, plan for 
enhancements, and execute these plans, thereby facil-
itating self-regulation and adaptation. Specifically, the 
MAPE-K model serves as the backbone of the AI Inter-
connect managing system, guiding it through adaptive 
cycles responsive to the 6G network’s dynamic envi-
ronment. This seamless integration fosters a symbiotic 
relationship where the MAPE-K framework supports 
and is enhanced by LLM and GPT technologies. The 
MAPE-K and similar models are envisioned to lever-
age LLMs for advanced capabilities. The ReAct (“Rea-
son+Act”) model represents a transformative approach 
in leveraging LLMs for agent-based actions within a 
specified environment [19]. At its essence, ReAct uti-
lizes the LLM as a dynamic planner by prompting it to 
“think out loud”. This is achieved by presenting the LLM 
with a comprehensive textual overview encompassing 
the current environment, a defined objective, an array 
of potential actions, and a chronological record of pre-
ceding actions and observations. Upon processing this 
data, the LLM generates a sequence of contemplative 
thoughts before arriving at a specific action. Once de-
termined, this action is seamlessly executed within the 
stipulated environment, thereby establishing the LLM 
as a passive analytical tool and an active participant ca-
pable of decision-making and subsequent action.

Fig. 1 provides an overview of the AI Interconnect’s 
cross-layer design, covering the cloud-to-edge contin-
uum from devices to the core network, including fron-
thaul, midhaul, and backhaul—collectively called x-haul 
[20]. Fronthaul connects radio heads to BaseBand Units 
(BBUs). Midhaul links the Digital Unit (DU) and Central-
ized Unit (CU), while backhaul connects the CU to the 
core network [21].

The AI Interconnect can support learning and inference 
capabilities; however, this paper focuses on high-level 
management and orchestration of LLM-style models 
without detailing specific distributed learning and in-
ference solutions. LLMs can understand, manage, and 
coordinate network and application behaviors based 
on raw data (e.g., KPIs and radio parameters), prior net-
work knowledge (expert models), and by subscribing 
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Fig. 1: AI Interconnect’s cross-layer design across control, user, and application planes.

and publishing inference results through an intercon-
nect. Expert models can support the orchestration 
and coordination of information and computing in the 
edge-cloud continuum, considering communication, 
energy, privacy, security, sustainability, and computing 
constraints. Resource efficiency is an important design 
consideration for the AI Interconnect.

To bridge high-level capabilities with practical imple-
mentation, the AI Interconnect provides LLM messag-
ing and brokering for the control plane, user plane, and 
application logic. We envision the AI Interconnect as 
message-oriented, featuring both request/reply and 
publish/subscribe (pub/sub) APIs for requesting AI 
inference and other learning capabilities supported by 
the network. Its asynchronous, message-based nature 
enables reactive tasks and offers an auditing capability 
for LLM usage. The AI Interconnect’s functionalities in-
clude AI selection, AI placement, AI task coordination, 
AI communication and routing, and AI safeguards with 
an audit trail. For a given task, the AI Interconnect se-
lects appropriate LLMs, devises a strategy to achieve 
the task’s objectives, and ensures seamless communi-
cation between the LLMs and network components. Its 
message-centric design enables effective monitoring 
of AI pipeline operations, which is essential for under-
standing system behaviors, evaluating outcomes, and 
conducting audits.

For 6G applications, the AI Interconnect aims to facili-
tate the use of LLMs for various application behaviors, 
including real-time content generation. Edge servers 
can host AI control logic (e.g., prompt engineering mod-
ules) and LLMs of different complexities. For applica-
tions, the AI Interconnect addresses the need for local 
and private placement of AI components, generates re-
ports of AI operations for auditing, and accommodates 
various use cases. This includes general-purpose ap-
plications, network deployment and management, ser-
vice-level agreements (SLAs) management, as well as 
generative AI (GenAI) applications and behaviors driv-
en by user and application intent.

While LLMs hold promise for mobile and 6G networks, 
they will function alongside traditional ML/AI models. 
Some tasks in telecom may require the granularity, 
transparency, or specificity that conventional ML/AI al-
gorithms provide. LLMs may not be suitable for all tasks, 
especially those requiring detailed analytical insights or 
real-time responsiveness. The AI Interconnect, with its 
architecture and cross-layer design, accommodates 
this hybrid setup, facilitating communication and co-
operation between LLMs and traditional ML/AI models. 
Therefore, a hybrid approach that leverages both within 
the AI Interconnect framework may be the most practi-
cal solution.

AI Interconnect

User PlaneControl Plane

Orchestration

AI-Native Control Plane AI-Native User Plane

AI-enabled RAN and Core Network

Orchestration

Application logic

Orchestration

FronthaulDevice Midhaul Backhaul Core Network

AI selection
AI placement
AI task coordination
AI communication and routing
AI safeguards and audit trail
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Paper Structure
Initially, we start with a Taxonomy, providing a con-
ceptual overview of LLMs and GPTs for 6G. This leads 
into section Requirements and Enablers, which offers 
a strategic view of 6G integration with LLMs and GPT 
technologies.

Section Architecture lays the groundwork for under-
standing the architectural foundations and the pro-
gressive integration of intelligence in 5G and beyond, 
and then introduces the 6G AI Interconnect framework. 
Further, the section looks at LLMOps (the operational-
ization and life-cycle management of Large Language 
Models) in the 6G compute continuum, and further 
drills down into model architectures and hardware 
considerations.

Section State of the Art & Applications looks at recent 
studies on the topic, and further details certain appli-
cation areas. Finally, before concluding, the white pa-
per offers a view on the Security and Resilience of LLM 
usage in the 6G compute continuum.

For a visual representation of how this paper is struc-
tured, Fig. 2 depicts the delineation between the back-
ground and architecture as well as applications and 
synthesis within the paper.

Fig. 2: Graphical representation of the paper’s organization, highlighting the distinction between the ’Back-
ground and Architecture’ sections (2-4) and the ’Applications and Synthesis’ sections (5-7).

Background and Architecture

Section 2

Section 3

Section 4

Requirements and Enablers

Taxonomy

Architecture

Applications and Synthesis

Section 5

Section 6

Section 7

Security and Resilience

State of the Art & Applications

Conclusion
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LLMs are expected to enhance and support 6G net-
works in multiple use cases and on multiple sites of its 
architecture [22], [23], [24].

Figure 3 illustrates a taxonomy of LLMs mapped to their 
potential roles in a 6G environment. This taxonomy 
builds on the fundamental 6G use cases and societal 
values introduced in [5], as well as the business per-
spectives for 6G described in [25].

The upper part of the figure underscores the various 6G 
use cases LLMs can support. Ranging from “Robot to 
cobots” that might involve automating processes and 
coordination, to the “Telepresence” that can poten-
tially enhance real-time communication experiences. 
These use cases touch on hyper-connected resilient 
networks, sustainability, and other evolving use cases 
that 6G aims to address. Contrastingly, the lower part 
of the figure sheds light on the network architecture en-
ablers where LLMs might find an application. With com-
ponents like “Security and Privacy” emphasizing the 
importance of safe communications, to “Cognitive Net-
work Management” which may automate and optimize 
network configurations, it is evident that LLMs can play 
an important role in several key network operations.

Central to this taxonomy is the ”LLM Controller” It 
serves as a nexus, connecting both the use cases and 
the network enablers. This suggests that while there 
may be models explicitly designed for particular do-
mains (e.g., “Green-GPT” for sustainability), there is also 
envisioned a role for a central controller GPT—possibly 
supported by additional AI components. Such a com-
ponent would be instrumental in managing these ex-
pert models, fostering cooperation among them, and 
ensuring seamless integration.

Furthermore, these LLMs are not just restricted to 
high-level operations. We envision their applicability 

Taxonomy 2
extending to finer-grained models and specific down-
stream tasks across different ISO layers, such as the 
physical (PHY) layer for tasks like beamforming, the 
network (NET) layer for power management, and other 
layers for handovers, as discussed in [23]. As such, the 
potential for LLMs in a 6G ecosystem is vast, bridging 
the gap between abstract use cases and the concrete 
architectural components that enable them.

To exemplify this, consider the increasing possibilities 
given by Multimodal Large Language Models (MLLMs). 
Tasked with processing diverse data types, MLLMs 
exemplify the versatility and adaptability of LLMs [26]. 
These models can help addressing challenges such 
as data heterogeneity, semantic ambiguity, and signal 
fading, cementing their role as robust task-solvers [27]. 
Moreover, MLLMs underscore the notion of seamless 
integration and cooperation among models, as they of-
ten function in tandem with unimodal LLMs and other 
AI components. The duality of their operation, handling 
both high-level tasks and delving into the intricacies of 
finer-grained operations, is evident. While traditional 
LLMs primarily cater to natural language processing 
(NLP) tasks, MLLMs embrace a wider operational spec-
trum, enhancing user interaction and communication 
flexibility with machines [27]. Yet, it is important to note 
that the journey of MLLMs is still in its initial stages. De-
spite their transformative capabilities, they often deal 
with the constraint of input-side multimodal under-
standing, limiting their ability to produce content across 
diverse modalities. Nevertheless, emerging systems like 
NExT-GPT aim to redress these limitations, introducing 
a new set of comprehensive MM-LLM systems suitable 
for both multimodal understanding and generation [28].

While much of the current practical efforts concern-
ing MLLMs are directed towards multimodal signals, 
including text, audio, image, and video, these are not 
directly aligned with telco-specific needs. This high-
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LLMs can assist with in a 6G environment. As we ad-
vance further into this technological era, it is likely that 
the unique capabilities of LLMs will find relevance in 
even more areas (as highlighted in [22]), some of which 
we might not have even envisioned yet.

Building on this, it is essential to categorize the different 
types of LLM models available, as they can vary based on 
their scope, application, and accessibility. We delineate 
four principal LLM categories, with models potentially 
being open source or reliant on closed APIs. LLMs are 
anticipated to be accessible via standardized embed-
ding formats and open APIs, such as those offered by 
OpenAI [32] or LangChain [33]. The four categories are:

1. Foundation: A universal LLM model that is not tai-
lored to a specific domain. Although foundational, 
this general model can be enhanced through prompt 
programming and fine-tuned for specific use cases.

2. Specialized: An LLM model tailored for a particular 
user or application, available in either closed or open-
source fashion. Examples of its use include chat ap-
plications and instruction generation tools. It can also 
be adapted to environments with limited resources.

3. Hybrid: This LLM model combines the broad, gener-
al knowledge of the foundation model with the spe-
cialized expertise of the specialized model. 

4. Controller: Driven by LLM-based autonomous 
agents, this model functions as a controller, linking 
other models and system components. It operates 
either autonomously or under human oversight.

lights a pressing need to amplify research and devel-
opment in this area, as highlighted in [23]. Nonetheless, 
Figure 4 provides a glimpse into how such integration 
could potentially operate within the telecommunica-
tions context, illustrating potential applications of how 
MLLMs might process multimodal data [29]. 

While Figure 3 offers a conceptual overview of the in-
terplay between LLMs and the broader 6G ecosystem, 
a more granular perspective is necessary to fully ap-
preciate the potential of these models in this space. 
The subsequent table, presented in Figure 5, lists sce-
narios where LLMs can be transformative compared 
to the current state-of-the-art. In fact, while traditional 
ML/AI methodologies have made significant strides in 
these domains [14], [30], LLMs, given their vast train-
ing data and swift adaptability, can potentially offer 
more nuanced solutions. These models possess the 
capability to quickly discern patterns from massive 
datasets and adapt to new information at an unprece-
dented scale [31]. This makes them particularly suited 
for dynamic scenarios, like those associated with 6G, 
where real-time adaptability and extensive knowledge 
bases are paramount. For instance, in scenarios like 
’Near real-time Analytics’ and ’Network Security’, the 
advantage is not merely about processing data quick-
ly – it is about the depth of insight and foresight that 
models like GPTs can provide because of their com-
prehensive training. The table delineates how LLMs 
can be leveraged across these 6G scenarios, underlin-
ing their potential transformative impacts.

However, it is important to understand that this table 
touches upon just a fraction of the myriad applications 

Fig. 3: Taxonomy of LLMs for 6G, mapping the potential applications of LLMs to both 6G use cases and un-
derlying network architecture enablers. The LLM controller serves as a hub, suggesting the cooperative and 

management roles LLMs can play in a 6G ecosystem.
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Fig. 4: Illustration of three LLM processing approaches for multimodal data. The scenarios include inputs 
from radio signals and telemetry, network telemetry, and sensor systems. The depicted approaches are: 
a multimodal capable LLM, a controller LLM for processing and result aggregation, and component-wise 

LLMs without aggregation.

Radio Signals and Telemetry

Controller LLM

Expert LLM

Radio Signals and Telemetry

Network Telemetry

Sensor Systems

Joint optimization based on
a multi-modal modeMulti-modal LLM

Joint optimization based on
one or more expert models

Component-wise
optimization
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Fig. 5: Overview of potential LLM use cases in 6G. The table highlights the capabilities and potential impacts of 
leveraging advanced language-based models, distinguishing them from traditional ML/AI approaches.
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The emergence of 6G with the integration of LLMs 
has the potential to establish new standards for 
efficiency, flexibility, sustainability, and adaptability, 
even creating new service categories for different 
stakeholders in the entire 6G framework. According to 
our holistic view, the 6G architecture can be sectioned 
into four layers: (1) strategic, (2) logical, (3) operational, 
and (4) implementation. Within this framework, we 
need to deploy proper requirements for each layer, 
with attributes dealing with service quality, operating 
performance, development capability, consistent 
lifecycle management, and hardware configuration & 
software optimization, each with their contributions 
to requirements of implementing the different variants 
of LLM technology models into 6G architecture, 
as depicted in Figure 6. Such requirements can be 
clustered via the level of abstraction, purpose, and 
stakeholder role (e.g., management, architects, 
operators, developers, and users).

In this framework, each layer serves specific functions 
in the 6G ecosystem, culminating in the implementation 
layer, which stands as the execution platform. In fact, 
the implementation layer stands out due to its tangible, 
practical nature and requirements, whereas the others 
provide a more high-level, theoretical framework. Being 
the most practical of the lot, this layer serves as the exe-
cution platform for the strategies outlined in the preced-
ing layers. In the upper layers, to understand the poten-
tial of adopting and adapting suitable LLM technology 
variants in 6G, we propose three key requirement clus-
ters for each purpose: A) Strategic requirements that 
serve the highest-level guidance and regulation to the 
entire 6G architecture, mainly discussing service quali-
ty and operating performance issues; B) Functional and 
Non-Functional requirements that provide directions for 
the operational behaviour of LLM. Functional require-
ments dictate the “perceived experience of the users 
of utilities”, while Non-functional requirements encom-

pass over 20 attributes related to “non-visible expe-
rience, maintenance, and quality guarantees”. These 
requirements support over-the-life-time end-to-end 
operations, configuration, and maintenance. The third 
cluster offers C) Sustainability requirements addressing 
the standard 6G implementation while ensuring a con-
sistent life cycle and continuous development capability 
for the entire 6G fabric. A holistic view of sustainability 
in 6G emphasizes energy efficiency, sustainable usage 
(e.g., maintainability, reconfigurability), resource-effi-
cient implementation, eco-friendly disposal, and adapt-
able design. These principles ensure sustainability is 
embedded across the lifecycle, addressing both envi-
ronmental and operational goals.

Highlighting their interplay, all the requirement sections 
contribute to the integration of LLM into 6G. Each offers 
unique roles and implementation levels with a function-
al purpose that adds significant value to operational 
performance targets in 6G. This supports the evolution 
of 6G architecture to be flexible and adaptive to situa-
tional contexts, proximity requirements, and end-user 
needs, among others. To harness the potential of LLM 
technology role, implementation, value, and suitability 
across the four distinct layers of the 6G architecture, it 
is imperative to analyze each layer’s cumulative effect 
within its respective level of abstraction (whether stra-
tegic, logical, operational, or implementation).

1. Strategic Layer: Conceptual, focusing on integrat-
ing LLM capabilities into high-level decision-mak-
ing processes and predictive analytics tools. At this 
layer, LLMs provide high-level direction and support 
to the entire 6G architecture. Their predictive analyt-
ics capabilities can, for example, forecast network 
structure and growth, adapt the network to user 
behavior, and adaptively configure the network, en-
suring it remains agile and obeys e.g., regulatory re-
quirements and SLA guarantees.

Requirements and enablers 3
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2. Logical Layer: Focused on being integrated into net-
work design tools, this layer ensures a seamless data 
flow and desired network configuration. Upholding 
integrity and control over the entire network behav-
ior presents intricate, context-sensitive challeng-
es that continually adapt with user evolution. Here, 
LLMs can be calibrated to refine data flows, ensur-
ing efficient communication, security, and effective 
distribution of applications, tasks, and resources. 
This meets both “Functional” (driven by users) and 
“Non-functional” (driven by architectural quality) ob-
jectives. Concurrently, LLMs can be tasked to fine-
tune diverse network structures and configurations, 
perpetually evaluating their security and efficacy. 
This balances 6G’s capabilities between users and 
their operational demands. Merging these dual ca-
pabilities guarantees an ever-efficient, adaptable, 
and safeguarded network.

3. Operational Layer: This layer is dedicated to over-
seeing the development and lifecycle of applica-
tions, AI, maintenance protocols, security frame-
works, and threat detection mechanisms, all while 
maintaining a real-time monitoring focus. It pro-
vides continuous and adaptive support to the re-

al-time capabilities of 6G. Guided by the insights 
from the Logical layer, LLM operational frameworks 
and runtimes can, for example, monitor, control, 
and prioritize network traffic. They can pre-emp-
tively pinpoint bottlenecks, define protocols for dif-
ferent users based on their application and service 
profiles, and adapt contextually to 6G SLA perfor-
mance standards. This is achieved by channeling 
resources, decentralizing applications, interfacing 
with different AI capabilities, dynamically sharing 
capabilities at different levels of networking, and 
orchestrating timely reactions to disruptions or 
emergent requirements.

4. Implementation Layer: Integration into software 
development and optimization tools, as well as 
inclusion in hardware analysis and configuration 
tools. LLMs can be tailored to bolster software en-
hancements across 6G network elements, ranging 
from edge devices to assorted network gear, in-
cluding base stations and Open Radio Access Net-
work (O-RAN) [34] modules. The aim here is to en-
sure a “continuous seamless integration” of diverse 
applications and services. Within this layer, the role 
of LLMs emerges as a vital asset, prepared to be 

Fig. 6: A holistic representation of the 6G architectural framework, illustrating the layered approach from 
high-level strategic objectives to practical implementation considerations. This framework integrates LLM and 
GPT technologies across strategic, logical, operational, and implementation layers, with associated key perfor-

mance indicators (KPIs) and requirements.
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“trained for purpose”. LLMs can perpetually assess 
hardware components, guarantee optimal setups 
rooted in behavioral insights, and ensuring security 
and compatibility, provisioning reliable and adapt-
able operations.

The central convergence in the Logical layer highlights 
the vision of translating the strategic vision into logical 
steps that can be operationalized. It serves as a bridge, 
ensuring that strategic objectives are aligned with op-
erational capabilities. This requires a thorough under-
standing of the service’s functional, service, develop-
ment, operating, and lifecycle requirements and their 
interrelationships. By focusing on this convergence 
within the Logical layer, one can ensure that strategic 
aims are accurately reflected in the system’s operation-
al design, leading to a service that is not only strategi-
cally aligned but also operationally viable and efficient.

While LLMs can enhance the AI-native capabilities of 6G 
systems, it is important to recognize and address their 
inherent limitations to harness their capabilities fully.

Limitations of LLMs: Need for 
safeguards and human-in-the-loop
As LLMs increasingly influence various sectors of mod-
ern society, including mobile networks, understanding 
their limitations becomes fundamental. This section 
delves into a subset of pressing concerns associated 
with the deployment of LLMs, including trustworthi-
ness, resource constraints, and the extent of automa-
tion. While these represent key areas of focus, it is worth 
noting that there exist additional nuances and risks that 
further underline the importance of a balanced ap-
proach in utilizing such technologies.

Ensuring the trustworthiness of AI has become a para-
mount concern in the progression of technology, espe-
cially as AI systems are increasingly integrated into crit-
ical sectors of society [35]. Ethical and transparent AI 
functionalities are essential for societal acceptance and 
the practical functionality and reliability of AI applica-
tions. A leading reference, the European Commission’s 
“Ethics Guidelines for Trustworthy AI”, emphasizes the 
significance of ensuring AI systems are lawful, ethical, 
and robust from both a technical and social perspective 
[36]. Furthermore, the EU’s proposed AI Act [37] aims 
to establish a risk assessment-based regulatory frame-
work that ensures AI practices in the EU adhere to high 
safety standards and respect fundamental rights. As AI 
continues its trajectory of profound influence on global 
societies and economies, establishing its trustworthi-
ness through rigorous standards and ethical consider-
ations becomes indispensable.

Resource constraints can often hamper the efficien-
cy and capability of deploying ML models. This is par-
ticularly true when dealing with large-scale data sets 

and complex computations, which demand significant 
memory and processing power. However, advances in 
hardware acceleration technology, such as graphics 
processing units (GPUs) and tensor processing units 
(TPUs), can significantly reduce computational time 
and allow for more complex modeling [38]. Moreover, 
ML methods, including dimensionality reduction and 
model optimization, can help mitigate some operation-
al concerns. These techniques can make models more 
efficient and less resource-intensive, enabling sophis-
ticated computations even on resource-constrained 
systems [8], [39], [40].

While automation can significantly improve the efficien-
cy of network operations, it is essential to recognize that 
there may be inherent limits to the extent to which these 
processes can be fully automated. Complex tasks often 
involve variables and considerations beyond the capac-
ity of current AI and ML technologies. Moreover, unfore-
seen anomalies, exceptions, or crises might demand 
human judgment and decision-making. This is where 
the concept of “human-in-the-loop” solutions comes 
into play. This approach ensures that while most routine 
operations can be automated, there remains a human 
element for oversight, management, and control. The 
human operator can provide the nuanced understand-
ing, context awareness, and problem-solving abilities 
necessary to handle complex or unexpected situations. 
This balance between automation and human interven-
tion can optimize operational efficiency while ensuring 
the network’s robustness and reliability.

Beyond these limitations, it is also essential to touch 
upon the energy and environmental implications of 
deploying such advanced models. While this is a criti-
cal topic, we will provide an overview rather than an in-
depth analysis, as this paper’s primary emphasis is on 
the high-level architectural, management, and orches-
trating aspects of LLM-enabled systems.

Energy and Environmental Implications
The upcoming era of 6G communication and comput-
ing systems promises not only a exceptional influence 
on global growth, productivity, and societal functions 
but also intersects notably with global sustainability 
objectives [41]. The United Nations’ Sustainable De-
velopment Goals (UN SDGs) chart a path for a future 
that seeks to address pressing challenges ranging 
from poverty alleviation and gender equality to climate 
change action and urban development [42]. 6G, with its 
impending commercial launch targeted for the 2030s, 
aligns closely with the timeline set for the realization of 
these global goals [41].

The vision of 6G, as proposed in [41], looks beyond 
merely offering communication services. It envisions 
6G as a multi-faceted entity: a service provider aligned 
with UN SDGs, a granular data collection tool for indica-
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tor reporting, and a foundational block for future eco-
systems that align with these goals. Such ecosystems 
will harness the capabilities of 6G, targeting goals like 
smart cities, gender equality, and climate change miti-
gation. Simultaneously, these advancements in 6G will 
facilitate breakthroughs in various fields such as virtual 
learning and smart traveling, contributing further to car-
bon footprint reduction.

Two complementary approaches need to be consid-
ered when introducing sustainability in 6G. First, 6G 
for sustainability, which focuses on how 6G can sup-
port the UN SDGs across economic, social, and envi-
ronmental dimensions. Second, sustainable 6G, which 
addresses making 6G systems themselves sustainable. 
This holistic view extends beyond energy efficiency 
to include sustainable design, implementation, usage, 
and disposal. These dimensions collectively ensure 6G 
systems contribute meaningfully to sustainability goals 
while being inherently sustainable in their lifecycle [43].

Within this framework, according to [44], energy effi-
ciency stands as a paramount design criterion for the 
6G framework. The network’s performance is intrinsi-
cally tied to the energy availability across its architec-
tural domains. This focus on energy efficiency is further 

echoed in the Hexa-X (concluded) and Hexa-X II (ongo-
ing) European 6G flagship projects, which target both 
energy efficiency and the CO2 footprint of network in-
frastructure as core challenges to be addressed [45]. 
The importance of this endeavor lies in the fact that 
ICT technologies, which 6G aims to revolutionize, have 
a significant carbon footprint on communication net-
works and wireless terminals. Addressing this will not 
only reduce the environmental impact but also foster a 
wider adoption of these technologies in everyday life. In 
turn, this adoption can lead to optimized operations in 
sectors like agriculture, transport, and environmental 
monitoring [45].

Given the stringent sustainability and efficiency pre-
requisites of 6G systems, integrating resource-inten-
sive technologies like LLMs demands careful attention. 
Therefore, it becomes paramount to scrutinize the 
energy and environmental footprint of the tools steer-
ing the 6G advancements. Central to this is the role of 
LLMs, which intriguingly position themselves as both 
potential contributors and mitigators within this intri-
cate ecosystem.

In this respect, with growing consciousness regarding 
the environmental impact of technological advance-
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ments and the requisite sustainability of AI [46], there 
has been a noticeable shift towards acknowledging and 
addressing the resource consumption and carbon foot-
print intrinsic to the lifecycle management of LLMs. A 
notable step in this direction has been taken by Meta, 
who disclosed the electricity consumption and carbon 
footprint of their LLaMA models [47]. This action aligns 
with a broader trend, where other technological giants 
have also unveiled detailed analyses concerning the en-
ergy and carbon footprint of prominent models such as 
Pathways Language Model (PaLM), GPT-3, and Evolved 
Transformer [48], [49], [50].

Analyzing the figures released for the LLaMA model 
training process, a massive computational undertak-
ing involved utilizing two thousand forty eight 80GB 
GPUs for an estimated five months [47]. This extensive 
operation consumed around 2,638,000 KWh of elec-
tricity, analogous to the yearly consumption of 1,648 
average households in Denmark. The process emit-
ted about 1,015 tonnes of carbon dioxide equivalent 
(tCO2e), comparable to the annual carbon footprint of 
92 Danish citizens.

What sets apart the reporting approach adopted in [47] 
is its encompassing methodology. Instead of limiting the 
reporting to the final stages of model training, the en-
tire computational journey, including experimental and 
unsuccessful runs, has been accounted for, reflecting 
a comprehensive view of the environmental cost of ML 
and LLM development. This methodology aligns with the 
Operational Lifecycle Analysis (OLCA) for ML presented 
in [51]. By tracking emissions from the nascent explor-
atory stages to the deployment of the final model, a ho-
listic understanding of a model’s environmental footprint 
emerges. This view is particularly salient as it captures 
emissions often overlooked by standard metrics.

Many optimization strategies geared towards energy-ef-
ficient LLMs predominantly focus on refining the mod-
el’s architecture or pivoting towards sustainable power 
supplies such as renewable energy sources. While these 
strategies are vital, given our focus, our interest leans 
towards solutions intertwined directly with mobile sys-
tems architecture at the intersection of 6G and LLMs.

The wave before generative AI saw a distinct trend of 
training and deploying AI models on energy-efficient 
platforms such as low-power CPUs, GPUs, or special-
ized hardware like TPUs. This direction also resonated 
with efforts to enhance various components of the 5G 
network [44]. Such hardware specializations not only 
lead to significant reductions in electricity consumption 
during the training and inference phases but also con-
tribute to reduced carbon emissions. The development 
of telco-specific LLMs is likely to benefit immensely from 
such optimized hardware. Furthermore, much like the 
emergence of hardware specifically tailored for certain 

AI tasks, like vision processing units (VPUs) and TPUs for 
computer vision [52], we anticipate the evolution of hard-
ware specialized for LLM execution in the coming years.

From another perspective, the dynamic and heteroge-
neous nature of mobile networks necessitates a flex-
ible approach to computational resource allocation. 
This becomes particularly relevant when considering 
LLMs instances. Guided by real-time workloads and 
accuracy benchmarks, LLMs should efficiently scale 
their resource demands to ensure optimized energy 
usage and minimized carbon footprints. This dynam-
ic resource allocation, coupled with strategies such 
as caching, memorization, and incremental training, 
can effectively minimize redundant computations, en-
hancing overall operational efficiency, also within the 
6G landscape [53].

Reflecting on all these approaches and emerging direc-
tions, it is necessary for the telecommunications sector 
to embrace comprehensive and transparent method-
ologies in computing and reporting the environmental 
footprints associated with the deployment of AI-native 
network infrastructures, particularly focusing on the in-
tegration of LLMs within the 6G landscape.

Decision-Making
A decision-making process is a structured approach 
to identifying and selecting the best course of action 
from a set of available options. A typical decision-mak-
ing process involves several steps, such as gathering 
information and evaluating available options, that help 
ensure thoughtful and well-considered choices.

This generic decision making process applies similarly 
when the “decision agent” is human (or a group of hu-
mans) and when the decision agent is “artificial” (or a 
group of artificial decision agents). AI has shown already 
remarkable capabilities in supporting decision-mak-
ing processes across various domains [54], [55]. In re-
al-time applications of complex cyber physical systems, 
where responsiveness and accuracy are crucial, the in-
tegration of AI decision agents offers immense poten-
tial and represents a fundamental enabling technology 
for advanced applications.

Moreover, the evolution of decision-making has wit-
nessed a gradual shift from human-centric approaches 
to the seamless integration of AI capabilities. This tran-
sition can be characterized along two axes: the expan-
sion of AI agent capabilities and the evolution of AI’s 
role in decision-making. Initially, an AI agent learns from 
past experiences, gradually refining its performance. 
As it expands its goals and timescale, the agent takes 
on new tasks, increasing its scope of responsibility. 
Concurrently, AI evolves from providing decision sup-
port, where it aids human decision-making, to decision 
augmentation, where it significantly enhances human 
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capabilities. Ultimately, this trajectory leads to autono-
mous decision-making, where AI independently man-
ages long-term goals and complex tasks, minimizing 
human intervention [56]. Together, these axes illustrate 
the transition from supportive to fully autonomous AI 
systems, capable of handling increasingly complex and 
extended objectives.

LLMs seem particularly suited to play an active role 
especially while dealing with high level decision prob-
lems involving multiple criteria and potentially complex 
decision scenarios [57]. Such LLM-based AI decision 
agents may be integrated with Internet of Things (IoT) 
devices and edge computing infrastructure, enabling 
real-time decision-making at the edge of the network. 
This could lead to faster response times and greater ef-
ficiency in various applications.

Accordingly, we envisage dedicated 6G LLM based 
agents, continuously learning and adapting to the ev-
er-evolving demands and complexities of the future 
6G network environment and of the IoT-Edge-Cloud 
Continuum, ensuring optimal performance and effi-
cient decision-making across a wide range of applica-
tions. The agents act as intelligent coordinators within 
the network (e.g. the orchestrators of Figure 1 and the 
LLM controller of Figure 3), interacting and bridging the 
gap between other specialized and dedicated Deci-
sion Agents [58] and AI solutions (e.g. dedicated ML/AI 
solutions across the network and/or at various levels of 
the network). This collaborative approach leverages the 
strengths of different AI models to create a robust and 
comprehensive decision-making ecosystem.

Controlling the quality of decision-making by such LLM-
based agents starts by defining their goals. We need to 
establish guidelines and standards that specify the ex-
pected decision quality, constraints, and requirements, 
and define performance metrics aligned with desired 
outcomes. Finally, we need to implement solutions to 
regularly monitor these metrics to assess the agent’s 
performance (see KPIs in Figure 7).

It is worth noting that the increasing applications of AI, 
and the increasing role of LLMs and GenAI, is prompt-
ing a reevaluation of decision-making processes, espe-
cially in scenarios requiring the management of multiple 
objectives with varying levels of criticality. This shift is 
driving a paradigm change in how complex problems 
are approached. Applications in 6G networks can ben-
efit from insights gained in other sectors, which are in-
creasingly highlighting both challenges and opportuni-
ties [59], [60], [61], [62], [63].

Regulation
Lewis Mumford envisioned an ”invisible city” where 
physical presence in a city center would become un-
necessary [64], a concept increasingly feasible with the 

advent of 6G. By the 2030s, 6G is expected to enable 
ultra-low latency communication, where even human 
senses could be transmitted, fundamentally altering the 
fabric of urban life and reducing population pressures 
in city centers [65]. Unlike its predecessors, 6G will in-
tegrate AI systems, including large language models 
(LLMs), as a core component of the network, enabling 
seamless human-network interaction through ad-
vanced telepresence, digital twinning, and smart cities 
. These developments necessitate that LLMs operate in 
alignment with human goals, a concept referred to as 
”beneficial AI” [66].

The introduction of 6G, particularly its use of AI and 
LLMs, presents significant legal challenges, especial-
ly concerning data privacy and cybersecurity. Effec-
tive regulation of LLMs within 6G networks must es-
tablish a framework for their responsible use, ensuring 
these technologies are trustworthy and aligned with 
societal needs [67]. The concept of ”tactile regula-
tion,” which adapts in real-time to emerging risks and 
leverages AI tools for compliance, may be essential 
in this context. For example, the European Union’s AI 
Act [68] introduces mechanisms for regulatory com-
pliance in high-risk AI systems, a model that could be 
expanded to 6G.

Regulatory frameworks must also address the le-
gal status of data within the 6G era. Data should not 
be treated merely as property, given its critical role in 
achieving sustainability and privacy goals. Trust in the 
6G network will depend on individuals having control 
over their data, necessitating regulations that empower 
users and scrutinize data brokers effectively [69]. Fur-
thermore, traditional data classifications (e.g., sensitive 
vs. non-sensitive) may become obsolete in 6G, where 
massive, complex datasets will include cognitive and 
behavioral information. As the Ada Lovelace Institute 
highlighted in their 2020 report ”The Data Will See You 
Now,” these novel data points require an updated ap-
proach to data protection regulations for a sustainable 
framework [70]. The regulatory oversight of LLMs and 
AI within the 6G compute continuum must thus be dy-
namic and adaptive, addressing both ethical standards 
and real-time challenges. Such a framework would not 
only ensure the protection of users and their data but 
also foster innovation and trust in this transformative 
technological landscape.
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Fig. 7: Overview of LLM KPIs in 6G scenarios. The table highlights the KPIs in relation with the use cases of 
Figure 5 and of the KPIs categories illustrated in Figure 6.
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Architecture 4
From 5G to AI Interconnect
The evolution of 5G since its first release has not only 
been characterized by enhanced connectivity per-
formance but also by a strategic alignment towards 
a more flexible, responsive, and intelligent architec-
ture spanning from the RAN to the Core network. This 
journey included multiple advancements ranging from 
evolved network functions, service provisioning and 
orchestrated operational patterns, to the integration 
of AI capabilities.

However, while 5G has successfully fostered a favor-
able environment for the deployment and functional-
ity of AI applications, its native architecture cannot be 
considered as “AI-native” [71]. In fact, while 5G archi-
tecture is proficient in provisioning AI applications, it 
does not inherently possess built-in AI processing or 
decision-making faculties. Consequently, essential 
AI-driven tasks such as real-time data analysis and 
predictive maintenance are primarily handled by sup-
porting AI systems and functionality, introducing ad-
ditional complexities and potential latency in network 
operations. Furthermore, 5G has embraced enhanced 
operational agility through the definition of diverse 
communication patterns and a service-based archi-
tecture, fostering a flexible and scalable network eco-
system. These elements, along with the exploration 
of intelligence integration, comprise the core of this 
section, depicting a holistic picture of the 5G evolu-
tion and its trajectory towards a more intelligent and 
adaptable network infrastructure.

In the 5G system architecture [72], standardized by 
the 3GPP, a service bus plays a crucial role in inter-
connecting various network functions. This service 
bus employs two primary communication patterns: 
request-response and subscribe-notify [72]. The re-
quest-response pattern is a synchronous method that 
requires immediate responses, such as setting up a 

user’s connection or modifying a session. This pattern 
allows for direct communication between network 
functions, facilitating efficient data exchange. Contrari-
ly, the subscribe-notify pattern provides an asynchro-
nous notification capability, which is particularly useful 
for reacting to network or application-related events. In 
this pattern, network functions can subscribe to specif-
ic topics and receive notifications when other functions 
publish messages to these topics [73]. The decoupling 
of network functions, enabled by the Service-Based Ar-
chitecture (SBA) [74], has contributed to the increased 
flexibility of the 5G architecture. In fact, it enables the 
network functions to be provisioned and scaled inde-
pendently, fostering adaptability and resilience in the 
network, crucial for efficiently supporting a plethora of 
services and applications [75].

5G orchestration also emerges as pivotal aspect of 
the 5G network architecture, being responsible for the 
automated management of network services and re-
sources [72]. It orchestrates various network functions 
and services, such as setting up network slices, manag-
ing resources, and ensuring Quality of Service (QoS) for 
diverse applications [76]. Network slicing–a significant 
feature of 5G–enable the set up of multiple virtual net-
works on a single physical infrastructure. Each slice can 
be tailored to meet the specific needs of a particular 
service or application, and the orchestration layer man-
ages these slices [77]. Additionally, 5G orchestration 
handles the real-time allocation of network resources 
(e.g., bandwidth and computational power), adjusting 
these allocations as needed to optimize network per-
formance. It also ensures the QoS for different applica-
tions and services by prioritizing network traffic based 
on factors like the type of application, the user’s SLA, 
and current network conditions. Within this orches-
trated ecosystem, the 3GPP has devised key 5G Core 
components such as the Network Data Analytics Func-
tion (NWDAF) and the Management Data Analytics 
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Function (MDAF) to bolster the network’s intelligence 
of 5G networks [78], [79]. The NWDAF collects and ana-
lyzes network-wide information, enabling an intelligent, 
real-time understanding of network conditions and 
performance. This aids in making predictive decisions 
to enhance overall network performance. The MDAF 
serves a complementary role by focusing on collecting 
and analyzing management data. This includes per-
formance metrics, fault information, and configuration 
data from network entities, allowing for a holistic view of 
the network status and facilitating data-driven network 
management decisions. Both NWDAF and MDAF func-
tions are central to the 3GPP’s approach to applying AI 
and ML techniques for more efficient, responsive, and 
adaptable 5G networks.
 
Looking at the RAN, there has been a surge in R&D 
efforts aimed at fostering AI-driven radio networks in 
recent years [80], [81], [82], [83]. In line with this trend, 
the O-RAN Alliance [34] emerges as a central initiative, 
committed to revolutionizing the RAN through open 
standards and architectures. By advocating for open 
interfaces, disaggregated network components, and a 
heightened focus on AI-driven intelligence and auto-
mation, the O-RAN Alliance aspires to cultivate a more 
innovative, interoperable, and economically efficient 
wireless network ecosystem [84], [85]. O-RAN oper-
ates based on two Radio Intelligent Controller (RIC) 
designs [86]. The Non-real-time RIC is configured to 
manage operations that last several seconds, making 
it ideal for AI/ML training and aiding service provi-
sion. Conversely, the Near-real-time RIC is optimized 
for operations that range from tens of milliseconds to 
a second, aligning well with the management of RAN 
control primitives and the execution of inference tasks. 
The Near-RT RIC facilitates the deployment of xApps, 
applications interfacing with the RAN elements to per-
form specific control and optimization functions. The 
O-RAN E2 interface serves as the main channel for es-
sential data for RICs, learning, and inference process-
es [87]. O-RAN incorporates an AI/ML framework that 
significantly transforms the RAN architecture, infusing 
it with intelligent functionalities [85], [87], including in-
telligent slicing and dynamic control [88]. This frame-
work is anchored on the RIC, housing the xApps—ap-
plications employing AI/ML algorithms to automate 
and optimize various RAN functionalities. The RIC, 
interfacing with both non-real-time (Near-RT RIC) and 
near-real-time RAN domains, enables a dynamic in-
formation exchange, promoting a more adaptable and 
responsive RAN. It uses standardized, open interfac-
es to foster interoperability, minimize vendor lock-in, 
and encourage a diverse ecosystem of innovative RAN 
solutions. The internal messaging infrastructure of 
O-RAN connects xApps, platform services, and inter-
face end-points. While there’s no specific technology 
prescribed (for instance, the O-RAN Software Com-
munity has delineated the RIC Message Router or RMR 

[89]), the system is required to meet certain standards. 
It should enable registration, discovery, and removal 
of endpoints, like RIC components and xApps, and 
should provide APIs for direct messaging or through 
pub/sub methods, guaranteeing efficient routing and 
data protection [90].

The emerging AI RAN research further emphasizes the 
integration of AI/ML capabilities directly within the RAN 
to enhance operational efficiency, support new use 
cases, and drive innovation in network functionalities. 
It is possible to determine three types of AI RAN par-
adigms. AI-on-RAN enables the execution of AI-driven 
applications at the network edge, leveraging the RAN’s 
proximity to end-users for low-latency, high-through-
put processing. This architecture supports a wide 
range of applications, including intelligent video analyt-
ics, augmented and virtual reality (AR/VR) experiences, 
and advanced positioning services. By embedding AI 
capabilities closer to the data source, AI-on-RAN min-
imizes the need for data transfer to centralized cloud 
servers, thereby reducing latency, improving real-time 
responsiveness, and optimizing network resources. 
The AI-on-RAN framework is designed to be highly 
adaptable, accommodating diverse AI models and al-
gorithms tailored to specific RAN functionalities, fur-
ther contributing to a more intelligent and responsive 
network environment. AI-for-RAN specifically targets 
the enhancement of RAN performance by leveraging AI 
to optimize core network operations, such as resource 
allocation, spectral efficiency, and interference man-
agement. By integrating advanced AI-driven control 
mechanisms, AI-for-RAN enables dynamic adaptation 
to fluctuating network conditions, predictive main-
tenance, and real-time optimization of radio parame-
ters, ultimately leading to improved user experiences 
and more efficient network utilization. This approach 
transforms RAN from a traditionally static system into 
a self-optimizing network layer capable of making in-
telligent adjustments on the fly, significantly enhancing 
the overall resilience and flexibility of the network infra-
structure. To tie both paradigms AI-and-RAN studies 
the synergistic approach where AI and RAN share the 
same physical and virtual infrastructure, seamlessly 
co-locating AI processing capabilities with RAN op-
erations. This co-location allows for efficient asset 
utilization, reducing overhead costs and streamlining 
network management by harnessing shared computa-
tional resources. AI-and-RAN enables a unified oper-
ational environment where AI tasks such as data anal-
ysis, inferencing, and decision-making are performed 
in close proximity to RAN functions, allowing for faster 
processing times and reduced latency.

The outlined architectural advancements in 5G and be-
yond, particularly the introduction of analytics-based 
orchestration and open, intelligent RAN concepts, de-
pict a trajectory towards more integrated, flexible, and 
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intelligent network architectures. These improvements 
form a foundational basis that seems conducive for the 
native, seamless incorporation and functioning of ad-
vanced AI technologies such as LLMs and GPTs in the 
upcoming 6G networks.

The 6G AI Interconnect Framework
The envisaged AI Interconnect framework for 6G lever-
ages the power of advanced AI/ML models, such as 
LLMs and GPTs, coupled with enhanced data analytics 
capabilities, to comprehend and interpret the vast vol-
umes of data traversing the network. This analysis al-
lows the AI components to discern patterns and trends, 
predict network congestion, and make insightful de-
cisions about routing data and component placement 
to optimize the use of radio and network resources. 
Moreover, the AI Interconnect can diagnose, analyze, 
and manage network and application tasks in real-time 
across the edge-cloud continuum. Central to this ap-
proach is the MAPE-K feedback loop, a fundamental ar-
chitectural model in the design of self-adaptive systems 
and autonomous computing [18].

The MAPE-K model outlines a cyclical process enabling 
systems to self-manage and adapt to evolving condi-
tions for optimized performance. It encompasses four 
interdependent stages: (i) Monitoring, where the sys-
tem’s environment and performance are observed; (ii) 
Analysis, where data gathered is evaluated to under-
stand the system’s status; (iii) Planning, where strat-
egies are formed based on analysis results; and (iv) 
Execution, where these strategies are implemented. 
The shared ’Knowledge’ component supports all these 

stages, providing a centralized information base.

In the context of 6G networks (Figure 8), the AI Inter-
connect functions as the “Managing System”, deploy-
ing the MAPE-K loop as a strategic tool to facilitate 
intelligent control and adaptability in the “Managed 
System”. Specifically aimed at optimizing quality prop-
erties essential for 6G operations, the AI Interconnect 
uses the MAPE-K loop to address complex network 
challenges. LLMs and GPT technologies, within this 
setup, are instrumental in enhancing the functionality 
of the MAPE-K loop. They are particularly significant 
in addressing learning problems within the broader 
adaptation challenges, enriching the AI Interconnect’s 
capability to execute timely and informed adjustments 
in the 6G network’s operations. The sophisticated pro-
cessing capabilities of LLMs allow them to manage 
extensive datasets efficiently, offering critical insights 
that enhance the Analysis and Planning stages of the 
MAPE-K loop, subsequently fine-tuning the adaptive 
responses of the 6G network.

The AI Interconnect aims to empower the MAPE-K 
stages to leverage LLMs, and even undertake MAPE-K 
iterations through a singular LLM or a set of LLMs. This 
AI-driven interconnect approach offers several signif-
icant advantages over traditional network intercon-
nects. Primarily, it grants the network the dynamism 
required to adapt to evolving conditions, such as fluc-
tuations in data traffic or modifications in network to-
pology. Consequently, the network can sustain optimal 
performance even when navigating through challeng-
ing operational terrains. Moreover, the synergy between 

Fig. 8: MAPE-K as enabling paradigm of the AI Interconnect. On the left, relation of learning problem and adap-
tation problem with the components of the managing system. On the right, structure of an autonomic element. 

Elements interact with other elements and with human programmers via their autonomic managers.
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AI interconnect and orchestration emerges as a crucial 
catalyst in realizing Intent-Based Networking (IBN) [91]. 
IBNs have the capability to translate users’ business 
objectives into strategies for network configuration, 
operation, and maintenance [92]. The integrated use of 
MAPE-K, AI Interconnect, and GPT/LLM technologies 
orchestrates a robust, forward-thinking paradigm for 
managing and optimizing 6G networks. Collectively, 
these elements create a dynamic, self-adapting net-
work infrastructure, capable of effectively meeting the 
demands of future connectivity with unparalleled effi-
ciency and intelligence.

Figure 9 delineates our envisioned AI Interconnect sys-
tem architecture in detail. Building upon preceding con-
cepts of on-device and in-network LLMs, our blueprint 
proposes an edge-cloud continuum orchestration, al-
lowing LLMs to be strategically positioned across vari-
ous network elements, ranging from the user equipment 
(UE) to the public cloud. In developing our system, we 
contemplate a foundational architecture driven by four 
design goals and three fundamental components. The 
first design goal, simplicity at the endpoints, advocates 
for a redistribution of complexity away from the net-
work edge, resulting in a simplified end-user interface 
and device requirements. The second goal, separation 
of concerns, ensures that different system functional-
ities are divided into separate components, each having 
a distinct responsibility, thereby fostering modularity 
and scalability. Our architectural vision also embraces 
indirection through selection as third design goal. This 
introduces an intermediary layer optimized for system 

Fig. 9: GPT-Driven AI Interconnect Architecture. Our approach is structured around four pivotal design goals, 
from simplifying end-user interactions to ensuring versatile deployment across varied contexts, all rooted in 

foundational components for optimum efficiency and adaptability.

interactions, fostering a robust adaptability and flexibil-
ity in the face of varied operational conditions. Versatile 
deployment rounds off our design goals, emphasizing 
the architecture’s inherent capability to proficiently 
navigate both network-level and application-level con-
cerns, ensuring a comprehensive functionality across a 
spectrum of contexts and use cases.

The realization of these design goals is reflected in the
mobile network, through the three components de-
picted in Figure 1: (i) the control plane, which is re-
sponsible for the orchestration and coordination of 
network-centric activities such as resource allocation 
and network configuration; (ii) the user plane, which 
handles the data transmission, ensuring the efficient 
and reliable management of user data packets; (iii) 
the higher-level application logic, which servers as the 
business layer that supports end-user services, ana-
lytics, and advanced applications. All these layers are 
meant to utilize 3GPP and O-RAN interfaces, promot-
ing a more open and intelligent network architecture. 
Within this framework, the RIC, complemented by 
the insights derived from NWDAF and MDAF, plays a 
central role in orchestrating and controlling these in-
terfaces, acting as the system’s cognitive core. This 
enhanced “brain” navigates informed decisions about 
resource allocation, service provisioning management 
and orchestration, signal processing, and optimization 
pathways for network efficiency. This comprehensive 
design approach can ensure that our system is robust, 
versatile, and ready to meet the demands of future 
AI-native network infrastructure.
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We base the AI Interconnect and orchestration design 
on three fundamental concepts:

• Semantic Publish/Subscribe and Intent-based 
Messaging. Our AI Interconnect is designed with a 
specialized focus on multi-layer semantic request/
reply and pub/sub mechanisms. The interconnect 
is multi-layered to meet the diverse requirements 
of AI applications, such as the delivery of raw data, 
prompts and prompt fragments, inference results, 
and model updates. This approach ensures that 
endpoints are decoupled across spatial, temporal, 
and synchronization dimensions. At the core of this 
design lies a message-based interconnect system 
that carries more than just data; it encompasses 
essential AI-related metadata, providing a detailed 
account of AI operations and forming the basis for 
essential oversight mechanisms. This inherent attri-
bute promotes accountability by keeping a detailed 
record of these operations, enabling a rigorous audit 
of AI-driven processes.

• LLMs as Controllers. In our architecture, LLMs are 
re-imagined as central orchestrators, strengthened 
with the expertise of specialized models and sys-
tems. They bring an element of dynamic flow con-
trol, introducing a layer of agility and adaptability to 
the system. Positioning LLMs centrally as controllers 
equips the system with the capability to expertly 
navigate and supervise complex AI landscapes.

• LLMs as Dynamic Tool Builders and API Brokers. 
Beyond their role as controllers, LLMs are also envi-
sioned as dynamic tool creators. They have the ca-
pability to dynamically craft tools that are tailored to 
specific operational needs, ensuring a high degree 
of flexibility and precision in AI tasks. Furthermore, 
LLMs act as API brokers, facilitating the seamless 
interaction and integration between diverse AI tools 
and platforms, simplifying operations and enhanc-
ing the coherence of the AI ecosystem.

Another aspect to explore in the context of LLMs is 
the potential for semantic compression and commu-
nication [27], [93], [94], [95]. This innovative capabili-
ty can lead to additional possibilities for efficient data 
transmission and interaction, paving the way for more 
advanced and intelligent communication paradigms 
within the AI Interconnect. It could potentially enhance 
the roles of LLMs as controllers, tool builders, and API 
brokers by introducing a new layer of semantic intelli-
gence to these functions. However, a deep dive into this 
aspect of LLM capabilities lies beyond the scope of this 
paper, but it signifies an intriguing direction for future 
research and exploration.

Our AI Interconnect seamlessly integrates with open 
edge-cloud continuum APIs and execution environ-

ments, leveraging existing standards and platforms, 
such as O-RAN, to ensure a unified, interoperable exe-
cution framework that gracefully spans across the edge 
and the cloud.

LLMOps: Lifecycle Management of LLMs 
in 6G Architectures
Despite the undeniable potential of AI-native commu-
nication networks, the landscape of development and 
operation needs reevaluation to cater to the emerging 
technological requirements in such an environment. 
This section focuses on the challenges associated with 
the lifecycle management of LLMs (LLMOps) in envi-
ronments supported by 6G. From the perspective of AI 
and DevOps practitioners, we offer a starting point (see 
Fig. 10) for discussions about where the “traditional” 
DevOps/MLOps lifecycle concludes and the point at 
which AI-human and AI-AI interaction becomes essen-
tial. Here, we will mainly discuss LLMs. We note that the 
consideration hereafter are nonetheless rather general 
and apply similarly to other ML architectures that can 
be considered large (billions of parameters) that rather 
serve a general purpose (e.g. GPTs).

Artificial intelligence permeates almost all areas of life 
and work. In his essay [96], Ryan Calo discusses the 
social challenges with respect to AI. The importance of 
reproducibility is highlighted in the sense of how AI was 
built, certification, privacy as well as AI-human interop-
erability. In the same context, the European Parliament 
has approved the world’s first comprehensive frame-
work for constraining the risks of AI (AI act [68]) by 
transparency and a regulated way of operating AI. In or-
der to address the issues raised by this necessary regu-
lation, the development, testing and operating of LLMs 
have been rethought. Additionally to the technological 
and social aspects also the business perspective on 
LLMs requires a reconsidered LLM lifecycle. A chang-
ing factor, for instance, is that costs for LLMs inference 
become a relevant factor and may be higher than costs 
for training (e.g. fine-tuning foundational models) and 
experimentation. This holds in particular when central 
high-performance infrastructure has to be operated 
and maintained for a robust delivery of LLM. In this re-
gard training, retraining and inference can profit from 
distributing these tasks in the computing continuum 
to edge devices. Here, techniques such as federated 
learning [97], could help to address these new demands 
on a distributed computing environment. Ultimately, 
it is imperative to consider the legal implications that 
emerge from the outlined requirements at the very on-
set of any forthcoming development in LLMs. Reproduc-
ibility remains a pivotal factor in ensuring transparency 
throughout this process. Key areas where meticulous 
record-keeping is essential include the certification of 
datasets and their sources, documenting infrastructure 
to guarantee adequate precision, detailing the LLM al-
gorithms employed, and establishing reproducible test 
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environments to evaluate the robustness of LLMs in 
terms of both safety and security.

With these new challenges as described above, how 
could the lifecycle of LLMs look like in the future and 
how is it connected to the need of Reproducibility and 
Interoperability? To provide a viewpoint, we would like to 
start with the question: What is LLMOps? Simply speak-
ing, LLMOps is MLOps (DevOps for machine learning 
[98]) extended to address the special needs of LLMs 
with respect to the deployment, operation, mainte-
nance as well as the handling of the interaction of LLMs 
with other actors. What does it mean for the LLMOps 
life cycle in the 6G enabled computing continuum?

The regular MLOps life cycle usually starts with gather-
ing, exploring and processing of data. In the next step, 
the code for the ML approach is developed and then 
sent together with the data to the central computing in-
frastructure where the training happens. After that the 
resulting ML model is validated and then deployed to 
infrastructure where it runs for the intended use case. 
During the operation phase the model performance is 
monitored and new data is acquired. Based on the mon-
itoring and some time of operating, the ML software is 
reconsidered and the whole cycle begins from usually 
an adjusted set of the three key assets of ML models 
that are data, code, and infrastructure [99].

From the high-level perspective, the lifecycle of LLMs 
does not differ very much from the one of “classical” 
ML solutions. However, due to their inherent capa-
bility of direct interaction with humans (here by using 
language), particular things change during their life 

and also during their conception. These changes also 
concern the features of LLMs which are considered as 
“risky” as described above. The changes to the life cy-
cle are sketches in Figure 10.

When we would start with the regular development of 
an LLM it would start again with data, code and training, 
see Fig. 10 (left, Dev). Once the model has been validat-
ed, it is integrated and deployed to production where it 
operates and is monitored. Different to the classical ML 
approaches, LLMs nowadays are developed to use hu-
man feedback to improve by e.g. reinforcement learning 
[100]. Consequently, the LLM model itself could be by 
construction capable of using human feedback, that ex-
tends the training data, to retrain and then operate in a 
fine-tuned version of itself. Hence, the human feedback 
lets the LLM escape the “classical” DevOps lifecycle 
and have its own developer-independent (Dev-idepen-
dent) life cycle which can continue independently, with 
a stop due to, e.g. security, or performance, or similar 
issues. In the latter case a human intervention is need-
ed (the second part of the human-in-the loop) and the 
DevOps cycle starts again.

As described above, reproducibility and Interoperabil-
ity are crucial for the trustworthiness and robustness 
of LLMs. Reproducibility can be only addressed by a 
proper tooling that allows to track the development 
and self-development of LLMs. In Figure 10 (left), we 
indicate the parts where versioning is needed. A very 
fine-granular and still manageable solution for version-
ing, particularly model versioning, was earlier discussed 
by Holzinger et. al. [101] to be necessary to foster repro-
ducibility. We believe that versioning and proper track-

ig. 10: Illustration of the LLMOps life cycle in a 6G enabled computing continuum highlighting the AI-human (left) 
and AI-AI interaction (right) as well as places where proper versioning is needed to support reproducibility.
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ing is needed everywhere where the foundations of ML/
LL models, namely data, code, infrastructure, as well as 
the training and validation is touched. For this tooling is 
needed capable of bookkeeping all severe parts includ-
ing those in the self-development loop. To guarantee 
human-AI interoperability, particularly the monitoring of 
LLM and the security of their interfaces are important. 
As described before the monitoring can either lead to 
human feedback or to rebuild the LLM by human inter-
section. KPIs (key performance indicators) and safety 
measures have to be implemented in order to decide 
when a human intervention is needed. Likewise, secu-
rity and privacy measures have to be considered before 
using the human feedback in the self-deployment loop 
of LLMs. Furthermore, the human user needs to be in-
formed when interacting with an artificial intelligence 
such as LLMs. Only this way, self-determined decisions 
on the provision of private data to the feedback loop 
can be done taking advantages and risks into account.

The environment allowing for cooperative AI is yet an-
other feature offered by a 6G enabled computing con-
tinuum. Hence, many of the previously described LL-
MOps lifecycles can potentially co-exist and mutually 
benefit from each other. From a DevOps perspective, 
unlocking the full potential of this system necessitates 
AI-AI interoperability. Achieving this requires the es-
tablishment of standard interfaces between LLMs op-
erating across diverse devices. Moreover, integration 
tests for these interfaces must be developed, in con-
junction with traditional DevOps methodologies like 
test data generators, to ensure seamless AI integration. 
Additionally, effective version control for the models is 
crucial. This goes beyond mere reproducibility, facilitat-
ing a framework where different versions of LLMs are 
designated compatible or incompatible, thus ensuring 
coherent communication between them.

Distributed Inference
The success of LLMs is primarily attributed to their scal-
ability. Distributed inference allows LLMs to scale to ef-
ficiently perform complex tasks with low latency, such 
as natural language understanding and text genera-
tion. LLMs are likely to have billions of parameters. The 
scalable inference of LLMs is accompanied by a sub-
stantial demand for computation resources (high end 
hardware), such as powerful CPUs, GPUs or TPUs and 
ample RAM. In the context of 6G connectivity, which in-
volves devices with diverse capacities, the challenge of 
resource efficiency becomes crucial, especially for re-
source-constrained devices.

Utilizing pre-trained LMMs typically involves two stag-
es, i.e., fine tuning and inference. We particular focus on 
distributed inference of LLMs on resource constrained 
and unstable environment, which faces significant chal-
lenges due to LLMs’ new characteristics, such as huge 
parameters and autoregressive inference. The investi-

gation sheds light on current approaches addressing 
the resource challenges posed by LLMs, with the aim of 
not only providing insights into existing methodologies 
but also potentially inspiring future scientific break-
throughs in 6G-enabled computing continuum.

Overview of distributed inference for Deep 
Neural Network services
Distributed inference is one crucial approach to accel-
erate inference for latency sensitive Deep Neural Net-
work services. There exist many research works on how 
to partition DNN inference tasks, e.g., image classifica-
tion, and assign them to devices with different com-
putation capacities [102], [103]. In general, distributed 
inference can be realized through horizontal collabora-
tion or vertical collaboration. In horizontal collaboration, 
an inference task is partitioned through data/tensor 
partition along one or more dimensions, e.g., grid-based 
spatial partition, segment-based spatial partition, and 
channel partition, and the partitioned tasks can be al-
located to different computing devices [104]. Part of 
the partitioned computation outcomes shall be ex-
changed between distributed devices and be merged 
with the local computation results, then continue with 
the computation of next layers, which inevitably caus-
es communication overhead. Such data exchange can 
take place at every layer (i.e., layer-wise parallization) 
or once every multiple layers (i.e. fused-layer paralliza-
tion), depending on how a DNN model is sliced. There is 
tradeoff in communication and computation overhead 
in different partition and parallization approaches. Gen-
erally speaking, layer-wise parallization causes more 
communication overhead, while fused-layer paralliza-
tion requires a bigger receptive field for input data and 
thus leads to higher computation overhead. An optimi-
zation problem can be formulated to find optimal data 
partition and model split points based on the commu-
nication bandwidth, and computation speed of differ-
ent devices. To minimize communication overhead in 
distributed inference, [105] proposes a novel task col-
laboration scheme which maximizes the overlapping 
between communication and computation process, 
thereby minimizing the total inference time. In vertical 
collaboration, a DNN model is split among local device, 
Edge or Cloud, which can execute part of the inference 
pipeline. This is often referred to as split computing or 
device-edge collaborative inference [106]. The optimal 
model split depends on the size of intermediate feature 
maps, communication data rate and the computation 
power at device/edge/Cloud [107]. Due to time-varying 
wireless communication channel, to ensure stringent 
inference delay constraint, it is promising to leverage 
dynamic inference realized by dynamic neural network 
[108], for example, early-exits architecture [109]. While 
the existing methods for distributed inference for DNN 
could still be relevant for LLM distributed inference, it 
is worth mentioning that once the partition is settled, 
for given communication data rate and computation 
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resource, DNN inference time is rather deterministic, 
which is different from the case of LLM inference, as 
LLM inference follows an autoregressive patterns.

Distributed inference for LLMs
In LLM inference, it generates one token by running the 
model and the generated token is used as input to gen-
erate the following token using the model, and this pro-
cess continues until the model generates the end-of-
sequence token, which is referred to as autoregressive. 
The LLM inference process requires to track the states 
previously generated, demanding high memory capa-
bility and hinders the inference efficiency. However, in 
many situations device memory resources are scarce, 
which causes memory boundary to make it impossible 
to directly employ the LLMs on a single GPU or a single 
node with multiple GPUs. For example, Imagebind re-
quires about 6G bytes memory, which usually exceeds 
the memory limit of a device. Therefore, it is crucial to 
investigate how to overcome the challenges to perform 
LLMs inference on resource limited devices especially 
6G networks are expected to integrate edge computing 
more extensively. We present several promising tech-
niques as follows.

Parallelism approach: Parallelism can accelerate infer-
ence process and facilitate the deployment of LLMs 
by making the partition of LLM and parallel running on 
on diverse hardware devices without accuracy loss. In 
current research work, parallelism techniques, such as 
data parallelism, tensor parallelism, and pipeline par-
allelism, are employed for LLM distributed inference. 
One challenge of implementing parallelism for LLMs 
is ensuring efficient coordination and synchronization 
among parallel process while maintaining the model’s 
accuracy. Therefore, it is essential to take into account 
the diversity in hardware characteristics and trans-
former architectures during the parallelism process. 
The model structure affects the optimal parallelism 
strategies, such as tensor and pipeline parallelism are 
effective only for dense transformers, whereas expert 
parallelism is specifically designed for sparse trans-
formers [110]. Meanwhile, the place where parallelism 
is carried on (a single node with multiple GPUs or on 
a multi-node) affects which parallelism methodology 
should be adopted.

Borzunov et al. [110] propose a novel distributed pipe-
line-parallelism inference algorithm, which can quickly 
recover from the failed server and transfer the task to 
replacement servers by using the dual attention caches. 
Meanwhile, they also design a decentralized load-bal-
ancing protocol where the overall system throughput is 
maximized by distributing transformer blocks to each 
server. Furthermore, participants can seamlessly in-
clude or exclude their devices during the inference pro-
cess due to the decentralized feature protocol which 
greatly enhance the efficiency of utilizing idle GPU.

DeepSpeed-Inference [111] uses a combination of 
parallelism strategies to deal with Mixture-of-Experts 
(MOE) transformer models including both the dense 
and sparse transformer components. The proposed ap-
proach includes two parts: 1) a three-layer DeepSpeed 
Transformer system and each layer with the purpose to 
reduce the latency, specifically, single GPU transformer 
kernels are used for optimizing the memory bandwidth 
usage, tensor slicing and pipeline parallelism are uti-
lized for scaling dense MOE among GPUs, and tensor 
slicing together with expert parallelism are employed 
to distribute model parameters to hundreds of GPUs 
to fasten the process, and 2) ZeRo-Inference utilizing 
the memory resources of CPU, NVMe, and GPU along-
side of GPU to enable extensive model inference with 
limited resources. There are also other parallelism ap-
proaches such as parameter offloading and data paral-
lelism. Data parallelism is one of the primary choices if 
the model can fit into a single GPU. However, that is not 
the common case and hence data parallelism usually is 
combined with other parallelism methods.

ORCA [112] implemented a distributed inference for 
transformer-based generative models, with scalability 
to models with hundreds of billions of parameters. It 
accelerates inference by utilizing intra-layer parallelism 
and inter-layer parallelism. Intra-layer parallelism, simi-
lar to tensor parallelism, basically splits matrix multipli-
cations and their associated parameters over multiple 
GPUs, and inter-layer parallelism, similar to pipeline par-
allelism, splits Transformer layers over multiple GPUs. 
While ORCA significantly improves inference through-
put, its iteration-level first-come-first-served process-
ing has head-of-line blocking issue. FastServe [113] 
addresses this issue by using preemptive scheduling to 
minimize job completion time.

Model collaboration and Hierarchical Inference: In the 
context of deep neural networks (DNNs), collaborative 
or hierarchical concepts have been proposed where a 
smaller, local DNN interacts with a cloud-based larger 
DNN to handle inference [114] [115]. Smaller models 
can typically be placed on constrained devices clos-
er to the edge, while they suffer from lower accuracy. 
Through offloading or other collaboration schemes 
with the cloud, this deficiency can be overcome.

In the context of LLMs, these trade-offs still exists. 
Small models for LLMs require fewer computing re-
sources, which makes them a feasible approach for 
deployment on device with limited hardware resourc-
es. There exist challenges of using small models for 
inference, for example, the accuracy of using the small 
model on the edge to perform the inference is low if the 
small model do not see the testing set during the train-
ing process. Meanwhile, even that the small model see 
the testing set during the training process, the accu-
racy of the small model is greatly affected by the data 
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size and data quality that used to training, susceptible 
to overfitting or underfitting, and the accuracy is much 
lower than the LLM on the cloud [116]. To tackle this is-
sue, one approach is through edge cloud cooperation 
to customize smaller task-specific model deployed on 
the device/edge by leveraging the expert LLMs locat-
ed on the cloud where LLMs’ predictions as pesudo 
labels are used to supervise the customizing process 
with objective to minimize the loss to pull the embed-
ding of inputs of small model close to LLMs to enhance 
open set capability of the small model. The proposed 
system [116] has a model selection module to choose 
the appropriate architectures for the small models 
considering the profiles of the edge devices, such as 
memory constrains. Meanwhile, the system includes 
an inference engine that can control using the LLMs on 
the cloud or the customized small model on the edge to 
perform the inference task taking the data uncertainty 
and network conditions into consideration.

The above process of generating dynamical small mod-
els with the help of LLM could be regarded as a kind of 
model collaboration. The idea of model collaboration 
for performing LLM inference on resource constrained 
device is using a cost-efficient small LLM that can be 
accommodated within the device’s memory with the 
help of larger LLMs and assigning majority of tokens to 
the small LLM for the inference tasks. A common used 
strategy for model collaboration is ”generate-then-ver-
ify” where the small LLM is a generator and the expert 
LLM is served as a verifier. The strategy is also known 
as speculative decoding, which guarantees the accura-
cy by using the expert LLM as a verifier with fast ver-
ification. However, it also bring other challenges, such 
as overlooking correct tokens and adding verification 
time [117]. SpecTr [118] utilizes speculative decoding to 
accelerate the sampling by using a small model to sam-
ple a block or sequences of tokens instead of one token 
at a time to compensate the increased time caused by 
the verification process. Xu et al. [117] propose a specu-
lative decoding based model collaboration inference 
engine LLMCad, which employs three modules to en-
hance the efficiency by designing token tree for token 
generating and verification instead of using a linear 
token sequences and adopt a self-adaptive fallback 
strategy. Another kind of model collaboration is offer-
ing various sizes of models for acceleration to decrease 
resource consumption and enhance efficiency without 
generating new models [119] [120].

Model compression: Model compression includes a se-
ries of techniques, such as pruning and quantization 
techniques, to reduce the model size while preserve 
the model’s performance. There is a potential trade-off 
as the size of the model is reduced, which can greatly 
reduce the memory footprint and energy consumption, 
speed up inference, and enhance the scalability, while 
it can cause accuracy loss, introduce distortions in the 

model, and increase additional computation overhead. 
It is crucial to balance those aspects. Compression 
techniques for LLMs/GPT have primarily concentrated 
on quantization. The work presented in [121] introduces 
”Zeroquant”, an end-to-end quantization and inference 
pipeline leveraging post-training quantization and lay-
er-wiser knowledge distillations to reduce the precision 
of LLMs’ numerical representations while minimize the 
accuracy loss. SparseGPT [122] utilizes the pruning 
method to reduce the model size and shows that pre-
trained LLMs can be pruned at least to 50% sparsity 
and up to 60% sparsity in one shot without any retrain-
ing while achieving the minor accuracy loss. SparseGPT 
enables the execution of GPT models with 175 billion 
parameters to be completed within a few hours on a 
single GPU. Besides model compression, the work in 
[123] presents a prompt compression method to deal 
with the resource challenges where LLMs are accessi-
ble only through APIs.

Open questions and research opportunities
LLM distributed or hierarchical inference in 6G: 6G net-
worked infrastructures have in general machine learning 
workloads in sight as one of the main application do-
mains. To facilitate such workloads novel architectures 
could be introduces thatsignificantly improve distribut-
ed inference for LLM, particularly by 1) reducing com-
munication overhead among distributed nodes for effi-
cient coordination of the inference process; 2) improving 
scalability with efficient networking infrastructure which 
supports the dynamic allocation of networking resourc-
es and seamless communication between nodes; and 3) 
addressing fault tolerance, for example for ensuring the 
reliability and consistency of distributed inference for 
LLMs. Likewise arguments can be made for hierarchical 
inference. Multiple layers of inference models could be 
placed in future networks, offering different trade-offs 
between accuracy and latency. How to devise and ac-
tivate these different layes, and how to support them 
optimally through architectures is a open challenge. A 
substantial challenge for 6G networks will furthermore 
be the management of mobility under either distributed 
or hierarchical inference workloads. In tendency, small-
er models closer to the end devices will be subject to 
relocation, while larger models will be placed such that 
relocation is less likely to be necessary. However, the 
trade-offs are task-dependent as well as context-de-
pendent, requiring entirely new mobility management 
architectures as well as algorithms.

On-device LLM inference: To allow LLM-empowered 
ubiquitous, privacy-preserving, and highly available 
GenAI, LLM inference will ultimately sink to near-user 
devices. Preliminary efforts have been already made to 
bring LLaMA-7B to smartphones and PCs. In the future, 
how to support on-device LLM inference, considering 
the trade-off of accuracy, consumption of resources, 
and scalability, will become a key competitive force 
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in the business model of hardware vendors. As men-
tioned above, hierarchical inference adapted to LLMs 
can play a substantial role in supporting the migration 
process to smaller models running on end devices.

Optimization of inference across heterogeneous 
de-centralized environment: LLM partitions can be 
more effectively distributed to achieve higher infer-
ence throughput in a setup with homogeneous com-
puting nodes. The challenges lies in dynamically op-
timizing model partition for parallelism by leveraging 
heterogeneous edge devices, taking into account fac-
tors such as GPU memory bandwidth, memory con-
strains, peak FLOPS, diverse edge connections, and 
model architecture.

Benchmark for evaluating LLM inference: There is not 
a single benchmark for evaluating distributed LLM in-
ference, as it highly depends on the specific tasks and 
evaluation goals. Therefore, key challenges pertain to 
development of benchmark datasets and evaluation 
metrics to assess the performance of distributed LLM 
inference. Performance evaluation metrics include ac-
curacy, efficiency, scalability, resource usage, robust-
ness, etc. Investigating trade-off of these metrics in 
different LLM systems require continuous evaluation in 
real-world setups.

Privacy, secure, and trustworthy LLM inference: 
Ensuring privacy, security, and trustworthiness are im-
portant considerations in distributed LLM inference. 
Privacy-preserving techniques, such as differential pri-
vacy, could be implemented to protect user data and 
ensure compliance with privacy regulations during the 
inference process. Development platform that employs 
access control and other security mechanisms will de-
fend against adversarial attacks aimed at manipulating 
inference output or extracting sensitive information. 
Ensuring trustworthiness is another critical challenge, 
as users require assurance that LLMs deliver reliable 
and unbiased inference results. Addressing these chal-
lenges necessitates the development of trustworthy 
LLMs suitable for real-world applications.
 
Graphical Approaches and Spatial 
Reasoning with LLMs for 6G
LLMs, using pre-trained parameters, can answer ques-
tions; however, their internal knowledge can sometimes 
be incomplete or inaccurate, leading to factually incor-
rect responses [124]. Moreover, LLMs often lack do-
main-specific expertise, which can result in unfounded 
assertions that are difficult to verify due to the lack of 
transparency [125]. This limitation is particularly con-
cerning for high-stakes applications such as medical 
diagnosis [126]. LLMs also struggle with understanding 
complex semantic relationships between multiple enti-
ties, which is essential for grasping analogous concepts 
across varied textual scenarios. Fine-tuning LLMs to 

update their knowledge base is also a time-consuming 
process [127] [128].

Furthermore, LLMs frequently encounter challenges 
with complex multi-step logical reasoning [129] [130], 
making it difficult for them to solve problems requiring 
detailed, sequential thought processes. Their limitations 
in understanding spatial and topological relationships 
restrict their utility in fields that rely heavily on geometric 
and structural data. Additionally, their lack of temporal 
awareness hampers their ability to process and predict 
time-dependent data sequences effectively.

Addressing these challenges is essential for expand-
ing the application range of LLMs and enhancing their 
utility. Recent research efforts have focused on improv-
ing their reasoning abilities, precision in calculations, 
and understanding of spatial and temporal relation-
ships [131]. Innovations in model architecture, training 
methodologies, and data representation are key areas 
of development. For instance, the introduction of new 
training datasets that include temporal and spatial di-
mensions, and the exploration of models that can inte-
grate external knowledge bases for better context un-
derstanding, are among the strategies being pursued to 
overcome the limitations of current LLMs.

The goal of such improvements is not only to refine 
the performance of LLMs on traditional NLP tasks 
but also to enable their application in more complex 
problem-solving scenarios. This includes tasks that 
require a deep understanding of the physical world, 
intricate decision-making based on dynamic data, 
and the ability to reason over long time horizons. By 
evolving LLMs in to Graph-LLMs [132] [133], research-
ers aim to make it possible for these models to con-
tribute beyond text processing.

Graph Knowledge and Spatial Reasoning 
in LLMs
Knowledge graphs (KGs) offer a structured, interpre-
table, transparent, and dynamic layer of knowledge for 
LLMs, enhancing their trustworthiness in real-world 
applications. This layer organizes knowledge through 
entities and their relationships, acting as a pivotal refer-
ence point. It ensures consistency of responses by en-
abling LLMs to understand the context and spatial and 
temporal interconnections between data points. It also 
allows LLMs to deduce new insights from established 
relationships, resulting in more accurate and relevant 
outputs [134].

Through this dynamic layer, LLMs are able to fill the 
knowledge update gap by staying in the loop with the lat-
est domain-specific insights. Keeping up with changes 
through KGs, which can be continually updated with new 
information, is crucial for helping LLMs deliver accurate 
and relevant answers in rapidly evolving fields. With this 
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layer, LLMs gain semantic search capabilities, transpar-
ency, and explainability, enabling them to understand 
queries more deeply. Consequently, LLMs can more ac-
curately discern the underlying intent of a query, leading 
to responses that more closely match user expectations. 
Additionally, it allows users to gain a deeper understand-
ing of the model’s conclusions, which improves their 
confidence in its outputs. In this section, our aim is to 
highlight studies that have contributed to the advance-
ment of this layer within LLMs. We provide an overview of 
techniques to incorporate graph knowledge and spatial 
reasoning into LLMs via training graph foundation mod-
els [135] [136], fine-tuning, prompting [137], evaluation, 
and interaction among multi-LLMs agents. We discuss 
how to integrate Graph-LLMs with their spatial reason-
ing capabilities into the strategic layer as high-level de-
cision-making processes and predictive analytics tools 
and into the logical layer as network design tools.

KG-Enhanced LLM Inference: As a result of changing 
the inputs to the model for inference, knowledge can be 
updated within the model. LLMs capture both textual 
semantic meanings and the latest real-world informa-
tion to effectively implement KGs. It involves retrieving 
relevant knowledge from large corpora and integrating 
it into LLMs. In an alternative approach, KGs prompting 
is used to transform structured data from KGs into tex-
tual sequences. In turn, LLMs can use these sequences 
as context, enhancing their reasoning capabilities by 
leveraging the KG structure. However, this process typ-
ically involves manual prompt design, which requires 
significant human effort.

To avoid generation of factually inaccurate answers and 
high costs of updating knowledge, Baek et al. [138] pro-
poses augmenting the knowledge directly in LLMs in-
puts. A semantic similarity between the input question 
and its associated facts is used to retrieve the relevant 
facts from the KGs. A prompt containing the retrieved 
facts is then appended to the input question, which is 
forwarded to LLMs for generation of an answer. Ye et 
al. [139] designed a series of rule-based instruction 
prompts for general graph structure representation and 
graph ML. Buehler et al. [140] suggest adding relevant 
information to the prompt. Thus, the model has access 
to expanded context, including details, measurements, 
and new data. This greatly expands the capabilities of a 
LLMs during generation.

Jiang et al. [141] propose a method that involves gath-
ering relevant evidence from structured data sources 
and allowing LLMs to focus primarily on the reasoning 
process using the gathered information. Through this 
approach, LLMs will be able to systematically enhance 
their reasoning capabilities when dealing with struc-
tured data, enabling them to derive accurate answers 
to their specific questions. Kang et al. [142] address the 
limitations of fine-tuning small Language Models (LMs) 

for knowledge-intensive reasoning tasks, which require 
extensive knowledge and reasoning capabilities. Their 
innovative approach enhances small LMs by fine-tun-
ing them to produce rationales derived from LLMs 
equipped with external knowledge. Additionally, they 
suggest implementing a neural reranker to select doc-
uments relevant to the generation of rationales, further 
improving its efficiency.

Furthermore, Baldazzi et al. [143] utilizes a reasoning 
verbalization approach to create prompt-response pairs 
coupled with a lifting method that leverages patterns in 
reasoning to improve LLMs for task- and domain-spe-
cific applications. Using an ontological reasoning task 
applied to Enterprise Knowledge Graphs, this method 
will guide the fine-tuning process.

Sun et al. [144] integrate frequently updated external 
KGs into LLM reasoning to address the issue of hallu-
cinations in LLMs. They propose that LLMs are dynamic 
agents with dynamic interactions with KGs, exploring 
related entities and relationships as the basis of reason-
ing. With this approach, LLMs can generate reasoning 
outcomes for tasks that require extensive knowledge 
based on retrieved knowledge.

According to Wen et al.’s study [145], KGs are used to 
prompt LLMs, integrating up-to-date knowledge and 
extracting reasoning processes from LLMs. This ap-
proach enables LLMs to understand inputs from KGs 
and to deduce by combining implicit internal knowl-
edge with external information retrieved from KGs. 
Consequently, LLMs are capable of conducting reason-
ing tasks and producing answers accompanied by visu-
al representations of the rationales for these answers.

Tian et al. [146] introduce Graph Neural Prompting 
(GNP), a groundbreaking method designed to enhance 
the capability of pre-trained LLMs by facilitating the 
learning of valuable knowledge from KGs.

Luo et al. [147] introduce Reasoning on Graphs (RoG) 
method, which combines LLMs with KGs to enable 
reliable and interpretable reasoning. They propose a 
planning-retrieval-reasoning framework to overcome 
challenges such as hallucinations and knowledge defi-
cits. Using this framework, LLMs can take advantage of 
the latest knowledge by reasoning using faithful plans 
structured around graphs.

Guan et al. [148] introduce Knowledge Graph-based 
Retrofitting (KGR), a strategy that integrates KGs into 
large models’ reasoning process. By retrofitting LLM 
initial draft responses with factual knowledge from KGs, 
this approach aims to reduce factual hallucinations. The 
process involves identifying draft responses that need 
verification, retrieving relevant facts from the KGs, and 
using these facts to improve the drafts.
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KG-Enhanced LLM Evaluation: LLMs are criticized for 
their inability to interpret their internal mechanisms 
and decisions, despite their success in various NLP 
tasks. By enhancing interpretability, LLMs can be more 
suitable for critical areas such as medical diagnosis 
and legal decisions. The use of KGs facilitates clearer 
reasoning and interpretation because they provide a 
structured representation of knowledge. Many users 
find that they need to conduct additional searches 
to verify the accuracy of the information provided by 
LLMs. Consequently, the criteria used to evaluate the 
output quality of LLMs when prompted can be signifi-
cantly improved.

LLMs probing is essential to uncover the vast knowl-
edge they possess based on extensive training on large 
datasets. While LLMs contain vast amounts of knowl-
edge, this information is embedded in a way that is not 
readily accessible, making it difficult to discern the spe-
cific type of knowledge they hold. Additionally, LLMs 
can produce factually incorrect statements due to hal-
lucination, lowering their reliability. To ensure their ac-
curacy and reliability, it is crucial to probe and validate 
the knowledge within LLMs.

Additionally, the analysis of LLMs using KGs seeks to 
unravel key questions regarding the operational mech-
anisms behind LLMs, specifically how they produce re-
sults and the functional and structural dynamics at play 
within these models.

Zhao et al. [149] propose a methodology to assess the ef-
fectiveness of retrieval-augmented LLMs through sym-
bolic language reconstruction and text passage retrieval.

Wang et al. [150] outline a four-stage methodology that 
significantly enhances LLMs responses’ reliability. This 
method includes Question Decomposition, which or-
ganizes questions according to predefined templates; 
Knowledge Retrieval, which gathers relevant informa-
tion; Candidate Reasoning, which evaluates potential 
answers; and Response Generation, which generates 
answers along with their reasoning paths.

Using RDF-KGs, Mountantonakis et al. [151] introduce 
a framework for enhancing ChatGPT responses with 
comprehensive information. The system identifies en-
tities within a response, annotates them with statistics 
and hyperlinks, including URIs, facts, and connections 
to other KGs. As a result of this enhancement, the con-
tent associated with entities can be enriched, facil-
itating fact-checking and validation in real time. Thus, 
ChatGPT’s responses can be verified more efficiently 
and additional information can be accessed.

Gao et al. [152] use KGs as auxiliary tools to help inter-
pret and summarize complex medical concepts. Using 
a new graph model, they enhance the ability of LLMs to 

generate automated diagnoses by selecting the top N 
diagnoses through multihop paths, thus surpassing tra-
ditional concept extraction methods.

Luo et al. [153] introduce a framework designed to me-
thodically evaluate LLM factual knowledge capabili-
ties using KGs. The method involves creating a set of 
questions and expected answers based on the infor-
mation contained within a specific KG. Following that, 
the framework assesses whether LLMs are accurate in 
answering these questions.

Wang et al. [154] propose an automated testing frame-
work for detecting factual errors in LLMs. This system 
constructs a structured KG on a topic chosen by the 
user, sourcing fact triplets from a large-scale knowl-
edge database. To test LLMs’ understanding of rela-
tionships across various topics and entities, it formu-
lates questions across simple (one-hop) and complex 
(multi-hop), providing correct answers. LLMs’ answers 
are evaluated using matching strategies customized for 
each type of question.

KG-Enhanced Multi-LLMs Agents Interrelationships: 
Aside from the integration of KG structures through-
out the entire lifecycle of LLM agents, from training and 
fine-tuning to reasoning and evaluation, there is also the 
possibility of applying KG structures to the relationship 
networks between LLM agents, in order to model the 
interactions and information flow between LLM agents 
effectively. The interrelationship of LLMs agents is cru-
cial since they govern the mechanisms of interaction 
within these structures, whether they are collabora-
tive, competitive, or hierarchical in nature. Allocating 
roles and tasks, as well as managing the distributed 
constraints on resources effectively, are crucial in co-
operative multi-LLM agents engaging in collaborative 
decision-making. This collaboration can be used within 
the planning phase to select the most effective agents 
according to specific metrics [155], [156] or to distrib-
ute tasks and correct each agent in order to improve the 
overall team-work performance [157], [158]. Additional-
ly, it can be used during execution phase through the 
collaboration and feedback of multiple agents, allowing 
the agent to create a final outcome by learning from the 
interactions of multiple agents [159], [160], as well as 
during reasoning phase [161].

With their structured factual information through en-
tities and their relationships, knowledge graphs can 
provide sophisticated methods for interconnecting 
data and understanding tasks semantically for coop-
erative multi-LLM agents. This architecture provides 
a dynamic, structured, and semantically rich knowl-
edge repository. This enables more efficient allocation 
of roles based on agents’ knowledge, skills, and cur-
rent workload. As well, knowledge graphs can be dy-
namically updated with information gathered by LLM 
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agents. This facilitates continuous learning and adap-
tation as well as empowering agents to refine their col-
laboration strategies.

Additionally, KGs can enhance strategic depth in com-
petitive interactions among LLM agents by providing 
insights into their strengths, weaknesses, strategies, 
and historical performance. The LLM agent can then 
develop more informed and nuanced strategies, antic-
ipate competitors’ moves, infer the partner’s intention 
and reason actions, and identify strategic opportunities 
or threats [162]. The hierarchical relationship among 
multi-LLM agents facilitates effective collaboration 
across multiple levels, resembling a tree-like structure 
where parent node agents are responsible for break-
ing down complex tasks and distributing these tasks 
to child-node agents. Knowledge graphs can improve 
the efficiency of these hierarchical control systems by 
optimizing the flow of information, as well as enhance 
the methods used for task decomposition. With knowl-
edge graphs, parent nodes can efficiently break com-
plex tasks down into smaller, more manageable chunks, 
and then assign these chunks to child nodes based on 
dependencies and capabilities needed.

In order to achieve seamless integration between 
multi-LLM agents, it is important to orchestrate com-
munication and information exchange among a poten-
tially vast network of agents [163] [164]. Decentralized 
Planning Decentralized Execution systems one of the 
planning methodologies for the he orchestration of 
multiple agents. It is characterized by individual agents 
that independently plan and execute tasks with mini-
mal coordination. In spite of this, the advent of multi-
LLM systems has ushered in a paradigm that involves 
more sophisticated information flow management and 
coordination across agents. This poses a number of 
challenges such as communication overhead, latency, 
bandwidth utilization, and ensuring agents are updat-
ed with the latest updates. In each of these cases, the 
system’s performance and responsiveness are ad-
versely affected, resulting in suboptimal efficiency and 
effectiveness [165].

Additionally, the traditional architecture of multi-LLM 
agent systems has relied on shared memory, a cen-
tralized data structure, to facilitate the exchange of 
information between agents. In this approach, agents 
can store and retrieve data within a common memory 
space, enabling them to collaborate and share infor-
mation efficiently. By using shared memory, agents can 
easily access and update information necessary for 
their operations, simplifying communication processes 
among them [165]. Although this centralized model for 
information sharing offers many advantages, it poses 
some challenges as well. Due to the increasing number 
of agents requesting access to the shared memory, is-
sues related to contention and synchronization arise. 

Furthermore, scalable, distributed, and mobile agent 
systems make ensuring consistency across agents and 
data increasingly challenging.

Graph Neural Networks: Graph Neural Networks 
(GNNs) have emerged as a promising approach to 
tackle various challenges in wireless communication 
networks. In this research direction, network devic-
es and communication channels are represented 
as nodes or edges in a graph, device information as 
node features, and channel-specific parameters as 
edge features.

Shen et al. [166] formulated wireless networks as wire-
less channel graphs, where transceiver pairs were con-
sidered as nodes and communication channels were 
directed edges. This approach leveraged permutation 
equivariance of GNNs to achieve robustness and effi-
ciency in power control and beamforming. Chen et al. 
[167] modeled a wireless network as a directed graph 
whose nodes are the desirable communication links 
and edges are the harmful interference links. Their ap-
proach could be generalized to different network set-
tings and were robust to corrupted input features.

In a vehicle-to-everything (V2X) network, each vehi-
cle-to-vehicle (V2V) link is a node in a graph, a GNN 
learns the low-dimensional feature of each node and 
a deep Q-network learns to optimize the sum capaci-
ty of the V2X network for spectrum allocation [168]. In 
order to automate network management tasks, LLMs 
were utilized to generate graph manipulation code 
from natural language queries on various network 
topologies and communication graphs [169]. In dis-
tributed machine learning, Wang et al. [170] utilized 
GNNs for over-the-air federated learning by mapping 
channel coefficients to optimized model parame-
ters. Their approach represented edge devices, edge 
servers, and Reflective Intelligent Surfaces (RIS) as 
nodes in a GNN.

These results have showed that GNNs could improve 
various aspects of wireless communication networks, 
ranging from traditional tasks such as power control 
and resource allocation to emerging applications such 
as federated learning and network management au-
tomation. Hence, integrating graph knowledge and 
spatial reasoning ability of GNNs into LLMs promises 
to enhance the efficiency, reliability, and scalability of 
wireless communication systems, especially in the con-
text of AI-native 6G networks.

Challenges in 6G Systems
We highlight challenges emerged from the characteris-
tics of 6G systems which can affect Graph-LLMs, such 
as: local connectivity [171], graph dynamicity [172], and 
data velocity [173]. These challenges are analyzed in 
two use cases: Graph-LLMs for interactive 6G signal 
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modeling in 3D environments [174] and Multi-agent au-
tonomous driving systems [175] [176] [165], each with 
its own LLM.

Fatemi et al. [171] showed that pure text representa-
tions of structured data were not sufficient for graph 
reasoning with LLMs, in comparison to traditional 
graph algorithms. They used prompting methods to 
measure the performance of pre-trained LLMs on 
graph reasoning tasks, including: edge existence, 
node degree, node count, edge count, connected 
nodes, and cycle check. The evaluation indicated that 
graph encoding methods (such as adjacency and inci-
dence matrices) significantly impacted LLM reasoning 
capability on graph problems.

In addition, the results illustrated that LLMs performed 
worse on disconnectivity-related tasks since the en-
coding methods could not express the absence of 
connections. Zhang [172] introduced a benchmark to 
evaluate the spatial-temporal understanding abilities of 
LLMs on dynamic graphs, which can appear in vehicu-
lar networks of autonomous driving systems. Another 
challenge of such 6G systems as autonomous driving 
vehicles is the amount of data collected by built-in sen-
sors. Processing the information to ensure prompt de-
cision-making is crucial [173].

6G Signal Modeling in 3D Environments: LLMs, as well 
as Vision-Language Models (VLMs), have proven their 
capabilities in multiple tasks. By equipping them with 
the knowledge of our 3D physical world, they can be 
enriched with such concepts as spatial relationships, 
affordances, physics, and layouts [174].

To effectively model the 3D physical world in an interac-
tive manner, 3D-GPT, a procedural generation method 
utilizing LLMs, has emerged as a promising approach 
[177]. In order to reduce the effort to produce a Radio 

Environment Map (REM) of an Ultra Dense Network 
(UDN), a GNN was trained on sparse power spectral 
density measurements to perform REM prediction 
[178]. Building on these three pillars, we envisage an in-
teractive radio propagation modeling framework, which 
allow users to explain their requirements in natural lan-
guages (see Figure 11). A Graph-LLM processes the re-
quests and generate 3D scenes and REMs procedural-
ly, as well as providing explanation. The system can deal 
with graph dynamicity [172] [179] due to diverse and 
refining requirements of the users.

Multi-agent Autonomous Driving Systems: Recent-
ly, Cheng et al. [165] have explored the generalization 
capabilities of LLM-based agents across diverse ap-
plications from general-purpose assistants to various 
scientific and engineering domains. LLMs offer an 
enabler to innovate the autonomous driving domain, 
in which each vehicle has its own LLM (see Figure 12 
for an overview). Following this direction, Wen et al. 
[176] integrated a reasoning module to allow the driv-
ing agent to perform decision-making based on com-
mon-sense knowledge.

In autonomous driving, Graph-LLMs facilitate multi- 
modal perception of the environment from various 
sources such as sensors, weather conditions, real-time 
traffic information, passenger requests in natural lan-
guages, and road rules. For example, a physics-based 
GNN [180] can classify light detection and ranging 
(LiDAR) data, where the LiDAR point cloud was trans-
formed into an undirected graph by connecting each 
point to its k-nearest neighbors. Furthermore, multiple 
LLM-based driving agents can communicate to each 
other for advanced planning [181], cooperative deci-
sion making [182], and knowledge sharing [155] [163]. 
In this use case, there are two important challenges: 
graph dynamicity [172] [179] and data velocity [173]. 
Driving agents empowered by Graph-LLMs should be 

Fig. 11: Graph-LLMs for interactive 3D modeling
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able to handle constantly-changing graph structures 
and environmental conditions to ensure safety [173].

Hardware Acceleration for Large 
Language Models
The deployment of Large Language Models (LLMs) in 
6G networks presents significant challenges in terms 
of the hardware required to support their computa-
tional needs. In particular, for a distributed deployment 
across the computing continuum, several innovations 
are necessary to enhance the efficiency and feasibili-
ty of running LLMs in 6G environments. Given the high 
power consumption and thermal issues associated 
with current Neural Processing Units (NPUs), there is a 
pressing need for new hardware solutions that are both 
power-efficient and cost-effective. Here, we discuss 
some the existing limitations and potential advance-
ments in hardware technology that can facilitate the in-
tegration of transformer-based models into commercial 
wireless systems.

Transformers in wireless SoC
Due to the inherent complexity and size of Large Lan-
guage Models (LLMs), which involve billions of param-
eters working together in transformer architectures, 
integrating them into wireless systems presents unique 
challenges compared to smaller neural networks com-
monly used in transceiver algorithms like detection and 
channel estimation. While these smaller networks rely 
on supervised learning and are computationally man-
ageable, LLMs demand significantly higher computa-
tional and energy resources.

Given the costs of energy and manufacturing, power 
efficient and low cost realization of hardware for accel-
eration of transformers is desirable for telecom vendors 

and operators. Considering current realizations of Neu-
ral Processing Units (NPU) that show a comparable or 
even higher power consumption profile than that of, e.g., 
physical layer System on Chips1 (SoC), new solutions 
beyond the conventional NPUs is needed. Otherwise, it 
would be difficult to justify for integration of transform-
er based models into commercial wireless systems.

Furthermore, due to thermal issues, integration of NPUs 
into wireless network strongly demands reduced pow-
er consumption. Unlike NPUs in data centers that en-
joy relatively good cooling infrastructure, the cooling 
capacity within wireless network infrastructure is very 
limited. Considering notorious thermal issues of high-
end NPUs [183], the thermal issues can be a show stop-
per for high performance LLM hardware [184].

To enable efficient computing for LLM like models, i.e., 
models based on transformers, the first approach is to 
simply optimize the LLMs and hence reduce computa-
tional load on the processing part [185]. However, the 
performance may not still be satisfactory for wireless 
applications. Hence, in following, hardware and hard-
ware/software innovations that are tailored for LLMs 
are investigated.

Hardware/Software innovations for LLM 
computing
The attention mechanism which involves large vec-
tor-matrix multiplications (GEMV) is the most crucial and 
time consuming kernel in computations of LLMs [186], 
and hence most of accelerators focus primarily on effi-
cient acceleration of GEMVs. The other limiting factor 
is large model sizes and heavy memory access, which 
brings up the notorious memory bottle-neck problem 
[184]. Various, techniques discussed here either target 

Fig. 12: Graph-LLMs for autonomous multi-agent systems
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the former or the later or the both through exploiting re-
dundancies [187], approximate computing [188] and 
sparsity [189]. Later we delve into unorthodox comput-
ing solution that are specific to neural acceleration, i.e., 
processing in memory and near-threshold computing 
[190]. Notice, most of these solutions are orthogonal 
to each and their joint force may be applied to achieve 
maximum possible efficiency.

Due to large size of LLMs, data access to last level 
memory may become a bottleneck. DRAM space is less 
scare resource compared to DRAM bandwidth. Gener-
al data compression methods in memory controller or 
neural networks specific model compression are help-
ful in improving performance, in particular that, neural 
networks weights and processing data tend to be quite 
compressible [191].

Exploiting redundancies observed in LLMs provides for 
optimization in design of LLM specific acceleration as 
it is done by [187]. Similarly, ELSA [192], omits non-es-
sential redundant computations of relations in self-at-
tention mechanism [192]. On the other hand, similiar 
to other neural network models, LLMs too are resilient 
against small errors in computations. Hence, approxi-
mate computing [184] is another approach the can be 
taken advantage of. In particular, notice that baseband 
computing in physical layer is rather forgivable with er-
rors in data and computations. Exploiting this fact and 
considering the neural networks already have fault tol-
erance property, approximate computing technique 
can contribute. This has been the focus of [188], where 
a progressive approximate computing approach is pro-
posed. However, as approximate computing introduces 
errors in the result, a conclusive evaluation of cost and 
benefits is difficult to draw [188]. Sparsity within LLMs 
also can be exploited for performance enhancements 
as well. In [189], by observing that the attention mech-
anism in language models inherently contains a large 
number of redundant connections that can be spar-
sified into a simpler model. In [189] a sparse attention 
model and associated hardware accelerator for exploit-
ing the sparsity was proposed and investigated.

Alternative computing paradigms for LLM 
computations
Beyond exploring hardware-software co-design with-
in the traditional computing framework, it is import-
ant to consider new and unconventional computing 
approaches. These approaches could hold the key to 
unlocking breakthrough solutions in energy efficiency. 
Here, we discuss two approaches that we believe have 
significant potential.

Processing In Memory: The re-emerging field of Pro-
cessing In Memory (PIM), i.e., Processing Near Mem-
ory (PNM) and Processing Using Memory (PUM) have 
shown very promising results for large data manipula-
tion. The former performs computing by devising com-
puting elements close to the memory element and the 
later by using memory elements without adding extra 
computing circuity [193]. PNM and PUM remove the 
memory bottleneck of Von Neumann architecture and 
simultaneously act as a highly parallel Single Instruc-
tion Multiple Data (SIMD) or Multiple Instruction Mul-
tiple Data (MIMD) accelerators [194]; killing two birds 
with one stone. While there are already commercial 
PNM based platforms, e.g., UPMEM [195], PUM based 
systems are mostly under developments since those 
often rely on analog computations within the memory 
elements and suffer from reliability issues.

A commercial PNM based systems from SAMSUNG 
[186], demonstrated a performance on par with a high 
end Graphics Processing Unit (GPU), i.e., NVIDIA A100 
and close to 2x improvement in energy efficiency when 
integrated into an AMD GPU [196]. Using PUM-based 
systems [197] and [198] demonstrated improve 10x to 
100x improvement in vector-matrix operations. Due to 
ease of manufacturing and reliability of PNM systems, 
one can expect those to be adopted earlier by indus-
try, hence, focusing on realizing of LLM on PNM seems 
more likely to end up in products.

PIM systems are generally limited to performing low 
resolution bit-serial operations [198]. Developing mod-
els that can be trained and inferred by using only few 
arithmetic bits is attractive as it makes a perfect match 
to memory-based computing. Such a promising alter-
native is introduced as end-to-end 1-bit LLM training 
and inference framework [199]. Considering possibil-
ity of performing bit-serial operations within memo-
ry-based computing systems [198], we believe integra-
tion of [199] framework can be considered a promising 
solution to investigate.

Near Threshold Computing: Due to quadratic relation-
ship of dynamic power as the major component of power 
consumption in digital circuits with voltage, reducing op-
erating voltage is very effective approach for increasing 
energy efficiency. Operating at voltages near the thresh-
old voltage of transistors, promises up to 10x higher en-
ergy efficiency and is known as Near Threshold Comput-
ing (NTC). The achievable energy efficiency and trade 
off in performance is depicted in Fig. 13. As mentioned, 
although NTC needs to trade off the performance, how-
ever, that can be compensated by more parallelism.

1. A high-end wireless chip may consume only tens of Watts, while a highly optimized NPU that can handle real-time 
requests for processing an LLM consumes 200 W to 300 W [183].
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Fig. 13: Impact of voltage down scaling on energy effi-
ciency and logic delay (adapted from [200] © IEEE).

Despite the substantial benefits of NTC, unfortunate-
ly, due to heightened sensitivity of the circuit at re-
duced voltages to Process, Voltage and Temperature 
(PVT) variations, it is extremely difficult to design near 
threshold voltage operating processors. Previously, 
some efforts using Timing Error Detection (TED) circuit 
were carried out [200], however, inserting TED circuitry 
into the processor incurs large design cost, overheads 
and complexity.

Fortunately, there is a unique opportunity for realiza-
tion of NTC based neural accelerators by using specific 
mathematical operations that enables reliable comput-
ing even at reduced voltage regimes. This eliminates the 
need for complex TED based systems for enabling NTC. 
By integration of algorithmic error detection approach-
es such as Algorithm Based Fault Tolerance (ABFT) into 
matrix and convolution operations of neural models, re-
duced voltage operation has been made possible [201], 
[202], [203]. On the other hand successful integration of 
ABFT into various Convolutional Neural Networks (CNN) 
models were already demonstrated with very low com-
putational and memory overhead, e.g., less than 4% [204]. 
We believe, due to heavy utilization of matrix arithmetic in 
LLMs, the same results are achievable with integration of 
ABFT into those models as it was shown [203]. This is an 
interesting research direction to investigate.
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Fig. 14: Number of publications per year on Generative 
AI and LLMs in telecommunications (2023-2024). The 
2024 data includes publications up until the end of July.

State of the 
Art & Applications 5
In the pre-print that forms the foundation of this white 
paper [205], we discussed how LLMs were anticipated 
to significantly advance 6G networks across various 
use cases and architectural aspects. However, since 
the publication of that paper, the state of the art has 
quickly become outdated due to a remarkable boom in 
research activities in this domain. The rapid evolution of 
the field is evidenced by the massive increase in publi-
cations, with a wide array of studies emerging that ad-
dress both specific challenges and broader visions for 
integrating LLMs within the mobile network context. Fig. 
14 tracks the number of publications per year, shows a 
significant increase from 2023 to 2024. It is important to 
note that the count for 2024 includes publications only 
up until the end of July, representing just over half the 
year. Despite this, the number of publications has nearly 
doubled compared to 2023, underscoring the growing 
interest and importance in exploring how LLMs can be 
integrated into telecommunications. This sharp rise 
suggests that by the end of 2024, the increase in pub-
lications could be even more substantial. This increase 

can be attributed to both the maturation of LLM tech-
nology and the increasing recognition of its potential 
impact on next-generation network architectures.

The current landscape of research is so dynamic that 
it has become increasingly difficult to keep track of the 
high volume of publications release weekly. These stud-
ies span multiple categories, reflecting the broad scope 
and depth of interest in this area. Given this surge, we 
rely on comprehensive sources, such as the research 
library of the Large Generative AI Models in Telecom 
Emerging Technology Initiative (GenAINet ETI) [206], 
which provides the most up-to-date collection of rele-
vant publications per different categories.

Fig. 15 shows the categorization of publications, fur-
ther highlighting the breadth of research activities in 
the GenAI and telecommunications. Categories such 
as Reviews, Surveys, and Tutorials and Large Genera-
tive AI and Semantics/Effective Communications have 
seen substantial contributions, reflecting the need 
for both foundational understanding and communi-
cation-focused applications of LLMs. Similarly, cate-
gories like Edge Intelligence via Large Generative AI 
Models and Security, Privacy, and Resilience Aspects 
show strong research interest, pointing to the practi-
cal and security challenges that come with deploying 
LLMs in telecom environments.

However, despite the extensive research activity, there 
are some areas where contributions appear to be lack-
ing. For example, categories such as Datasets, Demos, 
and Prototypes have a relatively lower number of publi-
cations. This is noteworthy because datasets are criti-
cally important in advancing research and development 
in this field. High-quality datasets and robust prototypes 
are essential for benchmarking and validating new mod-
els and solutions, yet their scarcity suggests a potential 
gap that the research community needs to address.
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Another notable absence is in the area of standard-
ization. While research and development are crucial 
for innovation, ensuring that these advancements are 
aligned with industry standards is equally important. 
Entities such as the IETF, ETSI, and ITU-T play a pivotal 
role in establishing the protocols and frameworks that 
guide the integration of new technologies into existing 
systems. Without the support of these standardization 
bodies, there is a risk that innovations in LLMs and 6G 
networks may not be fully interoperable or aligned with 
global practices, potentially slowing down adoption 
and deployment. This highlights the need for more fo-
cused efforts in standardization to ensure that research 
outcomes are cutting-edge as well as also practically 
applicable and universally accepted.

This categorization of research also emphasizes the 
diversity of LLM applications within 6G networks. The 
spread across multiple categories indicates that re-
searchers are not just focusing on a single aspect of in-
tegration but are exploring a wide array of possibilities, 
from network management and orchestration to green 
wireless and beyond. It is also clear that there are active 
research efforts in both directions: 6G for GenAI/LLMs 
as well as GenAI/LLMs for 6G. However, the low rep-
resentation in some critical categories suggests that 
while there is broad interest, some essential areas may 
still be underdeveloped, which could hinder long-term 
progress without focused attention.

In the context of GenAI/LLMs for 6G, recent research 
is exploring diverse applications that leverage AI to 
enhance network performance, user interaction, and 
system optimization. Recent literature reveals a conver-
gence of challenges, solutions, and shared objectives 
across multiple domains, highlighting both the potential 
and the current limitations of AI-driven 6G networks.

Several studies have emphasized the transformative 
role of generative AI in enhancing 6G network manage-
ment and optimization. For instance, Tao et al. [207] and 
Bariah et al.

[208] investigate the application of digital twins for net-
work emulation and management. These studies illus-
trate how digital twins, supported by generative AI, can 
bridge the gap between data-driven and model-driven 
approaches, facilitating more accurate and adaptive 
network control. By enabling real-time synchronization 
and resource optimization, digital twins can address 
the complex orchestration needs of 6G, aligning with 
the broader trend of leveraging AI to manage increas-
ingly dynamic network environments.

Wireless perception and AI-generated content form 
another key area of exploration, particularly in en-
hancing user interaction within 6G networks. Wang 
et al. [209] combine wireless perception (WP) with 

AI-generated content (AIGC) to guide digital con-
tent production. Their proposed WP-AIGC frame-
work demonstrates how AI can be used to interpret 
and adapt to user behavior in real-time, significantly 
improving the quality and responsiveness of digital 
experiences. This approach enhances user engage-
ment, exemplifying the bidirectional relationship be-
tween AI and 6G technologies. GenAI benefits from 
6G’s capabilities but also actively contributes to opti-
mizing 6G network performance.

Immersive communication represents another frontier 
where LLMs and generative AI are pushing boundar-
ies. Sehad et al. [210] explore the role of AI in enabling 
the Internet of Senses (IoS), creating highly immersive 
multi-sensory environments by reducing bandwidth 
requirements and synchronizing diverse media types. 
Similarly, Zhang et al. [211] introduce interactive gen-
erative AI agents for satellite networks, employing a 
mixture of experts approach to optimize transmission 
strategies, making them more responsive and engaging 
for users.

Healthcare applications, particularly those involving Hu-
man Digital Twins (HDTs), are also prominently featured 
in recent research. Chen et al. [212] and Chen et al. [213] 
provide comprehensive studies on the use of LLMs and 
generative AI to create HDTs that enhance personalized 
healthcare delivery. These models facilitate continuous 
health monitoring [214], diagnosis, and treatment per-
sonalization, leveraging the low-latency, high-reliability 
communication capabilities of 6G networks.

Generative AI’s role in multimedia networks and tactical 
applications has also been extensively studied. Xu et al.
[215] focus on integrating generative AI into mobile 
tactical multimedia networks, proposing novel con-
tent distribution and generation strategies that adapt 
to dynamic environments. Their work demonstrates 
the importance of AI-driven optimization for enhancing 
multimedia services in 6G, particularly in resource-con-
strained or tactical settings.

Edge intelligence and efficient model provisioning 
are critical to managing the computational demands 
of LLMs in 6G networks. Xu et al. [216] address this 
through a cached model-as-a-resource framework that 
optimizes resource management in space-air-ground 
integrated networks. By caching models closer to the 
data source, this approach reduces latency and en-
hances performance, crucial for real-time applications 
in 6G.

Finally, Du et al. [217] investigate the use of LLMs in FP-
GA-based hardware development for wireless commu-
nication. Their study highlights the potential of LLMs 
to generate complex HDL code for advanced signal 
processing algorithms, using in-context learning and 
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Chain-of-Thought prompting to overcome scheduling 
and multi-step reasoning challenges. This work illus-
trates the broader applicability of LLMs in hardware 
design, contributing to the rapid prototyping of 6G net-
work components.

Across these diverse applications, several common 
challenges emerge. Key among them is the complex-
ity of integrating AI models into existing and evolving 
network architectures. Whether in hardware design, 
content generation, or healthcare, researchers consis-
tently highlight the need for advanced AI techniques 
to manage data, optimize resources, and maintain low 
latency. Additionally, the studies collectively identify 
the importance of efficient data and resource man-
agement, particularly in scenarios requiring real-time 
processing and interaction.

The proposed solutions often call for leveraging AI-driv-
en optimization techniques, such as model provision-
ing, digital twins, and advanced prompting strategies, 
to enhance system performance. The underdeveloped 
areas in LLM and AI integration within 6G networks in-
clude security and privacy concerns, energy efficiency, 
and the lack of standardized frameworks for seamless 
AI deployment across diverse 6G applications [218]. 
The importance of retrieval-augmented generation 
(RAG) and domain-specific data, as highlighted in re-
cent research, underscores the need for secure data 
handling and customization techniques to enhance the 
accuracy and trustworthiness of AI models in telecom 
and beyond. These gaps indicate that while research 
is progressing in areas like immersive communication, 
digital twins, and healthcare, critical aspects such as 

sustainable AI models, efficient resource management, 
and interoperability standards remain underexplored. 
Addressing these challenges is essential to ensure 
the long-term scalability and success of AI-driven 6G 
technologies, especially as GenAI continues to drive 
innovation across the telecom sector. However, and de-
spite the identified challenges, the results from these 
studies consistently assume that integrated LLMs in 
6G networks will provide significant productivity gains, 
enhanced user experiences, and improved system ef-
ficiency.

Expanding the Horizon: LLMs in the 6G 
Cloud-to-Edge Continuum
The transition toward 6G architectures is driven by 
evolving needs and technological advancements, 
particularly in the context of Large Language Models 
(LLMs). This shift is crucial for addressing the limita-
tions of current infrastructure and for harnessing the 
potential of next-generation applications. Previous 
generations such as 5G brought enhanced connectivity 
and performance but were not specifically built to meet 
the needs of Artificial Intelligence (AI) [71]. Several chal-
lenges are considered when integrating AI and LLMs in 
a network architecture. Firstly, real-time interactions 
with LLMs such as autonomous systems and augment-
ed reality applications, require ultra-low latency. Pre-
vious network generations can introduce latency that 
degrades user experience and system performance. 
6G networks promise to significantly reduce latency to 
the sub-millisecond level, enabling near-instantaneous 
communication. Secondly, AI models process and gen-
erate vast amounts of data. To operate efficiently, they 
require high-speed data transmission that current net-

Fig. 15: Categorization of Publications on GenAI and LLMs in Telecommunications. This figure shows the distri-
bution of research across various categories, highlighting key areas of focus and identifying potential gaps, such 

as in datasets and standardization.
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works may struggle to provide, especially in densely 
populated or remote areas. With data rates expected 
to reach terabits per second [219] [220] [221], 6G will 
support the massive throughput needed for transfer-
ring large models and datasets, enabling more complex 
and data-intensive AI applications to operate smoothly 
and efficiently [222]. Thirdly, there’s a growing need for 
decentralized processing to support applications re-
quiring local context or immediate processing. Due to 
heavy data stream produced and consumed by AI algo-
rithms, this need can hardly be met using 5G networks. 
Hopefully, 6G is designed to seamlessly integrate with 
edge computing, distributing computational resources 
closer to the data source. This setup minimizes latency 
and reduces bandwidth needs, enabling more respon-
sive and context-aware LLM applications. Fourthly, AI 
applications often require constant internet access 
to function optimally. However, current networks can 
have coverage gaps or performance issues in certain 
areas, limiting the accessibility and reliability of these 
services. Promising near-universal coverage, includ-
ing remote and underserved areas, 6G aims to provide 
consistent, high-quality connectivity. This ensures that 
LLM-powered applications and services are accessi-
ble everywhere. Finally, the complexity and scale of AI 
is rapidly increasing. Efficiently training and deploying 
models require substantial computational resourc-
es and advanced network capabilities. With its high-
speed, low-latency communication and integration with 
edge computing, 6G can significantly enhance the ca-
pabilities of AI and Machine Learning (ML) operations. 
This supports the deployment of more sophisticated 
and larger-scale LLMs, driving innovation and enabling 
new applications.

The shift to 6G architecture addresses critical needs for
supporting advanced AI and LLMs applications, offer-
ing significant improvements in latency, data through-
put, edge computing integration, connectivity, and AI/
ML scalability. While the integration of AI models with 
a 6G architecture offers numerous advantages, sever-
al technical obstacles need to be addressed to ensure 
seamless and efficient operation. Overcoming these 
obstacles is crucial for achieving efficient and effective 
distributed LLMs within the 6G ecosystem. The follow-
ing section focuses on the various difficulties of using 
LLMs in the context of 6G.

Challenges and approaches to LLM 
integration in 6G networks
The fusion of LLMs and 6G architectures presents 
opportunities for enhanced NLP-based applications, 
dynamic information processing, and interactive user 
experiences. However, this integration is not without 
its challenges. This section enumerates the challenges 
encountered in harmonizing LLMs with the currenly de-
vised 6G architectures and explores recent innovative 
solutions from the literature.

LLM Training Parallelism: performing efficient distri-
bution and training of LLM across multiple computing 
nodes poses a significant challenge in maintaining 
model coherence. Additionally, ensuring synchroniza-
tion and consistency across the distributed compo-
nents is crucial yet complex. However, these challenges 
can be addressed through the implementation of paral-
lelism techniques. Deep learning methods such as data 
parallelism [223], which involves keeping the entire net-
work but training it on a subset of the training data, or 
model parallelism [224], where a sub-network with dis-
joint subsets of parameters is trained on each device, 
are some solutions used. The former requires managing 
bottlenecks, while the latter requires analyzing com-
munication costs. Model parallelism techniques can 
be divided into two methods [225]: intra-operator, that 
focuses on parallelizing computations within individual 
operations, and inter-operator parallelism, that focus-
es on parallelizing computations across different lay-
ers. Efficient distribution and training of deep learning 
models across multiple computing nodes are crucial. 
6G communication will enable faster and more reliable 
communication between computing nodes, and signifi-
cantly accelerate the training process

Dynamic workload and resource management: dy-
namic resource allocation algorithms are required in 
6G environments to better allocate resources (CPU, 
memory, accelerators) to LLMs based on real-time 
workload demands. Therefore, it is necessary to de-
velop powerful workload prediction models to predict 
LLM resource requirements in order to allocate spe-
cific data on specific resources. Containerization and 
orchestration approaches could potentially solve this 
problem. In addition, it is also crucial to analyze the net-
work architecture. In 6G communications, the network 
is expected to be more complex and heterogeneous. 
The challenge is to explore techniques for effective 
resource management in 6G networks specifically for 
the LLM. It can be solved through network softwariza-
tion [226] through the interaction of network functions 
virtualization (NFV) and software-defined networking 
(SDN). SDN and NFV manage LLM traffic by optimizing 
network configuration and implementing flexible and 
scalable network slicing.

Communication Overhead: taking into account the dis-
tributed location of resources is an advantage for opti-
mization, but the increase in the number of data flows 
and the frequency of such communication may cause 
communication overhead, thus affecting the resource 
allocation efficiency of LLM. As a result, the delay 
caused is longer than expected. To solve this problem, 
[24] proposed a split inference method that shifts the 
computational load from edge servers to intermedi-
ate fog servers. These offloading methods, depending 
on the network architecture we consider [227], [228], 
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can be used to reduce latency, but also reduce energy 
impact. Communication overhead is particularly im-
portant in federated learning environments due to the 
potential number of communication rounds and the 
complexity of the aggregation stage. [229] proposed 
FedCPF, a solution in the context of vehicular network 
applications to optimize communication overhead in 
6G communication networks by reducing communi-
cation rounds and improving aggregation strategies. 
Additionally, reducing the amount of data exchanged 
between nodes and using efficient communication pro-
tocols helps minimizing communication overhead.

Edge Computing Integration and Fine-Tuning: scal-
ing LLM training across distributed edge environments 
presents complex challenges, particularly in preserv-
ing training efficiency and convergence. LLMs require 
significant resources for training and inference. While 
cloud environments can handle training, some compa-
nies may be reluctant to share data with LLM provid-
ers for fine-tuning. Effective solutions rely on efficient 
network management for coordinating edge devices 
and enabling distributed training and inference. This 
involves leveraging distributed computing and stor-
age resources, with network virtualization guided by 
a central controller to orchestrate devices and coor-
dinate fine-tuning and inference at the edge [24]. Ro-
bust fine-tuning strategies are essential for adapting 
distributed LLMs [230]. However, edge devices often 
lack the resources for extensive fine-tuning or infer-
ence. Promising techniques like quantized learning, split 
edge learning, and parameter-efficient fine-tuning can 
alleviate these challenges. Quantized learning, which 
approximates neural networks using low-bitwidth in-
tegers, reduces communication, training, and memory 
requirements, making it ideal for distributed computing 
[231]. Split edge learning reduces a device’s training 
burden by splitting the model into two parts, with the 
cloud handling most of the training and the edge de-
vice managing the initial layers. This method, primarily 
designed for data privacy [232], also minimizes data 
transmission across networks. Lastly, parameter-ef-
ficient fine-tuning, such as LoRA [233], fine-tunes a 
small number of extra parameters instead of all model 
parameters, significantly reducing the number of train-
able parameters, as demonstrated by reducing GPT-
3’s trainable parameters by 10,000 times [234]. These 
techniques enhance edge computing’s ability to handle 
LLM tasks locally, reducing latency and minimizing data 
transmission to centralized servers.

Overfitting and Generalization: the distributed ar-
chitecture of the cloud-to-edge continuum may lead 
to shortcomings such as overfitting. This hinders the 
model’s ability to generalize across different datasets, 
because, for example, the model sticks too well to the 
training dataset, and it is difficult to generalize to a new 
dataset. Several solutions exist to overcome the overfit-

ting, such that network reduction, increasing the train-
ing dataset, early stopping during the training phase, 
pruning and regularization techniques [235]. 

Data Distribution and Imbalance: ensuring a balanced 
distribution of training data across distributed nodes to 
prevent biases and maintain model accuracy is crucial. 
Non-iid data could lead LLMs to hallucinations [236] 
with inconsistent output content with real-world facts 
or user inputs. Data distribution also have a great im-
pact on performances of federated learning. Non-IID 
data generally lead to bias in the global model, slower 
convergence of clients and communication overhead 
[237]. In Federated Learning (FL), one way to mitigate 
the data distribution challenge is to use Clustered Fed-
erated Learning (CFL) [238]. CFL enables clients to 
be grouped according to the data distribution and to 
generate personalized models at cluster level. These 
models are therefore better adapted and more efficient 
than a global model which is trained on non-IID data. A 
second approach is data augmentation which consists 
in generating new training samples without collecting 
new data [239]. Data augmentation is specially relevant 
when needing to increase the diversity of a dataset. It 
can therefore reduce the class imbalance. Finally, an-
other approach is ensemble models. This approach 
combines several models trained on different data 
distribution to obtain a new one with a better general-
ization [240]. However, this challenge is a very dynamic 
area of ongoing research and techniques and improve-
ments continue to emerge.

Privacy-Preserving Techniques: distributing LLMs on 
the cloud-to-edge continuum introduces new security 
challenges such as protecting data during communica-
tion, ensuring secure access to models, and prevent-
ing unauthorized access. Implementing privacy-pre-
serving techniques such as federated learning, secure 
multi-party computation, and differential privacy, to pro-
tect sensitive data and ensure secure distributed pro-
cessing is paramount. Federated learning [241] enables 
training models across decentralized edge devices or 
servers holding local data samples, without exchanging 
them. This approach is particularly useful in scenarios 
where centralized data collection is impractical or rais-
es privacy concerns. But it does not suffice for preserv-
ing data privacy as FL present several vulnerabilities 
[242]. Maintaining data privacy therefore takes other 
approaches such as secure multi-party computation 
and differential privacy to ensure confidentiality. Secure 
multi-party computation (SMPC) is a cryptographic 
technique that enables multiple parties to jointly com-
pute a function over their inputs while keeping those 
inputs private. Recently, approaches that adapt SMPC 
to machine learning for data privacy have been released 
[243]. Differential privacy is a privacy framework which 
consist in maintaining data privacy while sharing infor-
mation about a group of individuals. One approach to 
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obtain privacy is to add artificial noise to model parame-
ters [244]. The combination of these privacy-preserving 
techniques allows for collaborative learning and infer-
ence on the cloud-to-edge continuum while prioritizing 
individual privacy concerns.

Interpretability and Explainability: distributed LLMs 
may produce complex and difficult-to-interpret out-
puts, raising concerns about model transparency and 
interpretability. Incorporating interpretability tech-
niques, developing explainability frameworks, and 
ensuring transparency in model decision-making pro-
cesses is crucial for distributed LLMs. LLM explain-
ability can be done by two means: the local and the 
global explainability [245]. The first concerns the ex-
planation of the predictions generated by the LLM. The 
role of explanation is to clarify the process by which 
the model generated a specific classification. In con-
trast to local explanations, global explanations provide 
a deeper understanding of the internal mechanisms of 
language models. The goal of global explanations is to 
comprehend the encoded information and elucidate 
the knowledge and linguistic properties acquired by 
the individual components, including neurons, hidden 
layers, and larger modules.

As 6G networks have the potential to drive unprecedent-
ed levels of connectivity and computational capabilities, 
the native integration of LLMs into a distributed 6G ar-
chitecture provides for unique opportunities in faster, 
privacy preserving and distributed training and fine-tun-
ing of advanced models with applications in benefiting 
from communications and artificial intelligence.

Distributed applications across the 
Cloud-to-Edge continuum
We anticipate significant impacts of integrating LLMs 
into a 6G network spanning from cloud to edge com-
puting. Several use cases that cannot be adequately 
addressed by the current 5G network [246] [226] [247].

For example, Industry automation involves using con-
trol systems and information technologies to manage 
processes and machinery, replacing human interven-
tion, while smart environments encompass spaces 
like homes, cities, or industrial settings enhanced with 
embedded sensors, actuators, and interconnected 
devices that analyze data in real-time and respond in-
telligently to improve efficiency, convenience, safety, 
and sustainability. These environments leverage IoT, 
AI, data analytics, and communication networks to 
autonomously monitor, manage, and control various 
aspects. Integrating LLMs and 6G technology signifi-
cantly enhances these settings by enabling commu-
nication across the cloud-to-edge continuum, where 
6G’s speed allows instant responses and LLMs provide 
contextual understanding for intuitive interactions. A 
major challenge in smart environments and industrial 

automation is achieving device interoperability [248]; 
LLMs help address this by generating natural language 
that facilitates device coordination. Efficient IoT device 
management is crucial for optimizing automated pro-
cesses [249], and recent research highlights the use of 
LLMs in creating reasoning agents with advanced cog-
nitive abilities that can manage IoT devices by breaking 
down complex tasks [250]. The introduction of 6G tech-
nology fosters high-speed, real-time data exchange, 
enabling synchronized operations and reducing down-
time. In smart grids, LLMs can leverage their predictive 
capabilities to optimize grid operations by analyzing re-
al-time data and suggesting adjustments to power dis-
tribution. The minimal latency of 6G (1ms) is essential 
for maintaining phase coherence between electricity 
suppliers [251].

Augmented reality (AR) overlays digital information,
such as images, videos, or 3D models, onto the re-
al-world environment, while Virtual Reality (VR) creates 
an immersive digital environment that simulates phys-
ical presence in a virtual world. The ultra-low latency 
and high data rates of 6G will significantly enhance AR 
and VR experiences by making them more interactive, 
realistic, and responsive, bridging the physical and vir-
tual worlds. The high data rate of 6G connections [252] 
combined with LLMs allows for learning traffic and 
channel activities to monitor the connection between 
avatars in VR and physical humans in AR. Immersion re-
mains a central challenge for the metaverse, and LLMs 
can play a crucial role in addressing this by providing 
dynamic and responsive dialogue, enhancing user en-
gagement. In virtual worlds, Non-Playable Characters 
(NPCs) will benefit from LLMs, enabling them to com-
municate fluently in multiple languages and allowing 
natural interactions with users [253]. Furthermore, 
LLMs offer powerful language translation capabilities, 
although current models still face challenges with cul-
tural-specific translations [254].

The tactile internet envisions an advanced form of the
internet that delivers real-time haptic feedback, en-
abling highly responsive and interactive communication 
between humans and machines, as well as between 
machines themselves. This concept relies on ultra-low 
latency and high reliability, core features of 6G technol-
ogy, to support applications like remote robotic con-
trol and haptic feedback systems. In these scenarios, 
6G-enabled IoT device management ensures instan-
taneous responses and optimal performance. Haptic 
feedback involves two main components: kinesthetic 
feedback, which provides data on velocity, force, and 
position; and tactile feedback, which includes informa-
tion about texture, surface characteristics, and friction 
[255] [256]. Haptic interfaces can also incorporate vi-
sual feedback and remote response capabilities [257], 
making the user experience consistent regardless of 
local or remote operation.
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Implementing 6G for the tactile internet necessitates 
new network structures, such as decoupling control 
from the data plane and using Software-Defined Net-
working (SDN) for centralized control. This approach, 
along with Network Function Virtualization (NFV), en-
hances network scalability and reliability [258].

Holographic communication enables participants to 
interact using holograms—three-dimensional images 
formed by the interference of light beams. Although 
still in its early stages, this technology faces signifi-
cant challenges, such as limited bandwidth. However, 
6G technology’s ultra-high speeds, minimal latency, 
and extensive device connectivity could dramatical-
ly enhance its potential. Holographic communication 
may require data transmission rates of up to 2Tbps per 
second, which current network infrastructures cannot 
support [259]. Therefore, data compression is crucial 
for enabling this form of communication. LLMs could 
serve as powerful tools for encoding and decoding 
various data types, such as spatial coordinates, color 
information, and depth maps from holographic images 
[260]. By compressing data into a compact form using 
language generation capabilities and decompressing it 
back, LLMs can handle complex data tasks. However, 
research on LLMs as encoders for non-textual data is 
limited, making it challenging to evaluate their efficien-
cy compared to existing compression techniques [261].

EHealth (electronic health) leverages digital technol-
ogies to enhance healthcare efficiency, accessibility, 
and quality, particularly through cloud-to-edge archi-
tectures that provide real-time insights and monitoring 
[262]. Effective communication among diverse devices 
is critical, with 6G’s ultra-high bandwidth reducing de-
lays and enabling seamless, real-time interactions be-
tween patients and providers. Key advancements like 
sub-millisecond jitter precision [252] [246] and low-la-
tency network slicing enhance remote teleoperation, 
allowing precise medical procedures to be conducted 
from afar [263]. The role of LLMs in analyzing unstruc-
tured complex medical data and providing insights 
could facilitate seamless communication between 
healthcare devices [212] by interpreting and standard-
izing data across diverse protocols [213], enhancing in-
teroperability [264].

The issues and and applications discussed above all 
bring us to the central question of the usefulness of the 
solutions due to energy consumption. As outlined in 
Section , the integration of LLM networks into 6G sys-
tems also raises significant concerns regarding their 
energy usage and environmental impact [265]. Zhang et 
al. [266] highlights the need to optimise carbon emis-

sions over the entire life-cycle of any AI-based network 
implementation. To reduce the energy consumption of 
LLMs, careful planning is essential. For example, energy 
production and task allocation emerge as crucial fac-
tors in reducing energy consumption.

Enhancing 6G Immersive Video 
Streaming Services with LLMs
Immersive communication is a key usage scenario high-
lighted in the ITU’s framework for IMT-20302, focusing 
on the transmission of immersive videos like VR, AR, 
360°, and point cloud videos, which present unique 
challenges compared to traditional media. These vid-
eos include multiview and free-viewpoint video [267], 
which allow users to switch perspectives but place 
heavy demands on networks [268], [269], [270]. 360° 
videos [271], stitched from multiple camera angles, 
require significant bandwidth, especially at high res-
olutions, and demand low latency to prevent user dis-
comfort [272]. Volumetric videos, including point cloud 
[259] and light field methods, offer six degrees of free-
dom, creating fully immersive environments but require 
extensive bandwidth, particularly with high-resolution 
and multisensor setups [273].

The future of immersive streaming is closely linked with 
the capabilities of LLMs like GPT, which can enhance 
service quality in areas such as bandwidth prediction 
[274], FoV (field of view) forecasting [275], [276], [277], 
and encoding [278], [279]. LLMs can predict future 
bandwidth needs more accurately, improving network 
efficiency. They can also enhance FoV prediction, cru-
cial for VR and volumetric videos, and refine video en-
coding to optimize transmission.

As 6G technology evolves, LLMs will play a crucial role 
in enhancing multimedia services, offering personal-
ized user experiences, and improving infrastructure 
[280]. Their linguistic abilities enable better content 
caching, service discovery, and even content creation 
through natural language interaction. However, incor-
porating LLMs into 6G presents challenges, such as 
ensuring data privacy and security, managing real-time 
processing demands, achieving energy efficiency, and 
maintaining interoperability. Ethical concerns, such as 
AI biases and cultural impact, must also be addressed.
Despite these challenges, LLMs offer promising bene-
fits, including transforming user interfaces, improving 
accessibility, managing content more effectively, and 
revolutionizing education through enhanced interactiv-
ity and personalization.

2. https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx
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Security and Resilience 6
The swift adoption of Generative AI (GenAI) and Large 
Language Models (LLMs) across diverse sectors, in-
cluding education and healthcare, signifies a monu-
mental leap forward in technological innovation. These 
advancements offer unprecedented opportunities 
for enhancing learning experiences, streamlining in-
formation processing, and facilitating more effective 
healthcare solutions. Yet, alongside these benefits, 
the rapid proliferation of GenAI and LLMs has unveiled 
a critical, yet often overlooked, dimension: the emer-
gence of security vulnerabilities. As the ecosystem 
encompassing both offline and online models contin-
ues to grow, incorporating a myriad of tools, browser 
extensions, and third-party applications, the potential 
for security risks escalates correspondingly. This ex-
pansion not only broadens the attack surface but also 
introduces complex challenges in safeguarding these 
technologies against exploitation. In the era of 6G and 
beyond, where connectivity and computational power 
are greatly enhanced, the avenues for adversaries to 
infiltrate and manipulate LLMs for nefarious purpos-
es have multiplied. This evolving landscape neces-
sitates a concerted effort to address these security 
concerns, ensuring the safe and ethical utilization of 
GenAI and LLMs.
 
As we navigate these advancements, it becomes im-
perative to develop robust security measures and pro-
tocols that can shield these technologies from potential 
threats, safeguarding the integrity of the innovations 
that stand to revolutionize sectors as vital also as the 
use to develop 6G. Due to the white paper’s limited ca-
pacity for content, the extended version for this section 
can be found from [281].

In this section, our examination zeroes in on the secu-
rity dimensions of LLMs, through the lens of potential 
adversaries. We delve into their aims and tactics, aiming 
to provide a thorough analysis of recognized security 

vulnerabilities associated with LLMs. Our exploration 
will unfold a detailed threat taxonomy that classifies 
various adversarial behaviors, offering insights into the 
array of security challenges. Furthermore, our investi-
gation extends to the strategic incorporation of LLMs 
into cybersecurity measures undertaken by defensive 
teams, commonly referred to as blue teams. This inte-
gration is pivotal for bolstering defense mechanisms 
against sophisticated cyber threats. Building upon this 
foundation, we introduce and consider the concept of 
LLMSecOps inspired from Security Operations (Sec-
Ops) within practical scenarios, with a particular em-
phasis on its relevance and application in the burgeon-
ing 6G landscape. An integral part of our discourse also 
revolves around the innovative convergence of LLMs 
with blockchain technology. We posit that this fusion 
holds the promise of pioneering next-generation, au-
tonomously operating security solutions. Our objective 
is to craft a comprehensive cybersecurity strategy that 
spans the entire computing spectrum. By doing so, we 
aim to significantly reinforce the digital security infra-
structure, ensuring a robust defense against emerging 
and evolving cyber threats.

Our comprehensive analysis, drawing from academic 
research, proof-of-concept studies, and renowned cy-
bersecurity resources like the Open Web Application 
Security Project (OWASP), aims to equip LLM stake-
holders with a detailed, actionable road map. This guide 
focuses on enhancing defense strategies informed by 
threats to LLM applications. Furthermore, the develop-
ment of a threat taxonomy, specifically for GenAI and 
LLMs, will significantly enhance the robustness of novel 
frameworks like synergizing LLMs or autonomous LLM 
agent swarms. By categorizing potential adversarial 
behaviors, this taxonomy empowers the framework to 
proactively address security vulnerabilities, thereby 
strengthening the security and resilience of the 6G net-
work ecosystem.
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Attacks - Red teaming
This section looks at current vulnerabilities in the field 
and develops a comprehensive taxonomy, differentiat-
ing between the types, objectives, and strategies. This 
taxonomy will be instrumental in informing and guiding 
the application of LLMs in the 6G computing continuum.

Recently, OWASP has convened a multidisciplinary team 
of experts from a broad spectrum of disciplines, such 
as security, Artificial Intelligence (AI), software devel-
opment, and industry leadership [282]. This coalition’s 
objective is to systematically identify and underscore 
the critical security and safety challenges that both de-
velopers and security professionals need to be aware of 
when they are integrating LLMs into application devel-
opment. Below is the preliminary compilation of critical 
vulnerability categories related to AI applications devel-
oped using LLMs: 1) Prompt Injection, 2) Insecure Out-
put Handling, 3) Threats of Training Data Poisoning, 4) 
Model Denial of Service Attacks, 5) Supply Chain Con-
cerns, 6) Disclosure of Sensitive Information, 7) Design 
Flaws in Insecure Plugins, 8) Excessive Agency in Mod-
els, 9) Overreliance on AI Models, 10) Model Theft.

Furthermore, numerous review studies have also aimed 
to explore the limitations, challenges, potential risks, 
and opportunities presented by GenAI in the realms of 
cybersecurity and privacy [283], [284]. According to Yao 
et al. [285], these vulnerabilities can broadly be catego-
rized into two main types: AI-inherent vulnerabilities 
and non-AI inherent vulnerabilities, detailed in Table 1.

Defense - Blue teaming
In the last few years, the exploration of LLMs for cyber-
security operations has significantly advanced. Yao et 
al.[285] conducted a detailed examination and analysis 
of 279 research papers from 2021 to 2023, investigat-
ing the relationship between LLMs and security and 
privacy concerns before pointing out strategies for LLM 
training safety. Moreover, to enhance our understand-
ing of the versatility of LLMs across different cyberse-
curity operations, this section provides a review of ex-
isting research results applicable to cyber defense (i.e., 
blue) teams.

Strategies for LLM training safety
Due to the border security aspects of non-AI inherent 
vulnerabilities, [285]’s discussion focuses on strate-
gies to improve LLM training safety. Below is the set 
of strategies to mitigate LLM vulnerabilities regarding 
AI inherent.

LLM training: The development of LLMs encompass-
es intricate decisions regarding model architectures, 
the selection and preparation of training data, and the 
adoption of specific optimization techniques. Each of 
these components plays a crucial role in ensuring the 
security and privacy of LLMs throughout their lifecycle.

• Model architectures and privacy preservation: 
The management of storage and organization with-
in LLM architectures is paramount for maintaining 
data privacy. Recent studies have shown the effec-
tiveness of incorporating differential privacy tech-
niques during the training phase to safeguard user 
data [315]. Additionally, enhancing LLMs’ resilience 
against adversarial attacks has been a focus of on-
going research [316].

• Knowledge integration for enhanced trust: In-
corporating external knowledge sources, such as 
knowledge graphs [317], into LLMs can significantly 
improve their trustworthiness and cognitive robust-
ness [318]. These enhancements not only contribute 
to the models’ understanding of complex concepts 
but also bolster their defenses against misleading 
information.

• Corpora cleaning for bias reduction: The quality of 
the training corpora is fundamental to preventing 
bias and ensuring high-quality data input. Rigorous 
corpora cleaning processes are essential for elimi-
nating biases and enhancing the contextuality and 
accuracy of the training data [319], [320].

• Optimization techniques for secure learning: Op-
timization strategies influence how LLMs interpret 
and learn from data, directly impacting their secu-
rity. Adversarial training methods have been devel-
oped to train LLMs to withstand malicious inputs 
[321], [322]. Furthermore, aligning LLMs’ objectives 
with safety principles through human feedback has 
emerged as a promising approach to mitigate unin-
tended harmful behaviors [323], [324].

LLM inference: Deploying LLMs within systems that 
interact with users in real time necessitates a com-
prehensive security strategy. This strategy should en-
compass three critical phases: prompt pre-processing, 
abnormal detection, and response post-processing. By 
meticulously implementing safeguards at each phase, 
we can significantly enhance the security of LLM inter-
actions, potentially unlocking new possibilities for LLM 
connectivity and distributed applications.

• Prompt pre-processing: The initial phase focuses 
on mitigating risks from potentially malicious user 
inputs, commonly associated with jailbreak attacks. 
Strategies include: (1) Instruction Manipulation Pre-
vention: Implementing checks to identify and neutral-
ize attempts to alter instructions in a way that could 
compromise the system [325]; (2) Defensive Demon-
strations: Utilizing examples of secure and compli-
ant interactions to guide the LLM away from fulfilling 
harmful requests [326]; (3) Purification of Inputs: Ap-
plying techniques to cleanse input data of any ele-
ments that could lead to undesirable outputs [327].

• Malicious detection: This phase involves a thorough 
analysis of the LLM’s outputs based on the given in-
puts to identify any prompt injection threats or back-
doored instructions. Recent advancements include: 
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(1) Backdoored Instruction Detection: Techniques 
proposed by Sun et al. [328] focus on identifying hid-
den malicious commands embedded within seem-
ingly benign inputs; (2) Abnormal and Poisoned 
Instruction Detection: [329] introduce methods to 
detect and mitigate the impact of abnormal or poi-
soned instructions, ensuring the integrity of the 
LLM’s outputs.

• Response post-processing: Before presenting the 
generated responses to users, a final verification 
step is crucial, particularly, studies [330], [331], 
pointing assessing harmfulness and confidence, 
suggest mechanisms for evaluating the potential 
harm and reliability of LLM responses, ensuring that 
outputs are both safe and contextually appropriate.

Taxonomy and LLMSecOps applications
Specifically, Sultana et al. [284] systematically assessed 
the role of LLMs in cyber operations, exploring their util-
ity in key cyber defense tasks. By analyzing literature on 
network defense, including Cyber Threat Intelligence 
(CTI) analysis, log management, anomaly detection, and 
incident response, they developed a four-tier taxonomy. 
This taxonomy organizes the extensive capabilities of 
LLMs into distinct cyber operations categories, closely 
aligned with the widely adopted version 1.1 of the Na-
tional Institute of Standards and Technology (NIST) Cy-
bersecurity Framework [332].

• Identify focuses on LLMs for identifying and classi-
fying threats from open-source CTI, enhancing early 
threat intelligence efforts.

TABLE 1: Summary of AI and Non-AI-Related Vulnerabilities
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• Protect uses LLMs for vulnerability scans, security 
assessments, and automating defense strategies, 
bolstering network security.

• Detect applies LLMs to detect vulnerabilities, ex-
tract malware, and classify attacks, highlighting 
their role in early threat identification.

• Respond leverages LLMs in incident response and 
recovery, aiding in analysis and strategic planning 
postincident.

Furthermore, the section presents an in-depth analysis 
of diverse systems and tools designed to leverage LLMs 
with the aim of enhancing cybersecurity operations, 
across the Identify, Protect, Detect, and Respond phases 
of the NIST framework. This exploration is focused on 
understanding how these technological advancements 
are integrated and their significant contribution to the 
cybersecurity domain. We specifically focus on demon-
strating the capabilities of LLMs within the SecOps 
framework, emphasizing their role in the advancing 6G 
edge-cloud continuum. The section highlights the cre-
ative applications of LLMs in strengthening security in-
frastructures and enhancing response strategies.

LLMSecOps in the 6G era
The integration of AI into communication networks, no-
tably within the 6G era, signifies a transformative shift 

TABLE 2: Summary of Cybersecurity Innovations Using LLMs

towards “AI Interconnect” and “AI-native Telecom” par-
adigms or autonomous LLM agent swarms. This evo-
lution, as highlighted in recent studies [1], [205], intro-
duces a dual spectrum of vulnerabilities: those inherent 
to AI and those not specific to AI technologies [285]. In 
addressing these challenges, the insights provided by 
OWASP [282] and the governance surrounding LLMs 
emerge as pivotal considerations for advancing secure 
communication networks. The incorporation of LLMs 
marks a significant advancement in the telecommuni-
cation sector’s vision. Nevertheless, ensuring the se-
curity and trustworthiness of LLM usage necessitates 
enhanced verification measures.

As research on the 6G computing continuum is still in its 
early phases, there is an expectation that the resulting 
reference architecture will integrate Key Enabling Tech-
nologies (KETs) like Network Function Virtualization 
(NFV), edge intelligence, Software-Defined Networking 
(SDN) across 5G Core, Cloud, and Edge networks. Fur-
thermore, the system’s architecture will be aligned with 
international standards, ensuring not only its full auton-
omy but also seamless interoperability with existing 
legacy systems [342]. In this scenario, LLMs will offer 
support for intelligent decision-making, evolving Sec-
Ops into fully autonomous cognitive LLMSecOps ser-
vices seamlessly integrated within network functions.
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Fig. 16: Process and components of IBN.

Intent-based networking.
Intent-based networking (IBN) [343] is an emerging 
paradigm that aims to automate network configura-
tions using AI. The basic idea of IBN is to enable net-
work administrators to manage complex networks with 
business intents. Business intents can be high-level 
business objectives of organizations. For example, an 
organization can prioritize one type of traffic, such as 
video traffic, over other types of traffic, such as text. 
IBN requires developments in AI, such as LLMs, to ef-
fectively convert such intents into configurations. 6G 
will utilize LLMs to enable run-time network configura-
tions through high-level intents to simplify human-net-
work interactions and smoothen the deployment of 
new services. However, IBNs can have several security 
challenges [344], that can be described along with the 
process or workflow of IBNs. The Internet Engineer-
ing Task Force (IETF) describes intents to be abstract, 
declarative, and vendor agnostic set of rules that can be 
deployed through several steps of a properly defined 
process [345]. A pictorial presentation of the process 
and flow of IBN is presented in Fig. 16.

The first component or process in IBNs is intent pro-
filing where a network administrator expresses intent 
to an IBN system. This process must be user-friendly 
and the system must facilitate the user for meaningful 
intents. The second step is intent translation or com-
pilation, where intents are transformed into low-level 
network configurations. LLMs can play a major role in 
these steps, to effectively transform service requests 
into network configurations. A major security risk here 
is that if the LLMs are compromised, the whole network 
can be compromised, for instance through malignant 
configurations. Sensitive traffic in this case can be di-
verted to malicious nodes for compromising privacy 
and security. However, if the next step, intent resolu-
tion is properly carried out, miss-configurations can be 
recognized. Since miss-configurations are responsible 
for a majority of network security challenges arising 
from human-network interactions [346], LLMs-based 
configurations can minimize such vulnerabilities, given 
correct intent profiling carried out through LLMs. The 
next steps in IBN, intent activation which provides the 
necessary services intended by intents, and intent as-
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surance which monitors the intents throughout its life 
cycle to ensure that the network behaves as intended, 
depend on the initial steps. Therefore, the security of 
LLMs-based intent profiling and translation is extreme-
ly important for IBN, and thus 6G.

Network Data Analytics Function.
The 3GPP Network Data Analytics Function (NWDAF) 
[347], envisioned as a key component of the 6G com-
puting continuum’s service base [205], is the analytics 
hub that establishes a foundation for AI/ML-driven data 
analytics operations and services [78]. This hub aims to 
ensure their complete integration and interoperability 
across the network. NWDAF is designed to aggregate 
and analyze data related to network efficiency, User 
Equipment (UE) behavior, service usage patterns, net-
work Operations, Administration, and Maintenance 
(OAM) spanning the computing continuum, including 
WiFi, WAN, 5G Core, Cloud, and Edge networks [348]. 
Specifically, this function is designed to perform an-
alytical inferences, provide services for training ma-
chine learning models, and make data accessible via 
the Nnwdaf AnalyticsInfo service. This enables native 
downstream LLMSecOps services to acquire targeted 
analytics from NWDAF [78].

Zero-Touch Network 5G/6G Security.
The Zero-touch Network and Service Management 
(ZSM) is focused on revolutionizing network manage-
ment towards a fully automated, flexible, and efficient 
approach. This extends across all mobile network gen-
erations, emphasizing the necessity for networks to au-
tonomously self-configure, self-monitor, self-heal, and 
self-optimize without human intervention [349]. This au-
tomation is crucial as networks evolve, especially with 
the complexity introduced by 5G and future 6G technol-
ogies, supporting a vast number of connected devices 
and services with diverse network requirements [350], 
[351]. ZSM contains advanced technologies like AI and 
ML for intelligent decision-making, as well as SDN and 
NFV for simplifying network management, indicating a 
shift towards networks that can independently adapt to 
and defend against cyber threats, ensuring robust and 
resilient future telecommunications infrastructure.

The integration of Zero-touch Network Management 
(ZTM) into the ZSM framework is essential to improve 
network management’s security and efficiency in 5G 
and 6G networks. The ZSM initiative aims for full end-
to-end network automation, and ZTM plays a key role 
in achieving this goal [352]. The framework can enable 
end-to-end network slicing and AI-based security 
mechanisms, ensuring a secure infrastructure that ca-
ters to diverse service requirements. Furthermore, the 
adoption of AI and ML optimizes network operations 
and introduces new security paradigms, addressing 
challenges posed by SDN, NFV, MEC, and network slic-
ing. These advancements are crucial for the creation 

of secure, autonomous systems capable of proactively 
identifying and mitigating threats, thus safeguarding the 
integrity and resilience of future mobile networks [353].

The anticipated complexity of future 6G networks will 
escalate to levels where conventional analytical and 
numerical simulation methods will become impractical 
[353]. This necessitates the ZSM framework reference 
architecture to embed data protection mechanisms 
for use, transit, and storage. This ensures an elevated 
security standard across management functions, ser-
vices, and infrastructure resources while safeguarding 
data security and integrity [354]. Therefore, integrating 
Zero-Touch with LLMs can enhance the security of 6G 
networks. This integration could help create a future 
where networks can autonomously defend against cy-
ber threats through intelligent, adaptive, and automat-
ed mechanisms [355]. These systems would continu-
ously learn from new data, adapt to emerging threats, 
and implement security measures without manual con-
figuration or intervention [356]. As a result, a robust and 
resilient 6G infrastructure can be ensured.

Autonomous LLM Agent Swarms
This section examines the current use of LLMs in de-
centralized defense applications and uses these tech-
nologies as a basis to propose a forward-looking per-
spective on the
 
future of distributed LLM or LLM multi-agent systems. 
This analysis is crucial to supporting the AI Intercon-
nect’s commitment to integrating security and trust 
principles from the outset, thereby creating a more ro-
bust and trustworthy framework for future technologi-
cal deployments.

The transition to distributed LLMs.
The prevailing model for LLMs is predominantly cen-
tralized, managed by singular organizations. This cen-
tralization introduces critical challenges, including 
discrepancies in model design and the utilization of po-
tentially biased or sub-optimal training data. To address 
these issues, a decentralized architecture for LLMs is 
proposed, leveraging a network of LLMs to validate 
responses and offer a diversity of perspectives. This 
decentralization not only mitigates the concerns asso-
ciated with centralized models, such as privacy risks, 
usage restrictions, and dataset biases, but also fosters 
greater openness and inclusivity in contributions. Gao 
et al. [357] advocate for a peer-to-peer decentralized 
network of LLMs, positing that such a structure could 
enhance robustness and trustworthiness, driving the 
model towards greater impartiality and openness. Their 
proposal underscores the potential of decentralized 
LLMs to overcome the inherent limitations of traditional, 
centralized models. Similarly, Tang et al. [358] contribute 
to this discourse by highlighting the advantages of dis-
tributing certain computational tasks to the client side. 
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This approach not only serves to preserve privacy but 
also optimizes the processes of pre-training, inference, 
and fine-tuning of LLMs, offering a novel perspective on 
the deployment and utilization of LLMs in a manner that 
prioritizes data security and user privacy.

Security and trust in distributed LLMs
Blockchain technology emerges as a pivotal infrastruc-
ture in fostering collaborative AI model development 
and interconnecting LLMs to establish a decentral-
ized AI marketplace, especially the formation of block-
chain-based LLM multi-agent systems [359]. It primarily 
offers a mechanism to cultivate trust through the integ-
rity and availability of secure, decentralized knowledge 
bases during LLM interactions. Moreover, blockchain’s 
contribution to sustainability through incentive mecha-
nisms and reputation systems sets a precedent for fur-
ther integration and development.

Gong [360] introduces an innovative concept of a de-
centralized LLM framework built upon blockchain tech-
nology, aiming to imbue LLMs with dynamic capabilities. 
This model suggests that blockchain not only transi-
tions LLMs from centralized to decentralized archi-
tectures but also facilitates their real-time, continuous 
training. Furthermore, Gong highlights how blockchain 
can underpin decentralized datasets and economic in-
centives, thereby fostering an open, collaborative en-
vironment for LLM model contributors and validators. 
This openness and trust paradigm shift, enabled by 
blockchain, is pivotal for the evolution of dynamic LLMs.

Another noteworthy contribution by [361] underscores
blockchain’s potential in affirming data rights and re-
shaping profit distribution mechanisms, further em-
phasizing the technology’s transformative impact on 
LLM ecosystems. To address security concerns within 
distributed LLM systems, [362] has introduced an inno-
vative approach that integrates Trusted Execution En-
vironments (TEEs) to create a secure, distributed LLM 
framework based on model slicing. Their methodolo-
gy not only emphasizes the importance of maintaining 
communication performance and model accuracy but 
also introduces a novel way of securing the most vul-
nerable segments of the training model. By deploying 
the sensitive parts of the model within TEEs at either 
the sending or receiving ends of the model exchange 
process, and safeguarding this exchange through ro-
bust encryption and decryption mechanisms, Huang 
et al. offer a promising solution to the dual challenges 
of ensuring security and preserving the integrity of dis-
tributed LLM systems.

Autonomous defense framework.
Upon establishing secure and trustworthy LLM and 
their integration into autonomous swarms of LLM 
agents, the concept of an autonomous defense frame-
work leveraging LLMs for enhanced cybersecurity 

emerges as a compelling area of interest. In light of this 
perspective, we have delineated a comprehensive over-
view of an autonomous defense framework, employing 
these swarms of LLM agents, organized into a four-ti-
er taxonomy designed for cyber operations. While this 
initial framework sketch does not explicitly detail the 
incorporation of technologies such as blockchain or 
TEEs, their critical roles in fortifying the framework’s 
trustworthiness and security are implicitly recognized. 
The integration of such technologies is envisaged to 
significantly contribute to the robustness and efficacy 
of the autonomous defense framework, ensuring a se-
cure and resilient cyber operational environment.

The sequence diagram depicted in Figure 17 represents
an illustration of an autonomous defense framework uti-
lizing LLM agent swarms. This framework is designed 
to identify and respond to adversarial actions instigated 
by LLM, such as PentestGPT [333] or PAC-GPT [334], 
within cyber environments. Its primary focus is the pro-
tection of 6G edge-cloud infrastructure through the de-
ployment of explainable and actionable AI, along with 
conversational agents designed for human interaction 
(e.g, HuntGPT [341] and Cyber Sentinel [340]). The pro-
cesses are segmented into four main components re-
flecting the cyber defense lifecycle: Attack Surface, Ini-
tial Detection and Analysis, Response Generation and 
Execution, and Decision Support and Communication.

Open research issues
Drawing from our comprehensive summarization and 
analysis, this section concludes with a curated collec-
tion of research questions aimed at exploring the se-
cure and safe utilization of LLMs within the 6G edge-
cloud continuum. These pivotal research inquiries are 
categorized into three primary areas: (RQ 1.) Ensuring 
safety during the training of LLMs; (RQ 2.) Optimizing 
the integration of LLMs within SecOps to evolve into an 
effective LLMSecOps framework; and (RQ 3.) Investi-
gating the trustworthiness and security mechanisms 
in autonomous LLM agent swarms, alongside their po-
tential applications. This structured inquiry seeks to 
address the critical aspects of LLM deployment, em-
phasizing safety, efficiency, and security in a rapidly ad-
vancing technological landscape.
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Conclusion 7
LLMs are rapidly evolving. They are expected to become 
more autonomous and capable, finding wider adoption 
and enabling new functionalities across industries. This 
will redefine human-AI collaboration in ways we are 
only just beginning to understand and shape that could 
span from revolutionizing manufacturing in Industry 5.0 
to enhancing personalized healthcare, streamlining lo-
gistics, or transforming education.

Furthermore, the rapid acceleration in the development 
of LLMs intersects directly with the emerging world of 
6G networks. As we have extensively explored in this 
paper, the integration of these emerging AI technol-
ogies into the 6G architectural framework offers both 
untapped potential and inherent challenges.

In particular, the co-evolution of both LLMs and 6G ap-
pears fascinating. LLMs’ ability to reason (or replicate 
reasoning in decision making), plan (or support plan-
ning), and grasp complex situations (in a variety of op-
erational conditions) will likely exceed our current ex-
pectations by the time 6G networks are fully deployed. 
At the same time, 6G technology itself is under devel-
opment, so the specific needs and functionalities of the 
network might change as new applications and use cas-
es emerge, and with a number of functionalities that will 
actually be enabled by AI to create a true “Intelligent In-
ternet of Intelligent Things”. Therefore this co-evolution 
presents a unique situation and there are challenges 
to be considered. For instance, it is necessary to make 
sure LLM/GPT capabilities keep pace with the evolving 
needs of 6G. Early integration strategies might require 
adjustments as both technologies mature. Additionally, 
unforeseen use cases for LLMs within the 6G network 
might emerge, requiring the network architecture to 
adapt and accommodate these new possibilities.

The combined advancements of LLMs and 6G could 
unlock entirely new applications and functionalities 

that we can’t even imagine today. This co-evolution has 
the potential to revolutionize areas like intelligent net-
work management, self-optimizing infrastructure, and 
hyper-personalized user experiences. Furthermore, as 
LLMs become more autonomous and collaborative, the 
way humans interact with AI within 6G networks will 
transform. We might see a shift towards shared deci-
sion-making, where humans leverage AI for complex 
analysis and rapid decision-making while providing 
strategic guidance and overall objectives.

However, through our discussions, it has become evi-
dent that the integration of such technologies does not 
involve merely technicalities but encompasses vast 
landscapes of requirements and design considerations. 
While 6G remains predominantly in the research do-
main, the pace at which these models are emerging may 
very well outpace the development of their correspond-
ing standards and regulations. The current absence of 
universally accepted standards and a consistent regu-
latory framework adds layers to this complexity. The sit-
uation highlights the need for clearer guidelines as we 
try to integrate different approaches.

Recognizing these multifaceted challenges, this paper 
has aimed to provide a fresh conceptual overview, shed-
ding light on the novel intersections of such AI models 
with the 6G ecosystem. Furthermore, our work ventured 
into the practical applications and intricacies of LLMs 
and GPTs, offering insights and potential pathways for 
their seamless integration into future mobile networks.

In light of our exploration, we believe that the integra-
tion of GPTs and LLMs with 6G networks has immense 
promise, and a collective push towards establishing 
shared practices and frameworks is crucial. Such an ini-
tiative can help us navigate the potential of GenAI in 6G 
responsibly and with an open acknowledgment of the 
challenges ahead.
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Fig. 17: Autonomous defense with LLM agent swarms.
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