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Abstract—Current deepfake detection methods are prone to
overfitting to specific deepfake artifacts and often struggle with
genuine images that have undergone compression and other
image processing operations. These processes can obscure in-
dicators of forgery, leading to inaccurate decisions. This paper
aims to redefine the boundary between real and fake images by
narrowing the definition of authentic samples to a stage closer
to the radiance of the scene as captured by the sensor, prior
to any transformations by an Image Signal Processor (ISP).
Our proposed method bypasses ISP processing steps, such as
denoising, white balance, and de-mosaicing, which are embedded
in camera hardware. This unaltered preservation makes raw
data an ideal starting point for deepfake detection. Given the
scarcity of large-scale datasets designed for training on raw
images, we propose a methodological approach to train our
model on raw image data. Our method demonstrated state-of-
the-art performance on the CDF dataset and showed competitive
results across other RGB domain deepfake detection datasets.
The model developed in this study is available at https://github.
com/DeepFaux/Deepfake-Detection-with-RAW-Data.

Index Terms—deepfake detection, image manipulation, ISP

I. INTRODUCTION

Figure 1 illustrates the range of deepfake generation meth-
ods; each can be understood as a controlled content creation
problem, where an RGB image Irgb is manipulated based
on specific conditional information C = {Image, Audio,
Text, ...}. The generation process can be mathematically
formulated as follows:

Io = ϕG(Irgb, C) (1)

where ϕG represents the specific generative network, Io =
{I0rgb, I1rgb, . . . , I

N−1
rgb } denotes the sequence of generated con-

tents and N is the total number of frames. This technology
can be broadly categorized into four main research areas: face
swapping, face reenactment, talking face generation, and facial
attribute editing. Advancements in deepfake technology have
enhanced applications across entertainment, art, and education.
However, these developments also pose substantial risks [1]–
[5]. Deepfakes pose a threat to security systems by poten-
tially circumventing facial recognition and fooling biometric
authentication software, thereby granting unauthorized access
to restricted areas or sensitive data [6]. This vulnerability is
particularly concerning for mobile devices used for secure
unlocking, financial transactions, or access to medical records.
Our method targets biometric Deepfake detection in injection

Fig. 1: Various deepfake generation methods ϕG manipulate the input
image Irgb based on conditions like audio, video frames, or text. Typically,
detection models process ISP-transformed images. The ISP process starts with
light focused on the CFA sensor, producing raw pixel values IRAW, which
undergo stages ϕISP such as white balance and noise removal to yield the
final RGB output. Our novel pipeline uses raw data (IRAW) as input for
improved deepfake detection.

attacks. In such cases, an attacker may use an embedded
sensor and a Deepfake algorithm to generate manipulated
video content in real-time. As illustrated in Figure 2, this
process may involve employing a virtual camera (e.g., OBS)
[7] to mimic a legitimate webcam feed, setting the Deepfake
video as the source, and streaming the manipulated video to
facial authentication systems by selecting the virtual camera
as the input.
To mitigate the risks posed by deepfakes, different detection
methods have been proposed, from early handcrafted feature-
based to modern deep learning based approaches [8]–[15].
Detection tasks are framed as classification problems, applied
either at the image level or the video level, depending on the
practical application. These models can be represented as:

So = ϕD(Io), (2)

where ϕD abstracts the specific detection network, and So

represents the fake score of the generated content Io.
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Fig. 2: Application scenario: Injection attack via virtual camera

Current deepfake detection methods often rely on supervised
learning, where models are trained to recognize known deep-
fake artifacts. However, in real-world, the exact techniques
used for facial manipulation are typically unknown, and access
to the attacker’s model is generally not available. Although
these models can achieve detection accuracies as high as
98%, they are susceptible to overfitting. Recent studies have
recognized this challenge and aimed to enhance the robustness
of detection algorithms by focusing on intrinsic indicators of
forgery that go beyond relying solely on known manipula-
tion characteristics [16]–[18]. In practical settings, content
captured by cameras often undergoes various digital image
and video processing operations, including post-processing
such as stylization filters and beautification [13], [19], before
dissemination. Recent efforts have systematically quantified
the impact of such operations on detection accuracy [13], [20]–
[23].

Detection models often struggle to differentiate between
real and fake images because the current definition of real
images encompasses both raw content captured by camera
sensors and content processed through various stages of image
and video processing, including linear and nonlinear adjust-
ments. Consequently, images are considered real even after
undergoing multiple processing operations such as denoising,
compression, deblurring, and white balance adjustments. This
paper aims to redefine the boundary between real and fake
images by narrowing the definition of authentic samples to
a stage closer to the radiance of the scene as captured by
the sensor, prior to any transformations by an Image Signal
Processor (ISP) [24], [25]. The ISP is designed to convert raw
sensor data from Bayer Color Filter Arrays (CFA) into visually
appealing RGB output images. This transformation process,
depicted in Figure 1, begins as the camera lens focuses light
onto the CFA sensor, producing a digital representation of the
scene in raw pixel values. These raw images undergo several
ISP stages, which primary goal is to produce images that are
aesthetically pleasing to the human eye, however it introduces
significant challenges in the context of deepfake detection.
The challenge arises from each device using a unique ISP
pipeline with distinct enhancement blocks, which obscure
subtle cues critical for detecting deepfakes. This variability
forces detection models to adapt to unseen ISP configurations,
complicating accurate identification of real images.

Raw data, as a linear representation of scene radiance,

captures the original light distribution without alteration. This
unaltered preservation makes raw data an ideal starting point
for deepfake detection. In this paper, we propose a novel
pipeline that utilizes raw data as input for deepfake detection.
Incorporating raw data as input necessitates a modification in
the existing detection formula 2, now represented as:

So = ϕD(IRAW), (3)

where ϕD denotes the deepfake detection function, and IRAW
signifies the raw image data. Our primary objective is to
focus on detection in the raw domain, assuming that attacks
occur in this worst-case scenario. However, due to the scarcity
of large-scale raw image datasets for training, we propose a
methodological approach, detailed in Section II, to train our
model for deepfake detection using raw images. This approach
incorporates an auxiliary Inverse-ISP model [26] to convert
processed RGB images into raw format for analysis.

The rest of this paper is organized as follow: In Section
II, we present our proposed method. Section III covers the
experimental setup and the results. Finally, Section IV presents
the future work and conclusion of our study.

II. PROPOSED METHOD

We optimize a binary classifier using cross-entropy loss, L,
to perform deepfake detection defined as:

L = − 1

N

N−1∑
i=0

{ti logF (xi) + (1− ti) log(1− F (xi))} (4)

where F (x) denotes the probability of x being classified as
”fake”, and ti represents the binary label associated with the
input image, indicating whether it is fake (1) or real (0). To
enhance the generalization and robustness of our detection
algorithms, we generate synthetic raw samples that embody
common forgery traces. These include blending boundaries,
source feature inconsistencies, and statistical anomalies in the
frequency domain. All of these present significant challenges
for detection. The samples undergo a conversion process from
raw to RGB using ϕISP, are manipulated within the RGB do-
main, and subsequently reconverted to raw using ϕISP inv. This
novel synthetic training data, called Raw Self-Blended Images
(RAW_SBIs), is designed to improve model robustness.

Similar to the approach in [18], our synthetic data gen-
eration pipeline produces fake images by blending pseudo-
source and target images, both derived from a single base
image (Ibase). This presents models with a more complex
and generalized task for face forgery detection. To produce
RAW_SBIs, we develop a Source-Target Generator (STG)
and a Mask Generator (MG). The STG starts by generating
pairs of pseudo source and target images from single pristine
images using straightforward image processing techniques,
and the MG creates various blending masks based on the facial
landmarks of the input images.

As illustrated in Figure 3, the generation of raw synthesized
training data begins with converting a raw image (IRAW )
to RGB format (Ibase) using ϕISP. The bounding box and



Fig. 3: (a) Overview of generating a RAW Self-Blended Image (RAW_SBI). A base image Ibase is fed into the Source-Target Generator (STG) and the
Mask Generator (MG). The STG produces pseudo source and target images from the base image using various image augmentations, while the MG creates a
blending mask from facial landmarks and deforms it to enhance mask diversity. The source and target images are then blended with the mask and input into
the Inverse ISP pipeline to reconstruct the raw format of the RGB input image. (b) Example images of Ibase, IRAW, ISB, and IRAW SB. The Ibase samples are
sourced from FF++ dataset. IRAW and IRAW SB are transformed from Ibase and ISB respectively, using inverse ISP model.

facial landmarks of the face in the input image are then
detected, leading to the cropping of the face area. This cropped
image serves as both the source and target image for further
processing. To introduce inconsistencies between the source
and target images, a series of augmentations, such as bright-
ness and contrast adjustments, are applied to either source or
target image. The source image is also resized and translated
to replicate blending boundaries and landmark mismatches.
Additionally, the Mask Generator (MG) produces a grayscale
mask specifying the manipulated region.

The initial mask is defined as the convex hull of the facial
landmarks in the input image. Given that face manipulation
techniques may target various areas of the face, resulting in
diverse shapes of manipulated regions (e.g., affecting only
the mouth, eye, or entire face region), the mask is altered to
accommodate these variations using landmark augmentation
[16]. The mask is then smoothed using a Gaussian filter.
Finally, the mask is applied to blend the source and target
images according to Equation 5, resulting in the creation of
the self-blended image (ISB).

ISB = Is ⊙M + It ⊙ (1−M) (5)

Where, Is, It, and M represent the source image, target
image, and the generated mask, respectively. After preparing
the self-blended image, we use an inverse ISP model, ϕISP inv
to transform the RGB image (ISB) back into the raw image
domain (IRAW SB). Finally, this synthesized raw data, along

with the original raw image (IRAW ), is input to the detection
algorithm for training.

III. EXPERIMENT

Our proposed methodology employs raw domain data as the
primary input for deepfake detection. Recognizing the scarcity
of large-scale datasets specifically designed for training on
raw domain images, our method reverses the data processing
flow during the training phase. Instead of converting raw data
into RGB images as depicted in Figure 3a, we initiate with
RGB images from a publicly available dataset, labeled as Ibase.
These images are then transformed into raw format, labeled
as IRAW. The generated IRAW and synthetically created fake
images in raw format (IRAW SB) are utilized for training. This
reversal strategy offers several key advantages: 1) It enables us
to leverage the existing wealth of large-scale RGB data while
still benefiting from training in the raw domain. 2) It allows
direct comparison of our method with existing state-of-the-
art RGB-based models. 3) It facilitates the application of our
model in scenarios where only RGB images are available.

A. Experimental Setup

Dataset: We trained our model on the widely used bench-
mark dataset, FaceForensics++ (FF++) [8], using only the real
videos, consisting of 720 videos for training and 140 videos for
validation. To evaluate the performance of our approach, we
utilized the test set from the FF++ dataset, which includes both
authentic and manipulated videos. For cross-dataset evaluation,



we employed three recent deepfake datasets, namely Celeb-
DF-v2 (CDF) [27], Deep-Fake Detection (DFD) [28] and
DeepFake Detection Challenge public test set (DFDC) [29].

RAW Data Generation: In the absence of authentic raw
image data, and to facilitate the generation of synthetic raw
domain images via our proposed pipeline, we employ the
state-of-the-art inverse ISP model, known as MiAlgo [26].
This method is trained to recover raw data from the RGB
Huawei P20 model; however, it can effectively generalize
to noisy and unseen similar sensors. Moreover, the method
doesn’t require any metadata or specific camera parameters
(e.g., correction matrices, digital gains), which are typically
inaccessible. MiAlgo utilizes an end-to-end encoder-decoder
UNet-like structure, incorporating key components such as
the residual group [30] and the enhanced block [31]. The
algorithm takes a full-resolution RGB image and converts the
input image to a raw RGGB pattern. Consequently, we perform
demosaicing on the RGGB image and then feed this raw data
into a binary classifier for deepfake detection.

Evaluation Metrics: We utilize the video-level area under
the receiver operating characteristic curve (AUC) for compari-
son with previous research. Normally, predictions at the frame
level are averaged across video frames.

Training details: We utilize EfficientNet-b4 (EFNB4) [32],
pretrained on ImageNet, as our classifier and train it for 100
epochs using the SAM optimizer [33]. We set the batch size to
32 and the learning rate to 0.001. During training, we sample
only eight frames per video. Each batch includes both real
images and their self-blended raw counterparts.

B. Experimental Results and Analysis

Our methodology is benchmarked using the public dataset
described in Section III-A, against other RGB-domain deep-
fake detection techniques [14]–[18], [34]–[38].

1) Quantitative Results:: Table I presents the Area Under
the Curve (AUC) evaluation metrics of our method compared
with existing methods. Our method, EFNB4 + IRAWSB

,
demonstrated state-of-the-art performance on the CDF dataset
and showed competitive results across other deepfake detection
datasets. More specifically, on the CDF dataset, our approach
achieved an impressive AUC of 94.23%, surpassing EFNB4
+ SBIs, which obtained 93.18%. For the DFD dataset, PCL +
I2G attained the highest AUC of 99.07%, while our method
followed closely with an AUC of 98.46%. In the DFDC
dataset, EFNB4 + SBIs led with an AUC of 72.42%, and
FTCN, which utilized both fake and real sets during training,
achieved 71.00%. Our method secured an AUC of 69.42%,
ranking as the third-best performer on this dataset. Table II
presents our cross-manipulation evaluation results on FF++.
We can see that even if our method is not trained on specific
artifacts within the FF++ dataset, still our method performs
well in recognizing different deepfake artifacts generated by
different methods or nearly matches existing methods across
four manipulations (99.92% on DF, 99.16% on F2F, 99.46%
on FS, and 99.72% on NT) and achieves 99.56% the overall
performance on the entire FF++ test set.

TABLE I: Cross dataset evaluation on CDF, DFD, and DFDC Datasets.
The model is trained exclusively on the high-quality FF++ dataset using only
real data. Results from previous methods are cited from their original papers.
Bold values indicate the best performance, while underlined values denote the
second-best performance.

Method Input Type Training set Test Set AUC (%)

Real Fake CDF DFD DFDC

DSP-FWA [17] Frame ✓ ✓ 69.30 - -
Face X-ray + BI [16] Frame ✓ - 93.47 -
Face X-ray + BI [16] Frame ✓ ✓ - 95.40 -
LRL [34] Frame ✓ ✓ 78.26 89.24 -
FRDM [14] Frame ✓ ✓ 79.4 91.9 -
PCL + I2G [15] Frame ✓ 90.03 99.07 67.52
EFNB4 + SBIs [18] Frame ✓ 93.18 97.56 72.42

Two-branch [35] Video ✓ ✓ 76.65 - -
DAM [36] Video ✓ ✓ 75.3 - -
LipForensics [37] Video ✓ ✓ 82.4 - -
FTCN [38] Video ✓ ✓ 86.9 94.40 71.00

EFNB4 + IRAW SB (ours) Frame ✓ 94.23 98.46 69.42

TABLE II: Cross-manipulation evaluation on FF++.

Method Test Set AUC (%)

DF F2F FS NT FF++

Face X-ray + BI [16] 99.17 98.57 98.21 98.13 98.52
PCL + I2G [15] 100 98.97 99.86 97.63 99.11
EFNB4 + SBIs [18] 99.99 99.88 99.91 99.79 99.64

EFNB4 + IRAW SB (ours) 99.92 99.16 99.46 99.72 99.56

2) Qualitative Analysis of Inverse ISP:: Figure 3b presents
examples of Ibase, IRAW, ISB, IRAW SB and blending mask. The
Ibase samples are sourced from FF++ dataset [8]. IRAW and
IRAW SB are transformed from Ibase and ISB respectively, using
inverse ISP model (see Figure 3a). Although the inverse ISP
model was not specifically trained for face images, it suc-
cessfully reconstructs the raw domain data with high fidelity.
Furthermore, we observe that the artifacts in synthetic images
(ISB), generated from Ibase, are distinctly visible and can also
be recognized in IRAW SB, indicating effective transformation
and consistency across image representations.

IV. CONCLUSION AND FUTURE WORK

This study presents a novel pipeline that utilizes raw data
to enhance deepfake detection, addressing limitations of cur-
rent models that struggle with genuine images modified by
ISP pipelines. Our method has demonstrated state-of-the-art
performance on the CDF dataset and competitive results on
other RGB domain deepfake detection datasets. To the best of
our knowledge, this study is the first to propose using RAW
data for Deepfake detection. Given the limited research on
RAW data attacks and the absence of diverse RAW Deepfake
generators, we employed an inverse ISP model to simulate
RAW data during training. This approach enabled us to make
meaningful comparisons with existing RGB-based methods.
Future work should focus on developing large-scale datasets
from sensor outputs to improve training data effectiveness and
authenticity.
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