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Abstract

At the forefront of cryptographic techniques that enable secure digital applications are public-
key encryption (PKE) schemes and zero-knowledge (ZK) proofs. A PKE allows two parties
without a shared secret to communicate securely, while ZK proofs validate statements without
revealing anything beyond their validity.

Malleability, in cryptographic terms, refers to the possibility of efficiently modifying and
transforming, in a predictable way, an encrypted message or a proof; it is a desirable feature
that finds applications in many settings, such as privacy-preserving outsourced storage and
computation. On the other hand, non-malleability is defined as the property that prevents such
predictable modifications that, in a general-purpose cryptosystem, may lead to vulnerabilities
and undesired attacks.

This thesis aims to explore the nuanced interplay and the relationship between malleability
and non-malleability. With a combination of theoretical analysis and practical case studies, it
provides insights into the boundaries and connections between these two properties and how
they can coexist in secure and efficient protocols.

In particular, we show that a wide class of non-interactive succinct arguments (zkSNARKs),
a special class of ZK proof systems, has strong non-malleable properties even if derived from
malleable cryptographic primitives, like homomorphic polynomial commitments: our results
apply to popular proof systems, such as Plonk and Marlin, and the KZG commitment scheme.

We provide a framework for analyzing the non-malleability of modular zkSNARKS, with a
special emphasis on optimized schemes and flexible architectures, such as those based on the
paradigm of Virtual Machines.

Also, we propose efficient and secure protocols based on a class of malleable PKEs, the Re-
randomizable RCCA (Rand-RCCA) PKEs, with applications to electronic voting and anony-
mous e-mail, among others.

Last but not least, we initiate the study of tight security in the Rand-RCCA setting, thus
giving insight into how tight the security of these schemes translates to the trust that we have
with respect to standard cryptographic assumptions.





Résumé

À la pointe des techniques cryptographiques qui permettent des applications numériques sécurisées
se trouvent les schémas de chiffrement à clé publique (PKE) et les preuves à divulgation nulle
de connaissance (ZK). Un PKE permet à deux parties sans secret partagé de communiquer en
toute sécurité, tandis que les preuves ZK valident des déclarations sans révéler quoi que ce soit
au-delà de leur validité.

La malléabilité, en termes cryptographiques, fait référence à la possibilité de modifier et
de transformer efficacement, de manière prévisible, un message chiffré ou une preuve ; c’est
une caractéristique souhaitable qui trouve des applications dans de nombreux contextes, tels
que le stockage et le calcul délégués préservant la vie privée. En revanche, la non-malléabilité
est définie comme la propriété qui empêche de telles modifications prévisibles qui, dans un
système cryptographique à usage général, peuvent entraîner des vulnérabilités et des attaques
indésirables.

Cette thèse vise à explorer l’interaction nuancée et la relation entre la malléabilité et la non-
malléabilité. À l’aide d’une combinaison d’analyses théoriques et d’études de cas pratiques, elle
fournit des éclaircissements sur les limites et les connexions entre ces deux propriétés et sur la
manière dont elles peuvent coexister dans des protocoles sécurisés et efficaces.

En particulier, nous montrons qu’une large classe de systèmes de preuves ZK (zkSNARKs)
possède de fortes propriétés de non-malléabilité même si elle est dérivée de primitives cryp-
tographiques malléables, comme les engagements polynomiaux homomorphes : nos résultats
s’appliquent à des systèmes de preuves populaires, tels que Plonk et Marlin, ainsi qu’au schéma
d’engagement KZG.

Nous proposons un cadre pour analyser la non-malléabilité des zkSNARKS modulaires, avec
une attention particulière portée sur les schémas optimisés et les architectures flexibles, telles
que celles basées sur le paradigme des machines virtuelles.

De plus, nous proposons des protocoles efficaces et sécurisés basés sur une classe de PKE
malléables, les PKE RCCA ré-randomisables (Rand-RCCA), avec des applications à la vote
électronique et aux e-mails anonymes, entre autres.

Enfin, nous entamons l’étude de la sécurité stricte dans le cadre Rand-RCCA, offrant ainsi
un aperçu de la manière dont la solidité de la sécurité de ces schémas se traduit par la confiance
que nous avons vis-à-vis des hypothèses cryptographiques standard.
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Chapter 1

Introduction

In the past few decades, our society has experienced a significant shift towards a digital-focused
world. Almost every task, whether it involves sending messages, making purchases, participat-
ing in elections, or signing contracts, is now conducted through digital means. As this vast
digital landscape presents numerous opportunities for dishonest or malicious activities, ensur-
ing secure transactions becomes crucial. The field of Cryptography serves as the foundation for
addressing this challenge, by exploring the principles and limitations of digital security.

1.1 Cryptography: An overview
Cryptography has a long and fascinating history that traces back to the early centuries of the
human race. In this manuscript, we do not address in detail the role cryptography has played
throughout history, but we refer the reader to the famous book The Codebreakers written by
the historian David Kahn [Kah67] for an in-depth overview.
Classical Cryptography. Etymologically, the word cryptography comes from the Ancient
Greek κρυπτός (“hidden, secret”) and γράφειν (“to write”). Until late in the 20th century,
cryptography was effectively a synonym of “encryption”, namely the process of converting a
message (the “plaintext”) to some unintelligible nonsense text (the “ciphertext”), which can
only be read by reversing the process (the “decryption”).

The early cryptographic schemes were simple enough to be practically computed and solved
by hand, and have hence fallen into disuse. We now refer to this period as Classical Cryptogra-
phy, including the naïve systems used since Greek and Roman times, the elaborate Renaissance
ciphers, but also the codes developed during World War II, such as the infamous Enigma
machine.
Modern Cryptography. Nowadays, cryptography has evolved significantly from its historical
roots and encompasses much more than “secret writing”: it deals with mechanisms for ensuring
data or software integrity, enforcing privacy online, managing digital identities, designing secure
protocols for electronic elections, payment systems, decentralized finance (DeFi) applications,
and many more. Hence, modern cryptography is the practice and study of techniques for
secure communication in the presence of adversarial behavior, and is at the intersection of the
disciplines of mathematics, computer science, information security, physics, and many others.

In the following pages, we provide a very brief and high-level overview of some of the main
primitives and security notions in cryptography, such as encryption schemes, zero-knowledge
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proofs and secure multi-party protocols.

1.1.1 Encryption Schemes

Secret-Key Cryptography. The development of modern cryptosystems started with Feistel’s
work at IBM in the early 1970s [Fei73] and culminated in the adoption of the Data Encryption
Standard (DES) in 1977, that was widely used for encrypting data. DES employs symmetric-
key cryptography, where the same key is used for both encryption and decryption (hence the
name symmetric). Clearly, in this setting the key must remain secret, as it is used to encrypt
and decrypt data.

However, a significant challenge is the management of keys, as each pair of communicating
parties ideally needs a unique key, complicating secure key establishment without a pre-existing
secure channel.

Public-Key Cryptography. A pivotal moment in cryptography occurred in 1976 when
Whitfield Diffie and Martin E. Hellman introduced the notion of public-key cryptography in
their seminal paper “New Directions in Cryptography” [DH76]. This innovation addressed the
key management issue and was based on the computational hardness of the discrete logarithm
problem (see Section 2.3.1).

The main idea of public-key cryptography is to break the symmetry between encryption
and decryption keys. In particular, there exists a pair of keys, a public one and a private
one. The public one allows anyone to encrypt a message that can only be decrypted with the
corresponding private key. The private key, on the other hand, is the only one that must be
kept secret.

Although practical implementations of public-key encryption were not available at the time,
the idea sparked considerable interest and development in the cryptographic community. In
1978, Rivest, Shamir, and Adleman [RSA78] introduced the first practical public-key encryption
scheme. Their scheme, now simply known as RSA, relies on the difficulty of factoring large
integers, a problem that challenged mathematicians for centuries. Despite the renewed interest
in developing more efficient factoring methods, no significant advancement has compromised
the security of the RSA cryptographic system, that is still actively used in practice today. Later
on, new constructions were proposed. A notable example is the ElGamal encryption scheme
[ElG84] that is based on the hardness of the discrete logarithm problem.

1.1.2 Multi-Party Protocols
While traditional cryptographic tasks primarily focus on ensuring the security and integrity of
communication between two users, the security model often portrays the adversary as an entity
operating from the outside of the system of participants. In this paradigm, indeed, adversaries
are typically viewed as eavesdroppers who attempt to intercept and glean information from the
exchanges between the sender and receiver. This perspective has served as the foundation for
encryption schemes and many cryptographic protocols which are designed to protect against
such external threats.

However, as the field of cryptography continues to evolve, it becomes increasingly important
to explore alternative settings that challenge this traditional view. One notable example traces
back to Yao’s seminal work [Yao86] that introduced the secure multi-party computation (MPC),
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a cryptographic framework that allows two or more parties to jointly compute a function over
their respective inputs while maintaining the privacy of those inputs. In this context, the
adversarial model shifts significantly; rather than merely considering external threats, we must
account for the possibility that some participants may act maliciously or untrustworthily.

This requires the development of methods and techniques that can handle various types
of adversarial behavior, whether it be from a single participant or a coalition of participants
who may collude and may be corrupted before or during the protocol. This also requires some
effort to (re)define the adversarial model and incorporating the dynamics of multiple parties,
but helps to develop more robust systems that are better equipped to handle the complexities
of real-world interactions.

We refer to Section 2.2.3.5 for a formal overview of the Universal Composability (UC)
model [Can01], a notable framework that gives strong security guarantees of protocols that
may be used as a part of larger protocols, and hence can be safely composed.

1.1.3 Proof Systems and Zero-Knowledge
Traditional mathematical proofs are either self-evident or are based on established rules and
axioms; moreover, it is something that can be written, and its correctness can be checked
line-by-line.

As stated by Oded Goldreich [Gol95], the notion of proof in cryptography is arguably
different: a cryptographic proof system is an interactive protocol where the prover seeks to
convince the verifier of the truth of a claim. In the case of zero-knowledge proofs, an additional
requirement is that the proof reveals nothing beyond the validity of the statement itself. This
may seem paradoxical and counter-intuitive at first, thus we provide a simple example that
may help to understand the concept.1

An example of a zero-knowledge proof. Imagine a scenario where a prover, who can dif-
ferentiate colors, wants to convince a color-blind verifier that a particular page is not monochro-
matic, for example it has two colors like this:

The prover’s goal is to convince the verifier that this page has two colors without transferring
any additional information or “knowledge” (the colors themselves, in this case, or even the
possibility of distinguishing them). Here’s how the process unfolds.

1. The verifier begins by flipping a coin. The verifier performs this action on his own, not
revealing the outcome of the coin flip to the prover. If the coin lands on heads, he will
flip the page over; if it lands on tails, he will leave the page unchanged.

2. The prover examines the page. Since he knows what the page looked like before and can
distinguish colors, he can determine whether the verifier flipped it or not. He checks if
the page has been flipped and tells the verifier the outcome of the coin flip.

1This example is adapted from a talk of Shafi Goldwasser.
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3. The verifier compares his own coin flip with the one guessed by the prover. If they match,
he concludes that the prover could tell whether the page was flipped, which implies that
there must be two colors on the page. Thus, he accepts the claim as true. Otherwise he
rejects the claim.

If there are indeed two colors on the page, the prover can reliably follow this procedure, and
the verifier will always accept the claim: this property is known as completeness.

However, if the page has a single color, the prover cannot determine if it was flipped or
not. He might guess, resulting in a 50% chance of being correct. Thus, the probability that he
convinces the verifier is at most 50%, which is due to luck, as the prover’s claim of two colors
is false: this property is known as soundness. The probability of this bad event can be reduced
by repeating the process multiple times, thus reducing the soundness error up to a very small
factor.

Since the prover does not reveal anything but the outcome of the coin flip, this proof is a
zero-knowledge proof.
Proofs of knowledge. Imagine the scenario in which a user wishes to authenticate to a
website. The user claims that the following statement is true: “there exists a password pass
that is the correct password for the username user”. In cryptographic terms, pass is referred
to as the witness associated with the statement.

Since all registered users must have set up some password, and we want to enforce that only
someone who really knows the password can successfully authenticate, proving the correctness
of this claim is not enough. This is where a proof of knowledge (PoK) comes into play.

A PoK is a proof that allows the prover not only to convince the verifier that a statement is
true, but also that he knows a valid witness associated with the statement, which in this case
is the password that the user user used to register on the website.

If the PoK is also zero-knowledge, it means that while the verifier is convinced that the
user does know the password, it gains no additional information about the witness itself. This
solution is ideal in this setting because it additionally ensures that the user’s password remains
secret even if an eavesdropper observes the communication between the user and the website.
Non-interactive proofs. While in the above examples we have depicted the zero-knowledge
cryptographic proofs as interactive protocols, where both parties can communicate in real-time,
making them suitable for protocols like password authentication, proofs that do not involve an
interaction between the prover and the verifier are also possible and known as non-interactive
zero-knowledge proofs (NIZK). In non-interactive proofs, the prover generates a proof that can
be sent in a single message to the verifier. This feature makes them attractive for a wide variety
of applications, however a non-interactive proof is intrinsically transferable [GOS06b], which
means that it should not be used in the setting of password authentication seen above: roughly
speaking, the user user, knowing the correct password, could generate a static, non-interactive
PoK and share it with other users, letting them authenticate to the website, without knowing
the password themselves.
The Fiat-Shamir transform. In some interactive protocols, the messages of the verifier are
truly random and independent of the messages of the prover: these protocols are said to be
public-coin protocols. These protocols can be converted into non-interactive protocols by using
the Fiat-Shamir transform [FS87], a heuristic method that replaces the random messages of
the verifier with an invocation of a random oracle (RO) on the messages of the prover.
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A primer on the security models and setups. We know (see [GO94]) that it is not possible
to have NIZKs, for non-trivial “tasks”, without making any computational assumptions (cf.
Section 2.3), which is referred to as the Standard Model in cryptography (cf. Section 2.2.3.1).
However, it is possible to construct NIZKs for a wide range of tasks by relaxing the security
model or making additional assumptions.

A common setting in which NIZKs can be constructed for a wide class of tasks is when
the prover and the verifier both have access to a common bitstring chosen by a trusted party:
this model is referred to as the CRS model, introduced by Ivan Damgård [Dam00]. If the CRS
needs to have some specific structure, we refer to it as a structured CRS, or simply SRS: this is
usually to remark that the reference string has some algebraic structure. On the other hand, if
the CRS is a random bitstring, we sometimes refer to it as the uniform reference string, or URS
model. For some schemes, it is necessary to generate one CRS for each different task, while
in other cases, a single CRS can be used for all tasks: this latter model is referred to as the
universal CRS, in the sense that any task, up to a certain level of complexity, can be handled
by a single CRS. Moreover, in some cases, it is possible to update the CRS without having to
generate a new one, which is referred to as the updatable CRS model.

Some examples of NIZKs. The first NIZK was proposed by Blum, Feldman and Micali
[BFM88], although in their construction the CRS cannot be reused for different statements (in
this sense, their NIZK is called bounded) and additionally it limits the length of the statement,
i.e., the difficulty of the task, that can be proved. This scheme was later improved by De
Santis, Micali and Persiano [DMP90] to support proving many statements with the same CRS.
Later on, Feige, Lapidot and Shamir [FLS90] showed how to construct NIZKs based on a more
general class of assumptions, rather than just specific ones as in [BFM88, DMP90]. Efficient
NIZKs were subsequently proposed [Dam93, KP98, BDP00] until the advent of pairing-based
cryptography, which exploits special mathematical functions, called “pairings”. A line of work,
starting with the work of Groth, Ostrovsky, and Sahai [GOS06b, GOS06a], allowed for NIZKs
for any NP language. This line of research culminated with the work of [GS08], which is simply
referred to as the Groth-Sahai proofs, and which greatly improved the efficiency of NIZKs,
although at the cost of restricting to a (powerful and meaningful) class of NP languages.

Proofs and arguments: a note on the terminology. Although in this informal introduc-
tion we use the terms rather interchangeably, proofs and arguments are different. An argument
is a proof whose soundness is assumed only to hold against cheating provers that run in polyno-
mial time, which means that a cheating prover cannot convince the verifier of a false statement
unless he breaks some (presumably hard) cryptographic assumption. For this reason arguments
are sometimes referred to as computationally sound proofs.

The toy example of the color-blind verifier above is in fact a proof. Later in this manuscript,
we will give a formal definition of proof systems (cf. Definition 7.4.1). For the majority of the
time, we will focus on non-interactive arguments though.

1.1.3.1 zkSNARKs

A particular case of interest is the class of zero-knowledge succinct and non-interactive argu-
ments of knowledge, or simply zkSNARKs. The reason why zkSNARKs are so relevant from
both practical and theoretical perspectives is that they combine the advantages of the (zero-
knowledge) arguments of knowledge with their efficiency, i.e., the resources required to generate
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and to verify the proof, but also their size. An active area of research on zkSNARKs has seen
rapid progress in multiple aspects, such as efficiency [BCG+13, GGPR13, Gro10a, Gro16], se-
curity and versatility of their setups [BBHR19, GKM+18], and proof composition [BDFG21,
BCMS20]. We defer a formal definition of zkSNARKs to Section 2.4.3.2 as it is beyond the
scope of this introductive survey, but in what follows we give an overview of the major works
in this field and the main ideas behind them.
SNARKs based on QSPs. Many works have tried to build SNARKs for circuit satisfiability:
by this, we mean that a prover, given a circuit has to convince the verifier that it knows an
assignment of its inputs that makes the output true. An interesting line of works has as a central
starting point the framework based on quadratic span programs (QSP) introduced by Gennaro,
Gentry, Parno and Raykova [GGPR13]: probably the two most known are Groth16 [Gro16],
that is used in practice due to its very short proofs, and the scheme Pinocchio, proposed by
Parno, Howell, Gentry and Raykova [PHGR13], based on the span programs for arithmetic
circuits (QAP), a variant of QSP. The main idea behind QSP/QAP is to represent each gate of
the circuit as a variable and to associate an equation with the logic of the circuit. Interestingly,
a satisfying assignment for any circuit can be specified as a set of quadratic equations, hence the
name quadratic. As a consequence, in these schemes the prover needs to convince the verifier
that all the quadratic equations associated with the circuit are satisfiable.

These schemes are not universal as they require a specific CRS tailored to the circuit/task
being proven.
SNARKs based on PCPs. Another class of SNARKs is the one based on the Probabilistically
Checkable Proofs (PCP), which is a generalization of a proof system that allows the verifier to
check the correctness of a proof by reading only some part of it; although it may seem somewhat
counter-intuitive at first, the key idea behind PCPs is that the verifier can use the randomness
and these proofs are redundant, and thus it is sufficient to check their well-formedness only in
a few randomly chosen parts. Using this approach as starting point, several SNARKs have
been proposed [Mic94, BCCT12, DFH12, BBHR18]. In particular, the work of Micali [Mic94]
showed how to make non-interactive, by applying the Fiat-Shamir transform, the construction
of Kilian [Kil92] in which the prover sends a commitment, i.e., a short and compressed digest
(cf. Definition 2.4.3), of a PCP proof to the verifier and then the verifier checks the proof by
asking for evaluations of the PCP proof in a few points.

It is worth noticing that the Micali construction is a special case of a process called com-
pilation. A common approach to build zkSNARKs is to first construct a public-coin and
interactive information-theoretic protocol that achieves the desired functionality in an ideal-
ized model and then remove the idealized component by compiling it into a zkSNARK via the
use of a computationally-secure primitive, such as a commitment scheme and by applying the
Fiat-Shamir transform to make the proof non-interactive. In this sense, the scheme of Micali
can be seen as an example of compilation from PCPs to SNARKs.
SNARKs based on PIOPs. More recent works have focused on different and novel ap-
proaches to build the idealized component, in particular the Polynomial Interactive Oracle
Proofs (PIOPs). In a PIOP, the prover sends polynomials that can be evaluated by the ver-
ifier. The commitment scheme used in the compilation is then a polynomial commitment
scheme as it has to support the commitment of polynomials. We elaborate more on this spe-
cific compiler from PIOPs to zkSNARKs in Section 2.4.3.3 where we give a formal definition.
We notice that many efficient constructions have emerged based on this paradigm, such as
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Sonic [MBKM19], Marlin [CHM+20], Plonk [GWC19] and Basilisk [RZ21]. These are called
pre-processing SNARKs since an CRS, although universal (and updatable) must be generated
in advance. Other notable schemes that do not need a trusted setup, and are hence called
transparent, are Aurora [BCR+19], STARK [BBHR18], and Spartan [Set20].

1.1.3.2 zkVMs

A popular approach to SNARKs is that of SNARKs for Virtual Machines (or SNARK VMs2),
which at their heart consist of proving the execution of a computer program—expressed in
a predetermined instruction set—over some CPU abstraction. This design has a number of
attractive features: it makes available all the existing optimizing compilers for pre-existing
instruction sets; it offers an excellent developer experience making SNARKs usable by anyone
able to write a computer program [AST24, Tha24b]. Many SNARKs that are currently being
deployed in practice follow this design pattern. Examples include the Cairo-VM [GPR21],
the RISC Zero project [Zer], Scroll’s Ceno [LZZ+24], Polygon Miden [Lab] and many others.
Among these constructions, a notable example is Jolt [AST24], a SNARK for VMs that is based
on the lookup-singularity approach [Whi22], which consists in reducing execution of opcodes in
a VM to a series of table lookups. This approach has huge potential for adoption being simple,
as well as easy to extend and to audit. It also leads to extremely fast provers (up to 2x faster
than the current state of the art [Tha24a]).

1.2 Malleability
The Cambridge English Dictionary defines malleability as “the ability to be easily changed into
a new shape”. Aluminum, for example, can be effortlessly rolled into thin foils or shaped into
various forms, making it highly useful for packaging and construction. Gold and silver exhibit
similar malleable properties.

However, in certain structural applications, a highly malleable material may not withstand
specific stresses or loads effectively, leading to deformation or failure. For this reason, rein-
forced concrete is often used as a substitute for more malleable materials in the construction of
buildings and bridges. Similarly, while much of their original structure has been lost over the
years, the stone foundations and columns of Greek temples that we see today have withstood
the test of time.
Malleability in Cryptography. In cryptographic terms, malleability captures the possibility
of efficiently modifying and transforming a cryptographic object, say an encrypted message or
a proof, into a new valid one. A natural question may arise.

Is malleability a good or bad property in cryptography?

Keeping the analogy with the materials in the physical world, malleability is perceived as
an undesirable property in a general-purpose cryptosystem from which we require some solid
foundation, like in buildings, as it leads to issues and undesired attacks.

2Differently from how the expression zkVM is commonly used—in the sense of succinct and scalable argu-
ments of knowledge for VMs which might or might not be zero-knowledge—in this by “zkVMs” we actually
mean SNARKs for VMs with zero-knowledge. We will explicitly write “SNARKs for virtual machines” (or
VMs) whenever we make no assumption on whether the underlying construction is zero-knowledge. We refer
the reader to Section 5.8.1 for a formal definition of zkVMs.



8 8

However, there are also many applications where malleability is useful and desired; indeed,
it is a crucial property in those settings where the possibility of being shaped into various forms
solves specific problems. Thus, a more interesting question is:

What is the relationship between malleability and non-malleability?

In what follows, we explore some of the basic definitions and applications of malleable crypto-
graphic objects such as public key encryption schemes and proof systems.

1.2.1 Malleability and non-malleability in PKE schemes
Since a formal definition is quite involved, we prefer giving a rough intuition of what malleability
means for a PKE. A malleable PKE allows for modifications to ciphertexts, in the sense that
one can modify an encryption c of some unknown message msg, and come up with a ciphertext
c′ that is an encryption of a message msg′ that is related in some known way to msg: essentially,
the change on the ciphertext predictably applies to the corresponding plaintext message too.
Homomorphic Encryption. Let say that anyone can transform an encryption of a message
msg into a valid encryption of f(msg), where f is some function. Such schemes are known as
homomorphic encryption schemes and are valuable because they allow for secure processing of
sensitive data, as we show with the following example.

Imagine a hospital that collects sensitive patient data, such as test results and personal
health information. The hospital wants to analyze this data for a research study, but it has to
ensure that patient privacy is maintained.

Even if the hospital encrypts the patient data, the analysis must still be performed on the
“plaintext” data, which potentially exposes to the risk of unauthorized access to it.

Using homomorphic encryption, researchers can perform their calculations directly on the
encrypted data collected by the hospital, without ever the need of decrypting it. In this case,
the function f could be as simple as some statistics (sum, mean, median) or a complex machine
learning model. Then, patient data remains encrypted throughout the entire process.
CCA security. Depending on the context, however, the possibility of altering (or “tampering”)
messages may lead to miscommunication or even cause serious consequences, e.g., in a financial
transaction or a legal agreement. To mitigate this serious vulnerability, Rackoff and Simon
[RS92] formalized what is still now considered the standard notion of security for PKE schemes,
called Security against chosen-ciphertext attacks (CCA). This security definition essentially
prevents all the malleability attacks and is achieved by several schemes.

1.2.2 Malleability and non-malleability in proof systems
Chase et al. [CKLM12] noticed that malleable proofs can boost the efficiency of some protocols,
such as secure electronic voting systems. Despite useful, malleability for cryptographic proofs
may be an opportunity for attacks, as we elaborate hereafter.
Knowledge-soundness. The basic security notion of a PoK is knowledge-soundness (cf. Sec-
tion 2.4.3.1): informally speaking, it guarantees that, in isolation, a prover producing a valid
proof must know the corresponding witness. Looking back at the example in Section 1.1.3, a
proof system is knowledge-sound if it is very unlikely that a user who successfully authenticates
to the website does not know the secret password.
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Simulation extractability. There exist real-world deployments and cryptographic applica-
tions of NIZKs and zkSNARKs that require a stronger property called simulation extractabil-
ity [Sah99, DDO+01, GM17], that can be expressed in the following informal way, quoting
[DDO+01]:

“Whatever an adversary can prove after seeing polynomially many NIZK proofs for
statements of its choosing, it could have proven without seeing them, except for the ability to

duplicate proofs”

Intuitively, this notion considers attackers that can see proofs for some statements and may
use this information in order to produce a proof for some other statement without knowing the
witness. Interestingly, simulation extractability implies that proofs are non-malleable [DDN91].
For example, this prevents that an eavesdropper that can see many users successfully authen-
ticating to a website can use this information to authenticate himself to the website, without
knowing the password.

1.2.3 Controlled malleability
While malleability seems an attractive feature for a cryptosystem, it seems to be in conflict
with strong security guarantees.

However, under a relaxed but still meaningful security definition, we can have a proof system
or an encryption scheme that is both malleable, for a class of operation, and non-malleable to
a satisfactory extent. We refer to this notion as controlled malleability. This concept was
formalized by Chase et al. [CKLM12] in the context of NIZKs, but it can be extended to other
cryptographic primitives and schemes.

1.3 Research Questions
In this manuscript, we explore a number of research questions that are relevant to the mal-
leability and the non-malleability of important cryptographic primitives and schemes, and we
aim to provide a cohesive narrative that incorporates some recent developments that have been
published concurrently or after some of the work in this manuscript.

We analyze some of the theoretical foundations that underpin malleability and its implica-
tions for cryptographic security: along the way, we either propose new schemes or we revisit
the security analysis of existing constructions, and we investigate the mechanisms that can
transform malleable schemes into non-malleable counterparts. By examining the boundaries
and connections between malleability and non-malleability, we aim to provide a deeper under-
standing of how they can actually coexist in robust and efficient cryptographic protocols.
List of publications. The results presented throughout this manuscript have been published
in [FR22] (co-authored with Antonio Faonio), [FHR23] (co-authored with Antonio Faonio and
Dennis Hofheinz), [FFK+23] (co-authored with Antonio Faonio, Dario Fiore, Markus Kohlweiss
and Michal Zajac) [FFR24] (co-authored with Antonio Faonio and Dario Fiore), [CFR25] (co-
authored with Matteo Campanelli and Antonio Faonio).

A recent result [BCC+24] (co-authored with Christian Badertscher, Matteo Campanelli,
Michele Ciampi and Luisa Siniscalchi) on the non-malleability of SNARKs has not been included
in this thesis as it is under review.
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Note to the reader. In the next pages, we elaborate on the main research questions and the
contributions that are developed in this thesis. Especially when we will delve into the state of
the art, the discussion becomes more technical in nature. This shift is intended for readers who
are already familiar with the field, as it builds upon established concepts and methodologies. For
those who may need to familiarize themselves with certain technical aspects, we recommend
consulting Chapter 2, which provides a foundational overview of the relevant theories and
terminologies.

1.3.1 Simulation-extractable zkSNARKs
Most zkSNARKs in the literature are only proven to be knowledge-sound. In some cases, this
is due to the fact that their proofs may indeed be malleable, e.g., as in [Gro16]. In other cases,
the lack of a proof is because it is a challenging task that does not follow via a straightforward
extension of the knowledge-soundness proof, and hence may require a different approach.

The state of simulation-extractable zkSNARKs. Jens Groth and Mary Maller give a
simulation-extractable zkSNARK that consists of only 3 group elements [GM17], but their
construction is neither universal nor updatable.

The work of Ganesh, Orlandi, Pancholi, Takahashi and Tschudi [GOP+22] shows that
Bulletproofs [BBB+18] are non-malleable in the Algebraic Group Model (see Section 2.2.3.4).
Quang Dao and Paul Grubbs show that Spartan [Set20] and Bulletproofs are non-malleable
even without the AGM [DG23]. Both these works extend the framework introduced by Faust,
Kohlweiss, Marson and Venturi in [FKMV12] to the Fiat-Shamir transform applied to multi-
round interactive arguments. On a similar path, the work of Ganesh, Khoshakhlagh, Kohlweiss,
Nitulescu and Zajac [GKK+22] shows non-malleability for Plonk [GWC19], Sonic [MBKM19]
and Marlin [CHM+20]. Both [GKK+22, GOP+22] show that interactive arguments can be
simulation-extractable after applying the Fiat-Shamir transform. In particular, their approach
consists into defining new properties: trapdoor-less zero-knowledge, i.e., zero-knowledge where
the simulator does not rely on the SRS’s trapdoor but on the programmability of the random
oracle, and unique response, i.e., at some point of the protocol, the prover becomes a determin-
istic algorithm. Crucially, these properties need to be proven on a case-by-case basis; namely,
for each candidate SNARK (even if resulting from a generic compiler) one needs additional
effort to show that it is simulation extractable. Furthermore, [GKK+22] relies on rewinding-
based soundness, which is a non-standard notion of soundness, and rewinding which make the
extractor success dependent on the probability of the adversary returning an acceptable proof;
and [GOP+22] relies on the AGM.

1.3.1.1 A general framework for simulation-extractable zkSNARKs

Can we find some simple conditions that guarantee non-malleability of zkSNARKs?

At first, one may wonder whether the natural compilation from PIOPs to zkSNARKs leads
to simulation-extractable zkSNARKs if the polynomial commitment is simulation-extractable.
Despite possible, this result would not capture existing (instantiations of) zkSNARKs, because
the popular KZG polynomial commitment [KZG10], that leads to some of the most efficient
instantiations, is homomorphic.
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To address this, we investigate more deeply the malleability of the KZG polynomial com-
mitment in Chapter 3. We then show that the natural compilation from PIOPs to zkSNARKs
leads to simulation-extractable zkSNARKs as long as the polynomial commitment possesses
some special form of simulation extractability (or controlled-malleability), which we will show
the KZG polynomial commitment has, and the PIOP satisfies some simple conditions, met by
popular schemes such as Plonk [GWC19] and Marlin [CHM+20].

Our results on the compiler do not directly rely on the AGM, do not require the protocol to
be trapdoor-less zero knowledge or have the unique-response property and use more standard
notion of soundness, specifically the state restoration soundness of the PIOPs [BCS16], which
guarantees that the argument system is sound even if the adversary can rewind to some previous
state the verifier.

1.3.1.2 Real-World zkSNARKs

Our result in Chapter 3 provides a framework for the study of the PIOP-to-zkSNARK compi-
lation. However, the schemes that offer the best performance and are eventually implemented
in software libraries depart from the ones obtained through that compilation process. In par-
ticular, real-world versions of schemes such as Marlin or Plonk make use of an optimization,
the linearization trick (also known as Maller’s optimization) [GWC19, OL], that leverages the
homomorphic properties of the KZG polynomial commitment to reduce the number of field
elements in the proof. This optimization though changes the zkSNARK verification algorithm
in a way that escapes the security analysis of Chapter 3; a similar limitation holds for the work
of Kohlweiss, Pancholi and Takahashi [KPT23] that, by extending the techniques of [GKO+23],
shows how to compile Algebraic Holographic Proofs (AHPs) to non-malleable zkSNARKs.

Can we prove non-malleability for optimized real-world zkSNARKs?

In Chapter 4 we show how to resolve the limitations above, and we give the first proof of
simulation extractability of the “real world” optimized versions of zkSNARKs which include
Plonk [GWC19], Marlin [CHM+20], Lunar [CFF+21] and Basilisk [RZ21]. Along the way, we
give the first formal analysis of the linearization trick, in particular its knowledge-soundness
and simulation extractability in the AGM with oblivious sampling (cf. Section 2.2.3.4).

1.3.1.3 SNARKs for Virtual Machines

None of the previous results on the simulation extractability of zkSNARKs cover the case of
zkVMs. One way to achieve simulation extractability for a zkVM is to compose it with another
zkSNARK, i.e., we could use a zkSNARK to prove the knowledge of a valid zkVM proof (e.g.,
the recent work Testudo [CGG+23] composes Spartan with Groth16 [Gro16], and some folding-
based schemes such as Nova [KST22] follow this approach). Of course, if this zkSNARK is also
simulation-extractable, then it seems we get the maximum result with the minimum effort.

Despite viable, this approach of “adding” zero-knowledge by composition has some theo-
retical and practical drawbacks. In particular, it would require representing the verifier of the
zkVM in a format which may be cumbersome and partially limit the benefits of the improved
auditability of zkVMs like Jolt. Furthermore, this arithmetization procedure incurs in a direct
random oracle instantiation that hence becomes public to the adversary, which may lead to
insecure schemes [CGH98].
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Since zkVMs are behind the design of deployed systems with non-malleability requirements,
this remains an urgent open problem.

What can we say about the non-malleability of zkVMs?

In Chapter 5 we address this problem by showing that a modular zkVM inspired by Jolt
achieves simulation extractability under minimal assumptions. We make a step further, and
we explore the more general setting of the composition of zkSNARKs.

1.3.2 Re-randomizable PKE
An interesting class of malleable public key encryption schemes are those that are re-randomizable.
By re-randomizable we mean that the ciphertext c of a message msg can be transformed into
a new ciphertext c′, that looks like a fresh ciphertext, but decrypts to the same message. This
feature is useful to implement proxy re-encryption schemes [BBS98], which allow a proxy server
to transform a ciphertext computed under one’s public key into one that can be decrypted by
another secret key, and is met by popular PKE schemes, such as the ElGamal PKE [ElG84].

Re-randomization is in fact a simple form of malleability. Typically, we would like to offer
security against malleability attacks on the encrypted message: an eavesdropper should not be
able to transform a ciphertext of a message msg into a ciphertext of a different message msg′

(cf. Section 1.2.1). Ideally, we would like to have a scheme that can be re-randomized, so that
we can use its re-randomization to implement protocols like proxy re-encryption, but at the
same time we would like to prevent all the other malleability attacks.
Rand-RCCA PKE. To this end, a relaxed version of CCA security for PKEs, dubbed
Replayable CCA security (RCCA), was introduced in [CKN03] and later extended by Jens
Groth [Gro04] to the Re-randomizable Replayable CCA (Rand-RCCA) setting. Constructing
Rand-RCCA-secure PKE has been generally considered a difficult problem and was posed as
an open problem in [CKN03]. The scheme proposed by Groth [Gro04] is secure in the Generic
Group Model (cf. Section 2.2.3.3) and the ciphertext size expansion is as large as the bit-length
of the plaintext. Prabhakaran and Rosulek showed how to obtain Rand-RCCA schemes under
minimal assumptions [PR07]. Chase et al. [CKLM12] proposed a new Rand-RCCA-secure PKE
scheme by using malleable NIZKs, and their work has been later improved by Libert, Peters
and Qian [LPQ17], although it still incurred high computational costs and a large ciphertext
size. More efficient schemes, with extremely short ciphertexts, have been proposed by Faonio
et al. [FFHR19, FF20].

1.3.2.1 Applications

We investigated the potential applications of Rand-RCCA PKE schemes, in particular in the
context of verifiable mix-nets.

A Mix-net (or mixing network) is a protocol introduced by David Chaum [Cha81] that allows
a set of senders to send messages anonymously, and finds applications in different domains,
including anonymous e-mail, anonymous payments and electronic voting, to name a few. A
natural and simple design of mixing networks are re-encryption mix-nets [PIK94] in which each
mixer first decrypts and then freshly encrypts every ciphertext: this operation can be performed
even publicly using re-randomizable encryption schemes such as ElGamal. The process of re-
randomizing and randomly permuting ciphertexts is also called shuffle.
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The use of zero-knowledge arguments to prove the correctness of a shuffle was first suggested
by Sako and Kilian [SK95]. The first proposals used expensive cut-and-choose-based zero-
knowledge techniques [Abe98, SK95]. Abe et al. removed the need for cut-and-choose by
proposing a shuffle based on permutation networks [Abe99, AH01]. Furukawa and Sako [FS01]
and independently Neff [Nef01] proposed the first zero-knowledge shuffle arguments for ElGamal
ciphertexts that achieve a complexity linear in the number of ciphertexts. These results have
been improved by Wikström [Wik09], and later Terelius and Wikström [TW10], who proposed
arguments where the proof generation can be split into an offline and online phase. These
protocols have been implemented in the Verificatum library [Wik10]. Groth and Ishai [GI08]
proposed the first zero-knowledge shuffle argument with sublinear communication. Bayer and
Groth gave a faster argument with sublinear communication in [BG12].

Most of the research effort for improving the efficiency of mix-nets has been so devoted to im-
proving the efficiency of shuffle arguments, and in this sense the work of Faonio et al. [FFHR19]
is a notable exception. Roughly speaking, their work proposes as main building block a Rand-
RCCA PKE scheme rather than a CPA-secure PKE scheme such as ElGamal to achieve faster
and simpler instantiations of the proof systems required for the shuffle. To make the protocol
verifiable, however, they require a Rand-RCCA PKE scheme that is publicly verifiable and this
makes their construction less efficient.

Can we improve the efficiency of the protocols that rely on Rand-RCCA PKE schemes?

In Chapter 6 we answer affirmatively. We revisit the mix-net design of [FFHR19], and we give a
more efficient instantiation for the mix-net protocol: we show a protocol that is in fact verifiable
even if it is based on a non publicly-verifiable, and more efficient, Rand-RCCA scheme.

1.3.2.2 Tight Security

George Orwell, in his book Animal Farm, wrote that: “All animals are equal, but some are
more equal than others”.

In a way, we can also say that all PKE schemes are secure, but some are more secure than
others. Indeed, while it is often clear that a PKE scheme is secure, it is often unclear how much
concrete security it really offers when it is used in the wild. Bellare, Boldyreva and Micali,
in their seminal work [BBM00], investigated how tight the security of an encryption scheme
translates to the trust that we have with respect to the cryptographic assumption that it relies
on.

In more detail, a tight security reduction ensures that for any attack on the PKE scheme,
there exists an attack on the assumption that is similar both in terms of complexity (i.e. the
running time, the space required, etc.) and success probability.

Thus, in the setting of tight security reductions, the number of ciphertexts considered by
the security definition matters. By now, many CCA-secure PKE schemes (cf. Section 1.2.1)
have been proved to have tight security in the multi-ciphertext and multi-user setting: some
notable examples are the works of [GHKW16, GHK17, HLLG19, Hof17, LJYP14, LPJY15].
However, tight security in the context of Rand-RCCA security has not been studied, although
in particular the above Rand-RCCA use cases feature numerous ciphertexts or users.

Is there any Rand-RCCA PKE scheme with tight security?
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In Chapter 7 we introduce the notion of multi-user and multi-ciphertext Rand-RCCA PKE,
and we give the first construction of such a PKE scheme with a tight security reduction to a
standard computational assumption.

1.4 Organization of the manuscript
This thesis is organized into eight chapters that, besides the introduction, are structured as
follows.

• Chapter 2 introduces the notation used throughout the manuscript and formally intro-
duces some mathematical and computational concepts, as well as some cryptographic
assumptions and schemes.

• Chapter 3 introduces the framework of policy-based simulation extractability, and shows
how to obtain simulation-extractable zkSNARKs from suitable polynomial commitments.

• Chapter 4 extends this framework, analyzes the security of the linearization trick, and
shows how to obtain optimized simulation-extractable zkSNARKs.

• Chapter 5 focuses on the simulation extractability of zkVMs and, more in general, studies
the setting of modular commit-and-prove zkSNARKs.

• Chapter 6 shows how to improve the efficiency of mix-nets based on Rand-RCCA PKE
schemes.

• Chapter 7 initiates the study of tight security in the Rand-RCCA setting.

• Chapter 8 draws final thoughts and outlines some of the questions that remain open.



Chapter 2

Background

In this chapter, we introduce the notation used throughout the manuscript. We recall some
standard mathematical and computational concepts, as well as some number-theoretic and
cryptographic assumptions. Most of the information is rather usual and would look familiar to
a reader with a background in cryptography, thus it can be easily skimmed through.

2.1 Notation and Technical Preliminaries
For an integer n ≥ 1, we use [n] to denote the set {1, 2, . . . , n}. Calligraphic letters denote sets,
while set sizes are written as |X |. Lists are represented as ordered tuples, e.g. L := (Li)i∈[n] is
a shortcut for the list of n elements (L1, . . . , Ln). To get a specific value from a list, we also
use the “dot” notation; e.g., we use L.b to access the second element of the list L = (a, b, c).
The difference between lists and vectors is that elements of vectors are of the same type.

For any bit string τ ∈ {0, 1}∗, we denote by τ [i] the i-th bit of τ and by τ|i the bit string
comprising the first i bits of τ .

2.1.1 Mathematical notation and basic definitions

Cyclic Groups. A cyclic group G of order q is a (commutative) finite group that can be
generated by a single element g, that we call the generator, namely G = {1, g, g2, . . . , gq−1},
where 1 denotes the identity element. When the order and the generator are clear from the
context, we may omit them. Also, we assume that the multiplication over G is an efficient
operation, so given g and x ∈ Zq, we can efficiently compute gx.
Bilinear Groups. A bilinear group G is a tuple (q,G1,G2,GT , e, P1, P2), where G1,G2 and
GT are groups of prime order q, the elements P1, P2 are generators of G1,G2 respectively, and
e : G1 ×G2 → GT is an efficiently-computable non-degenerate bilinear map.

We can categorize a scheme’s usage of the bilinear map into 3 standard categories:

Type-1: if G1 = G2. These groups are also called symmetric

Type-2: if there is an efficiently computable homomorphism between G1 and G2

Type-3: f there is no efficiently computable homomorphism between G1 and G2. These groups
are also called asymmetric

15
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Whenever possible, elements in Gi, i ∈ {1, 2, T} are denoted in implicit (additive) notation
as [a]i := aPi, where PT := e(P1, P2). Every element in Gi can be written as [a]i for some
a ∈ Zq.1 Given a, b ∈ Zq we distinguish between [ab]i, namely the group element whose discrete
logarithm base Pi is ab, and [a]i · b, namely the execution of the multiplication of [a]i and b,
and [a]1 · [b]2 = [a · b]T , namely the execution of a pairing between [a]1 and [b]2. We do not
use the implicit notation for variables, e.g. c = [a]1 indicates that c is a variable name for the
group element whose logarithm is a.

Vectors and Matrices. We extend the pairing operation to vectors and matrices (of elements
in bilinear groups) as e([A⃗]1, [B⃗]1) = [A⃗⊤ · B⃗]T and e([y]1, [A⃗]1) = [y · A⃗]T .

Let span(A⃗) denote the linear span of the columns of A⃗. Given a set of vectors V in some
vector space over Zq, span(V) denotes its linear span.

Tensor Product. We define the transformation T that maps a matrix A⃗ = (⃗a1, . . . , a⃗n) ∈
Zn×m

q to the vector T (A⃗) = (⃗a⊤1 , . . . , a⃗⊤n )⊤ ∈ Zn·m
q . Namely, the transformation concatenates

the columns of A⃗ to form a vector of length n ·m. We define the tensor product between two
vectors a⃗, b⃗ to be a⃗⊗ b⃗ := T (⃗a · b⃗⊤). Similarly, given A⃗ ∈ Zn×m

q and B⃗ ∈ Zn′×m′
q , we define the

vector product between two matrices A⃗⊗ B⃗ to be the matrices:(
T (⃗a1⃗b

⊤
1 ), . . . , T (⃗a1⃗b

⊤
n′), . . . , T (⃗an⃗b

⊤
1 ), . . . , T (⃗an⃗b

⊤
n′)
)
∈ Zn·n′×m·m′

q .

We can show the following property:

(A⃗ · R⃗)⊗ (B⃗ · S⃗) = (A⃗⊗ B⃗) · (R⃗⊗ S⃗) (2.1)

Multilinear extensions. For any function f : {0, 1}ℓ → F, there exists a unique ℓ-variate
multilinear polynomial f̃ such that f̃(x) = f(x) for all x ∈ {0, 1}ℓ. We refer to f̃ as the
multilinear extension of f . For a vector a⃗ ∈ Fn, where n is a power of 2, we similarly define the
multilinear extension ã : Flog n → F as follows: we interpret a in the natural way as listing all n
evaluations of a function with domain {0, 1}log n, and define ã to be the multilinear extension
of this function.

2.1.2 The Schwartz-Zippel Lemma
Often the proofs in this document exploit the following basic property of polynomials, discovered
independently by Richard DeMillo and Richard J. Lipton in 1978, and later by Jack Schwartz
and Richard Zippel. Although DeMillo and Lipton’s version was shown a year prior to the
other versions, the lemma is commonly known as the Schwartz-Zippel lemma.

Lemma 2.1.1 (Schwartz-Zippel Lemma). Let F be any field, and let f : F → F be a nonzero
polynomial of degree d. Then on any finite set S ⊆ F:

Pr[f(x) = 0 | x←$ S ] ≤ d
|S|

The lemma can be generalized to multivariate polynomials whose total degree is d.
1However, it is in general hard to compute a from [a]i, cf. Section 2.3.1
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2.1.3 Algorithms

PPT and EPT algorithms. A PPT algorithm is a probabilistic algorithm whose running
time is bounded by a polynomial in his input size. Sometimes we simply refer to PPT algorithms
as efficient algorithms.

Conversely, an EPT algorithm is a probabilistic algorithm whose expected running time
(over the choice of the random coins) is bounded by a polynomial in his input size. An EPT
algorithm may have a running time that varies significantly based on the random choices it
makes, but on average, the running time across all possible random executions is polynomial.

We write y ← A(x; r) to denote the fact that the algorithm A on input x and random coins
r outputs a value y. Sometimes, when we do not need to explicitly specify the random coins r,
we simply write y ←$ A(x).

2.2 Provable security

2.2.1 Unbounded security
The notion of unbounded security, originated with the work of Claude Shannon [Sha49], aims to
designing primitives with provable security against adversaries whose computational resources
are infinite. Intuitively, nobody is able to breach the security of the system because there is
never enough information to succeed.

A classical example of this is the One-time Pad encryption scheme that dates back at least
to Frank Miller in 1882 and patented by Gilbert Vernam in 1919, that is provably “unbreak-
able” because the ciphertext provides no information about the message, regardless of the
computational power of the attacker.

2.2.2 Computational Security
Unbounded security provides strong theoretical guarantees, but it comes at the cost of practi-
cality, efficiency, and usability in real-world applications.

Most cryptographic schemes employed today are designed with bounded security assump-
tions, where security is based on computational hardness assumptions (see Section 2.3), such as
the difficulty of factoring large integers or solving discrete logarithms over some group, rather
than absolute guarantees. We notice that, given enough computational power or enough time,
these hard problems can be solved: in particular, one may employ a brute-force attack trying to
solve a problem by enumerating every possible solution until finding a good one. This motivates
a careful and rigorous approach to quantify the finite amount of computational power (e.g.,
time or space) and the type of the adversary.

Security Parameter. First, we introduce the notion of security parameter, that we denote by
λ throughout the manuscript. Roughly, a cryptosystem provides λ bits of security if it requires
2λ operations to be broken.

When analyzing the security of a scheme, we consider adversaries efficient w.r.t. the security
parameter, in the sense that their running time (i.e., their number of simple operations) is
bounded by some polynomial in λ. The algorithms of the schemes we consider are parameterized
by the security parameter too, e.g., the key generation algorithm of a scheme takes as additional
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input 1λ to specify this dependency. It is worth noting that we sometimes omit the security
parameter to ease the notation when it is clear from the context.

Negligible Functions. In the setting of computational security, a cryptosystem is considered
secure if an efficient attacker can break it at most with some “small” probability, namely some-
thing that approaches zero faster than the reciprocal of any polynomial in λ, as we formalize
hereafter.

Definition 2.2.1 (Negligible Function). We say that a function f is negligible in λ, and we
write f ∈ negl(λ), if for every c ∈ N there is an integer λc such that f(λ) ≤ λ−c for all λ ≥ λc.

2.2.3 Security Models
2.2.3.1 The Standard Model

The bare minimum computational (security) model that we can consider is one in which schemes
can be proven secure using only complexity assumptions. This fundamental model is referred
to as the Standard Model since the only limitation we put to the attackers is that they have
some finite time and computational power available.

It is worth noting that, despite being the weakest computational security model available,
in the sense that the adversaries are somehow the strongest that we can consider among the
computationally bounded ones, security proofs are difficult to achieve in this setting. This
justifies the need for introducing some idealized models, in which cryptographic primitives are
replaced by idealized versions, or we put some additional and meaningful restriction to the class
of adversaries.

2.2.3.2 The Random Oracle Model

One of the most well-known models is the Random Oracle Model (ROM) [BR93]. Roughly
speaking, this model assumes the existence of a truly random function that all the parties
involved in a protocol have oracle access to.

We notice that if we need to employ a scheme that is secure in the ROM, we cannot store
the gigantic truth table of a truly random function, thus we need to replace every occurrence
of the RO with a function whose output “looks like random”, but that has an efficient and
compact representation: an ideal candidate for this is a cryptographically-secure hash function,
such as the SHA family of functions. The schemes proven secure in the ROM are widely used
in practice because, very often, they are the most (or even the only) efficient ones we are aware
of.

However, the instantiation of the RO leads to schemes that are only heuristically-secure.
It is known that a direct instantiation of the RO results in insecure schemes [CGH98], even
though these counterexamples seem somehow artificial and contrived [KM15].

2.2.3.3 The Generic Group Model

The Generic Group Model (GGM) is an idealized cryptographic model in which the adversary
is given access to a randomly chosen encoding of a group: in particular, the adversary can
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execute group operations (and pairings, if needed) by querying a suitable oracle that takes as
input two encodings of group elements and outputs an encoding of a third element.2

This model is named generic after the fact that the algorithms do not exploit any special
structure of the representation of the group elements and can thus be applied in any cyclic
group.

Some important algorithms such as the Pohlig-Hellman algorithm [PH78] or the Pollard’s
rho algorithm [Pol78] are generic. However, many algorithms of practical interest are in fact not
generic, e.g., the index-calculus algorithm is applicable only over groups in which the elements
are represented as integers. This justifies the need for introducing a more realistic model, in
which the adversary can exploit the structure of the group.

Moreover, the GGM suffers from some of the same problems as the ROM: it has been shown
that there exist cryptographic schemes which are provably secure in the generic group model
but which are trivially insecure once the random group encoding is replaced with an efficiently
computable instantiation of the encoding function [Den02].

2.2.3.4 The Algebraic Group Model

The Algebraic Group Model (AGM) is a computational model introduced by Fuchsbauer, Kiltz
and Loss [FKL18] in which all adversaries are modeled as algebraic, as we define hereafter.

Definition 2.2.2 (Algebraic algorithm, [FKL18]). An algorithm A is algebraic if for all group
elements z that A outputs (either as returned by A or by invoking an oracle), it additionally
provides the representation of z relative to all previously received group elements. That is, if
elems is the list of group elements that A has received so far, then A must also provide a vector
r⃗ such that z = ⟨r⃗, elems⟩.

This simple, yet natural, restriction makes the AGM stronger than the Standard Model,
but weaker than the Maurer’s GGM. One of the main benefits of this model over the GGM is
the ability to capture adversaries that can exploit the (algebraic) structure of the group.

The AGM with Oblivious Sampling. In the AGM it is forbidden outputting a group
element sampled obliviously, i.e., without knowing a valid representation. However, in many
groups it is easy to sample group elements obliviously. In the case of elliptic curve groups, this is
a concrete possibility due to admissible encodings, namely efficiently-computable functions that
map elements of Zq to an elliptic curve point whose discrete logarithm is unknown. Lipmaa,
Parisella and Siim [LPS23] introduced a more realistic variant of the AGM, denoted as the
AGM with Oblivious Sampling (AGMOS), that gives the algebraic adversary oracle access to
an oblivious sampling procedure that returns group elements without revealing their discrete
logarithm.

2.2.3.5 The Universal Composability model

The last model that we analyze is the Universal Composability (UC) model, introduced by Ran
Canetti [Can01]. In this section, we briefly review some basic notions of this framework. One of
the fundamental notions of the UC framework is the so-called adversarial environment, which,

2There are actually two generic group models in the literature, Shoup’s [Sho97b] and Maurer’s [Mau05], and
we will mostly refer to the latter one.
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roughly speaking, could be seen as an interactive distinguisher. The environment Z provides
the inputs to all the parties of the protocols, and schedules both the order of the messages in
the networks and the order in which the parties are activated. Also, Z decides which party to
corrupt. We consider static corruption model where the set of corrupted parties is decided by
Z before the protocol starts. Let consider the following executions:

RealΠ,A,Z(λ): run an interaction involving the adversary A, the environment Z and the honest
parties. Z generates inputs for honest parties and activates them, the honest parties run
the protocol Π, and give their outputs to Z. Finally, Z outputs a value that is taken as
the output of RealΠ,A,Z(λ).

IdealF ,S,Z(λ): run an interaction involving the simulator S and the environment Z. When Z
generates the input for an honest party, the input is passed directly to the functionality
F , and the corresponding output is given to Z on behalf of that honest party. The output
value of Z is taken as the output of IdealF ,S,Z(λ).

Without loss of generality, the environment’s final output can be just a single bit. The bit
represents the environment’s “guess” of whether it run in the real or ideal world.

For the sake of modularity, it is useful to design a protocol Π that realizes a functionality
F that makes use of other ideal functionalities, e.g., the functionality G. We can define the
G-hybrid world, where the parties of Π also interact with the additional functionality G.

G-HybridΠ,A,Z(λ): run an interaction involving adversary A, environment Z and the ideal func-
tionality G. When Z generates an input for an honest party, the honest party runs the
protocol Π, and gives its output to Z. The parties and the adversary can interact, by
sending and receiving messages, with the ideal functionality G. Finally, Z outputs a value.

We are now ready to give the main security definition for the universal composability model.

Definition 2.2.3. A protocol Π UC-realizes an ideal functionality F with setup assumption
G if for all PT real-world adversaries A there exists a PPT simulator S such that, for all
environments PT Z:

|Pr
[
G-HybridΠ,A,Z(λ) = 1

]
− Pr[IdealF ,S,Z(λ) = 1]| ∈ negl(λ)

Let Π be a protocol that securely realizes an ideal functionality F in the G-hybrid world,
and let Σ be a protocol that securely realizes the ideal functionality G. Then, composing Π
and Σ, i.e., replacing every invocation of G with a suitable invocation of Σ, results in a secure
protocol for F .

When specifying an ideal functionality, we use the “delayed outputs” terminology adopted
in [Can01]: when a functionality F sends a public delayed output y to a party P , we mean that
y is first sent to the simulator S and then forwarded to P only after an acknowledgment by S.

For the sake of simplicity, we assume that all the parties and all the ideal functionalities
have an implicit public parameter pp hardcoded. We can think of pp as being the description
of a cryptographic group or some other publicly-available information such as the description
of a cryptographic hash function. We slightly tweak the definitions of both the hybrid and
the ideal world to include such public parameters; specifically, we consider that the ideal world
(resp. hybrid world) samples pp←$ Setup(1λ) and passes along this information, together with
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the security parameters, to all the ITMs involved in the execution of the protocol. Alternative
and equivalently, we could consider a definition of security that enumerates over a subclass of
all the PT environments that honestly sample the parameters pp and send them as part of the
inputs to all the parties.

2.3 Computational Assumptions

2.3.1 The Discrete Logarithm Assumption
Let GroupGen be some PPT algorithm that on input 1λ returns a description ppG of a cyclic
group G: this means that every element in G can be written as gx for some generator g ∈ G
and exponent x ∈ F (cf. Section 2.1.1). Informally, the discrete logarithm assumption over G
states that it is computationally infeasible, given a random group element h ∈ G, to find an
integer x such that h = gx.

Notably, the discrete logarithm assumption does not hold against quantum polynomial-
time adversaries due to Shor’s algorithm [Sho97a]. However, no classical algorithm is known to
compute (in generic groups3) discrete logarithms better than the Pollard’s rho algorithm [Pol78].

Lemma 2.3.1 (Discrete Log Reduction, [GT21]). For every EPT adversary A, there exists an
EPT adversary B, nearly as efficient as A, such that:

Pr
[∏n

i=1 g
ai
i = 1 ∧ (a1, . . . , an) ̸= 0⃗

∣∣∣ (a1, . . . , an)← A(g1, . . . , gn)
]
≤ AdvDL

G (B) + 1
|F|

where g, g1, . . . , gn are random generators of G, and we define the advantage of B as AdvDL
G (B) :=

Pr[gx = h |h←$ G; x← B(g, h) ].

2.3.2 Assumptions on Bilinear Groups
Definition 2.3.1 (q-strong Diffie-Hellman Assumption, [BB08]). We say that the q-SDH As-
sumption holds in G1,G2,GT if for any PPT algorithm A and any q ∈ poly(λ):

Pr
[
A(
[
1, s, s2, . . . sq

]
1
, [1, s]2) = (c,

[
(s+ c)−1

]
1
)
]
∈ negl(λ)

where the probability is taken over the random choice of s and the random coins of A.

Definition 2.3.2 (d-Power Discrete Logarithm [Lip12]). Given a degree bound d ∈ N, the d-
Power Discrete Logarithm (d-DL) assumption holds for a bilinear group generator GroupGen if
for every PPT adversary A that receives as input (

[
1, . . . , sd

]
1
,
[
1, . . . , sd

]
2
), and outputs the

value s′, the probability that s = s′ is negligible. We also use DL as a shortcut for 1-DL.

2.3.2.1 Distributions

We recall the notion of “witness sampleable” distributions, as defined by Jutla and Roy [JR13].
Informally, a distribution D with support in G1 is witness sampleable if it is possible to sample
“at the exponent” following the same distribution of D.

3More efficient algorithms can exist for specific groups, thus exploiting the structure of the group
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Definition 2.3.3 (Witness Sampleability, [JR13]). A distribution D is witness sampleable if
there exists a PPT algorithm D̃ s.t. for any ppG, the random variables A⃗←$ D(ppG) and

[
⃗̃A
]

1
,

where ⃗̃A←$ D̃(ppG), are equivalently distributed.
We now give a definition of matrix distributions.

Definition 2.3.4. Dn,d is a matrix distribution if outputs (in probabilistic polynomial time,
with overwhelming probability) matrices in Zn×d

q .
We introduce the Matrix Decisional Diffie-Hellman Assumption, introduced by Escala et al.

[EHK+13].
Definition 2.3.5 (MDDH Assumption in G1, [EHK+13]). The Dn,d-MDDH assumption holds
if for all non-uniform PPT adversaries A,∣∣∣Pr

[
A(G, [A⃗]1, [A⃗w⃗]1) = 1

]
− Pr

[
A(G, [A⃗]1, [z⃗]1) = 1

]∣∣∣ ∈ negl(λ),

where the probability is taken over G = (q,G1,GT , e,P1) ← GroupGen(1λ), A⃗ ← Dn,d, w⃗ ←
Zd

q , [z⃗]1 ← Gn
1 and the coin tosses of adversary A.

For Q ∈ N, W⃗ ←$ Zd×Q
q and U⃗ ←$ Zn×Q

q , we consider the Q-fold Dn,d-MDDH assumption,
which states that distinguishing tuples of the form ([A⃗]1, [A⃗W ]1) from ([A⃗]1, [U⃗ ]1) is hard. That
is, a challenge for the Q-fold Dn,d-MDDH assumption consists of Q independent challenges of
the Dn,d-MDDH Assumption (with the same A⃗ but different randomness w⃗). In [EHK+13] it is
shown that the two problems are equivalent, where the reduction loses at most a factor n− d.
Lemma 2.3.2 (Random self-reducibility of Dn,d-MDDH, [EHK+13]). Let n, d,Q ∈ N with
n > d and Q > n − d. For any PPT adversary A, there exists an adversary B such that
T (B) ≈ T (A) +Q · poly(λ), with poly(λ) independent of T (A), and

AdvQ−MDDH
G1,Dn,d,A (λ) ≤ (n− d) ·Advmddh

G1,Dn,d,B(λ) + 1
q − 1

where, given A⃗←$ Un,d, W⃗ ←$ Zk×Q
q and U⃗ ←$ Zn×Q

q :

AdvQ−MDDH
G1,Dn,d,A (λ) := |Pr

[
A(G, [A⃗]1, [A⃗W ]1) = 1

]
− Pr

[
A(G, [A⃗]1, [U⃗ ]1) = 1

]
|,

Corollary 2.3.1. Let n, d, d′ ∈ N with n > d and d′ ≥ d. For any PPT adversary A, there
exists an adversary B such that T (B) ≈ T (A)+poly(λ), with poly(λ) independent of T (A), and

Advmddh
G1,Dn,d′ ,A(λ) = Advmddh

G1,Dn,d,B(λ).

We state a tighter random-self reducibility property for case of the uniform distribution U .
Lemma 2.3.3 (Random self-reducibility of Un,d-MDDH, [EHK+13]). Let n, d,Q ∈ N with
n > d and Q > n − d. For any PPT adversary A, there exists an adversary B such that
T (B) ≈ T (A) +Q · poly(λ), with poly(λ) independent of T (A), and

AdvQ−MDDH
G1,Un,d,A (λ) ≤ Advmddh

G1,Un,d,B(λ) + 1
q − 1

Lemma 2.3.4 (Dn,d-MDDH⇒ Un,d-MDDH, [EHK+13]). Let Dn,d be a matrix distribution. For
any adversary A on the Un,d-distribution, there exists an adversary B on the Dn,d-assumption
such that T (B) ≈ T (A) and Advmddh

G1,Un,d,A(λ) = Advmddh
G1,Dn,d,B(λ).
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2.4 Cryptographic primitives

2.4.1 Re-randomizable PKE
A re-randomizable PKE (Rand-PKE) scheme PKE is a tuple of five algorithms:

Setup(1λ) : upon input the security parameter 1λ produces parameters pp, which include the
description of the message and ciphertext space M, C.

KGen(pp) : upon input the parameters pp, outputs a key pair (pk, sk).

Enc(pk, msg) : upon inputs a public key pk and a message msg ∈M, outputs a ciphertext C ∈ C.

Dec(pk, sk, C) : upon inputs a secret key sk and a ciphertext C, outputs a message msg ∈M or
an error symbol ⊥.

Rand(pk, C) : upon inputs a public key pk and a ciphertext C, outputs another ciphertext C′.

We move now to the definition of perfect re-randomizability as defined in [FFHR19]. Roughly
speaking, a PKE is re-randomizable if there exists a procedure that creates fresh and unlinkable
ciphertexts from an old ciphertext.

Definition 2.4.1 (Perfect Re-randomizability, [FFHR19]). We say that PKE is perfectly re-
randomizable (Re-Rand, for short) if the following three conditions are met:

(Indistinguishability) For any λ ∈ N, any pp ←$ Setup(1λ), any (pk, sk) ←$ KGen(pp, 1λ),
for any msg ∈M and any C ∈ Enc(pk, msg) the following two distributions are identical

C0 ←$ Enc(pk, msg) and C1 ←$ Rand(pk, C);

(Correctness) For any λ ∈ N, any pp ←$ Setup(1λ), any (pk, sk) ←$ KGen(pp, 1λ), for any
(possibly malicious) ciphertext C and every C′ ←$ Rand(pk, C) it holds

Dec(sk, C′) = Dec(sk, C).

(Tightness of Decryption) For any (possibly unbounded) adversary A and any sequence of
parameters {ppλ ←$ Setup(1λ)}λ∈N the following holds:

Pr
[
∃msg : C ̸∈ Enc(pk, msg) ∧ Dec(sk, C) = msg ̸= ⊥ : (pk, sk)←$ KGen(ppλ)

C←$ A(pk)

]
∈ negl(λ).

Finally, we define the notion of public verifiability for PKE schemes.

Definition 2.4.2 (Public Verifiability). PKE = (Setup,KGen,Enc,Dec,Rand) is a public key
scheme with publicly verifiable ciphertexts if there is a deterministic algorithm Verify which, on
input (pk, C) outputs an error symbol ⊥ whenever Dec(pk, sk, C) = ⊥, else it outputs valid.
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2.4.2 Commitment Schemes
The notion of commitment is one of the simplest and most used in cryptography. Informally,
it is a scheme that allows a party (the committer) to create a commitment to a secret value so
that it is possible to later open the commitment and reveal the value in a verifiable manner.
Ideally, a commitment should hide the secret value committed and, at the same time, it should
be binding, in the sense that a commitment should only be opened to a single value. We proceed
by giving a formal definition.

Definition 2.4.3 (Commitment scheme). A commitment scheme with message space M (and
group parameters GroupGen) is a tuple of algorithms CS = (KGen,Com,VerCom) that works as
follows:

KGen(ppG)→ ck takes as input group parameters ppG ←$ GroupGen(1λ) and outputs a commit-
ment key ck.

Com(ck,m)→ (c, o) takes the commitment key ck, and a message m ∈ M, and outputs a
commitment c and an opening o.

VerCom(ck, c,m, o)→ b takes as input the commitment key ck, a commitment c, a message
m ∈M and an opening o, and it accepts (b = 1) or rejects (b = 0).

A commitment scheme CS satisfies the following properties.

Correctness For any λ ∈ N, any commitment key ck ←$ KGen(1λ), any message m ∈ M,
and for any honestly generated commitment-opening (c, o)←$ Com(ck,m), we have that
VerCom(ck, c,m, o) = 1

Binding For every (non-uniform) efficient adversary A:

Pr


VerCom(ck, c,m, o) = 1

∧
VerCom(ck, c,m′, o′) = 1

:
ck←$ KGen(1λ)

(c,m, o,m′, o′)← A(ck)

 ∈ negl(λ)

Hiding: ∀m,m′, ∀ck:

{c : (c, o)← Com(ck,m)} ≈ {c′ : (c′, o′)← Com(ck,m′)}

In some cases, we relax the hiding property, and we require the following instead.

Trapdoor-Hiding There exist three algorithms Sck,TdCom,TdOpen:

Sck(1λ)→ (ck, td) on input the security parameter outputs a commitment key ck and a
trapdoor td,

TdCom(ck)→ (c, st) on input td outputs a commitment c and a trapdoor opening st,
TdOpen(ck, st, c,m)→ o on input ck, trapdoor opening st, a commitment c and a message

m ∈M, outputs an opening o,

such that (i) the distribution of the commitment key returned by Sck is perfectly/statis-
tically close to the one of the key returned by KGen; (ii) for any m ∈ M, (c, o) ≈ (c′, o′)
where (c, o)← Com(ck,m), (c′, st)← TdCom(td) and o′ ← TdOpen(td, st, c′,m).
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2.4.2.1 Polynomial Commitments

A polynomial commitment scheme is essentially a commitment scheme that is equipped with
a protocol (either interactive or non-interactive) that allows the prover to convince the verifier
that the object he committed to is a polynomial (whose degree is upper-bounded by a known
parameter d) that evaluates to some value y at some point x. For a concrete example, we refer
to the Hyrax commitment scheme that we describe in Fig. 5.8 using this syntax.

However, there is a different perspective we can take.

Definition 2.4.4 (Polynomial Commitment). A polynomial commitment PC is a commitment
scheme (Definition 2.4.3) whose message space is F≤d[X], the set of low degree polynomials over
a finite field F with degree bound d ∈ N. The key generation algorithm might take as additional
input the degree d.

A polynomial commitment scheme, then, is just a commitment scheme (for a specific choice
of the message space). If the prover wishes to convince the verifier about the evaluation of a
polynomial f he committed to, say on point x and evaluation value y, he can use a CP-SNARK
for the relation Revl((x, y), f) := f(x) = y. We prefer adopting this perspective because it is
more flexible.

2.4.2.2 Commitment Instantiations

In this section we introduce some of the commitment schemes that we will use throughout the
manuscript.

One of the most well-known commitment schemes is the Pedersen commitment scheme. It
is perfectly hiding, and its binding property relies on the discrete logarithm assumption.

Construction 2.4.1 (Pedersen). Pedersen is a commitment scheme for the message space
Fn, for some n ∈ N, defined over a cyclic group G equipped with a group generator algorithm
GroupGen, and consists of the following algorithms:

KGen(1λ) on input the security parameter 1λ, outputs n+ 1 random generators g1, . . . , gn, h of
G

Com(ck, m⃗;ω) on input the commitment key ck := (g1, . . . , gn, h), and a vector of messages
m⃗ ∈ Fn, outputs a commitment c := ∏

i∈[n] g
m
i h

ω and the opening ω

VerCom(ck, c, m⃗, ω) outputs 1 if c = ∏
i∈[n] g

m
i h

ω, and 0 otherwise

We now recap the polynomial commitment scheme of Kate, Zaverucha and Goldberg [KZG10]
(KZG, shortly), highlighting in purple the parts related to hiding.

Construction 2.4.2 (KZG). KZG is a Polynomial Commitment scheme (see Definition 2.4.4)
defined over bilinear groups G = (G1,G2,GT , e), that consists of the following algorithms:

KGen(1λ, d) on input the security parameter 1λ, and a maximum degree bound d ∈ N, outputs
ck := (([sj]1)j∈[0,d], ([αsj]1)j∈[0,d], [1, s]2), for a random secret s, α←$ Fq.

Com(ck, f(X), r(X)) on input ck, a polynomial f(X), and a masking polynomial r(X), outputs
a commitment c := [f(s)+αr(s)]1.



26 26

VerCom(ck, c, f(X)) outputs 1 if c = [f(s)+αr(s)]1.

The above scheme is (standard) binding under the d-DL assumption (see Groth [Gro10a]),
in fact, given two polynomials f and f ′ that evaluate to the same value on the secret point s,
we can find s among the roots of the (non-zero) polynomial f − f ′.

2.4.3 Cryptographic proofs and arguments

NP relations. Following Groth et al. [GKM+18], an (indexed) NP relation R is a set of tuples
(pp,x,w) decided by a PT algorithm. Here pp are system-wide parameters,4 x is the public
input (or instance), and w is the private input (or witness). We interchangeably represent
a relation R either as an algorithm with boolean output or as a set, thus R(pp,x,w) ⇐⇒
(pp,x,w) ∈ R. Moreover, when clear from the context, we omit the parameters and simply
write R(x,w).

2.4.3.1 NIZKs

In this section, we define the basic syntax and properties for a Non-Interactive Zero-Knowledge
Argument of Knowledge (NIZK).

A NIZK for a relation R (and group generator GroupGen) is a tuple of algorithms Π =
(KGen,Prove,Verify) that work as described below.

• KGen(ppG) → srs is a probabilistic algorithm that takes as input the group parameters
ppG ←$ GroupGen(1λ) and outputs srs := (ek, vk, pp), where ek is the evaluation key, vk is
the verification key, and pp are the parameters for the relation R.

• Prove(ek,x,w)→ π takes an evaluation key ek, a statement x, and a witness w such that
R(pp,x,w) holds, and returns a proof π.

• Verify(vk,x, π)→ b takes a verification key, a statement x, and either accepts (b = 1) or
rejects (b = 0) the proof π.

Basic notions for a NIZK are completeness, knowledge-soundness and zero-knowledge.

Completeness: For all srs←$ KGen(ppG) and all (x,w) ∈ R, we have that

Verify(vk,x,Prove(ek,x,w)) = 1

Knowledge-soundness: For every PPT adversary A, there exists a PPT extractor EA such
that:

Pr[(x,w) /∈ R ∧ Verify(vk,x, π) = 1 | (x, π)← A(srs);w← EA(srs) ] ∈ negl(λ)

Zero-Knowledge. We explicitly define zero-knowledge in the SRS and RO model.5 The
zero-knowledge simulator S of a NIZK is a stateful PPT algorithm that can operate in three
modes:

4For example, pp could be the description of a bilinear group or additionally contain a commitment key for
a commitment scheme or a common reference string.

5In Chapter 5 we will introduce a different notion of trapdoor-less zero-knowledge in which, however, the
simulator has the possibility to reprogram the random oracle.
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• (srs, stS)← S(0, ppG) takes care of generating the parameters and the simulation trapdoor
(if necessary)

• (π, stS)← S(1, stS ,x) simulates the proof for a statement x

• (a, stS)← S(2, stS , s) takes care of answering random oracle queries

The state stS is updated after each operation.

Definition 2.4.5 (Zero-Knowledge). A NIZK NIZK is (perfect) zero-knowledge if there exists
a PPT simulator S such that for all adversaries A:

Pr


ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·)(srs) = 1

 ≈ Pr


ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)
AS′(·,·)(srs) = 1


where S ′ is an oracle that on input a pair (x,w) first checks (pp,x,w) ∈ R where pp is part of
srs and then returns the first output of S(1, stS ,x).

Rewinding. A common technique used to prove the security of a NIZK is the rewinding
approach. The simulator/extractor runs the code of the prover, feeding it with the verifier
inputs it requires, and then has the possibility to rewind it to some previous state to feed it
with different inputs. This technique is useful when the extractor needs to get several outputs
of the prover with respect to different verifier inputs: roughly speaking, this allows to extract
the (possibly large and masked) witness from a (possibly succinct) proof.

In Chapter 5 we will make use of rewinding, and we will define knowledge-soundness in a
setting in which the extractor can explicitly rewind the prover.

2.4.3.2 zkSNARKs

Zero-knowledge succinct argument of knowledge (zkSNARKs) are NIZKs that are succinct as
defined below.

Definition 2.4.6 (Succinctness). A NIZK Π is said succinct if the running time of Verify is
poly(λ+ |x|+ log |w|) and the proof size is poly(λ+ log |w|).

CP-SNARKs. Commit-and-Prove SNARKs (CP-SNARKs) are zkSNARKs in which the re-
lations verify predicates over commitments (see Campanelli, Fiore and Querol [CFQ19]).

Briefly speaking, we refer to a CP-SNARK for a relation R and a commitment scheme CS
as a tuple of algorithms CP = (KGen,Prove,Verify) where:

• KGen(ck) → srs is a probabilistic (or deterministic) algorithm that takes as input a
commitment key ck for CS and outputs srs := (ek, vk, pp), where ek is the evaluation key,
vk is the verification key, and pp are the parameters for the relation R (which include the
commitment key ck).

Moreover, if we consider the key generation algorithm KGen′ that upon group parameters ppG
first runs ck ←$ CS.KGen(ppG), runs srs ←$ CP.KGen(ck) and outputs srs; then the tuple
(KGen′,Prove,Verify) defines a SNARK.
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2.4.3.3 Compilation of zkSNARKs

A common approach to design zkSNARKs is to first construct an information-theoretic proto-
col that achieves the desired functionality in an idealized model and then remove the idealized
component by compiling it into a zkSNARK via the use of a computationally-secure primi-
tive [Ish19, Ish20]. The most popular instantiation of this approach uses a Polynomial Inter-
active Oracle Proof (PIOP) [GWC19, BFS20, CHM+20, Sze20, CFF+21] for the information-
theoretic part, and a polynomial commitment [KZG10] for the computational one.

We give a formal definition of (a specific class of) PIOPs in the next section, but first, we
give some background on the compilation strategy.

In a PIOP, the prover uses one oracle to commit to polynomials while the verifier calls a
second oracle to query the committed polynomials. In the compiled PIOP, instead, the prover
commits to polynomials with a polynomial commitment, and then computes the results of ver-
ifier’s queries and uses the evaluation opening to vouch for their correctness. Finally, to remove
interaction the compiler employs the Fiat-Shamir transformation to obtain the zkSNARK.
The details of the (kind of) verifier’s queries often diverge in different implementations of this
paradigm. Arguably, the simplest form of queries is the evaluation of polynomials, namely,
queries checking that a committed polynomial p at evaluation point x evaluates to y = p(x);
this is the model used in [CHM+20, BFS20]. Other PIOP variants [GWC19, CFF+21] con-
sider more general queries that state the validity of polynomial equations over (a subset) of the
committed polynomials.

2.4.3.4 Polynomial Holographic Interactive Oracle Proofs

In this section, we give a formal definition of PIOPs. We focus on the class of Polynomial
(Holographic) IOPs defined by [CFF+21] as a generalization of [BFS20]. PIOPs can flexibly
capture under the same hat all the most recent protocols based on the notions of [BFS20],
AHP [CHM+20], and ILDP [GWC19].

The oracle of the prover commits to low-degree polynomials over a finite field while the
queries of the verifier check polynomial equations over these polynomials. These polynomial
equations can depend on additional field elements sent by the prover and/or the verifier dur-
ing the execution of the protocol. Slightly more in detail, the verifier can query an oracle
polynomial p(X) (or multiple polynomials simultaneously) by specifying polynomials G and v
to test equations of the form G(X, p(v(X))) ≡ 0. Therefore, to be compiled, PIOPs need a
commit-and-prove SNARK (CP-SNARK) for proving the validity of such equations concerning
the committed polynomials. Notably, one can easily build this CP-SNARK from a CP-SNARK
for polynomial evaluations (e.g., KZG) by testing the equations on a random point chosen by
the random oracle.

Definition 2.4.7 (Polynomial Holographic IOP). Let F be a family of finite fields and let R
be an indexed relation. A (public-coin non-adaptive) Polynomial Holographic IOP over F for
R is a tuple PIOP = (r, n,m,D, ne, I,P,V) where r, n,m,D, ne : {0, 1}∗ → N are polynomial-
time computable functions, and I,P,V are three algorithms for the encoder, prover and verifier
respectively, that work as follows.

Offline phase: The indexer I(F, i) is executed on input a field F ∈ F and a relation description
i, and it returns n(0) polynomials {p0,j}j∈[n(0)] encoding the relation i.
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Online phase: The prover P(F, i,x,w) and the verifier VI(F,i)(F,x) are executed for r(|i|)
rounds; the prover has a tuple (F, i,x,w) ∈ R and the verifier has an instance x and
oracle access to the polynomials encoding i.
In the i-th round, P sends m(i) messages {πi,j ∈ F}j∈[m(i)], and n(i) oracle polynomials
{pi,j ∈ F[X]}j∈[n(i)] of degree at most D := D(|i|), while V replies (except for the last
round) with a uniformly random message ρi ∈ F.

Decision phase: After the r := r(|i|)-th round, let ne := ne(|i|), the verifier V(F,x, ρ⃗), on
input the description of the field F, the input x and all the random messages of the
verifier ρ⃗ := (ρ1, . . . , ρr−1), outputs tuples (G(k), v

(k)
1 , . . . , v(k)

n )k∈[ne] which define the fol-
lowing algebraic checks. Let n := ∑r

k=0 n(k), let m := ∑r(|i|)
k=1 m(k), and denote by

(p1, ..., pn) all the oracle polynomials (including the n(0) ones from the encoder) and
by (π1, ..., πm) all the messages sent by the prover. For any k ∈ [ne], j ∈ [n] we have
G(k) ∈ F[X,X1, ..., Xn, Y1, ..., Ym] and v

(k)
j ∈ F[X]. A tuple (G(k), v

(k)
1 , ..., v(k)

n ) is satisfied
if and only if F (k)(X) ≡ 0 where:

F (k)(X) := G(k)(X, {pi(v(k)
i (X))}i∈[n], {πi}i∈[m]) (2.2)

The verifier accepts if and only if all the checks are satisfied.
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Chapter 3

Non-malleable Polynomial
commitments and zkSNARKs
This chapter is extracted from "From Polynomial IOP and Commitments to
Non-malleable zkSNARKs", published in TCC 2023.

3.1 Introduction
The design of modern zkSNARKs follows the common cryptographic approach of starting with
protocols that achieve information-theoretic security in idealized models and then compiling
them into efficient protocols by employing a smaller computationally secure primitive.

As discussed in Section 2.4.3.3, in the world of SNARKs, the corresponding concepts are
(polynomial) interactive oracle proofs F -IOP [BFS20, CFF+21, CHM+20, GWC19, Sze20] and
(polynomial) functional commitments F -COM [BDFG20, KZG10, Lee21]. An F -IOP employs
two (idealized) oracles that share their state: the prover calls the first oracle to commit to
functions f ∈ F and the verifier calls the second to query the committed functions. Concretely,
the F -IOP to SNARK compiler uses F -COM to replace oracles with commitments, opening
proofs, and query proofs. As this only removes reliance on idealized function oracles but
not interaction, the compiler additionally employs the usual Fiat-Shamir transformation for
public-coin protocols to obtain the final zkSNARK. The benefits of this compilation paradigm
are modularity and separation of concerns: once the compiler is proven, a line of research can
address the problem of improving F -IOPs while another research line can tackle the problem
of realizing F -COM schemes (e.g., with better efficiency, from different assumptions, etc.): this
approach has been successfully adopted to construct several recent zkSNARKs. All this recent
work, though, only shows that schemes obtained via this paradigm are knowledge-sound.

3.1.1 Our contributions
We study the simulation extractability of a broad class of zkSNARKs built through this
“natural” compilation approach. In particular, our primary goal includes showing that not
only existing zkSNARKs but also any future zkSNARK following this, by now standard,
construction framework, provide simulation extractability. This goal has a twofold motiva-
tion. On the theoretical side, we are interested in understanding sufficient conditions on F -
COM to compile an F -IOP into a simulation-extractable zkSNARK. On the practical side,
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by capturing existing compilers we can show that existing schemes that are under deploy-
ment, e.g., Plonk [GWC19], have already this strong security property.1 For this reason, in
our work we focus on the popular case of the compiler where the F -IOP is a polynomial
IOP (cf. Section 2.4.3.4), i.e., the oracle functions F are low-degree polynomials, and F -
COM is a polynomial commitment (see Section 2.4.2.1). Furthermore, in terms of instantia-
tions we are interested to cover the celebrated KZG polynomial commitment scheme [KZG10]
and on a polynomial IOP framework that is flexible enough to include recent constructions,
e.g., [CFF+21, CHM+20, GWC19, MBKM19, RZ21]. The main contributions of our work are:

• to introduce a relaxed notion of simulation extractability for polynomial commitments;

• to prove that the KZG scheme satisfies our relaxed SE notion in the algebraic group
model (AGM) and random oracle model (ROM);

• to prove that our notion is sufficient to compile a polynomial IOP into a (full-fledged)
simulation-extractable zkSNARK, using the usual compilation approach.

By combining these results we obtain a simulation extractability proof for Plonk [GWC19],
Basilisk [RZ21], and a slight variation of Marlin [CHM+20] and Lunar [CFF+21].

3.1.2 Organization of the chapter
In Section 3.2, we elaborate more on our results and the technical challenges that we had to
overcome along the way. In Section 3.3 we introduce some of the computational assumptions
that will be used to prove our results. We define the framework of policy-based simulation
extractability in Section 3.4, we proceed with the analysis of the simulation extractability of
KZG in Section 3.5, and we give our generic compiler for strong simulation-extractable Universal
SNARKs from (simulation-extractable) polynomial commitment and PIOP in Section 3.6. The
thesis of the theorem on KZG polynomial commitment and the hypothesis for the theorem of
the Universal SNARKs compiler do not quite match. Indeed, they could be even considered as
two independent and (almost) self-contained results. We show how to fill the gaps and connect
the two results in Section 3.6.3.

3.2 A Technical Overview of Our Results

3.2.1 Simulation extractability challenges
Intuitively, the use of a simulation-extractable CP-SNARK in the above compiler should result
in a simulation-extractable zkSNARK: the zero-knowledge simulator samples random commit-
ments (relying either on hiding property of commitments, or the randomness in the committed
functions p). It then simulates evaluations of p that satisfy the verification equation of the
PIOP. The reduction to PIOP soundness extracts all committed polynomials from their open-
ing proofs and the final polynomial evaluations from the evaluation proofs. However, this
approach presents two major challenges:

1In fact as Mahak Pancholi and Akira Takahashi informed us of a flaw in the trapdoor-less zero-knowledge
simulation of [GKK+22] this is arguably the first proof of simulation extractability of unmodified Plonk, i.e.,
Plonk with deterministic KZG commitments.
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• The PIOP could be arbitrary. For example, consider a PIOP obtained by the sequential
composition of two PIOP protocols for two independent statements. Very likely, the set
of queries to the polynomials made by the two sub-protocols are independent and (unless
the PIOP specifies it explicitly) the evaluation queries of the first sub-protocol may be
chosen based on the verifier’s random challenges sent before the second sub-protocol even
starts. The simulation extractability of the zkSNARK compiled from this protocol might
be affected because one could strip off the second set of evaluation proofs and replace
them with those for another statement2.

• Secondly, one needs to prove that existing, efficient, and practically deployable instanti-
ations of polynomial commitment schemes are simulation-extractable.

3.2.2 Our solutions
To solve the first challenge, motivated by our goal to show that existing zkSNARKs are
simulation-extractable and that future schemes can seamlessly achieve simulation extractabil-
ity, we define a (rather minimal) constraint on the PIOP. Namely, we require that at least
one of the polynomial equations involves all the oracle polynomials and that the polynomial v
chosen by the verifier (see above) is not constant.3 Fortunately, this constraint is natural and
easy to meet in practice: Plonk naturally meets our constraint meanwhile all the other proof
systems based on Aurora’s univariate sumcheck [BCR+19] can be easily (and at negligible cost)
adapted by instantiating the proof of polynomial degree through an evaluation query on all the
polynomials.

For the second challenge, unfortunately, the issue is that the most obvious candidate, the
efficient and widely deployed KZG polynomial commitment scheme [KZG10], is not simulation-
extractable. Using bracket notation, KZG commitments are of the form [p(s)]1 for a trapdoor
secret s encoded in the parameters ([si]1)i∈[0..d], [1, s]2, while evaluation proofs for an input x
and output y are of the form [p(s)−y

s−x
]1. KZG is malleable, for example, given a commitment to

p anyone can compute [p(s) + ∆]1 and open it using the same proof to (x, y + ∆).
Our starting point is the observation that KZG retains a form of simulation extractability

for evaluations at points that are randomly chosen after the commitment. Fortunately, this
is the situation we encounter in the Fiat-Shamir part of the PIOP-to-SNARK compiler. The
commitment forms part of the first commit-and-prove part of the statement which is hashed
to determine the x of the second part of the statement. Thus, the evaluation point depends on
the commitment and can be considered random in the RO model.

To formalize this important relaxation, we introduce the notion of policy-based simulation
extractability (Φ-SE, w.r.t. a policy parameter Φ). In the standard simulation extractability
experiment, the adversary can ask the simulator to generate proofs for statements of its choice
and, eventually, must produce a new valid proof without knowing the witness. In Φ-SE, we
consider a relaxation of the SE game in which all the simulation queries of the adversary

2In particular, the adversary could have a simulated proof π̃ = (π, π′) for (x,x′) and then could choose x′′

for which it knows a valid witness, and finally forge for (x,x′′) using (π, π′′), where π′′ is honestly generated. As
the simulated proof π is reused, extraction fails. Notice, this attack works even when the Fiat-Shamir challenges
for π′′ are derived by hashing a transcript that contains π.

3This can be for example be implemented via a common random point chosen at the end of the protocol, on
which all oracles are evaluated.
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must satisfy a predicate specified in Φ; similarly, Φ can constrain the winning condition of the
adversary. For this reason, we refer to Φ as the policy. One can see that Φ-SE is a generalization
of existing SE notions such as true-simulation extractability (where the adversary can only see
simulated proofs on true statements) [DHLW10], or weak simulation extractability (where the
adversary only wins if it provides a proof for a new statement and, contrary to (strong) SE,
loses if it provides a new proof for a statement previously asked to the simulation oracle).

Once having defined this framework, we analyze which policies Φ are strong enough to
achieve simulation extractability in the compiled zkSNARK, while at the same time being
weak enough for instantiation by KZG under plausible assumptions (in the AGM [FKL18] and
RO). Specifically, we isolate the (simulation) extractability properties needed for the compiler
and verify it for KZG in the AGM. This is the only part of our results where we need the
AGM. Given the broad applications of KZG in the field of practical zkSNARKs and beyond,
the characterization of its (non-)malleability is interesting in its own right. In fact, our policy
highlights some malleability attacks that we discovered and that we needed to handle. Finally,
for our Φ we prove that KZG is Φ-SE in the AGM and ROM. This proof turned out to be
highly non-trivial and is one of the main technical contributions of our work.
Looking ahead. An advantage of our formalization of PIOP over previous proposals such
as [BFS20] is that it naturally supports optimization tricks in the literature [CFF+21]. As an
intermediate step of our compiler, we define a CP-SNARK for polynomial evaluations based
on KZG. While we capture the important use case of batched evaluations on a common point,
for the sake of simplicity, we do not capture the case of proving evaluations on arbitrary linear
combinations of committed polynomials. We will show in Chapter 4 how to extend our compiler
to support this case.

3.3 New computational assumptions

3.3.1 The Affine Matrix Diffie-Hellman Assumption
We introduce a new family of computational assumptions, named Affine Matrix Diffie-Hellman
Problem.

Definition 3.3.1 (Dℓ,k-Aff-MDH assumption). Given a matrix distribution Dℓ,k, the Affine
Diffie-Hellman Problem is: given A⃗ ∈ Gℓ×k

1 , with A⃗←$ Dℓ,k, find a nonzero vector x⃗ ∈ Zℓ
q and

a vector y⃗ ∈ Zk
q such that

[
x⃗⊤A⃗

]
1

= [y⃗]1.

The Aff-MDH Assumption could be seen as an extension of the Kernel-MDH Assumption
introduced by Morillo, Ràfols, Villar [MRV16] since the Ker-MDH assumes y⃗ = 0⃗; however,
our assumption is incomparable because we also require the adversary to give x⃗ ∈ Zℓ

q “in the
exponent”.

We show that the Aff-MDH Assumption, when restricted to the uniform random distribution
Uℓ,k, can be reduced to the discrete logarithm assumption.

Lemma 3.3.1 (DL ⇒ Uℓ,k-Aff-MDH).

Proof. The reduction samples at the exponent a uniformly random matrix A⃗ = (ai,j)i,j ∈ Zℓ×k
q

and invokes the adversary on input [(ai,j)i,j]1. Finally, let pi(s) be the i-the row of x⃗⊤A⃗. The
reduction computes s by factoring one of the k polynomials pi(s)− yi.
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3.3.2 The Power Polynomial in the Exponent Assumption
Definition 3.3.2 ((d, d′)-Power Polynomial in the Exponent). The (d, d′)-PEA Assumption
holds for a bilinear group generator GroupGen if for every PPT adversary A that receives as
input (

[
1, . . . , sd

]
1
,
[
1, . . . , sd′

]
2
) and outputs a polynomial p(X) of degree at most max{d, d′},

and a value y, the probability that p(s) = y is negligible.
When d = d′ we use the shortcut d-PEA.
Finally, we show a reduction from d-DL to d-PEA.

Lemma 3.3.2 (d-DL ⇒ d-PEA).
Proof. We can make a reduction to the assumption that computes s. The reduction invokes
the adversary, gets p(X)− y of degree d, and computes s by factoring the polynomial p(s)− y.
As p(s)− y = 0 we are guaranteed that s is a root.

3.4 Policy-based Simulation-Extractable NIZKs
First, we slightly modify the definition of zero-knowledge given in Definition 2.4.5 to account
for the fact that we allow the simulator to take as additional input some auxiliary information
aux.
Zero-Knowledge Simulators. The zero-knowledge simulator S of a NIZK is a stateful PPT
algorithm that can operate in three modes (cf. Definition 2.4.5). Similarly to [FKMV12,
GOP+22], we define the following wrappers.
Definition 3.4.1 (Wrappers for NIZK Simulator). The following algorithms are stateful and
share their state st = (stS , coms,Qsim,QRO,Qaux) where stS is initially set to be the empty string,
and Qsim,QRO and Qaux are initially set to be the empty sets.

• S1(x, aux) is an oracle that returns the first output of S(1, stS ,x, aux).4

• S ′1(x,w) is an oracle that first checks (pp,x,w) ∈ R where pp is part of srs and then runs
(and returns the output of) S1(x).

• SF
1 (x,w) is an oracle parameterized by a function F ; first, it checks if (pp,x,w) ∈ R,

and then runs (and returns the output of) S1(x, F (x,w)). As explained below, this is
useful to model leaky-zero-knowledge.

• S2(s, aux) is an oracle that first checks if the query s is already present in QRO and in case
answers accordingly, otherwise it returns the first output a of S(2, stS , s). Additionally,
the oracle updates the set QRO by adding the tuple (s, aux, a) to the set.

Almost all the oracles in our definitions can take auxiliary information as additional input.
We use this auxiliary information in a rather liberal form. For example, in the definition above,
the auxiliary information for S1 refers to the (optional) leakage required by the simulator to
work in some cases (see more in Definition 3.4.3), while the auxiliary information for S2 can
contain, for example, the algebraic representations of the group elements in s (when we restrict
to algebraic adversaries) or other information the security experiments might need.

4More often, simulators need only the first three inputs, see Definition 3.4.2; abusing notation, we assume
that such simulators simply ignore the auxiliary input aux.
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Definition 3.4.2 (Zero-Knowledge). A NIZK NIZK is (perfect) zero-knowledge if there exists
a PPT simulator S such that for all adversaries A:

Pr


ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·)(srs) = 1

 ≈ Pr


ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)
AS′

1(·,·)(srs) = 1


Zero-knowledge is a security property that is only guaranteed for valid statements in the

language, hence the above definition uses S ′1 as a proof simulation oracle.
We also introduce a weaker notion of zero-knowledge. A NIZK is F -leaky zero-knowledge

if its proofs may leak some information, namely a proof leaks F (x,w), where (x,w) ∈ R.
We formalize this by giving the zero-knowledge simulator the value F (x,w), which should be
interpreted as a hint for the simulation of proofs. This notion could be seen as an extension of
the bounded leaky zero-knowledge property defined in [CFF+21] and tailored for CP-SNARKs.
Our notion is a special case of the leakage-resilient zero-knowledge framework of Garg, Jain
and Sahai [GJS11] where the leakage of the simulator is known ahead of time.

Definition 3.4.3 (Leaky Zero-Knowledge). A NIZK NIZK is F -leaky zero-knowledge if there
exists a PPT simulator S such that for all adversaries A:

Pr


ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·)(srs) = 1

 ≈ Pr


ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)
ASF

1 (·,·)(srs) = 1



3.4.1 Policy-Based Simulation Extractability
An extraction policy defines the constraints under which the extractor must extract the witness.
For example, we could consider the policy that checks that the forged instance and proof were
not queried/output by the zero-knowledge simulator (thus modeling the classical simulation
extractability notion), or we could consider a policy that only checks that the forged instance
was not queried to the zero-knowledge simulator, thus obtaining a weaker flavor of classical
simulation extractability. Clearly, the more permissive the policy the stronger the security
provided.

In our work, we also consider policies that constrain the behavior of the zero-knowledge
simulator. For example, we could consider the policy that checks that the queried instances
belong to the relation, thus obtaining a notion similar to true-simulation extractability (see
Dodis et al. [DHLW10]). Looking ahead, contrary to the true-simulation extractability notion
in [DHLW10], our policy-based version of the true-simulation extractability rather than disal-
lowing certain queries, punishes the adversary at extraction time. It is not hard to see that the
two definitional flavors, namely disallowing illegal queries versus punishing an adversary that
made an illegal query are equivalent in the context of simulation extractability, because the
adversary’s goal is computational5.
Extraction policies. We define an extraction policy as a tuple Φ = (Φ0,Φ1) of PPT algo-
rithms. This is used to define Φ-simulation extractability as follows. The security experiment

5Observe that for decisional tasks disallowing and punishing flavors can result in different security notions,
see Bellare, Hofheinz and Kiltz [BHK15].
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starts by running the extraction policy algorithm Φ0, which generates public information ppΦ.
The public information may contain, for example, random values that define the constraints
later checked by Φ1. Therefore, we feed ppΦ to the adversary. In the case of commit-and-prove
proof systems, the public information may contain commitments for which the adversary does
not know openings (but on which it can still query simulated proofs). After receiving a forgery
from the adversary, the security experiment runs the extraction policy Φ1. The policy Φ1 is a
predicate that takes as input:

• The public parameter ppΦ;

• The forged instance and proof (x, π);

• The view of the experiment, denoted view. Such a view contains the public parameters,
the set of simulated instances and proofs Qsim, and the set QRO of queries and answers
to the random oracle6;

• Auxiliary information auxΦ which might come along with the forged instance. We use
auxΦ to provide the adversary an interface with the policy7.

Definition 3.4.4 (Φ-Simulation extractability). Let Π be a NIZK for a relation R whose
wrappers are S1,S2, as defined in Definition 3.4.1 Consider the experiment in Fig. 3.1. Π is Φ-
simulation-extractable (or simply Φ-SE) if for every PPT adversary A there exists an efficient
extractor E such that the following advantage is negligible in λ:

AdvΦ-se
Π,A,S,E(λ) := Pr

[
ExpΦ-se

Π,A,S,E(λ) = 1
]

Below, we give a definition that explicitly considers the subclass of PPT algebraic adver-
saries. To fit algebraic adversaries into our definitional framework we let the algebraic adver-
saries return the representation vectors (1) for any query to the simulator S into the auxiliary
information aux and (2) for the forgery into the auxiliary information auxE .
Definition 3.4.5 (Φ-Simulation extractability in the AGM). Let Π be a NIZK for a relation R
with a simulator S. Π is Φ-simulation-extractable (or simply Φ-SE) if there exists an efficient
extractor E such that for every PPT algebraic adversary A, the advantage AdvΦ-se

Π,A,S,E(λ) (cf.
Definition 3.4.4) is negligible in λ.

3.5 Simulation extractability of KZG in the AGM

3.5.1 CP-SNARK for polynomial evaluation in the AGM
We consider a CP-SNARK CPevl for the relation Revl((x, y), f) := f(x) = y, where f is
committed as [f(s)+αr(s)]1. The scheme constructed in this section requires one G1 element

6Even if the given NIZK is not in the random oracle (namely neither the prover nor the verifier algorithms
make random oracle queries) it still makes sense to assume the existence of the set QRO. This is useful to model
security for NIZK protocols that eventually are used as sub-protocols in ROM-based protocols (as Universal
zkSNARKs based on Polynomial Commitments, see Section 3.6)

7For example, looking ahead, in the policy in Section 3.6.3 the adversary that forges a “weak” proof of opening
for a commitment, additionally provides a certificate (different from the proof itself) that the commitment is
indeed extractable. In this case, we require the extractor only to work for those commitments that come along
with valid certificates.



38 38

ExpΦ-se
A,S,E(λ)

ppG ←$ GroupGen(1λ)
(srs, stS)← S(0, ppG)
ppΦ ←$ Φ0(ppG)
(x, π, auxE , auxΦ)← AS1,S2(srs, ppΦ)
w← E(srs,x, π, auxE)
view← (srs, ppΦ,Qsim,QRO,Qaux)
if Φ1((x, π), view, auxΦ) ∧ VerifyS2(srs,x, π)
∧ (pp,x,w) /∈ R then return 1

else return 0

S1(x, aux) :
π, stS ← S(1, stS ,x, aux)
Qsim ← Qsim ∪ {(x, aux, π)}
return π

S2(s, aux) :
if ̸ ∃aux, a : (s, aux, a) ∈ QRO :

a, stS ← S(2, stS , s, aux)
QRO ← QRO ∪ {(s, aux, a)}

return a

Figure 3.1: The Φ-simulation extractability experiments in ROM. The extraction policy Φ
takes as input the public view of the adversary view (namely, all the inputs received and all
the queries and answers to its oracles). The set Qsim is the set of queries and answers to the
simulation oracle. The set QRO is the set of queries and answers to the random oracle. The set
Qaux is the set of all the auxiliary information sent by the adversary (depending on the policy,
this set might be empty or not). The wrappers S1 and S2 deal respectively with the simulation
queries and the random oracle queries of A in the experiment.

to commit to f(X), one G1 and one Fq element for the evaluation proof, and checking this
proof of evaluation requires two pairings. This is taken from [CFF+21] but adapted to AGM
only.

KGenevl: parse ck as (([sj]1)j∈[0,d], ([αsj]1)j∈[0,d], [1, s]2) and define ek := ck and vk := [1, s]2, and
return srs := (ek, vk).

Proveevl(ek,x = (c, x, y),w = (f, r)): output π := ( [π(s)+απ′(s)]1 , y′), where π(X) is the poly-
nomial such that π(X)(X − x) ≡ f(X) − y , and π′(X) is such that π′(X)(X − x) ≡
r(X)− r(x), and y′ := r(x).

Verifyevl(vk,x = (c, x, y), (π, y′)): output 1 if and only if:

e(c− [y]1− [αy′]1, [1]2) = e(π, [s− x]2).

The above CP-SNARK is knowledge extractable in the AGM [CHM+20]. The original work
of [KZG10] proves a weaker notion of security, called evaluation binding, which states that an
adversary cannot find two distinct instances (with relative valid proofs) of the form x = (c, x, y)
and x′ = (c, x, y′). The CP-SNARK supports a bounded (by deg(r)) number of evaluation
proofs for a given commitment. One may argue that giving more than deg(f) evaluations of
a polynomial f on distinct points should reveal the polynomial and, thus, the zero-knowledge
property would not be needed. However, there are applications in which we could give more than
deg(f) evaluation proofs concerning f without necessarily revealing the evaluation values: e.g.,
this is achieved when we only show the evaluations of linear combinations of multiple committed
polynomials to known constants. Since the technique of [KZG10] would leak information on the
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random masking polynomials and would therefore be usable only a limited number of times, one
may use the “full-fledged” CP-SNARK of Lunar [CFF+21] for proving an unbounded number of
evaluations of committed polynomials in zero-knowledge, at the cost of two additional pairings
at verification time.

The scheme that we describe above is zero-knowledge for non-hiding commitments and leaky
zero-knowledge (Definition 3.4.3) for hiding commitments. For the latter, given a commitment
c = [f(s) + αr(s)]1, a proof for x = (c, x, y) leaks y′ = r(x). Thus, we prove that CPevl achieves
F -leaky zero-knowledge where F (x = (c, x, y),w = (f, r)) := r(x).

We define the simulator S = (S0,S1), where S0 outputs the trapdoor information s, α
together with the srs, and S1 simulates proofs for x = (c, x, y) and leakage y′ outputting
π = ((c− [y]1− [αy′]1)(s− x)−1, y′).
Remark 3.5.1. Consider an attacker that receives a single simulated commitment c and queries
the ZK simulator twice on the same evaluation point xj with two different evaluation values
y1 and y2. These two queries form a linear system without solutions because we have only
one variable but two linearly independent equations. These simulation queries lead to the two
malleability attacks on KZG that we describe below. For sake of simplicity, we show the attacks
in the non-hiding setting.
(Arbitrary Evaluation Point) Let w1, w2 and c be such that πi = [wi]1 for i ∈ [2], and

c∗ = [c]1. We observe that:

(w1 − w2)(s− xj) = y2 − y1. (3.1)

For an arbitrary point x∗ ̸= xj, the adversary sets c∗ ← (π2 − π1), π∗ ← π1−π2
x∗−xj

and
y∗ ← y1−y2

x∗−xj
. The tuple (c∗, x∗, y∗, π∗) is a valid forgery. Let w∗, c∗ be such that [w∗]1 = π∗

and [c∗]1 = c∗. Then:

w∗(s− x∗) = w1 − w2

x∗ − xj

(s− x∗) = w2 − w1

x∗ − xj

(x∗ − xj) + w1 − w2

x∗ − xj

(s− xj)

= w2 − w1 −
y1 − y2

x∗ − xj

= c∗ − y∗.

The second equation comes directly from the definition of the elements involved, and the
third equation follows because of Eq. (3.1).

(Same Evaluation Point) For x∗ = xj, instead, by the homomorphic property of KZG we
have ((α + β)c∗, xj, αy1 + βy2) is a valid forgery; we can forge a proof for c∗ by setting,
for example, α = 2 and β = −1.

The attacks described in Remark 3.5.1 can be mounted because of the relation between two
simulation queries obtained and can be generalized under the notion of attacks that violate the
“Algebraic Consistency”, as we explain hereafter. Since we focus on CP-SNARKs in which,
given a proof π for a statement x, and a view view, it is possible to derive a linear system
of polynomial equations {pi(xj) = yi,j}i,j, we introduce the following definition to make the
policies easier to describe.
Definition 3.5.1 (Algebraic Consistency). A view view (that might contain a set of simulated
instances and proofs for CP) satisfies the algebraic consistency for a CP-SNARK CP if it is
possible to derive (in a way that depends on CP) a linear system of polynomial equations that
admits a solution.
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The extraction policy for CPevl. We define Φs-adpt
evl = {ΦD}D as the family (indexed by a

sampler D) of semi-adaptive extraction policies for the KZG-based CPevl CP-SNARK. Indeed,
as we show below, the evaluation points xj for the instances for which the adversary can see
simulated proofs are selectively chosen independently of the commitment key, while the evalua-
tion values y can be adaptively chosen by the adversary. Each policy ΦD is a tuple of the form
(ΦD0 ,Φ1), as defined in Section 3.4.1, where ΦD0 outputs the parameters ppΦ while Φ1 outputs a
verdict bit. In particular, ΦD0 on input group parameters ppG outputs ppΦ := (coms,Qx), where
coms is a vector of commitments sampled from D, and Qx is a set of evaluation points.

For sake of clarity, we define the policy Φ1 as the logical conjunction of a “simulator” policy
Φsim and an “extractor” policy Φext, i.e. Φ1 = Φsim ∧ Φext. The first policy defines rules under
which we can classify a simulation query legal, while the second one defines rules under which
the extractor must be able to extract a meaningful witness. We highlight the parts needed only
for the hiding setting.

Definition 3.5.2. Let Φsim be the policy that returns 1 if and only if:

1. Points check: let (xi, auxi, πi)i be all the entries of Qsim. Recall that an instance x can
be parsed as (c, x, y). Check that ∀i : xi.x ∈ Qx.

2. Commitment Check: For all i ∈ [Qsim], parse auxi as the leakage value y′i and the
representation vectors for xi.c and πi such that r⃗i = f⃗i∥v⃗i∥c⃗i is the algebraic representation
of the commitment xi.c. For any i check that ⟨f⃗i∥v⃗i, ek⟩+ ⟨c⃗i, coms⟩ = xi.c.

3. Algebraic Consistency: The simulation queries satisfy the algebraic consistency for
CPevl. Let Ij := {i : xi.x = xj} and let R⃗j := (c⃗i)i∈Ij

. Check that ∀j: (i) the system
of linear equations R⃗j · z⃗ = y⃗j has at least a solution, where z⃗ are the variables and
y⃗j = (xi.y−⟨f⃗i, (1, xj, . . . , x

d
j )⟩)i∈Ij

, and (ii) the system of linear equations R⃗j z⃗
′ = y⃗′j has

at least a solution, where z⃗′ are the variables and y⃗′j = (y′i − ⟨v⃗i, (1, xj, . . . , x
d
j )⟩)i∈Ij

.

In more intuitive terms, for every simulation query (c, x, y) made by the adversary: (1)
ensures that x is in the set Qx chosen at the beginning of the experiment (this is the semi-
adaptive restriction); (2) ensures that c is computed as a linear combination of the simulated
commitments and the G1 elements of the SRS, but not of simulated proofs; (3) ensures that
overall the queried statements are plausibly true (e.g., the adversary does not ask to open the
same (c, x) at two different y ̸= y′).

For the sake of concreteness, we explicitly define the algebraic consistency check in the
previous definition. Notice the matrix R⃗j defines linear constraints that must hold for each of
the polynomials for which the adversary asks evaluations. In the case of hiding commitments,
some of the constraints are obtained by parsing adequately the inputs of the adversary to the
simulation oracle.

Next, we define the policy Φext as the logical disjunction of two policies, Φrnd
ext and Φder

ext .
To this end, we first define some notation: let gc : G1 × {0, 1}∗ → {0, 1} be a function that
on inputs a group element c and a string s, that can be parsed as a list of group elements ci

followed by a second string s̃, outputs 1 if and only if ∃i : c = ci.

Definition 3.5.3. Let Φext,Φrnd
ext and Φder

ext be predicates that, parsing the forgery instance x∗ =
(c∗, x∗, y∗), are defined as follows:
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• Φrnd
ext returns 1 if and only if there exist a query (s, aux, a) to the random oracle and aux

contains a non-constant polynomial h(X) such that the following conditions are satisfied:

1. Hashing check: (s, aux, a) ∈ QRO, note that QRO is contained in view,
2. Decoding check: gc(c∗, s) = 1.
3. Polynomial check: gh(h, aux) = 1, where gh : F[X]×{0, 1}∗ → {0, 1} is a function

that on input a polynomial h(X) and a string aux outputs 1 if and only if h(X) is
encoded in aux.

4. Computation check: h(a) = x∗.

• Φder
ext returns 1 if and only if ∃(x, ·, π) ∈ Qsim s.t. x := (c∗, x∗, y′) and (y′, π) ̸= (y∗, π∗).

• Φext returns logical disjunction of Φrnd
ext and Φder

ext .

More intuitively, Φrnd
ext checks that the point x∗ is obtained from the random oracle after

querying it on the commitment c∗, whereas Φder
ext checks if x∗ is a strong forgery, namely it is a

new evaluation proof for a statement (c∗, x∗) already queried to the simulation oracle.
In the following theorem, we focus on the non-hiding version of KZG, we show in Sec-

tion 3.5.2 how to handle the hiding setting.

Theorem 3.5.1. For any witness sampleable distribution D that is D-Aff-MDH-secure (see
Definition 3.3.1), any bilinear-group generator GroupGen that samples the generator of the group
G1 uniformly at random, ∀ΦD ∈ Φs-adpt

evl , the non-hiding KZG is ΦD-simulation-extractable in
the AGM. In particular, there exists E such that for any algebraic adversary A:

AdvΦD-se
CPevl,A,S,E(λ) ≤ O(ϵ(Qx+d+1)-DL(λ)) +O(ϵAff-MDH(λ)) + poly(λ)ϵh

where Qx := |Qx|, d is the maximum degree supported by CPevl, ϵ(Qx+d+1)-DL(λ) is the maxi-
mum advantage for any algebraic PT adversary against the (Qx + d + 1)-strong Discrete-Log
Assumption, ϵAff-MDH(λ) is the maximum advantage for any algebraic PT adversary against the
D-Aff-MDH Assumption, h is the polynomial that satisfies the Polynomial check of ΦD, and
ϵh = deg(h)

q
.

Before giving the proof of Theorem 3.5.1, we recall that when D is the distribution Uℓ that
outputs ℓ uniformly random group elements of G1 we could reduce the Dℓ-Aff-MDH Assumption
to the Discrete Log (see Lemma 3.3.1). Hence, we can state the following corollary, whose proof
follows from the fact that ϵDL ≤ ϵd-DL, ∀d ≥ 1.

Corollary 3.5.1. For any algebraic adversary A, for any ℓ ∈ N, and for any distribution Uℓ

that outputs ℓ uniformly random group elements:

AdvΦUℓ
-se

CPevl,A,S,E(λ) ≤ O(ℓϵ(Qx+d+1)-DL(λ)) + poly(λ)ϵh.

Proof intuition of Theorem 3.5.1. We consider an adversary whose forgery satisfies the
predicate Φrnd

ext . We first show an alternative way to simulate KZG proofs. This step allows
one to move from a simulator whose trapdoor is a “secret exponent” s to a simulator whose
trapdoor is a “tower” of G1-elements [si]1. The simulated SRS seen by the adversary includes
only high-degree polynomials of the form [p(s)si]1, while the simulator keeps the low-degree
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monomials [si]1 for simulation. Here, p is a polynomial that vanishes in all the points to
be asked in the simulation queries (this is reminiscent of the reduction technique for Boneh-
Boyen signatures [BB04]). Since we program the SRS based on the queries our simulator is
only semi-adaptive, namely it can simulate proofs for a (exponentially large) subset of all the
statements. This first change essentially simplifies the objects involved in our analysis, from
rational polynomials (with the formal variable being the trapdoor) to standard polynomials.

Next, we need to show that the adversary cannot mix the simulated commitments and
the forgery material. In particular, we need to show that the forged proof is not derived
as a linear combination involving simulated commitments. To show this, we use the fact
that the degree of the proof must be smaller than the degrees of simulated commitments,
otherwise we could break the d-DL assumption in the AGM. This intuitively comes from the
fact that the verification equation lifts the degree of the polynomial in the forged proof (as
it is multiplied by (X − x∗)). Similarly, we need to show that the forged instance cannot
use a linear combination that involves the simulated commitments. For this, we use the Aff-
MDH assumption to handle multiple evaluation proofs on different simulated commitments
on the same evaluation point. In particular, we reduce the view of many simulated proofs
over many commitments and many evaluation points to a view that only contains [p(s)si]1
and (non-rational) polynomials [p(s)/(s− xj)]1. At this point, the attacker could still perform
an attack if it could decide the evaluation point x∗ arbitrarily. The attack works as follows:
(i) the adversary asks a simulation proof π for x = (c, x, y), and (ii) produces the forgery
x∗ = (c + απ, x − α, y), π, for any α ∈ Zq. It is easy to check that the forgery satisfies the
verification equation. Though, for this attack to work the attacker needs to set the commitment
in the forged instance as a function of x∗ = x − α. The last part of our analysis shows that,
indeed, the algebraic representation of the commitment in the forgery cannot depend on x∗ and
that this attack cannot be mounted when x∗ is chosen after the commitment with sufficient
randomness.

For the second case, we can reduce a Φder
ext forgery to a Φrnd

ext forgery. In fact, such a forgery
together with the simulated proofs set an algebraic inconsistency, a subcase of the condition
avoided by Item 3 of Definition 3.5.2, thus enabling an attack. In more detail, given a Φder

ext -
forgery (c, x, y), π and let ((c, x, y′), π′) ∈ Qsim we can define a new Φrnd

ext -forgery (c∗, x∗, y∗), π∗
where c∗ = (π′ − π), x∗ = RO(c∗) and π∗ = π−π′

x∗−x
and y∗ = y−y′

x∗−x
. We can prove that the

verification equation holds noticing that (π − π′)(s − x) = [y − y′]1 and by simple algebraic
manipulations.

Proof of Theorem 3.5.1. We stress that A is algebraic (cf. Definition 2.2.2), therefore for each
group element output it additionally attaches a representation r⃗ of such a group element with
respect to all the elements seen during the experiment (included elements in coms). In par-
ticular, we assume that for each query (x, aux) to the oracle S1 we can parse the value aux
as (r⃗, aux′) and r⃗ is a valid representation for x.c. Similarly, for the queries (s, aux) to S2,
aux includes a valid representation for all the group elements gi encoded in s, i.e. such that
gc(gi, s) = 1. Together with its forgery, the algebraic adversary encodes a polynomial h(X)
in auxϕ, and stores in auxE two representation vectors r⃗c∗ and r⃗π∗ for the two group elements
c∗ and π∗. We can parse the vectors r⃗τ := f⃗τ∥c⃗τ∥o⃗τ for τ ∈ {c∗, π∗} where f⃗τ is the vector of
coefficients associated to group elements ek, c⃗τ is the vector of coefficients associated to group
elements coms = ([ci]1)i∈[Qc], and o⃗τ is the vector of coefficients associated to the group elements
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of the simulated proofs proofs. Namely, we have:

c∗ = ⟨f⃗c∗ , ek⟩+ ⟨c⃗c∗ , coms⟩+ ⟨o⃗c∗ , proofs⟩ (3.2)
π∗ = ⟨f⃗π∗ , ek⟩+ ⟨c⃗π∗ , coms⟩+ ⟨o⃗π∗ , proofs⟩ (3.3)

We can assume w.l.g. that all the simulation queries and the forgery of the adversary A agree
with the policy ΦD, as otherwise the adversary would automatically lose the experiment. We
assume that f⃗i,j = 0⃗, ∀i, j, i.e., the adversary asks simulation queries on commitments that
are a linear combination of coms only: this is also w.l.g. as we briefly show below. Given a
commitment ci,j = xi,j.c, whose representation is r⃗i,j = f⃗i,j∥c⃗i,j, the adversary could compute
a proof πi,j for the point xj and the evaluation value y as follows:

1. let y′ = fi,j(xj), A computes the commitment c′ ← Com(ck, fi,j(X)), and the “honest”
proof π′ for (c′, xj, y

′)

2. asks the simulation oracle to provide a proof π̃ for the instance (c − c′, xj, y − y′) with
representation 0⃗∥c⃗i,j

3. recombines the proof πi,j = π′ + π̃

We define our extractor to be the canonical extractor that returns the polynomial f(X) ←
⟨f⃗c∗ , (1, X, . . . , Xd)⟩.

We start by proving that for any algebraic adversary A whose forgery satisfies the predicate
Φder

ext , there exists an algebraic adversary B whose forgery satisfies the predicate Φrnd
ext . Let {Φ′D}D

be the family of policies defined exactly as Φs-adpt
evl with the difference that the extraction policy

Φext is equal to Φrnd
ext (i.e., there is no logical disjunction with Φder

ext ).
Lemma 3.5.1. For any algebraic adversary A there exists an algebraic adversary B such that:

AdvΦD-se
CPevl,A,S,E(λ) = AdvΦ′

D-se
CPevl,B,S,E(λ)

Proof. First, we notice that once we fix a commitment c, a point x, and a value y, there is a
unique proof π that can satisfy the KZG verification equation. Thus, the predicate Φder

ext can
be simplified as requiring that an adversary outputs a valid proof π∗ and a value y∗ such that
∃((c∗, x∗, y′), ·, π) ∈ Qsim and y∗ ̸= y′.

The reduction B internally runs A forwarding all the simulation queries, up to the forgery
(x∗, π∗), where x∗ = (c∗, x∗, y∗). If the simulation queries and/or the forgery of the adversary
A do not agree with the policy ΦD, i.e. A automatically loses its game, B aborts. Otherwise,
it must be true that the forgery of A either (i) satisfies the extraction predicate Φrnd

ext or (ii)
satisfies the extraction predicate Φder

ext . Both cases can be efficiently checked by B. In case (i) B
would simply forward the forgery of A retaining the same advantage of A. Otherwise, before
submitting the forgery, B retrieves from Qsim the statement x := (c∗, x∗, y′), where y′ ̸= y∗, and
the corresponding proof π output by S1. Then B produces the forgery:

ĉ← π∗ − π, x̂← h(a), π̂ ← π − π∗

x̂− x∗
, ŷ ← y′ − y∗

x̂− x∗

which satisfies the verification equation (cf. Remark 3.5.1), and the extraction predicate Φrnd
ext

when (ĉ, h, a) ∈ QRO.
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Thanks to Lemma 3.5.1 we can assume that the forgery ofA satisfies the extraction predicate
Φrnd

ext . We let H0 be the ExpΦD-se
A,S,E (λ) experiment, and we denote by ϵi the advantage of A to

win Hi, i.e. ϵi := Pr[Hi = 1].
Hybrid H1. Recall that D is witness sampleable, thus according to Definition 2.3.3 there exists
a PPT algorithm D̃ associated with the sampler D. The hybrid experiment H1 is identical to
the previous one, but the group elements in coms are “sampled at exponent”, i.e. we use D̃ to
generate the field elements γ⃗, and we let coms ← [γ⃗]1; we also add γ⃗ to stS . By the witness
sampleability of D, H0 and H1 are perfectly indistinguishable, thus ϵ1 = ϵ0.
Hybrid H2. In this hybrid, we change the way we generate the SRS srs and the way in which
S1 simulates the proofs.

Let
(
(G1,G2,GT , e), [1]1 , [1]2

)
←$ GroupGen(1λ), sample s←$ F and compute

[
s, . . . , sD+d

]
1
,

[1, s]2, where D ← Qx +1. Let xr ←$ F, and let p(X) be the vanishing polynomial in Qx∪{xr},
namely:

p(X) := (X − xr)
∏

x∈Qx

(X − x).

Also, let pj(X) := p(X)(X − xj)−1, for j ∈ [Qx]. In H2 we have that:

• ppG := ((G1,G2,GT , e), [p(s)]1 , [1]2),

• srs := (ek, vk), where ek←
[
p(s), p(s)s, . . . , p(s)sd

]
1

and vk← [1, s]2,

• stS :=
[
1, s, . . . , sD+d

]
1
, [1, s]2, γ⃗.

Upon a query of the form (x = (c, xj, yk), aux = (r⃗c, aux′)) to S1, the latter outputs the proof
π ← [(⟨r⃗c, γ⃗⟩ − yk) · pj(s)]1, and updates Qsim accordingly.

We now show that H1 ≡ H2, i.e., the view offered to the adversary A is identically dis-
tributed in the two experiments.
Lemma 3.5.2. ϵ2 = ϵ1.

Proof. Notice that in H2 we sample from GroupGen the description of the group, and then we
set the generator of G1 to [p(s)]1 which, thanks to the random root xr, is distributed uniformly
at random even given the value s. It is not hard to verify that the simulated proofs generated by
the hybrid H2 pass the verification equations, in fact, we are assuming that queried commitment
c are of the form ⟨r⃗c, coms⟩. Additionally, since the proofs are uniquely determined given the
SRS and the statements, the simulated proofs created in H2 are distributed as the simulated
proofs generated by the simulator S1 in H1. Thus, the advantage of A is the same in the two
experiments.

Given an algebraic adversary A we can define a new adversary, Ac, that we call the core
adversary. Whenever the adversary A outputs a group element g it provides a representation
vector r⃗g := f⃗g∥c⃗g∥o⃗g for g such that:

g = ⟨f⃗g, ek⟩+ ⟨c⃗g, coms⟩+ ⟨o⃗g, proofs⟩.

The adversary Ac runs internally A and forwards all the queries and answers from A to its
simulation oracle. However, the way of simulating RO queries must ensure to not alter the
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result of the extractor policy, i.e. the “hash-check” for x∗. This is why we cannot simply
forward the queries of A to the random oracle. Therefore, we keep track of the queries made by
A in the list QRO,A and the list of queries made by the core adversary in QRO. More in detail,
when A queries the RO with (s, aux), the adversary Ac makes a “core” RO query (sc, auxc)
such that:

1. Let s be parsed as (gi)i∈[k] (the group elements in s whose representations r⃗gi
:= f⃗gi

∥c⃗gi
∥o⃗gi

are in aux) and a string s̃. Notice, since the adversary is algebraic we can unambiguously
parse s as such.

2. For each i, Ac computes the group elements g′i = gi−⟨f⃗gi
, ek⟩. Ac encodes into the string

s′ the group elements (gi, g′i)i∈[k].

3. Ac queries the RO with (sc, auxc), where sc := s′∥s̃, and auxc contains the representations
of all the group elements in s′ and the same function h encoded in aux. Finally, it forwards
the output to A, i.e. it adds (s, aux, a) to QRO,A, and adds (s, sc) to (the initially empty)
Qs.

Eventually, A outputs as forgery a string s and the tuple (c′, x′, y′, π′), together with repre-
sentation vectors r⃗c′ and r⃗π′ . Let f(X) := ⟨f⃗c′ , (1, X, . . . , Xd)⟩, y := f(x′), and q(X) be such
that q(X)(X − x′) = f(X) − y. Let f⃗q be the vector of the coefficients of q(X), namely
q(X) := ⟨f⃗q, (1, X, . . . , Xd)⟩. The core adversary Ac returns for its forgery the string sc such
that (s, sc) ∈ Qs, and the tuple (c∗, x′, y∗, π∗), where y∗ ← y′ − f(x′) and:

c∗ ← c′ − [f(s)p(s)]1︸ ︷︷ ︸
Com(ck,f(X))

, π∗ ← π′ − [q(s)p(s)]1︸ ︷︷ ︸
Com(ck,q(X))

inserting into auxΦ the (correct) algebraic representations (⃗0∥c⃗c′∥o⃗c′) for c∗ and ((f⃗π′−f⃗q)∥c⃗π′∥o⃗π′)
for π∗.
Hybrid H3. This hybrid is exactly the same of H2 but instead of running the experiment with
the adversary A we run it with the core adversary Ac.

Lemma 3.5.3. ϵ3 = ϵ2.

Proof. First, by construction, it is easy to verify that Ac is algebraic. Thus, we need to show
that the forgery of A is valid if and only if the forgery of Ac is valid. By construction, we have:

c∗ := c′ − [f(s)p(s)]1 , π∗ := π′ − [q(s)p(s)]1 , y∗ := y′ − f(x∗).

By the verification equation of the forgery of Ac we have:

e(c∗ − [y∗]1 , [1]2)− e(π
∗, [s− x∗]2) =

e(c′ − [f(s)p(s)]1 − [y′ − f(x′)]1 , [1]2)− e(π
′ − [q(s)p(s)]1 , [s− x

∗]2) =
e(c′ − [y′]1 , [1]2)− e(π

′, [s− x′]2)− [f(s)p(s)− f(x′)− q(s)p(s)(s− x∗)]T =
e(c′ − [y′]1 , [1]2)− e(π

′, [s− x′]2),

where the last equation holds since q(X)(X − x′) = (f(X)− f(x′)) and x∗ = x′.
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Finally, notice that a forgery is valid for A if it provides a string s that satisfies the “hash
check” of Φext. We have that there exist s, aux, a, and h(X) such that: (i) gc(c∗, s) = 1, (ii)
gh(h, aux) = 1, (iii) (s, aux, a) ∈ QRO,A, and (iv) x∗ = h(a) for the forgery of A.

The way Ac simulates the RO queries ensures that for the query s of A to the RO, the
core adversary sent the “core” RO query sc that encodes both c′ and c∗, thus we have that (i)
gc(c∗, sc) = 1, (ii) gh(h, auxc) = 1, (iii) (sc, auxc, a) ∈ QRO, and (iv) x∗ = h(a) for the forgery of
Ac.

Notice that if we run the canonical extractor on the outputs of the core adversary Ac, the
extractor sets the extracted witness to be the zero polynomial.

Hybrid H4. The hybrid H4 additionally checks that f⃗π∗ ̸= 0⃗ ∨ c⃗π∗ ̸= 0⃗, and if the condition
holds the adversary Ac loses the game.

Lemma 3.5.4. ϵ3 ≤ ϵ4 + ϵ(Qx+d+1)-DL

Proof. Recall that from the definition of the experiment, upon a query (x, aux) from Ac to the
simulation oracle of the form x = (c, xj, yk) and aux = r⃗ where c = ⟨r⃗, coms⟩, the adversary
receives the proof [πr⃗,j,k(s)]1 where:

πr⃗,j,k(X) := (⟨r⃗, (γi)i⟩ − yk)pj(X).

Consider the following polynomials:

c∗(X) :=
∑

i∈[Qc]
cc∗,i · γip(X) +

∑
r⃗,j,k

oc∗,r⃗,j,k · πr⃗,j,k(X)

π∗(X) :=
∑

i∈[Qc]
cπ∗,i · γip(X) +

∑
r⃗,j,k

oπ∗,r⃗,j,k · πr⃗,j,k(X) +
∑

i∈[d+1]
fπ∗,iX

i−1p(X)

v(X) := c∗(X)− y∗p(X)− (X − x∗)π∗(X)

By the guarantees of the AGM, we have c∗ = [c∗(s)]1 and π∗ = [π∗(s)]1, moreover, if the
verification equation is satisfied by the forgery of Ac, then v(s) = 0.

Next, we show that when the forgery of the adversary is valid the probability of f⃗π∗ ̸= 0⃗ or
c⃗π∗ ̸= 0⃗ is bounded by ϵ(Qx+d+1)-DL.

First, notice that if the verification equation for Ac holds then the polynomial v(X) must
be equivalent to the zero polynomial with overwhelming probability. In fact, v(s) = 0 when
the verification equation holds; if v(X) is not the zero polynomial then, by Lemma 3.3.2, we
can reduce Ac to an adversary to the (Qx + d+ 1)-DL assumption. Thus:

c∗(X)− y∗p(X)− (X − x∗)π∗(X) = v(X) = 0. (3.4)

By the guarantees of the AGM, the polynomial π∗(X) is a linear combination of elements that
depend on X i−1p(X) for i ∈ [d + 1] and pj(X) for j ∈ [Qx]. However, when the verification
equation holds, the degree of π∗(X) must be strictly less than the degree of p(X), because, by
Eq. (3.4), v(X) would contain a non-zero coefficient of degree Qx + d + 1 which in particular
implies that v(X) ̸≡ 0. Then it must be the case that the forged proof π∗(s) is a linear
combination of the simulated proofs only, thus both f⃗π∗ and c⃗π∗ are null.



3.5. Simulation extractability of KZG in the AGM 47

The representation of c∗ and π∗ computed by the adversary (possibly) depends on the
elements πr⃗,j,k (i.e. the proof for the linear combination r⃗ of the elements of coms with evaluation
point xj and evaluation value yk) of proofs. However, it is much more convenient to give a
representation that depends on the polynomials pj(X). This motivates the definition of our
next hybrid.

Hybrid H5. The hybrid H5 finds coefficients o⃗′′τ , for τ ∈ {c∗, π∗} such that:

⟨o⃗τ , proofs⟩ = ⟨o⃗′′τ , ([pj(s)]1)j⟩. (3.5)

Moreover, if o⃗c∗ ̸= 0⃗ but o⃗′′c∗ = 0⃗ the adversary loses the game.

Lemma 3.5.5. ϵ4 ≤ ϵ5 + ϵAff-MDH

Proof. We begin by showing that the hybrid can compute such alternative representations
efficiently. We proceed in steps.

Let us parse the simulated proofs proofs := (πj,ℓ)j,ℓ such that πj,ℓ is the ℓ-th simulated proof
obtained by S1 on a query involving the j-th point xj, i.e., ((xj, ĉj,ℓ, yj,ℓ), auxj,ℓ). Also, let c⃗j,ℓ

be the algebraic representation for the group element ĉj,ℓ in auxj,ℓ. For every j ∈ [Qx], we define
R⃗j as the Qc ×Qc matrix whose ℓ-th column is c⃗j,ℓ.

By construction of S1 in this hybrid we have that for every j ∈ [Qx] it holds

πj,ℓ :=
[
(c⃗⊤j,ℓ · γ⃗ − yj,ℓ) pj(s)

]
1

and thus π̃j :=
[
(R⃗⊤j γ⃗ − y⃗j)pj(s)

]
1

with y⃗j := (yj,ℓ)ℓ.
Without loss of generality, we assume that for each xj the adversary makes the maximum

number of simulation queries (i.e., ℓ ∈ [Qc]); therefore R⃗j is a full rank matrix (this follows from
the fact that the simulation queries of the adversary satisfy the policy Φsim, and in particular
the algebraic consistency of the policy, see Item 3).

Given any vector o⃗τ with τ ∈ {c∗, π∗}, its m-th entry oτ,m corresponds to the m-th simulated
proof in proofs. Therefore, similarly to above, we denote by oτ,j,ℓ the entry corresponding to
proof πj,ℓ and we define o⃗τ,j := (oτ,j,ℓ)ℓ.

Then, for every j ∈ [Qx] we define

o⃗′τ,j ← R⃗j · o⃗τ,j (3.6)
π⃗′j ← (R⃗⊤j )−1 · π⃗j (3.7)

from which we derive that for any τ :∑
j

⟨o⃗′τ,j, π⃗
′
j⟩ =

∑
j

⟨R⃗j · o⃗τ,j, (R⃗⊤j )−1 · π⃗j⟩

=
∑

j

o⃗⊤τ,j · R⃗⊤j (R⃗⊤j )−1 · π⃗j

=
∑

j

⟨o⃗τ,j, π⃗j⟩

which is equal to ⟨o⃗τ , proofs⟩, up to a permutation of the indices j.
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For all j ∈ [Qx] let z⃗j := (R⃗⊤j )−1 · y⃗j, and note that

π⃗′j = [(γ⃗ − z⃗j)pj(s)]1 ,

namely π′j,i is a valid proof for the instance (ci, xj, zj,i) w.r.t. the simulated SRS.
The hybrid H5 computes o′′τ,j ← ⟨o⃗′τ,j, (γ⃗ − z⃗j)⟩, and o⃗′′τ ← (o′′τ,j)j∈[Qx]. By construction:

∑
j∈[Qx]

⟨o⃗′τ,j, π⃗
′
j⟩ =

∑
j∈[Qx]

o′′τ,j · [pj(s)]1

which proves the first part of the lemma, i.e., computing o⃗′′τ,j satisfying Eq. (3.5).
In what follows, we prove that if the event that H5 outputs 0 but H4 would output 1,

namely that all the conditions of H4 hold but o⃗c∗ ̸= 0⃗ ∧ o⃗′′c∗ = 0⃗, then we can break the
Aff-MDH assumption.

First, notice that for any j o⃗c∗,j ̸= 0⃗ implies that o⃗′c∗,j ̸= 0⃗, because the linear transformation
applied to compute o⃗′c∗,j is full rank. Second, take an index j∗ such that o⃗c∗,j∗ ̸= 0⃗ and set
A⃗← o⃗′c∗,j∗ and ζ ← ⟨z⃗j∗ , o⃗′c∗,j∗⟩.

By the above definition of the values o′′c∗,j∗ and our assumption that the “bad event” of this
hybrid is o⃗′′c∗ = 0⃗, we have that:

⟨A⃗, [γ⃗]1⟩ = [⟨o⃗′c∗,j∗ , (γ⃗ − z⃗j∗)⟩︸ ︷︷ ︸
o′′

c∗,j∗ =0

]1 + [⟨o⃗′c∗,j∗ , z⃗j∗⟩︸ ︷︷ ︸
ζ

]1 = [ζ]1 .

The reduction B to the D-Aff-MDH Assumption takes as input a distribution [γ⃗]1 and runs the
experiment as in H4 (it perfectly emulates H4, and in particular the simulation oracle, because
it knows the trapdoor s “at the exponent”). Then B computes the coefficients (Ai)i∈[Qc] and
the value ζ as described above, which is a valid D-Aff-MDH solution.

Hybrid H6. The hybrid H6 additionally checks that r⃗c∗ ̸= 0⃗, and if the condition holds the
adversary Ac loses the game.

Lemma 3.5.6. ϵ5 ≤ ϵ6 + ϵAff-MDH + 2ϵ(Qx+1+d)-DL + poly(λ)deg(h)
q

Proof. We bound the probability that the adversary loses in H6 but not in H5, namely, the
probability that r⃗∗c ̸= 0⃗ but the conditions of H5 hold. We show a reduction B to the Aff-MDH
when this event happens.

First, we can assume that the core adversary outputs coefficients f⃗c∗ = f⃗π∗ = c⃗π∗ = 0⃗,
i.e. the adversary only makes use of previous commitments ci ∈ coms and simulated proofs
πr⃗,j,k ∈ proofs to represent c∗, and only uses the simulated proofs to represent the proof π∗.

The reduction B takes as input a distribution [γ⃗]1 and runs the experiment as in H5. B
aborts if the forgery (c∗, x∗, y∗, π∗) returned by the adversary is not valid (i.e. either the
extraction predicate or the verification equation is not satisfied) or r⃗c∗ = 0⃗. Otherwise, we have
that:

e(c∗ − [p(s)y∗]1 , [1]2) = e(π∗, [s− x∗]2) and r⃗c∗ ̸= 0⃗

where r⃗c∗ ̸= 0⃗ if o⃗c∗ ̸= 0⃗ ∨ c⃗c∗ ̸= 0⃗.
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We can then rewrite the commitment and the proof of forgery of the core adversary as a
function of the coefficients o⃗′′c∗ and o⃗′′π∗ (as computed in the H5):

c∗ :=
∑

i∈[Qc]
cc∗,i [γip(s)]1 +

∑
j∈[Qx]

o′′c∗,j [pj(s)]1 , π∗ :=
∑

j∈[Qx]
o′′w∗,j [pj(s)]1

Since the verification equation is satisfied, and plugging in the AGM representations we have:∑
i∈[Qc]

cc∗,iγip(s) +
∑

j∈[Qx]
o′′c∗,jpj(s)− p(s)y∗ =

∑
j∈[Qx]

o′′π∗,jpj(s)(s− x∗) (3.8)

For all j ∈ [Qx], we define δj := xj − x∗. We can rewrite the r.h.s. of Eq. (3.8) as:∑
j∈[Qx]

o′′π∗,jpj(s)(s− x∗) =
∑

j∈[Qx]
o′′π∗,jpj(s)((s− xj) + δj))

=
∑

j∈[Qx]
o′′π∗,j(p(s) + pj(s)δj)

In Eq. (3.8), we group all the terms that depend on p(s) on the left side, and we move all the
terms that depend on pj(s) to the right side, thus obtaining:( ∑

i∈[Qc]
cc∗,iγi −

∑
j∈[Qx]

o′′w∗,j − y∗
)

︸ ︷︷ ︸
A

p(s) =
∑

j∈[Qx]

(
o′′w∗,jδj − o′′c∗,j

)
︸ ︷︷ ︸

Bj

pj(s) (3.9)

Let f(X) := Ap(X)−∑j∈[Qx] Bjpj(X). Notice that because of Eq. (3.9) we have f(s) = 0, thus
we can assume f(X) ≡ 0, as otherwise we can reduce, by Lemma 3.3.2, to the (Qx + d+ 1)-DL
assumption. It must be the case that both ∑j∈[Qx] Bjpj(s) = 0 and A = 0 because the degree
of p(X) and of pj(X) for any j are different. Moreover, the polynomials pj(X) are linearly
independent, namely the only linear combination ∑

j ajpj(X) = 0 is the trivial one where the
coefficients aj = 08, thus Bj = 0 for all j. We have that o′′w∗,jδj − o′′c∗,j = 0, ∀j. Thus, we can
rewrite the coefficients o′′π∗,j = o′′

c∗,j

δj
, ∀j. Since A must be 0:

∑
i∈[Qc]

cc∗,iγi −
∑

j∈[Qx]

o′′
c∗,j

δj
− y∗ = 0. (3.10)

B can plug the definition of the coefficients o′′c∗,j in Eq. (3.10) and derive:

0 =
∑

i∈[Qc]
cc∗,iγi −

∑
i,j

o′
c∗,i,j

(γi−zji
)

δj
− y∗

=
∑

i∈[Qc]
cc∗,iγi −

∑
i

γi

∑
j

o′
c∗,i,j

δj
+
∑
i,j

o′
c∗,i,j

zji

δj
− y∗

=
∑

i∈[Qc]
(cc∗,i −

∑
j

o′
c∗,i,j

δj
)γi +

∑
i,j

o′
c∗,i,j

zji

δj
− y∗.

8To see this, ∀xj ∈ Qx we have that
∑

j′ aj′pj′(xj) = ajpj(xj) since pj(xj) ̸= 0 and pj′(xj) = 0 for j ̸= j′,
and ajpj(xj) = 0 if and only if aj = 0



50 50

Above, the second equation follows from the distributive property of the sum, while in the last
step we have grouped the terms depending on γi. In particular, the last equation shows that B
can make a forgery in the Aff-MDH game since it knows z := y∗ −∑i,j

o′
c∗,i,j

zji

δj
and coefficients

Ai := cc∗,i −
∑

j

o′
c∗,i,j

δj
such that: ∑

i∈[Qc]
Ai [γi]1 = [z]1 .

For this to be a valid solution in the Aff-MDH game, we need the existence of at least an
index i such that Ai ̸= 0. We show that this occurs with all but negligible probability, i.e.,
Pr[∃i ∈ [Qc] : Ai ̸= 0] ≥ 1− negl(λ).

To this end, consider an arbitrary µ ∈ [Qc], then we have Pr[∀i ∈ [Qc] : Ai = 0] ≤ Pr[Aµ =
0]. Thus, for any µ, we have:

Pr[∃i ∈ [Qc] : Ai ̸= 0] = 1− Pr[∀i ∈ [Qc] : Ai = 0] ≥ 1− Pr[Aµ = 0].

Below, we argue that Pr[Aµ = 0] is negligible based on the randomness of x∗ which is chosen
by the random oracle after defining Aµ, and we make use of the assumption that r⃗c∗ ̸= 0.

We claim that the value Aµ = cc∗
, µ−

∑
j

o′
c∗
, j,µ

(x∗−xj) can be fixed before the random oracle query
x∗ is made. To this end, we start by showing that o⃗′c∗,j does not depend on x∗. Let B(j) ⊆ [Qc]
be the subset of indices of the simulation queries that involve xj and that occurred before the
random oracle query that returned x∗. We observe that for every η ∈ B(j) it must be oc∗,j,η = 0
since the simulated proof πj,η is not in the view of the adversary. Therefore:

o′c∗,j,i =
∑

η∈[Qc]
R⃗j,η,i · oc∗,j,η =

∑
η∈B(j)

R⃗j,η,i · oc∗,j,η

and observe that all the rows of R⃗j belonging to B(j) can all be defined before x∗ is sampled.
Hence, we have that Aµ depends on the values c⃗c∗ , x∗, {xj}j, and o⃗c∗,j which can all be defined
before the random oracle query x∗ is made.

Now, we bound Pr[Aµ = 0]. Recall that, since the extractor policy Φext holds true, we have
that x∗ = h(a) and (s, aux, a) ∈ QRO where gc(c∗, s) = 1 and the function h is the polynomial
encoded in auxϕ: the adversary may want to encode up to n ∈ poly(λ) different polynomials hi

into auxϕ to maximize its advantage, and the extractor policy does not impose any restriction
on this. Moreover, by the AGM, since Ac sends a query s (where c∗ is encoded in s) to the
random oracle it also defines coefficients for c∗ before the value a, and therefore x∗ = h(a), is
defined. Also, it is not hard to see that the representation vector of c∗ defined by Ac when
querying the random oracle must be the same representation vector used for the forgery. As
otherwise we would break the (Qx + d+ 1)-DL assumption. Thus, the coefficients c⃗c∗ and o⃗′c∗,j

are defined by the adversary before seeing the random value x∗.
Notice that, once the coefficients c⃗c∗ and o⃗′c∗,j are fixed, the coefficient Aµ can be seen as

function of x∗ ∈ Zq, i.e. Aµ = Aµ(x∗), where:

Aµ(X) := cc∗,µ +
∑

j

o′
c∗,j,µ

X−xj

=
cc∗,µ

∏
j(X − xj) +∑

j(o′c∗,j,µ

∏
j′ ̸=j(xj′ −X))∏

j X − xj

.
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Notice that Aµ(X)(∏j(X−xj)) vanishes in at most Qx points in F\Qx and vanishes in the set
of points Qx. Let R be the set of the roots of such a polynomial, since ∀i ∈ [n], hi is defined
before x∗ is computed, and by union bound:

Pr[∃i : hi(RO(s)) ∈ R] ≤
∑
r∈R

Pr[∃i : hi(RO(s)) = r] ≤ nQx
maxi deg(hi)

q

for each string s that encodes c∗, To conclude, we notice that A can submit at most QRO
queries to the RO with strings encoding c∗, say s1, . . . sQRO . Thus, the probability that there
exist i ∈ [n], j ∈ [QRO] such that hi(RO(sj)) ∈ R is bounded by nQROQx

maxi deg(hi)
q

.

Hybrid H7. The hybrid H7 additionally checks that y∗ ̸= 0, and if the condition holds the
adversary Ac loses the game.

Lemma 3.5.7. ϵ6 ≤ ϵ7 + ϵ(Qx+1+d)-DL + poly(λ)deg(h)
q

Proof. We reduce to the evaluation binding of KZG polynomial commitment for polynomials
of maximum degree Qx + 1 + d, which, in turn, can be reduced to (Qx + 1 + d)-strong Discrete
Log assumption. Let B be the reduction that upon input ppG, ck =

[
1, s, . . . , sQx+d+1

]
1
, [1, s]2

simulates experiment H4 for the adversaryAc. Eventually, Ac outputs its forgery (c∗, x∗, y∗, π∗),
and B aborts if y∗ = 0. The reduction sets f̃(X) := −y∗p(X), sets y := f̃(x∗), and computes
π to be a valid KZG proof for (

[
f̃(s)

]
1
, x∗, y). The forgery against evaluation biding of the

reduction is set to be (y, π) and (0, π∗) for the commitment
[
f̃(s)

]
1

on the point x∗. We need
to show that:

1. (
[
f̃(s)

]
1
, x∗, 0, π∗) satisfies the verification equation of KZG commitment where the com-

mitment key is set to ck

2. y ̸= 0

For the first item notice that, by the definition of core adversary, we have that r⃗c∗ = 0⃗ thus
c∗ = 0. Therefore, by the verification equation:

e([0]1 − y
∗ [p(s)]1 , [1]2) = e(

[
f̃(s)

]
1
− 0 [1]1 , [1]2) = e(π∗, [s]2 − x

∗ [1]2).

For the second item, notice that f̃(x∗) = 0 if and only if x∗ is a root of p(X), i.e. x∗ ∈ Qx or
x∗ = xr. Thus, similarly to the previous lemma, by the assumption on the polynomials hi and
by union bound:

Pr[∃i : hi(RO(s)) ∈ Qx ∪ {xr}] ≤ nQRO(Qx + 1)maxi deg(hi)
q

.

Finally, we have that the probability that the adversary wins in H7 is null, namely ϵ7 = 0.
Indeed, the canonical extractor E outputs the 0 polynomial, moreover because of the condition
introduced in H6, we have c∗ = [0]1, and because of the condition introduced in H7 we have
y∗ = 0, thus the witness extracted is valid for the instance x∗ = (c∗ = [0]1 , x∗, y∗ = 0).
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3.5.2 Simulation extractability of Hiding KZG
We extend the result of Theorem 3.5.1 to the case in which the CPevl based on KZG uses hiding
commitments. In particular, we show a reduction to the simulation extractability of non-hiding
KZG for uniform distributions Uℓ of the commitments.

Theorem 3.5.2. Let Uℓ be the distribution that outputs ℓ uniformly random group elements in
G1. ∀ℓ ∈ N, the hiding KZG CPevl is ΦUℓ

-simulation-extractable in the AGM. In particular,
there exists E such that for any algebraic adversary A:

AdvΦ-se
CPevl,A,S,E,Uℓ

(λ) ≤ O(ℓϵq-DL(λ)) + poly(λ)ϵh(λ)

where d is the maximum degree supported by CPevl, ϵ(Qx+d+1)-DL(λ) is the maximum advan-
tage for any algebraic PT adversary against the (Qx + d+ 1)-strong Discrete-Log Assumption,
ϵAff-MDH(λ) is the maximum advantage for any algebraic PT adversary against the D-Aff-MDH
Assumption, h is the polynomial that satisfies the Polynomial check of ΦD, and ϵh = deg(h)

q
.

Proof. We reduce an adversary A for the simulation extractability of Πevl with hiding com-
mitments to an adversary B for the simulation extractability with non-hiding commitments
and a uniform distribution that generates twice as many commitments. B receives as input
the description of a bilinear group ppG and an SRS srs := (ek, vk) where ek =

[
1, s, . . . , sd

]
1

and vk = [1, s]2; B samples α ←$ Zq and computes ekα←
[
α, αs, . . . , αsd

]
1

and forwards to A
the SRS srs′ := ((ek, ekα), vk). Finally, B parses the list of commitments coms as two lists of
equal size (coms1, coms2) and gives A the commitments coms′ = coms1 + αcoms2. Every time
A comes up with some group element c, attaches a representation vector r⃗c that we can parse
as f⃗c∥v⃗c∥c⃗c∥o⃗c where f⃗c (resp. v⃗c) is the vector of coefficients associated to group elements ek
(resp. ekα), c⃗c is the vector of coefficients associated to group elements coms′, and o⃗c is the
vector of coefficients associated to the group elements of the simulated proofs proofs′. The
strategy of B is to forward the simulation queries of A whose representation vectors are given
w.r.t. srs′, attaching the representation vectors w.r.t. srs.

On input a simulation query of the form x = (c, xj, y) and leakage y′, with r⃗c = f⃗c∥v⃗c∥c⃗c

as representation vector for c, B invokes the simulation oracle S1 first on input x1 = (⟨f⃗c +
αv⃗c, ek⟩+⟨c⃗c∥⃗0, coms⟩, xj, y) and then on x2 = (⟨⃗0∥c⃗c, coms⟩, xj, y

′), obtaining the two proofs π1
and π2. Finally returns to A the proof π := π1 + απ2 which satisfies the verification equation:

e(c− [y]1 − [αy′]1 , [1]2) = e(π, [s− xj]2)

and adds π to proofs′. When A makes the forgery (c∗, x∗, y∗, y′∗, π∗), with associated represen-
tation vectors r⃗′τ = f⃗τ∥v⃗τ∥c⃗τ∥o⃗τ , for τ ∈ {c∗, π}, B forwards the forgery (c, x∗, y∗ + αy′∗, π∗). B
needs to attach representation vectors for the group elements c∗, π∗ w.r.t. srs, coms and proofs; to
do that, B applies the following transformation and computes r⃗τ = f⃗τ +αv⃗τ∥c⃗τ∥αc⃗τ∥(oτ,i∥αoτ,i)i.
This choice, indeed, is such that:

⟨r⃗′τ , (ek∥ekα∥coms′∥proofs′)⟩ = ⟨r⃗τ , (ek∥coms∥proofs)⟩

If the forgery of A is valid, so is the forgery of B and, unless with negligible probability, the
canonical extractor E extracts the valid witness f(X) + αv(X).
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3.5.3 Simulation extractability of batch KZG
Here we generalize the scheme described in Section 3.5.1 to the batched setting, highlighting the
parts of the construction that are not needed if hiding is not desired. In particular, this scheme
CPm-evl allows one to prove that for all i the polynomial fi committed in ci evaluates to yi on
the point x. This batched version, which is given in the ROM, follows from [GWC19, MBKM19]
and relies on the linearity of the polynomials and the homomorphic properties of KZG. Our
contribution is to prove its policy-based simulation extractability.

KGenm-evl: parse ck as (([sj]1)j∈[0,d], ([αsj]1)j∈[0,d], [1, s]2) and define ek := ck and vk := [1, s]2,
and return srs := (ek, vk).

Provem-evl(ek,x = (x, (ci, yi)i),w = (fi, ri)i): for all i compute the polynomials πi(X) such that
πi(X)(X−x) ≡ fi(X)−yi, the polynomials π′i(X) such that π′i(X)(X−x) ≡ ri(X)−r(x),
ρ← RO(batch∥x), and output(∑

i

ρi−1 [πi(s)+απ′(s)]1 ,
∑

i

ρi−1ri(x)
)

Verifym-evl(vk,x = (x, (ci, yi)i), (π, y′)): compute ρ← RO(batch∥x) and output 1 if and only if

e(
∑

i

ρi−1ci −
[∑

i

ρi−1yi

]
1
− [αy′]1, [1]2) = e(π, [s− x]2).

Similarly to CPevl, we can prove that CPm-evl achieves F -leaky zero-knowledge (see Defini-
tion 3.4.3) where F (x = (x, (ci, yi)i),w = (fi, ri)i) = ∑

i ρ
i−1ri(x) and ρ = RO(batch∥x).

We define the simulator S = (S0,S1,S2), where S0 outputs the trapdoor information s, α
together with the srs, S2 simulates the random oracle on any input via lazy sampling, and S1
simulates proofs for x = (x, (ci, yi)i) and leakage y′ by outputting π = ((c − [y]1− [αy′]1)(s −
x)−1, y′), where c← ∑

i ρ
i−1ci, y ←

∑
i ρ

i−1yi for ρ← S2(batch∥x).
The extraction policy. The extraction policy Φs-adpt

m-evl is naturally extended from the single
point case of CPevl. The evaluation points xj for the instances for which the adversary can
see simulated proofs are selectively chosen independently of the commitment key, while the
evaluation values (yi)i can be arbitrarily chosen by the adversary. Each policy ΦD in the family
is a tuple of the form (ΦD0 ,Φ1). Each policy ΦD is a tuple of the form (ΦD0 ,Φ1), as defined
in Section 3.4.1, where ΦD0 outputs the parameters ppΦ while Φ1 outputs a verdict bit. In
particular, ΦD0 on input group parameters ppG outputs ppΦ := (coms,Qx), where coms is a
vector of commitments sampled from D, and Qx is a set of Qx evaluation points.

For sake of clarity, we define the policy Φ1 as the logical conjunction of a “simulator” policy
Φsim and an “extractor” policy Φext, i.e. Φ1 = Φsim ∧Φext, the first defines rules under which we
can classify a simulation query legal, while the second defines rules under which the extractor
must be able to extract a meaningful witness. We highlight the parts needed only for the hiding
setting.

Definition 3.5.4. Let Φsim be the policy that returns 1 if and only if:

1. Points check: let (xi, auxi, πi)i be all the entries of Qsim. Recall that an instance x can
be parsed as (x, (c⃗, y⃗)), check that ∀i : xi.x ∈ Qx.
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2. Commitment Check: For any i ∈ [Qsim], parse auxi as the leakage value y′i and the
representation vectors for xi .⃗c and πi; in particular, let M⃗i = F⃗i∥V⃗i∥C⃗i be the algebraic
representation of the commitments xi .⃗c. For any i check that

(
F⃗i∥V⃗i

)
·ek+C⃗i ·coms = xi .⃗c

(namely, that the commitments in the instance xi are computed as a linear combination
of the simulated commitments and the elements of G1 of the SRS)

3. Algebraic Consistency: The simulation queries satisfy the algebraic consistency for
CPm-evl. Namely, let IJ = {i : xi.x = xj} and let R⃗j = (C⃗i)i∈IJ

. Check that for all
j: (i) the system of linear equations R⃗j · z⃗ = y⃗j has at least a solution, where z⃗ are the
variables and y⃗j = (xi.y⃗+ F⃗i · (1, xj, . . . , x

d
j )⊤)i∈IJ

, and (ii) the system of linear equations
R⃗j · z⃗′ = y⃗′j has at least a solution, where z⃗′ are the variables and y⃗′j = (y′i +(1, ρi, . . . , ρ

m
i ) ·

V⃗i · (1, xj, . . . , x
d
j )⊤)i∈IJ

, and ρi = RO(batch∥xi).

Next, we define the policy Φext as the logical disjunction of two policies. We recall and
extend the notation introduced in Section 3.5.1: let gc : G∗1 × {0, 1}∗ → {0, 1} be a function
that on inputs a list of group elements ci and a string s, that can be parsed as a list of group
elements ĉi followed by a second string s̃, outputs 1 if and only if ∀i, ∃j : ci = ĉj.

Definition 3.5.5. Let Φext,Φrnd
ext and Φder

ext be predicates that parse the forgery instance x∗ =
(x∗, c⃗∗, y⃗∗).

• Φrnd
ext returns 1 if and only if there exists a query (s, aux, a) to the random oracle and aux

contains a non-constant polynomial h(X) such that the following conditions are satisfied:

1. Hashing check: (s, aux, a) ∈ QRO

2. Decoding check: gc(c⃗∗, s) = 1.
3. Polynomial check: gh(h, aux) = 1, where gh : F[X]×{0, 1}∗ → {0, 1} is a function

that on input a polynomial h(X) and a string aux outputs 1 if and only if h(X) is
encoded in aux.

4. Computation check: h(a) = x∗.

• Φder
ext returns 1 if and only if ∃(x, ·, π) ∈ Qsim s.t. x := (x∗, c⃗∗, y⃗′) and (y⃗′, π) ̸= (y⃗∗, π∗).

• Φext returns the logical disjunction of Φrnd
ext and Φder

ext .

Theorem 3.5.3. For any witness sampleable distribution D that is D-Aff-MDH-secure (see
Definition 3.3.1), any bilinear-group generator GroupGen that samples the generator of the group
G1 uniformly at random, ∀ΦD ∈ Φs-adpt

m-evl , the scheme CPm-evl is ΦD-simulation-extractable in
the AGM. In particular, there exists E such that for any algebraic adversary A:

AdvΦD-se
CPm-evl,A,S,E(λ) ≤ O(ϵ(Qx+d+1)-DL(λ)) +O(ϵAff-MDH(λ)) + poly(λ)ϵh

where d is the maximum degree supported by CPm-evl, ϵ(Qx+d+1)-DL(λ) is the maximum advan-
tage for any algebraic PT adversary against the (Qx + d+ 1)-strong Discrete-Log Assumption,
ϵAff-MDH(λ) is the maximum advantage for any algebraic PT adversary against the D-Aff-MDH
Assumption, h is the polynomial that satisfies the Polynomial check of ΦD, and ϵh = deg(h)

q
.
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3.6 Simulation-Extractable Universal zkSNARKs
In this section we show our compiler for universal SNARKs based on polynomial IOPs.

In our work, we use PIOPs with some slight refinements.9 The first one, called (non-
adaptive) algebraic verifiers (see Definition 3.6.1), says that the above polynomials v(k)

j do not
depend on the instance and can be expressed as polynomial functions of V ’s random coins, i.e.,
v

(k)
j (X) = ṽ

(k)
j (X, ρ⃗) for some instance-independent ṽ(k)

j .

Definition 3.6.1 (Non-adaptive Algebraic Verifier). A PIOP PIOP is (non-adaptive) alge-
braic verifier if there exists an alternative deterministic PT algorithm Ṽ such for any i and
x we have (ṽ(k)

1 , . . . , ṽ(k)
n )k∈[ne] ← Ṽ(F, |i|) where for any j ∈ [n] and k ∈ [ne] we have ṽ(k)

j ∈
F[X,X1, . . . , Xr−1]. Also, for any field elements ρ1, . . . , ρr−1, let (G(k), v

(k)
1 , . . . , v(k)

n )k∈[ne] ←
V(F, i,x, ρ1, . . . , ρr−1), we have for any i ∈ [r(|i|)− 1], j ∈ [ni−1, ni], k ∈ [ne]:

ṽ
(k)
j (X, ρ1, . . . , ρr−1) = v

(k)
j (X)

The second one is a more restrictive10 concept of soundness called state-restoration straight-
line knowledge soundness (see Definition 3.6.2). This combines the notion of state-restoration
soundness from [BCS16] with the concept of straight-line extractability from [CFF+21]. For
further clarification, the malicious prover P̃ engages in a game with the honest verifier V and
has the additional ability to roll back the interaction with the verifier to a previous state. At
some point, the interaction may reach a final state. The prover is considered successful if it
produces an accepting transcript, while the extractor, given such a transcript that includes all
the oracle polynomials, fails to produce a valid witness.

Definition 3.6.2 (State-restoration (straight-line) proof of knowledge). Let Expsr
P̃,PIOP,E(F) be

the experiment in Fig. 3.2. A PIOP PIOP is state-restoration (straight-line) proof of knowledge
if there exists an extractor E such that for any P̃ and any F:

Pr
[
Expsr

P̃,PIOP,E(F) = 1
]
≤ negl(|F|)

The third one is that we do not explicitly check the degree of the polynomials. This is mainly
for simplicity in the presentation of the compiler since, for each poly pi where we check degree
di the prover P additionally sends p′i(X) = p(X) ·XD−di where D is the maximum degree, and
V additionally checks the equation ∑ ρi · (XD−dipi(X)− p′i(X)) ≡ 0, for a randomizer ρ.

Similarly to previous work, we use the notion of bounded zero-knowledge of [CHM+20,
CFF+21].

A list L = {(i1, y1), . . . } is (⃗b, C)-bounded where b⃗ ∈ Nn and C is a PT algorithm if
∀i ∈ [n] : |{(i, y) : (i, y) ∈ L}| ≤ b⃗i and ∀(i, y) ∈ L : C(i, y) = 1.

Definition 3.6.3 (⃗b-bounded Zero-Knowledge). A PIOP PIOP is b⃗-Zero-Knowledge if there
exists a checker C such that Pr[C(i, x) = 0] ≤ negl(|F|) over random x such that for every
index i, and (pp, i,x,w) ∈ R, and every (⃗b, C)-bounded list L, the following random variables
are within ϵ statistical distance:(

view
(
P(F, i,x,w),V I(F,i)(F,x)

)
, (pi(y))(i,y)∈L

)
≈ϵ S(F, i,x,L)

9All the PIOPs that we are aware of satisfy both these properties.
10The (classical) notion of knowledge extractability implies state-restoration soundness through complexity

leveraging [BCS16].
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1. The challenger initializes the list SeenStates to be empty.

2. Repeat the following until the challenger halts:

(a) P̃ either (1) chooses a complete verifier state cvs in SeenStates or (2) sends a
fresh tuple (i,x, {π1,j}j, {p1,j}j) to the challenger.

(b) If (1) the challenger sets the verifier to cvs:
i. if cvs = (i,x, {π1,j}j, {p1,j}j∥ρ1∥ . . . ∥{πi,j}j, {pi,j}j) and i < r(x): P̃ outputs
{πi−1,j}j, {pi−1,j}j; V samples ρi and sends it to P̃; the game appends cvs′ :=
(cvs∥{πi−1,j}j∥{pi−1,j}j∥ρi) to the list SeenStates;

ii. if cvs = (i,x, {π1, j}j, {p1, j}j∥ρ1∥ . . . ∥ρr−1): P̃ outputs {πr,j}j and {pr,j}j;
the challenger runs I(F, i) and V performs the decision phase of the PIOP.
The challenger sets cvs to be the final cvs, sets the decision bit d as the
output of the verifier V and halts.

(c) If (2) the verifier samples ρ1 and sends it to P̃; the game appends the state
cvs′ := (i,x, {π1,j}j, {p1,j}j∥ρ1) to the list SeenStates.

3. The game computes the extraction bit b def= (i,x, E(i,x, p1, . . . , pn)) ∈ R where the
instance x and the polynomials p1, . . . , pn are the ones generated by I and the ones
included in the final cvs. The game returns (d∧¬b), i.e., the malicious prover convinces
the verifier but the extractor fails.

Figure 3.2: The Expsr
P̃,PIOP,E(F) experiment.

where p1, . . . , pn are the polynomials returned by the prover P and S is a PPT simulator.
Moreover, PIOP is special honest-verifier b⃗-bounded zero-knowledge if S first samples uniformly
at random the verifier’s messages ρ1, . . . , ρr−1 and then computes the full transcript. Namely,
S can take as additional input the verifier’s messages. PIOP is independent leakage if S can be
divided in two algorithms (S0,S1) where S0 outputs the simulated transcript, and S1 the leakage.
Namely, S(F, i,x,L; r) = S0(F, i,x; r),S1(F, i,x,L; r).

Compilation-safe PIOP. We must incorporate an additional element to the classical recipe.
As stated in the introduction, mix-and-match attacks on compiled protocols, involving two or
more independent sub-protocols, are unavoidable. Therefore, we identify a structural restriction
on the PIOP that prevents such problematic scenarios. The restriction is easy to state and easy
to meet:

Definition 3.6.4 (Compiler-safe PIOP). A PIOP PIOP is compiler-safe if for any i,x and
ρ⃗ := ρ1, . . . , ρr−1 and any tuple (G(k), v

(k)
1 , . . . , v(k)

n )j∈[ne] ← V(F, i,x, ρ⃗) there exists an index k
such that for all j the polynomials v(k)

j are of degree at least one.

We notice that some PIOPs have this technical condition (an example is [GWC19]) while
other PIOPs that internally run different sub-protocols might not have this property. However,
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at PIOP level we can always obtain this property by adding an extra degree of randomness to
the polynomials (obtaining b⃗+1⃗-bounded zero-knowledge) and adding an extra trivial equation
over the polynomials with the vj set to be the identity function.
Commitments Simulator. We abstract how our compiler handles the simulation of the
commitments for the oracles sent during a PIOP protocol’s execution.

Definition 3.6.5 (Commitment Simulator for PIOP). Let PIOP be a PIOP with b⃗-Zero-
Knowledge simulator S and checker C and consider a two-stage PPT algorithm where SCom(0, ck)
outputs a vector coms of commitments, and SCom(1, |i|,x) outputs a matrix M⃗i,x of linearly in-
dependent rows. SCom is a commitment simulator for a CP (defined over the same commitment
scheme) and PIOP if for every (⃗b, C)-bounded list L, F, i and x the following distributions are
computationally indistinguishable:(

ck, view
(
P(F, i,x,w),V

)
, (pj(x))(j,x)∈L, (Com(ck, pi))i∈[n]

)
≈c(

ck,S(F, i,x,L), (M⃗i,x · coms∥ck)
)

Moreover, we have that the view (L,S(F, i,x,L),x, M⃗i,x) satisfies the algebraic consistency for
the CP-SNARK CP (as in Definition 3.5.1).

The definition is in two stages so to fit our result of Theorem 3.5.1. For KZG the first
part handles the generation of instance-independent commitments according to a Dk-Aff-MDH
Assumption, while the second part acts over the formerly sampled commitments adapting
them to the instance at hand. If the commitment scheme is hiding then the task of defining
the commitment simulator SCom for an arbitrary PIOP is trivial (the distribution of SCom(0, ck)
is uniformly over the commitment space), thus this property is interesting for the case of non-
hiding commitments. Similarly, this notion can be applied to commitment schemes that are
not homomorphic: in that case, we must require M⃗i,x to be the identity.

3.6.1 The Compilation-Ready CP-SNARK
Instead of compiling directly a PIOP through a polynomial commitment in its simplest form
(i.e., an evaluation proof for each polynomial queried in the PIOP), we take an alternative road
similar to [CFF+21]. Namely, we assume the existence of a CP-SNARK that, w.r.t. a tuple of
commitments (cj)j∈[n], is capable of proving either knowledge of polynomials (pj)j∈[n] opening
these commitments, or that the committed polynomials satisfy a statement like the one in
Eq. (2.2) (i.e., that the oracles committed in (cj)j∈[n] would make the PIOP verifier accept)11.
We call this building block a compilation-ready CP-SNARK (CP, shortly), and informally we
refer to the former type of statements as “proof of knowledge” and to the latter as “PIOP
verifier”. While our compilation strategy follows previous work, our novel contribution is to
properly define the properties that this CP-SNARK must satisfy in order to argue that the result
of the compiler is simulation-extractable, and not only knowledge-sound. These properties are
mainly three. The first one is that the CP prover can “append” arbitrary messages to the
proven instances. Looking ahead to our compiler, this feature is used so that prover and

11The reason to assume a single CP-SNARK for both kind of statements, instead of one for polynomial
equations and one for openings, has to do with the security guarantees when we compose protocols in the
AGM [ABK+21].
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verifier can append the (hash of the) protocol’s transcript to the proven instance, in such a
way that a CP proof acts as a signature of knowledge for the transcript. Note, this hashing
of the transcript already happens in the standard PIOP compiler due to the application of
the Fiat-Shamir transform; here, we highlight it explicitly as it plays an important role in
the proof of simulation extractability. The second property, referred to as the commitment
simulator for PIOP (see Definition 3.6.5), intuitively requires the existence of a strategy to
simulate commitments such that: adding them to the view preserves zero-knowledge, and the
simulation respects the “commitment check” constraint in Item 2 of Definition 3.5.2. This
is a very mild property that is trivially satisfied when employing hiding commitments, and
is met by existing simulation strategies based on deterministic commitments to randomized
polynomials [GWC19, CFF+21]. The third property of CP is that it must be simulation-
extractable w.r.t. a policy Φ̂ such that:

• The adversary can ask simulated proofs for “PIOP verifier” statements where all the v(k)
j

of Eq. (2.2) are fixed at the beginning of the experiment.

• If the forgery of the adversary is a “proof of knowledge” for commitments c⃗∗, then the
adversary must return as auxiliary output yet another forgery for a “PIOP verifier” state-
ment such that: (1) All the commitments c⃗∗ appear in the second forgery, (2) the second
forgery is valid according to the extractor policy described next.

• If the forgery of the adversary is for the “PIOP verifier” statement, then the statement-
proof pair returned by the adversary must not be in the list of simulated statements-proofs,
and (similarly to Definition 3.6.4) there exists a k such that for all j the polynomial v(k)

j

has degree at least 1.

Let Rpoly be the relation that upon relation parameters the commitment key ck and an
instance xpoly :=

(
msg, c⃗, (Ḡ(k), v⃗(k))k∈[ne]

)
, where msg is an arbitrary string and c⃗ := (cj)j∈[n],

and whose witness is wpoly := (p⃗, o⃗), outputs 1 if and only if:

∀k ∈ [ne] : Ḡ(k)(X, p1(v(k)
1 (X)), . . . , pn(v(k)

n (X))) ≡ 0 ∧
∀j : VerCom(ck, cj, pj, oj) = 1

Notice that a simulation-extractable CP-SNARK for the relation Rpoly forms a signature of
knowledge [CL06] for an instance

(⃗
c, (Ḡ(k), v⃗(k))k∈[ne]

)
and the message msg. Consider the

relation for multi-instance opening of commitments defined below:

Ropn(ck,xopn = c⃗,wopn = (p⃗, o⃗)) := (∀j ∈ [|⃗c|] : VerCom(ck, cj, pj, oj)) .

Our compiler needs a CP-SNARK that can simultaneously prove the polynomial evaluation
relation and the knowledge of the openings. Let R̂ be the joint relation of Rpoly and Ropn, i.e.:

R̂ def= {ck, (poly,x),w : Rpoly(ck,x,w)}∪{ck, (opn, c⃗),w : Ropn(ck, c⃗,w)} (3.11)

We say that a statement of the form x := (poly,xpoly) (resp. x := (opn,xopn)) is a poly-instance
(resp. opn-instance).

Notice that if we have a CP-SNARK for Rpoly and a CP-SNARK for Ropn we can easily
define a single proof system that proves the relation R̂. In fact, the relation R̂ could be seen



3.6. Simulation-Extractable Universal zkSNARKs 59

as a join of the two relations plus some syntactic sugar. The reason to use a single CP-SNARK
for R̂ (instead of one for each relation) is rather technical, and it has to do with the security
guarantees when we compose protocols in the AGM [ABK+21]. Indeed, we need a CP-SNARK
for Rpoly that is simulation-extractable in the AGM even in presence of the simulated proofs
for a CP-SNARK for Ropn. In particular, the simulated proofs for the latter CP-SNARK
could contain group elements that might interfere with the security proved for the former CP-
SNARK (and vice versa). In other words, even if the first CP-SNARK is simulation-extractable
(in the AGM), it could potentially be insecure when we use it in combination with the second
CP-SNARK (if we are using the same group to instantiate the proof of opening).

Let now introduce the following set of policies Φ̂.

Definition 3.6.6. A policy Φ̂ := (Φ̂0, Φ̂1) ∈ Φ̂. Φ0(ppG) outputs parameters ppΦ that contain
a set of vectors of polynomials Qv = {v⃗(i) = (v(i)

1 , . . . , v(i)
n )}i∈poly(λ) and a list coms := (⃗c(i))i∈[q]

sampled from a distribution D where the D-Aff-MDH assumption holds, while Φ̂1 is defined as
follows.

• Semi-adaptive w.r.t. poly-queries. Given the set of simulation queries Qsim, de-
fine the projections of the set to the poly-simulation queries and opn-simulation queries.
Let the i-th poly-query to the simulation oracle be (x, aux, π) ∈ Qsim, and parse x as
(msg, c⃗, (G(k), v⃗(k))k∈[ne]).

1. ∀k ∈ [ne] : v⃗(k) ∈ Qv

2. parse aux as two matrices C⃗, F⃗ ; the tuple (⃗c, C⃗, F⃗ ) satisfies the commitment check,
namely c⃗ = C⃗ · c⃗(i) + F⃗ · ck

3. the view defined by set of all poly-queries satisfies the algebraic consistency for CP
(cf. Definition 3.5.1).

• Extractor policy for opn-forgery. If the forgery of the adversary (x∗, π∗) is of the form
x∗ := (opn, c⃗∗), parse auxΦ as (yet another) forgery x̃ := (poly, msg, c⃗, (G(k), v⃗(k))i∈[ne]), π̃
and check that:

1. All the commitments c⃗∗ are in the vector of commitments c⃗,
2. The proof π̃ is valid according to the extractor policy for poly-forgeries below.

• Extractor policy for poly-forgery. If the forgery of the adversary (x∗, π∗) is of the
form x∗ := (poly,x′), then check that (x′, π∗) ̸∈ Qsim, i.e., π∗ is “fresh” and not produced
by the simulation oracle on input x′. Moreover, there exists k ∈ [ne] such that for all j
the polynomial v(k)

j has degree at least 1 (and degree poly(λ)).

Intuitively, the extractor policy for opn-forgery means that a proof of opening for a com-
mitment c can be extracted (given some auxiliary information) only when the adversary can
exhibit a proof of evaluation that involves such a commitment.

Definition 3.6.7 (Compilation-Ready CP-SNARK). A Compilation-Ready CP-SNARK is a
Φ̂-simulation-extractable CP-SNARK for R̂.



60 60

Π.Prove(srs, eki,x,w) :
for i ∈ [r(|i|)] do :(

p⃗i, π⃗i
)
← P(F, i,x,w, ρ1, . . . , ρi−1)

for j ∈ [n(i)] do : (ci,j , oi,j)← Com(ck, pi,j)
xo,i ← (opn, c⃗i), c⃗i := (ci,j)j , o⃗i := (oi,j)j

πopn,i ← CP.Prove(ck,xo,i, (p⃗i, o⃗i)), π̄i := (⃗ci, πopn,i, π⃗i)
ρi ← RO(vki,x, π̄1, . . . , π̄i) // Fiat-Shamir transform

(G(k), v(k))k∈[ne] ← V(F, i,x, ρ1, . . . , ρr−1)
for k ∈ [ne] do : Ḡ(k)(X, X1, . . . , Xn)← G(k)(X, X1, . . . , Xn, π⃗)
trns←(vki,x, π̄1, . . . , π̄r)

xpoly←(poly, trns, c⃗, (Ḡ(k), v
(k)
1 , . . . , v(k)

n )k∈[ne])
πpoly←CP.Prove(srs,xpoly, (p⃗, o⃗))
return (⃗c, π⃗, (πopn,i)i∈[r], πpoly)

Π.Derive(srs, i) :
p⃗0 ← I(F, i);
for j ∈ [n(|i|, 0)] do :

c0,j ← Com(ck, p0,j ; 0⃗)
return (p⃗0, (c0,i)i∈[n(|i|,0)])

Π.Verify(vki,x, πΠ) :
compute (π̄1, . . . , π̄r)
for i ∈ [r(|i|)− 1] do : ρi ← RO(vki,x, π̄1, . . . , π̄i−1)
(G(k), v(k))k∈[ne] ← V(F, i,x, ρ1, . . . , ρr−1)
for k ∈ [ne] do : Ḡ(k)(X, X1, . . . , Xn)← G(k)(X, X1, . . . , Xn, π⃗)
trns←(vki,x, π̄1, . . . , π̄r)

xpoly←(poly, trns, c⃗, (Ḡ(k), v
(k)
1 , . . . , v(k)

n )k∈[ne])
return

∧
i∈[r]

CP.Verify(ck,xopn,i, πopn,i) ∧ CP.Verify(srs,xpoly, πpoly)

Figure 3.3: The Compiler to Universal zkSNARKs.

In Section 3.6.3 we describe a simple and unoptimized CP-SNARK for R̂ for KZG, whose
security analysis is given in the AGM. The CP-SNARK uses classical random-point evaluation
for the polynomial equations and a vacuous proof of opening that can be extracted given the
algebraic representation. The extraction of the latter is successful, namely the representation
depends only on the element in the commitment key, only if the adversary exhibits a proof
of polynomial equation. Both the proof of polynomial equation and of opening are extracted
through the algebraic representations. Thus, unless the binding property is broken, when the
proof of evaluation holds the proof of opening can be extracted correctly.

3.6.2 The Universal zkSNARK
Let ΦSE be the standard (strong) simulation extractability policy. Namely, the policy checks
that the forgery of the adversary is a tuple (xΠ, πΠ) /∈ Qsim.

Theorem 3.6.1. Let CP be a compilation-ready CP-SNARK (cf. Definition 3.6.7). Let PIOP
be a PIOP for an indexed relation R that is state-restoration straight-line extractable (cf. Defini-
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tion 3.6.2), and bounded special honest-verifier zero-knowledge, where the technical condition of
Definition 3.6.4 holds and equipped with a commitment simulator for CP (cf. Definition 3.6.5).
Let Π be the zkSNARK compiled from PIOP using the compiler from Fig. 3.3. Then Π is
ΦSE-simulation-extractable.

We follow the classical compilation strategy where: for each of the r rounds, the zkSNARK
prover sends commitments of the PIOP oracle polynomials (along with a proof of knowledge)
and then computes the PIOP verifier’s challenges using Fiat-Shamir; in the last round, the
prover sends a CP proof that the PIOP verifier accepts, i.e., Eq. (2.2) holds w.r.t. all the
commitments sent earlier. Notably, this CP proof is produced using the statement and the
hash of the transcript as “message” for the signature of knowledge.

We briefly discuss how the properties of PIOP and CP play a role in the security of the
compiled zkSNARK Π. We recall that in the simulation-extractability experiment, we have an
adversary A who makes simulation queries for statements of its choice and eventually comes up
with a forgery, which is a statement-proof that is new and valid. The goal is to show that for
such adversary there is an extractor that outputs a valid witness with overwhelming probability.
Roughly speaking, we build this extractor by first extracting the committed oracle polynomials
from the CP “proof of knowledge” in the random oracle query of A in each round,12 and then
by running the PIOP extractor to obtain the witness.

For this extraction strategy to work, we need two conditions: (A) The “proof of knowledge”
extraction must be valid. (B) The zkSNARK extractor feeds the PIOP extractor with polyno-
mials that pass the PIOP verification equations. A technicality about relying on CP extraction
for (A) and (B) is that we actually have to make a reduction to the its policy-based simulation
extractability. In particular, this means that we have to turn A into CP adversaries that comply
with the policy Φ̂.

To obtain (A), we use the second property of Φ̂ mentioned above, which ensures a valid
extraction if the adversary later provides a valid proof of polynomial evaluation. This is however
the case for us, since a successful adversary must provide such proof.

For (B), we rely on the following observations. IfA produces a forgery for a new statement of
Π then the CP proof (aka signature of knowledge) must use a new message, and thus we can build
a CP adversary returning a new statement-proof pair. If A produces a forgery for a statement
queried to the simulation oracle, then by strong simulation extractability the proof must be new,
which means that: either the commitments in the transcript are different, or the commitments
are all the same but the “PIOP verifier” proof is different. In the former case, we get a different
transcript, which yields a CP forgery with a new message, as in the previous case. In the latter
case, the transcript is the same, and we get a CP forgery with the same message but fresh proof.
Notably, all the cases, the CP forgeries respect the degree-1 condition thanks to the compiler-
safe property of the PIOP. Finally, the reduction CP adversaries that we build satisfy the first
property of Φ̂ thanks to the algebraic verifier property of PIOP, which allows us to precompute
the instance-independent polynomials ṽ(k)

j , and to the programmability of the random oracle
that allows us to pre-sample the verifier’s challenges ρ⃗, define v(k)

j (X) = ṽ
(k)
j (X, ρ⃗), and later

program the random oracle to use these coins ρ⃗.

Proof. We prove the theorem assuming the commitments are not hiding. The adaption to
12Note, this avoids rewinding, since extraction is performed in the same moment when the adversary sends

the proof of knowledge through a RO call.
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hiding commitments is straightforward. We start showing the zero-knowledge simulator for Π.
The simulator is in Fig. 3.4. For the description of the simulator, we assume we can couple
the leakage function Fpoly, which defines the Fpoly-leaky zero-knowledge of the CP-SNARK,
with a function F̃poly that upon input the instance outputs the set Lx of evaluation points
necessary to compute a simulated proof. The zero-knowledge guarantees of the simulator come
from the zero-knowledge property of the PIOP, the zero-knowledge property of the CP and the
simulator commitment property of SCom (see Definition 3.6.5). Notice that S1 might abort if
(vk

i
,x, π̄1, . . . , π̄i) for some i was already queried to the random oracle. However, by simply

assuming that the first message of P has ω(log |F|) min-entropy then the event that the simulator
aborts happens with negligible probability.

S(0, ppG) :
srs, stCP ←$ CP.S(0, ppG)
µ← 0 // S1 queries counter

for j ∈ [q] do :
coms(j) ←$ SCom(0, ck)
ρ⃗(j) = (ρ(j)

1 , . . . , ρ
(j)
r−1)←$ Fr−1;

stS←(stCP, µ, (coms(j), ρ⃗(j))j)
return srs, stS

S(2, stS , s, aux) :
if (s, aux, a) ∈ QRO :

return a, stS
a←$ F
QRO ← QRO ∪ (s, aux, a)
return a, stS

S(1, stS , srs, (i,x)) :
stS ← (stCP, µ, (coms(j), ρ⃗(j))j)
coms← coms(µ)

π⃗1, . . . , π⃗r ←$ PIOP.S0(F, i,x, ρ⃗(µ); r)
(G(k), v(k))k∈[ne] ← V(F,x, ρ⃗(µ))
for k ∈ [ne] do : Ḡ(k)(X⃗)← G(k)(X⃗, π⃗)
M⃗i,x ← SCom(1, ck, |i|,x)
c⃗ = M⃗i,x · coms∥ck
parse c⃗ = vki, c⃗1, . . . , c⃗r

for i ∈ [r] do :
πopn,i, stCP ← CP.S1(stCP, (opn, c⃗i))
π̄i = (⃗ci, πopn,i, π⃗i)
trns← (vki,x, π̄1, . . . , π̄r)

xpoly ← (poly, trns, c⃗, (G(k), v(k))k∈[ne])
leak ← PIOP.S1(F, i,x, F̃poly(xpoly); r)
πpoly, stCP ← CP.S1(stCP,xpoly, leak)
for i ∈ [r − 1] do :

if ((vki,x, π̄1, . . . , π̄i),·,·)∈QRO :abort
QRO ← QRO ∪ ((x, π̄1, . . . , π̄i), ·, ρi)

stS ← (stCP, µ + 1, (coms(j), ρ⃗(j))j)
π ← (π̄1, . . . , π̄r, πpoly)
return π, stS

Figure 3.4: The simulator S for Π.

We define the extractor for Π for a given adversary AΠ.
We make some simplifying assumptions on the behavior of AΠ: (1) the adversary always

queries first the RO on a string that can be parsed as (i,x) before querying the simulation
oracle on the same string, (2) the auxiliary string auxE output by AΠ can be parsed as a list of
strings (si, auxi, sti)i and a string aux′E where for any i we have (si, auxi, sti) string is identical
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to the auxiliary input output at the i-th query of the adversary and (3) for any i the auxiliary
input of the i-th random oracle query of the adversary contains the full internal state of the
adversary. These assumptions are w.l.g. In fact, given an adversary AΠ that does not respect
these rules we can always define another adversary that runs internally AΠ, collects all the
necessary information to comply with (2) and (3), and moreover follows the rule (1).

Let Bi be a reduction to the simulation extractability of CP that runs AΠ (simulating the
oracles for AΠ using its own oracles and the code defined in Fig. 3.4) and sets its output to
be the i-th random oracle query of AΠ. For any i ∈ [q] let Ei be the extractor associated
to Bi (thanks to the Φ̂-simulation extractability of CP we can associate to Bi an extractor, in
Lemma 3.6.2 we describe Bi with more details, and we show that it complies with the Φ̂ policy).
Similarly, let Epoly be the extractor for the adversary Bpoly that runs AΠ (simulating the oracles
of AΠ using its own oracles and the code defined in Fig. 3.4) until completion, and isolates the
instance xpoly := (poly, trns, c⃗, (G(k), v⃗(k))k∈[ne]) and the proof πpoly in the forgery of AΠ, and
outputs all the auxiliary outputs that AΠ does.

We first set some notation:

• Let Pi be the indexes of the polynomials sent at the i-th round by the PIOP.

• Given a proof π for Π we define the RO-queries set of π be the set of string {(vk
i
,x), . . . ,

(vk
i
,x, π̄1, . . . , π̄r)}.

• We say that a proof π shares a simulated commitment c of proof π′ simulated by S if in
stS one can find m⃗1 ̸= 0⃗ and m⃗2 such that c = m⃗1∥m⃗2 · coms∥ck.

The extractor EΠ(xΠ, πΠ, auxE):

1. Parse auxE as the concatenation of a list (si, auxi, sti)i and aux′E , where (si, auxi, sti)
is the output of AΠ at the i-th query to the ROM and aux′E the remaining aux-
iliary information given by the adversary (namely, the auxiliary information
associated with its last output).

2. From πΠ derive the messages π̄1, . . . , π̄r and find the indexes qi such that sqi
=

(vk
i
,x, π̄1, . . . , π̄i).

3. If πΠ shares a simulated commitment with one of the simulated proofs then
return ⊥.

4. For i ∈ [r] run wi,opn ← Eqi
(srs, c⃗i, πopn,i, auxi) where π̄i contains both the

instance and the proof of opening and wi,opn = (p′j)j∈Pi
.

5. Run (pj)j∈[n] ← Epoly(srs,xpoly, πpoly, aux′).
6. If ∃i : p′i ̸= pi then return ⊥.
7. If ∃i ∈ [n] and j ∈ Pi : VerCom(ck, cj, p

′
j) ̸= 1 then return ⊥.

8. If ∃k : G(k)(X, p1(v(k)
1 (X)), . . . , pn(v(k)

n (X)), π1, . . . , πr) ̸≡ 0 then return ⊥.
9. Return EPIOP(i,xΠ, (pj)j∈[n]).

To analyze the success of the extractor we define a series of hybrid games. We start from
the first hybrid that is the Expsr

APIOP,PIOP(F) experiment for PIOP (see Definition 3.6.2) for an
adversary APIOP that we define next.
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underlineAPIOP:

1. Run simulator srs, stS ← S(0, ppG) and set QRO,Qsim empty sets.
2. Run AΠ(srs) and answer all the simulation queries of AΠ with S1.
3. Upon i-th query (si, auxi) from AΠ to S2:

(a) if si is in the RO-queries set of a simulated proof in Qsim then run S2 on
input si.

(b) Else parse si as a (partial) transcript trns = (vk
i
,x, π̄1, . . . , π̄r′) for r′ ∈

[r]; parse π̄j as (⃗cj, πopn,j, π⃗j); compute and parse as polynomials w ←
Ei(srs, c⃗r′ , πopn,r′ , auxi); find in SeenStates the state cvs = (i,x, π⃗1, {p1,i}i∥ρ1∥ . . .
∥π⃗r′−1, {pr′−1,i}i∥ρr′−1), set the verifier state to cvs, and send the message
(w, π⃗r′) to the PIOP verifier. Receive the challenge ρr′ , and program the
random oracle adding (si, auxi, ρr′) to QRO.

4. Eventually the adversary outputs a (valid) forgery (xΠ, πΠ). From πΠ derive
the PIOP transcript trns := (i,x, π̄1, ρ1, . . . , π̄r), and act as if A has queried
S1 with (trns, ·): i.e., let i be the index of RO query of the partial tran-
script (i,x, π̄1, ρ1, . . . , π̄r−1); as described in the previous step, find the cvs in
SeenStates associated with si, set the verifier state to cvs, extract the (last)
witness w and send (w, π⃗r) to the verifier. cvs and the last messages (w, π⃗r)
define a full transcript: this would trigger the verifier to perform the decision
phase of the PIOP and set the decision bit d of the game.

Let H0 be the Expsr
APIOP,PIOP(F). By the state-restoration knowledge extractability of PIOP:

Pr[H0] ∈ negl(|F|).

Consider H1 that additionally extracts (pj)j∈[n] ← Epoly(srs,xpoly, πpoly, aux′) and returns 1 if
∃k : G(k)(X, p1(v(k)

1 (X)), . . . , pn(v(k)
n (X)), π1, . . . , πr) ̸≡ 0 or ∃j : VerCom(ck, cj, pj) = 0.

Lemma 3.6.1. Pr[H1] ≤ Pr[H0] + ϵCP

Proof. We reduce to Φ̂-simulation extractability of CP. We define with more details the adver-
sary Bpoly that runs AΠ, and we define a policy Φ̂0 that samples parameters for Bpoly.

Policy Φ̂0(ppG)

1. Run S(0, ppG)
2. Parse stS = (stCP, 0, (coms(j))j, (ρ⃗(j))j).
3. Let Qv be an empty set. Let D be the maximum degree of the polynomials in

srs. For d ∈ [D]:

(a) let (ṽ(k)
j )j,k ← Ṽ(F, d) be the polynomials defined by the (non-adaptive)

algebraic verifier of PIOP (see Definition 3.6.1)
(b) add to Qv the polynomials ṽ(k)

j (X, ρ⃗i) : i ∈ [q], j ∈ [n], k ∈ [ne]

Next, we define the reduction Bpoly.
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Reduction Bpoly(srs, ppΦ̂)

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1

defined in Fig. 3.4 where the calls to CP.S1 are forwarded to the simulation
oracle of Bpoly.

3. Given the forgery ((i,xΠ), πΠ) output by AΠ, define the instance xpoly =
(poly, trns, c⃗, (G(k), v⃗(k))k∈[ne]) and the proof πpoly.

4. Return the forgery (xpoly, πpoly) and set the auxiliary input auxE as the adver-
sary AΠ does.

By inspection, if the forgery of AΠ passes the verification then forgery of Bpoly passes the
verification too. Moreover, by the (strong) simulation extractability game of AΠ we have that
((i,xΠ), πΠ) is not in the set of simulation proofs Qsim,Π of AΠ, thus the pair (xpoly, πpoly) is
not in the simulation proofs Qsim,poly of Bpoly. In particular, there are three cases:

1. If A never queried (i,xΠ) to its simulation oracle, i.e. xΠ is a “fresh” instance for Π, then
Bpoly never queried the simulator with xpoly (notice that xpoly contains xΠ in the message
trns).

2. Otherwise, A queried (i,xΠ) to its simulation oracle:

(a) For any simulated proof π′Π for (i,xΠ) the transcript of πΠ is different from the
simulated one. This implies that xpoly ̸= x′poly (for the same reason of above).

(b) There exists a simulated proof π′Π for (i,xΠ) such that the transcripts of the forgery
and of the simulated proof are equal. Since the forgery of AΠ is not in Qsim,Π then
the proofs πpoly ̸= π′poly.

By the property of the PIOP we have that there exists an index k such that for all j we have
v

(k)
j is not constant polynomial, thus the forgery of Bpoly meets the extractor policy.

Finally, by the definition of the simulator S in Fig. 3.4, the query to the simulation oracle
of Bpoly respects the simulator policy of Φ̂1. In fact, the simulator policy of Φ̂ matches the
constraint in Definition 3.6.5. Thus, the reduction Bpoly follows the policy Φ̂. On the other
hand, the distinguish event implies that the extractor fails, thus this would break the Φ̂-
simulation extractability of CP.

Let H2 additionally return 1 if ∃i, j : j ∈ Pi∧VerCom(ck, cj, p
′
j) ̸= 1, where qi is the index of

the random oracle query such that (sqi
, auxqi

, ρi) ∈ QRO, and wqi
= (p′j)j∈Pi

are the polynomials
extracted by Eqi

.

Lemma 3.6.2. Pr[H2] ≤ Pr[H1] + r · ϵCP

Proof. We prove through a series of r hybrids. Let H1,0 be the same as H1; moreover, let H1,i

be the same as H1,i−1, but that additionally returns 1 if ∃j ∈ Pi : VerCom(ck, cj, p
′
j) ̸= 1, where

qi is the index of the random oracle query such that (sqi
, auxqi

, ρi) ∈ QRO, and wqi
= (p′j)j∈Pi

are the polynomials extracted by Eqi
. Clearly, H1,r ≡ H2 (where r is the number of rounds of

the PIOP).
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We reduce again to Φ̂-simulation extractability of CP. We define the adversary B that runs
AΠ. The adversary B corresponds to the reduction Bqi

mentioned before. Additionally, we need
to define a policy Φ̂0 that samples the parameters for B, we set the policy identical to the one
used in Lemma 3.6.1.

Reduction B(srs, ppΦ̂)

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to simulation oracle, run the same strategy of S1

defined in Fig. 3.4 with the only difference that instead of calling CP.S1 it
makes a query to its simulator.

3. Parse the qi-th query (sqi
, auxqi

) to the RO of AΠ as a partial transcript where
π̄i := (⃗ci, πopn,i, π⃗i).

4. Continue running the adversary, parse the forgery output byAΠ as (π̄′1, . . . , π̄′r, πpoly).
Set x̃ := (poly, trns, c⃗, (G(k), v⃗(k))k∈[ne]) as the verifier would do.

5. Return the forgery ((opn, c⃗i), πopn,i), using as auxiliary information auxE ←
auxqi

and auxΦ ← (x̃, πpoly).

By inspection, if the forgery of AΠ passes the verification (both for poly-instance in the final
proof and for the opn-instance in the qi-th query) then B’s forgery passes the verification too.
Moreover, by the (strong) simulation extractability game of AΠ we have that ((i,xΠ), πΠ) is
not in the set of simulations Qsim of AΠ, thus the pair (x̃, πpoly) is not in the simulations of B
(cf. Lemma 3.6.1). By the property of the PIOP, there exists an index k such that for all j we
have v(k)

j is not constant polynomial, thus the forgery of B meets the extractor policy.
Finally, by the definition of the simulator S in Fig. 3.4, the query to the simulation oracle

of B respects the simulator policy of Φ̂1. In fact, the simulator policy of Φ̂ matches with
the constraint in Definition 3.6.5. Notice we are running the experiment for B with the same
extractor of Bqi

. However, the first three outputs of A and B are distributed equivalently (B
additionally outputs auxΦ), thus the same extractor Eqi

works either for Bqi
or for B.

Let H3 additionally return 1 if ∃i : p′i ̸= pi where (p′j)j∈Pi
are the polynomials extracted by

Eqi
and (pj)j∈[n] are the polynomials extracted by Epoly.

Lemma 3.6.3. Pr[H3] ≤ Pr[H2] + ϵCP.

Proof. The distinguishing event implies that we can define an adversary B that runs the Φ̂-
simulation extractability experiment for CP and finds a commitment c and two distinct poly-
nomials p and p′ such that VerCom(ck, c, p) = VerCom(ck, c, p′) = 113.Let D be the maximum
degree allowed by the commitment key, let x ∈ F such that p(x) ̸= p′(x) and consider the
following (false) statement for Rpoly (and in turn of R̂):

• For j ∈ [D + 1] set G(j)(X,X1, Xj) = (X1 − p(j))− (X − j)Xj. Namely, the polynomial
associated with formal variable X1 evaluates on p(j) at point j, and Xj is the witness.

13Intuitively, this breaks the binding property of the commitment scheme, however, the binding property does
not assume that the adversary can see simulated proofs thus we cannot reduce to it. Here, instead, we show
how forge a proof for an instance that is not in the language.
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• Set G(D+2)(X,X1, XD+2) = (X1 − p′(x)) − (X − x)XD+2. Namely, the polynomial asso-
ciated to formal variable X1 evaluates on p′(x) at point x, and XD+2 is its witness.

We can create a valid proof for such a statement using the prover of CP: the first d+1 equations
are proved using p and the polynomials pj(X) = (p(X) − p(j))/(X − j), while to prove the
last equation we use the witness p′. Here, we use the hypothesis that CP uses internally a
CP-SNARK for Rm-evl. The proof is for a statement that is not in the language, thus we break
the simulation extractability of CP.

Let H4 additionally return 1 if the forged proof shares a simulated commitment with a
simulated proof in Qsim.
Lemma 3.6.4. Pr[H4] ≤ Pr[H3] + ϵowf

Proof. We need to bound the probability that AΠ returns a forgery that shares a simulated
commitment with a proof in Qsim.

Let B be the same reduction described in Lemma 3.6.1: as shown before, if AΠ satisfies
the simulation-extractability policy then the reduction B satisfies the policy Φ̂. We notice
that the extractor of B extracts a witness for all the commitments in c⃗ in the forgery. Let
assume that the forgery shares a commitment with the i-th simulated proof for some i ∈ [q] and
coms← M⃗i,x ·(coms(i)∥ck) (in case the commitments are not homomorphic we assume that M⃗i,x

is the identity matrix). Since coms← M⃗i,x ·(coms(i)∥ck) there exists a row m⃗ of the matrix M⃗i,x

such that cj = m⃗ ·coms(i). Moreover, we have a valid opening for cj so VerCom(ck, cj, p). Notice
that a commitment function defines a one-way function; moreover, the simulated commitment is
sampled from a distribution that is computationally indistinguishable from a distribution that
samples random commitments. Thus, such an extractor would break the one-way property of
the commitment function.

Lemma 3.6.5. Pr[H4] = AdvΦSE-se
AΠ,S,EΠ

(λ)

Proof. We now show that the probability that H4 outputs 1 is equal to the probability that
the adversary AΠ wins the ΦSE-se experiment against EΠ. First, notice that the srs is generated
by S(0, ppG) in both experiments. Upon (valid) forgery ((i,xΠ), πΠ), we notice that:

• πΠ cannot share a simulated commitment with one of the simulated proofs (see Item 3)
because of the check introduced in Lemma 3.6.4. Thus, all the RO queries of AΠ that
constitute πΠ (namely the queries q1, . . . , qr) were forwarded to the challenger in Item 3b
(in particular, any of the query was already answerd by the programming of the RO by
the simulator S1). This implies that the complete transcript sent by APIOP is in the list
SeenStates.
On the other hand, the extractor EΠ does not abort at Item 3.

• ∀j ∈ [n], the polynomial pj extracted by Eqi
is equal to p′j extracted from Epoly and

VerCom(ck, cj, pj) = 1; this is ensured by the checks introduced in Lemma 3.6.2 and
Lemma 3.6.3. This implies that the extractor EPIOP in the Expsr

APIOP,PIOP in H3 is fed with
the same polynomials extracted by EΠ.

• Finally, the polynomial check on xpoly must be satisfied by the extracted polynomials pj

because of the check introduced in Lemma 3.6.1. Thus, if the proof πPIOP is valid, the
decision bit in the state-restoration game is 1.
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Having bound the probability that the adversary AΠ wins the ΦSE-se experiment against EΠ
concludes the proof.

3.6.3 The Compilation-Ready CP-SNARK in the AGM
To connect together Section 3.5 and the results of this section, we show a simple compilation-
ready CP-SNARK in the ROM based on batched KZG evaluation proofs (cf. Section 3.6.3).

Upon opn-instances x := (opn,x), the prover simply outputs an empty string (the verifier
is the obvious algorithm).

Upon poly-instances x := (poly,x), where x′ := (msg, c⃗, (Ḡ(k), v
(k)
1 , . . . , v(k)

n )k∈[ne]):

• Prove(ck,x = (poly,x′),w = (p⃗, o⃗)) :

1. Compute x∗ ← RO(x′).

2. Compute for any j, k the value x(k)
j ← v

(k)
j (x∗).

3. Let X := {x∗1, . . . , x∗m} be the set of the points x(k)
j for all k and j computed at the

previous step, and let Pi := {j : v(k)
j (x∗) = x∗i }.

4. For i ∈ [m], compute πm-evl,i ← Pm-evl(ck,xm-evl, (pj, oj)j∈Pi
) for the instance xm-evl :=

(x∗i , (cj, pj(x∗i ))j∈Pi
).

5. Output
(
πm-evl,i, (pj(x∗i ))j∈Pi

)
i∈[m]

.

• Verify(ck,x = (poly,x′), π)

1. Compute x∗ ← RO(x′).

2. Compute for any j, k the value x(k)
j ← v

(k)
j (x∗).

3. Let X := {x∗1, . . . , x∗m} be the set of the points x(k)
j computed at the previous step,

and let Pi := {j : v(k)
j (x∗) = x∗i }.

4. Parse π as
(
πm-evl,i, (yi,j)j∈Pi

)
i∈[m]

. For any j, k let ȳ(k)
j be the (claimed) evaluation

of the polynomial committed in cj on point v(k)
j (x∗) ∈ X , this value is equivalent to

yi,j for the index i such that v(k)
j (x∗) = x∗i .

5. Output 1 if and only if:
(a) ∀i ∈ [m] : Vm-evl(ck,xm-evl,i = (x∗i , (cj, yi,j)j∈Pi

), πm-evl,i) = 1
(b) ∀k ∈ [ne] : Ḡ(k)(x∗, ȳ(k)

1 , . . . , ȳ(k)
n ) = 0.

For a “PIOP verifier” statement, the prover RO-hashes the instance and obtains a random point
ξ, evaluates the polynomials v(k)

j (ξ) for any j and outputs the evaluations pj(v(k)
j (ξ)) together

with a batch evaluation proof for all of them. For a “proof of knowledge” statement, the prover
does not output an explicit proof element (we call this a vacuous proof ), and we rely on the
AGM to argue its extractability. The idea is that, for an algebraic adversary that produces an
alleged commitment c and its algebraic representation, we can find a way to open c, under some
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circumstances. For example, consider the adversary that, during the simulation-extractability
experiment, hashes (i.e., makes a random oracle query) the commitment c, and later includes c
in a “PIOP verifier” instance. Then the algebraic representation of c returned at hashing time
must coincide with the same polynomial extracted at forgery time, otherwise one can break
the standard binding of the commitment. Crucially, this scenario fits exactly the second part
of the policy Φ̂.

As for the third part of the policy, we notice that an attack similar to the mix-and-
match malleability attack mentioned in the introduction applies for our compilation-ready
CP-SNARK. For example, the adversary could ask a simulation for an instance that tests two
(fake) commitments on constant values defined by the v(k)

j , and then it can produce a forgery
which includes one of the commitments by copying part of the simulated proof. Intuitively,
this is why we require that the v(k)

j have degree at least 1: when evaluated on a fresh random
point ξ, a valid proof for pj(v(k)

j (ξ)) intuitively ensures that the prover knows pj

Definition 3.6.8 (Compilation-Ready Leakage Function). Let CPm-evl be Fm-evl-leaky zero-
knowledge. We define the “Compilation-Ready Leakage Function” F as the function that on
input opn-instances leaks no information, while on input poly-instances x := (poly,x′) and
witness w := (p⃗, o⃗) does the following:

1. Leak {(j, pj(x(k)
j ))}j,k

2. For any i ∈ [m] compute xm-evl,i from x′ and the leaked points (as the honest prover would
do), leak points Fm-evl(xm-evl,i, (pj, oj)i∈Pi

).
Theorem 3.6.2. Let CP be the CP-SNARK presented above. If CPm-evl is Fm-evl-leaky zero-
knowledge then CP is F -leaky zero-knowledge (see Definition 3.6.8).
Proof. We restrict our attention to poly-instances of the form x := (poly,xpoly), and with
associated witness wpoly, since the opn-instances can be trivially simulated.

We rely on the leaky zero knowledge simulator S ′ = (S ′0,S ′1,S ′2) of the scheme CPm-evl. In
particular, we define the simulator S = (S0,S1,S2), where S0 (resp. S2) invokes S ′0 (resp. S ′2)
on input xpoly. Upon input the statement x and the leakage (j, ỹi,j)i∈[m],j∈Pi

, y′1, . . . , y
′
m ←

Fpoly(xpoly,wpoly), S1 derives, for any i, the statement xm-evl,i from xpoly and (j, ỹi,j)i∈[m], then
it runs S ′1 on the derived statement and leakage y′i. The indistinguishability of the simulated
view from the real view can be proved with a hybrid argument where at each step we use the
leaky zero-knowledge of CPm-evl.
Theorem 3.6.3. Let ϵm-evl be the maximum winning probability of a PT adversary against
the Φm-evl-simulation extractability. Let E be the canonical extractor in the AGM, let S be the
F-leaky ZK simulators for CP (see Definition 3.6.8). For every Φ̂ ∈ Φ̂ (see Definition 3.6.6),
for every adversary A that makes at most Qsim simulation queries:

AdvΦ̂-se
CP,S,E,A(λ) ≤ (Qsim + 1)ϵm-evl + ϵAff-MDH + poly(d,λ)

|F|

Proof. We consider the canonical extractor given by the AGM guarantees, i.e., the extractor
that parses and outputs the polynomials in the instance as derived by the coefficients in the
algebraic representations.

We start by proving that for any algebraic adversary A whose forgery satisfies the extrac-
tor policy opn-forgery of Φ̂, there exists an algebraic adversary B whose forgery satisfies the
extractor policy poly-forgery of Φ̂.
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Lemma 3.6.6. For any algebraic adversary A there exists an algebraic adversary B such that:

AdvΦ̂-se
CP,A,S,E(λ) = AdvΦ̂-se

CP,B,S,E(λ)

Proof. The reduction B forwards all the simulation queries of A. When A outputs as a forgery
an opn-instance, B outputs as forgery the instance x and valid proof π contained in auxΦ.

We can assume that the representations of the commitments in the opn-forgery and the
representations of the same commitments in the auxiliary output auxΦ are the same; otherwise,
if we have two distinct representations for the same commitment, we break the binding of
KZG. Thus, the canonical extractor would output the same opening both when extracting the
opn-forgery (using the representations in auxE) and when extracting from auxΦ.

From now on, we parse x∗ as (poly,x∗poly), and we define π∗poly := π∗.
We define a hybrid experiment H1 that is equivalent to the Φ̂-simulation extractability

experiment, but additionally the hybrid experiment outputs 0 if the instance x∗poly in the
forgery of the adversary is in the set of simulation queries and the canonical extractor fails to
extract a valid witness.
Lemma 3.6.7. AdvΦ̂-se

CP,S,E,A(λ) ≤ Pr[H1] + ϵm-evl + ϵAff-MDH

Proof. The distinguishing event between the original experiment and H1 is that A returns a
valid “fresh” proof for a statement for which has seen a simulated proof which the extractor
cannot extract.

We reduce to Φm-evl-simulation extractability showing an adversary that produces a fresh
proof for a statement xm-evl for which has seen a simulated proof.

Consider the policy Φm-evl = (Φ̄0, Φ̄1) ∈ Φm-evl where Φ̄0(ppG) does the following:

1. Runs the policy Φ0(ppG) and obtains the set of vectors Qv.

2. Samples random x̃1, . . . , x̃q from F and computes Qx := {vj(x̃i) : v⃗ ∈ Qv}i,j.

3. Runs for i ∈ [Qsim] the sampler c⃗(i) ←$ D(ppG), where Qsim is the maximum number of
simulation queries made by A, and defines coms := (⃗c(i))i.

4. Outputs (Qx, coms).

We can assume w.l.g. that A queries the random oracle on x before querying the simulation
oracle on such an instance.

Consider the adversary B for the Φm-evl-simulation-extractability game that:

1. Run the adversary A on parameters ck and ppΦ := (Qv, coms)

2. Parse coms as (⃗c(i))i∈[Qsim] and keep a list Q′RO (initially empty) of the random oracle call
of A.

3. At the i-th random-oracle query on input (s, aux), store (s, aux, x̃i) in Q′RO, and forward
x̃i to the adversary A.

4. Upon (poly-instance) simulation query with a tuple (xpoly, auxpoly) from A:

• Find in auxpoly the leakage-input for the simulator ((yi,j)j∈Pi
, y′i)i∈[m].
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• Following the specification of the prover, query the simulation oracle with instances
xm-evl,i = ((⃗cj)j∈Pi

, x∗i , (yi,j)i,j∈Pi
), using y′i as the leakage for the i-th instance. Parse

them as a proof for poly.

5. Upon forgery (x∗poly, aux∗E , π∗ = (π∗m-evl,i, (yi,j)j)i):

(a) Abort if A never queried S2 with x∗poly.
(b) Let π̃poly := (π̃m-evl,i, (ỹi,j)j)i be the first simulated proof for x∗poly and let i∗ be

the index such that either (yi∗,j) ̸= (ỹi∗,j) or π̃m-evl,i ̸= πm-evl,i, return the forgery
(x∗m-evl,i∗ , aux∗E , π∗m-evl,i∗).

We need to show that if Φ̂ holds for A then the policy Φm-evl holds for B. Notice that, by
condition (1) of the semi-adaptive simulation queries property of Φ̂ and the definition of Φ0
the reduction B calls its own simulator on points in Qx, moreover conditions (2,3) of the semi-
adaptive simulation queries property of Φ̂ easily imply respectively the Commitment Check
and the Algebraic Consistency of Φm-evl (cf. Definition 3.5.4).

By inspection on the forgery, if the reduction B does not abort and there exists only one π̃poly

associated with the forged instance then B matches the predicate Φder
ext of the Φm-evl policy (cf.

Definition 3.5.5). We show that, because of condition (2) and the algebraic consistency check of
the semi-adaptive simulation queries property of Φ̂, there exists indeed only one simulated proof
π̃poly for each queried instance. In fact, from an adversary that asks twice the same instance to
the simulator, let say at query i and i′, we can derive that C⃗(i) ·⃗c(i)+F⃗ (i)·ck = C⃗(i′) ·⃗c(i′)+F⃗ (i′)·ck.
If the matrices C⃗(i) or C⃗(i′) are non-zero then we can break the D-Aff-MDDH assumption. On
the other hand, if both matrices are the zero matrix, we have that the commitments are fully
defined given the ck and thus by the algebraic consistency check the leakage for the simulated
proofs must be the same (and thus the proofs are the same).

The next hybrid experiment H2 is equivalent to H1, but additionally it outputs 0 if the
forgery of the adversary is valid and the canonical extractor fails to extract valid witnesses for
the m-evl-instances derived by x∗poly.

Lemma 3.6.8. Pr[H1] ≤ Pr[H2] + ϵm-evl
Qsim

Proof. We reduce again to Φm-evl-simulation-extractability We consider the same Φ̄0(ppG) as in
the previous lemma.

Consider the adversary B that:

1. Sample an index q∗ ←$ [Qsim].

2. Run the adversary A on parameters ck and ppΦ := (Qv, coms)

3. Parse coms as (⃗c(i))i∈[Qsim] and keep a list Q′RO (initially empty) of the random oracle call
of A.

4. At the i-th random-oracle query on input (s, aux):

• if i ̸= q∗ then store (s, aux, x̃i) in Q′RO, and forward x̃i to A
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• else parse s as (msg, c⃗, (G(k), v⃗(k))k), find k∗ such that ∀j : deg(v(k∗)
j ) ≥ 1, set aux′ :=

(aux, (v(k∗)
j )j∈[n]), and send the query (s, aux′) to S2, and forward a to the adversary

A

5. Upon simulation query with a tuple (xpoly, auxpoly) from A (as in the previous lemma):

• find in Q′RO the tuple (xpoly, ·, x̃)
• find in auxpoly the leakage-input for the simulator ((yi,j)j∈Pi

, (y′i))i∈[m]

• following the specification of the prover, query the simulation oracle with instances
xm-evl,i = ((⃗cj)j∈Pi

, x∗i , (yi,j)i,j∈Pi
), using y′i as the leakage for the i-th instance

6. Upon forgery (x∗poly, aux∗E , π∗ = (π∗m-evl,i, (yi,j)j)i)

(a) abort if x∗poly was not queried at the q∗-th random oracle query by A
(b) abort if ∀j ∈ [n] cj can be extracted as pj(X) and ∀i : pj(x∗i ) = yi,j,
(c) Let j∗, i be such that pj∗(x∗i ) the previous check does not hold. Return the forgery

(x∗m-evl,i∗ , aux∗E , π∗m-evl,i∗).

Let Abort be the event that B aborts. We notice that B could abort if one of two distinct
events happens. The first event Abort1 in Item 6a, and the second event Abort2 is the condition
in Item 6b. Notice that the distinguishing event between the two hybrids implies that Abort2
does not happen. Moreover, notice that when the reduction does not abort, it returns a valid
proof that either the canonical extractor cannot extract or such that the extracted polyno-
mial pj(x∗i ) ̸= yi∗,j∗ ; thus, if the policy Φm-evl is valid the reduction wins the Φm-evl-simulation
extractability experiment. Namely,

Pr
[
Φ̄1 ∧ ¬Abort|b = 0

]
≤ ϵm-evl

The event Abort1 only depends on the uniformly random index q∗ which is independent of the
view of the adversary A, i.e., Pr[¬Abort1] = 1

Qsim
. Notice that A wins the Φpoly-simulation

extractability experiment when ¬Abort2 happens and Φ1 holds. Thus, we only need to show
that, conditioned on ¬Abort, when the policy Φ1 holds w.r.t. the view of A then the policy
Φ̄1 holds w.r.t. the view of B. By construction of Qx and the answers to the random oracle
queries to A, if the simulation query of A has v⃗(k) ∈ Qv then the evaluation points derived are
in Qx. Moreover, it is not hard to see that the consistency check of the two policies match: in
particular, the conditions on matrix C⃗i (resp F⃗i) are equivalent to the consistent opening check
described in Item 3 of the extraction policy (the adversary is considered valid if its queries
form a solvable linear system of equations defined by the coefficients of the linear combinations
of commitments and the evaluation values). As for the forgery, in case of ¬Abort1, the entry
(x∗poly, aux′, a∗) is indeed in the list of random oracle checked by the m-evl-policy: in fact, it
is the only query. And, by construction, aux′ contains the polynomial v(k∗)

j∗ . Putting things
together we have the statement of the lemma.

The next hybrid experiment H3 is equivalent to H2, but additionally it outputs 0 if the
instance in the forgery of the adversary is valid and the canonical extractor fails to extract
valid witness, namely:

∃k : Ḡ(k)(X, p1(v(k)
1 (X)), . . . , pn(v(k)

n (X))) ̸≡ 0
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Lemma 3.6.9. Pr[H3] ≤ poly(d,λ)
|F| .

Proof. First notice that by the changes introduced in the previous hybrid the canonical extractor
must extract valid polynomials and pj(x∗i ) = yi,j for any i and j ∈ Pi. Also, x∗ is sampled after
all the polynomials extracted by the canonical extractor are defined.

Let d be the degree of Ḡ(k)(X, p1(v(k)
n (X)), . . . , pn(v(k)

n (X))); such value is polynomial in the
security parameter and the maximum degree for the commitments. If the verification passes
we have:

Ḡ(k)(x∗, p1(v(k)
1 (x∗)), . . . , pn(v(k)

n (x∗))) = 0
which, by Schwartz-Zippel lemma happens with probability d

F .
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Chapter 4

Non-malleable Real-World zkSNARKs
This chapter is extracted from "Real-world Universal zkSNARKs are non-malleable",
published in CCS 2024.

4.1 Introduction
In Section 1.3.1 we have seen that several recent results [GOP+22, DG23, GKK+22, FFK+23,
KPT23] prove the simulation extractability of existing zkSNARKs, e.g., Bulletproofs [BBB+18],
Spartan [DG23], Sonic [MBKM19], PLONK [GWC19], Marlin [CHM+20], Lunar [CFF+21] and
Basilisk [RZ21]. While some of these works, such as [GOP+22, DG23, GKK+22], prove the
SE of specific zkSNARKs, the approach taken by us in Chapter 3 and in a concurrent work
by Kohlweiss, Pancholi and Takahashi [KPT23] is to prove the simulation extractability of a
broad class of zkSNARKs, namely those built via the popular approach combining polynomial
interactive oracle proofs (PIOPs) and polynomial commitments. Furthermore, we have seen
that the works in the latter category are of particular interest as they give an SE recipe that is
generic, and thus it can benefit both existing and future schemes.

Given this state of the art, one may therefore ask if there is more to know about the SE
of universal zkSNARKs based on PIOPs. However, a closer look at the recent results reveals
two important gaps that do not allow concluding that the “real world” versions of schemes like
PLONK and Marlin are simulation extractable.
Theory vs. Implementation. The first gap lies in that the versions of these schemes that
offer the best performance and are eventually implemented in software libraries1 slightly depart
from the ones obtained through the PIOP-to-zkSNARK vanilla compilation. The difference
is in the last step. In order to maximize efficiency, they apply an optimization (that we call
linearization trick, also known as Maller’s optimization) [GWC19, OL] that leverages the homo-
morphic properties of the KZG polynomial commitment to reduce the number of field elements
in the proof. This optimization though changes the zkSNARK verification algorithm in a way
that escapes the SE security analysis we do in Chapter 3; a similar limitation holds for the
work of [KPT23].
Delegation phase. The second gap is that both the aforementioned frameworks capture
PIOPs in which some polynomials are evaluated on a random challenge chosen in the last

1E.g., https://github.com/dusk-network/plonk, https://github.com/arkworks-rs/marlin
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round. This is however not the case for Marlin and Lunar in which polynomials involving the
witness are evaluated on a challenge chosen before the last round, which is witness-independent
and needed only for verifier’s efficiency (what we call a delegation phase). For this reason, up
to now we can only argue the SE of small variants of Marlin and Lunar.

4.1.1 Our contributions

In this chapter, we resolve the two limitations above, and we give the first proof of SE of
the “real world” optimized versions of zkSNARKs which include PLONK, Marlin, Lunar, and
Basilisk. To achieve these results, we improve the techniques presented in Chapter 3 in several
ways:

(1) we formalize the compilation recipe based on the linearization trick, and we prove that,
under a set of minimal constraints, PIOPs can be compiled to SE zkSNARKs using the
linearization trick optimization;

(2) we refine the set of conditions to compile a PIOP to a zkSNARK, notably removing the
artificial one from Chapter 3 that prevented capturing Marlin and Lunar, and thus we
broaden the class of PIOPs that can be compiled in an SE manner;

(3) we simplify and generalize the conditions under which KZG can be proved simulation-
extractable.

As a byproduct of (1) and (3), we obtain the first security analysis of the linearization trick
optimization. We show potentially insecure instantiations as well as a characterization of the
conditions that make it secure even in terms of plain knowledge-soundness, in the AGM with
oblivious sampling (AGMOS) [LPS23].

Some of our definitions and techniques to prove SE may appear rather convoluted. We
would like to note that this is due to the wish of capturing SE for existing protocols, without
introducing any change, which is a challenging goal. As an example, in Chapter 3 we gave a
simple condition to safely compile a PIOP: that a witness-dependent polynomial is evaluated
on a random challenge chosen in the last round. However, this condition is not met by some
protocols, which in this work we eventually prove to be SE. This required us to elaborate more
complex conditions to explain why this is possible.

4.1.2 Organization of the chapter

We provide a more comprehensive explanation of our results in Section 4.2. In Section 4.4
we introduce a new computational assumption that is used to prove some of our results. In
Section 4.5 we extend the framework of policy-based simulation extractability of Section 3.4,
we formalize the linearization trick, and we prove its simulation extractability in the AGM.
Finally, we revisit the compiler from PIOPs to zkSNARKs, and we show that our compiler
effectively captures the optimized versions of popular schemes, such as Plonk and Marlin.
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4.2 A Technical Overview of Our Results

4.2.1 Revisiting PIOP-based zkSNARKs
As discussed in Section 2.4.3.3, a common approach to design zkSNARKs is to first construct
an information-theoretic protocol that achieves the desired functionality in an idealized model
and then remove the idealized component by compiling it into a zkSNARK via the use of a
computationally-secure primitive [Ish19, Ish20].

For the information-theoretic part, the most popular instantiation uses PIOPs [GWC19,
BFS20, CHM+20, Sze20, CFF+21]. However, the kind of queries that the verifier does may
vary: the simplest form of queries is the evaluation of polynomials (cf. [CHM+20, BFS20]), but
other models (cf. [GWC19, CFF+21]) consider more general queries that state the validity of
polynomial equations over a subset of the committed polynomials.

Our generalization: R-PIOP. To keep all these different notions of PIOP under the same
umbrella, in our work, we define the notion of R-PIOP where the verifier’s queries are instances
belonging to the oracle relationR. Roughly speaking, an oracle relation is an NP-relation where
the instances can refer to polynomial oracles [CBBZ23]. Under this definition, Marlin uses an
Revl-PIOP, where Revl is the relation that checks that a polynomial oracle evaluates to y at
point x, while PLONK [GWC19] and Lunar [CFF+21] are Rpoly-PIOPs, where Rpoly is the
relation that checks polynomial equations over polynomial oracles.

How to compile R-PIOPs? Unfortunately, zkSNARKs obtained by (mechanically) apply-
ing compilations from Revl-PIOPs are often suboptimal proof systems, due to the fact that one
should include in the proof a field element for each evaluation of a polynomial oracle. In partic-
ular, such compilations cannot leverage on the homomorphic property that many polynomial
commitments, such as KZG [KZG10], have. Thus, subsequent optimizations usually accom-
pany, and slightly change, the formally analyzed zkSNARKs. Instead, zkSNARKs compiled
from Rpoly-PIOPs can defer all the optimizations to the richer and more expressive (sub)-proof
systems for Rpoly.2 Yet, in practice, the latter proof systems are often reduced to the former
via a random point evaluation.

One of the most common optimizations, based on homomorphic commitments, is the so-
called linearization trick, sometimes referred as the Mary Maller’s optimization [GWC19, OL].
This optimization allows reducing the number of field elements in the final proofs. For example,
to prove that A(x)B(x) +C(x) = y holds for committed polynomials A,B,C, and values x and
y, one can prove that B(x) = yb for some yb, the verifier uses the homomorphism of the
polynomial commitment to obtain the commitment to the linearization polynomial L(X) :=
A(X)yb + C(X), and then the prover proves that L(x) = y, saving from naively evaluating all
the polynomials on x.

Building on this idea, PLONK [GWC19] describes a general recipe to compile an Rpoly-
PIOP to zkSNARK. The procedure first finds the minimal sub-set of polynomials that one
should evaluate in order to generate the linearization polynomial, and then it (batch) evaluates
all the polynomials in this subset and the linearization polynomial on a fresh random point.3

2On the downside, PIOPs based on polynomial equations, while at an informal level are easier to describe,
tend to have harder-to-parse full specifications.

3Such a random point is needed to reduce polynomial identity tests into equations over field elements, through
the Schwartz-Zippel Lemma.
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On the (in)security of the linearization trick. It turns out that this general recipe is not
always sound. In fact, the work of [LPS23] shows a counter-example to the extractability of
the linearization trick when using the KZG polynomial commitment. In particular, assume the
adversary does not know the representation of a group element c (using the lingo of [LPS23], c
is an obliviously sampled element), and sets the three polynomial commitments of the exam-
ple above as (cA, cB, cC) = (c, [b]1 ,−b · c). According to [LPS23], only the commitment cB is
extractable in the algebraic group model, namely the adversary can give an algebraic represen-
tation (under the basis of the elements of the SRS) only for cB. The linearization commitment
would be equal to cL = cb − bc = [0]1, which is independent of the evaluation point x. The
adversary can clearly provide an evaluation proof at x for cL, in spite of not knowing the poly-
nomials implicitly committed in cA and cC . In particular, this counter-example shows that we
can only extract the second of the three polynomials, under the (more realistic) algebraic group
model where the adversary gets to see group elements, besides the SRS, for which it does not
know their algebraic representations.

Here we generalize the attack of [LPS23] by considering the general case where, for commit-
ted polynomials (Ai, Bi)i∈[n], we want to prove that ∑i Ai(x)Bi(x) = y. In particular, we let
Rlin be the relation where the instances are tuples of the form ((ai, bi)i∈[n], x, y) such that for
field elements x and y, and any i, ai (resp. bi) is a commitment to Ai (resp. Bi) for which the
equation above holds. What we call (the zkSNARK for) the linearization trick for KZG is the
proof system that proves yi = Ai(x) for any i and then, using the homomorphic property of
KZG, generates the linearization commitment cL = ∑

i yi ·bi, and proves L(x) = ∑
i yiBi(x) = y.

Our generic attack works whenever the polynomials Ai are linearly dependent. The attacker
can set, for example, the commitments for the polynomials Bi to bi = αi · c, for an obliviously
sampled group element c and for carefully chosen values (αi)i such that ∑i αiAi(X) = 0. It
is easy to see that this adversary can generate a proof for ∑i Ai(x∗)Bi(x∗) = 0, for any x∗,
without knowing all the polynomials Bi.

We do not formalize this attack further as we use it mainly as a motivation for our construc-
tive results. Indeed, we use the intuition behind this counter-example in order to show that the
independence of the polynomials Ai is the missing piece of the puzzle to prove extractability
of (the zkSNARK defined from) the linearization trick. In particular, the correct recipe for the
general compiler proposed by [GWC19] should look not only for the sub-set that minimizes
the number of polynomials to open, but should also make sure that the polynomials in such a
sub-set are linearly independent. Luckily, the linear independence holds for the subset of poly-
nomials chosen for this optimization in PLONK.4 We obtain a formalization of this security
claim as a corollary of our results on the SE of KZG (see next section).

To summarize, our first set of results deals with proving that the linearization trick for
KZG is, under certain conditions, simulation-extractable. We do this in two main steps. First,
we consider the SE of KZG evaluation proofs in which the commitment is obtained by a
linear combination of other commitments (cf. Sections 4.2.2 and 4.5.1.1). Second, we analyze
the sufficient conditions on the Ai polynomials that make the linearization trick simulation
extractable (cf. Sections 4.2.3 and 4.5.2).

4Here we are simplifying: the verification in PLONK uses the linearization trick on a mix of polynomials that
comes both from the prover and the indexer (i.e., polynomials committed in the specialized reference string).
Indexer’s polynomials are trivially extractable as they are part of the statement, thus we can refine the property
of linear independence by focusing on the polynomials that are not coupled with indexer’s ones.
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4.2.2 Simulation Extractability of KZG for linearized commitments
In Chapter 3 we introduced the notion of policy-based SE, that, roughly speaking, ensures
that a zkSNARK is simulation-extractable whenever the adversary complies with a pre-defined
policy. This generalized notion of SE is convenient (and necessary) to formalize the simulation-
extractable properties of malleable schemes such as KZG.

We summarize the security game of SE for KZG in the algebraic group model. The adversary
obtains a list of obliviously-sampled commitments c1, . . . , cn where ci ∈ G1, and it has oracle
access to a simulation oracle that, upon input tuples (c, x, y), outputs simulated proofs π = (c−
[y]1)(s−x)−1. Additionally, the adversary has oracle access to a random oracle.5 Eventually, the
adversary outputs its forgery π∗ for an instance (c∗, x∗, y∗). Standard simulation extractability
would just require that the instance was never queried to the simulation oracle. Additionally,
the policy we define in Section 3.5 requires that:

1. The queries of the adversary do not create an algebraic inconsistency in terms of the
proved statements. For example, the adversary cannot obtain simulated proofs for (c, x, y)
and (c, x, y′) with y ̸= y′. This constraint is strictly necessary to prove SE for KZG.

2. The evaluation points x for the simulation queries belong to an arbitrary, but fixed ahead
of time, set Qx. This property is called semi-adaptive queries.

3. The group elements c asked in the simulation queries could not be (algebraically) derived
using previously obtained simulated proofs.

4. The forgery’s evaluation point x∗ must be random and independent of c∗. To enforce this,
we check that x∗ is derived by applying the random oracle to a string that contains an
encoding of c∗.

In this chapter, we substantially simplify the policy above by removing the second and third
constraints. Besides providing a cleaner and simpler notion of security, removing these con-
straints has two extra benefits: Removing the second constraint allows proving the PIOP-to-
zkSNARK compiler secure in the non-programmable random oracle model; removing the third
constraint allows extending the PIOP-to-zkSNARK compiler to work with commit-and-prove
relations (namely, the relation proved by the zkSNARK can have commitments as part of the
instance). One limitation of our technique to remove the second constraint is that we need to
make a stronger cryptographic assumption than the q-SDH assumption that we call one-more
q-SDH assumption. This assumption additionally provides an oracle that can be adaptively
queried on field element x and (small) natural number i and returns [(s− x)−i]1. We show that
the one-more q-SDH assumption holds in the generic group model and that we can reduce a
non-adaptive version of the one-more SDH to the plain q-SDH assumption.

Moreover, we generalize the fourth constraint. Specifically, we change the constraint by
allowing c∗ to be a commitment to a linearization polynomial. To do so we check that x∗ is
derived from the random oracle with inputs commitments (bi)i and polynomials6 (Ai)i and
that c∗ = ∑

Ai(x∗)bi. Proving SE using the latter generalization turns out to be the necessary
5This is not strictly necessary, and it could be modeled differently. However, it is a convenient model since

the PIOP-to-zkSNARK compiler uses the Fiat-Shamir transformation.
6Technically, we treat these latter polynomials as auxiliary information that the adversary must “declare”

before seeing x∗.
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heavy lifting to perform in order to, then, show that the linearization trick is (policy-based)
simulation-extractable, as summarized in the following theorem.
Informal Statement of Theorem 4.5.1. The evaluation proof of KZG polynomial commit-
ment is (policy-based) simulation-extractable in the algebraic group model under our simplified
and generalized policy where the forgery can contain a commitment to a linearization polyno-
mial. The obliviously-sampled commitments c1, . . . , cn not only allow to give an interesting
notion of SE in the algebraic group model, they also naturally extend our model to include the
algebraic group model with obliviously-sampled elements, as considered in [LPS23]. For this
reason, by proving SE of the linearization trick for KZG w.r.t. this new set of constraints, we
can derive the following Corollary by considering the subclass of adversaries that do not query
the simulation oracle.

Corollary 4.2.1. PLONK and Marlin are knowledge-sound in the AGMOS.

4.2.3 Simulation extractability of the linearization trick
Unfortunately, when the adversary can make simulation oracle calls, the condition of linear
independence, sufficient and necessary to restore the (plain) knowledge extractability of the
linearization trick, is not sufficient. In fact, consider an adversary, holding an obliviously
sampled group element c, that asks for a simulated proof on (c, 0, 0), namely a proof that
the polynomial committed in the commitment c evaluates to 0 at point 0. Let π = c/s be
the simulated proof. The adversary can generate an instance for Rlin that is not extractable
even if the polynomials Ai are linearly independent. It could set the polynomials A1(X) = 1
and A2(X) = −X, thus (cA1 , cA2) = ([1]1 , [−s]1), and then sets (cB1 , cB2) = (c, π) as the
(unextractable) commitments to the polynomialsB1 andB2 respectively. Now, for any arbitrary
x∗ it can generate a forgery, by setting the forged proof π∗ to c/s. Its validity follows from the
fact that 1 · c − x∗c/s = (s − x∗)c/s. The reason why this attack works is that KZG proofs
and KZG commitments belong to the same domain; thus a proof can be reinterpreted as a
commitment. Through this lens, the simulation oracle allows the adversary to push down the
degree of the unextractable polynomials. Looking at the counter example from the perspective
of formal polynomials, we have that:∑

i=1,2
Ai(X)Bi(X) = A1(X) · c + A2(X) · c

X
= A1(X) · c + A2(X)

X
· c = 0.

The problem is that, while A1 and A2 are linearly independent, the polynomials A1(X) and
A2(X)/X are not so.

As our technical contribution, we show that higher-degree linear independence between the
polynomials Ai is necessary and sufficient to obtain SE of the linearization trick for the KZG
commitment scheme. In particular, instead of defining independence of the polynomials Ai as
the condition ∑

αiAi ̸= 0 for any choice of αi ∈ F, we define their independence w.r.t. any of
αi ∈ F≤ν [X], for a parameter ν ∈ N.

It remains to understand how to set such a parameter ν. To do so, we define a notion
of level for proofs of proofs that, roughly speaking, indicates how many times the adversary
sequentially queried the simulation oracle on an obliviously sampled group element or elements
algebraically derived from it. For example, the level of an obliviously sampled element is zero,
the level of a proof on it is one, and the level of a proof of a proof could possibly increase to



4.2. A Technical Overview of Our Results 81

two if we queried twice on the same evaluation point, or remain the same otherwise7, and so
on.
Informal Statement of Theorem 4.5.2. The linearization trick for KZG polynomial
commitment is (policy-based) simulation-extractable in the AGM under our simplified and gen-
eralized policy and assuming that the extracted polynomials A1, . . . , An are independent for a
parameter ν and the maximum level reached by simulated proofs queried by the adversary is
smaller or equal to ν.

The above theorem completes the set of results that we need to obtain SE when instantiating
the PIOP-to-zkSNARK compiler with KZG. Next, we address the SE requirements at the PIOP
level.

4.2.4 Capturing PIOPs with delegation phase
The work of [FFK+23] showed that only a subset of all the PIOPs can be compiled to SE
zkSNARKs. For example, if we take a PIOP for the product relation R×R which, internally,
sequentially runs two instances of a PIOP for R, we can incur copy-paste attacks that re-use
a simulated proof for the first instance in R and honestly prove the knowledge for the second
instance. To avoid these pathological cases, [FFK+23] introduced the notion of compilation-
safeness that gives a sufficient condition for a PIOP to be compiled to SE zkSNARK. In a
nutshell, a PIOP is compilation-safe if it has a witness-dependent last round. Here, by “witness-
dependent round”, we mean that the polynomials sent at such a round store information that
depends on the witness and are necessary to extract the full witness at the PIOP level.

However, Marlin [CHM+20] and other proof systems [CFF+21, RZ21] based on Checkable
Subspace Sampling Arguments [RZ21] are not compilation-safe. They have a two-phase algo-
rithm for the prover where the first phase is witness-dependent, while the second phase, which
we call delegation phase, is witness-independent, and in particular is performed to enable suc-
cinct verification. For PIOPs with delegation, we need a more careful compilation strategy. To
avoid copy-paste attacks that would copy the witness-dependent transcript from a simulated
proof and compute a fresh witness-independent suffix for the forgery, we need to make sure that
(1) the polynomial oracles sent during the delegation phase are committed using a deterministic
commitment and that (2) the delegation phase is unique at the PIOP level, namely, there is
only one possible answer that any malicious prover for the PIOP can send in the delegation
phase, once fixed the messages of all the previous rounds8. With this characterization of PIOPs
we can prove the following theorem:
Informal Statement of Theorem 4.7.1. PIOPs with delegation phase can be compiled
to simulation-extractable commit-and-prove zkSNARKs with the linearization trick optimiza-
tion. Also, security holds in the algebraic group model with oblivious sampling and in the
non-programmable random oracle assuming the one-more q-SDH assumption.

In the informal theorem above we swept under the rug many details. In particular, the
reader may wonder about the connection of the independence parameter ν for the security of
the linearization trick and the requirements for the compilation above. What we show in the

7Briefly, the reason why the level does not increase in this case is because the rational function 1/((X −
x1)(X − x2)) is in the linear span of (X − x1)−1 and (X − x2)−1.

8For example, Marlin compiled using hiding KZG, or with FRI-based polynomial commitments, is provably
not strong simulation extractable, while it could still be proved weak simulation extractable.
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proof of the compiler is that the parameter ν can be kept very low. In fact, the reduction from
SE zkSNARK to the SE of the linearization trick (obliviously) samples fresh commitments for
each simulation query made by the adversary and, assuming that the PIOP is zero-knowledge,
the reduction needs to query (linearization trick) simulated proofs only for this fresh batch
of commitments, thus bounding the level of proof of proofs to, at maximum, the number of
evaluations needed by a single execution of the PIOP.

In Section 4.6.4 we show that PLONK and Marlin have PIOPs fulfilling our requirements.
Combining this with the theorem above, we obtain our main results on the SE of these schemes.

4.3 Preliminaries
We start by defining the notion of ν-independent polynomials.

Definition 4.3.1. Let A = {Ai}i∈[n] be a set of polynomials in F[X] and ν ∈ N. We say that
A are ν-independent polynomials if ∀(αj)j ∈ F≤ν [X]: ∑j αjAj(X) ̸= 0.

Lemma 4.3.1. Let J ∈ N, and let {xj}j∈[J ] ⊂ Fq, (νj)j∈[J ] ∈ NJ , ν∗ = ∑
j νj and let S :=

Span({1}∪
{
(X − xj)−k

}
j∈[J ],k∈[νj ]

). Consider the function ϕ with domain S that maps rational
functions Ω to polynomials Ω ·∏j(X − xj)νj . The function ψ maps is a morphism with image
the set F≤ν∗ [X].

Proof. First, notice that any element v ∈ S can be written as a linear combination of the
form α + ∑

j,k βj,k(X − xj)−k. It holds that ψ carries over the basis since ψ(v) = ψ(α +∑
j,k βj,k(X − xj)−k) = αψ(1) + ∑

j,k βj,kψ((X − xj)−k). The only thing left to prove is that
ψ(1) ∪ ψ((X − xj)−k) is indeed a basis for F≤ν∗ [X]. We notice that of ψ((X − xj)−k) is of the
form nj,k(X) := (X − xj)νj−k ∏

j′ ̸=j(X − x′j)νj′ , and ψ(1) is simply n(X) := ∏
j(X − xj)νj . To

conclude the proof, we show that these polynomials are linearly independent. Given the fact
that they are ν∗ + 1 polynomials of degree at most ν∗, this is equivalent to prove that they
span F≤ν∗ [X].

Let f(X) := αn(X) + ∑
j,k αj,knj,k(X). We need to prove that f(X) ≡ 0 if and only if

α = αj,k = 0. For all j, it must be that f(xj) = 0. We have that for any xj: f(xj) =
αn(xj) +∑

j,k αj,knj,k(xj) = αj,νj

∏
j′ ̸=j(xj −xj′), which is equal to 0 if and only if αj,νj

= 0. We
can rewrite f(X) as:

f(X) = αn(X) +
∑

j,k≤νj

αj,k≤νj
nj,k(X) = f ′(X)

∏
j

(X − xj)

where f ′(X) is equal to:

α
∏
j

(X − xj)νj−1 +
∑
j,k

αj,k(X − xj)νj−k−1∏
j′

(X − xj′)νj′−1

Note that if f(X) ≡ 0, also f ′(X) ≡ 0. We can recursively apply the same argument, proving
that all the coefficients αj,k = 0, for all k > 0. In the final step, we can write f(X) as
α
∏

j(X − xj) which is equal to 0 if and only if α = 0.

RO transcript. In our work, we often need to enforce that a point x is random and
independent w.r.t. a bunch of elements. To capture this scenario, we check that x is derived
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by applying the random oracle (RO) to a string that either (i) contains an encoding of the
elements or (ii) the output of another RO query that satisfies the first condition, and so on.
We use the shortcut (x1, . . . xn; y1, . . . , ym) →RO a to indicate that there is a list of tuples
(s1, aux1), . . . , (sk, auxk) and a list (ai)i∈[k−1] such that

1. ∀i ∈ [k − 1] : RO(si, auxi) = ai, and RO(sk, auxk) = a

2. ∀i ∈ [k − 1] : ai is a substring of si+1

3. ∀j ∈ [n], ∃i ∈ [k] : xj is a substring of si

4. ∀j ∈ [m], ∃i ∈ [k] : yj is contained in auxi

4.4 The OMSDH Assumption
Definition 4.4.1. The non-adaptive n-one-more d-strong DH assumption holds for a bilinear
group generator GroupGen if for any set Qx of cardinality less or equal to n, and for every
PPT adversary whose queried points belongs to Qx, namely, for the class of adversaries whose
query points are chosen independently of the randomness of the experiment, the advantage
Adv(n,d)-OMSDH

GroupGen,A(λ) is negligible.

The following theorem shows that the non-adaptive OMSDH assumption is equivalent to
the SDH assumption.

Theorem 4.4.1. For any GroupGen, any n, d ∈ N and a bound L, for any Qx ⊂ F of cardinality
poly(λ) and for any PPT adversary A there exists a PPT adversary B such that:

Adv(n,d)-OMSDH
GroupGen,A(λ) = Adv(n2+d+1)-SDH

GroupGen,B (λ).

Moreover, let QA the query made by an adversary A. For any m ∈ N, for any PPT A such
that max{i : (x, i) ∈ QA} ≤ m:

Adv(n,d)-OMSDH
GroupGen,A(λ) = Adv(nm+d+1)-SDH

GroupGen,B (λ).

In the proof, we define a reduction to the SDH assumption and whose simulation strategy
works, similarly to [FFK+23, TZ23], only for queries on the points Qx.

Proof. Let m be (an upper bound to) the maximum power i queried to Os and let q′ :=
nm + d + 1, notice that the worst case is m = n. We show a reduction B to the q′-SDH
assumption.
B takes as input srs′ ← (

[
(si)i∈[0,q′]

]
1
, [1, s]2) and defines the new SRS:

srs←
([

(p(s)si)i∈[0,d]
]

1
, [1, s]2

)
where p(X) := (X − xr)

∏
x∈Qx

(X − x)n and xr is a random point. In particular, the group
generator [1]1 given to the adversary is randomized (and equal to [p(s)]1 in the basis of the
reduction).
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The reduction can easily answer, for any xj ∈ Qx and any i ≤ m, when the adversary
queries the oracle Os with (xj, i): it just computes z ← [p(s)(s− xj)−i]1, that is a valid output
since e(z, [s− xj]i2) = [1]T .

Finally, notice that the forgery for A is [p(s)/(s− x∗)]1. If we compute the Euclidean
division between polynomials we obtain q(X) and r such that:

p(X)
(X−x∗) = q(X) + r

X−x∗ .

Noticing that x∗ ̸∈ Qx implies, by construction of p(X), that x∗ does not divide p(X), then
r ̸= 0. Therefore, the forgery of the reduction B is set to (y − [q(s)]1)r−1.

Hereafter, we show that the OMSDH assumption holds in the generic bilinear Maurer’s
version of the GGM [Mau05, ZZ21], in which an adversary can access elements from the groups
G1, G2 and GT only via abstract handles. These are maintained by the challenger in lists L1,
L2, and LT , which correspond to the three groups. Similarly to [BFHK23], we consider the
variant proposed by Zhandry [Zha22], where the adversary cannot choose the handle where the
result is stored nor access handles not explicitly given as an oracle reply.
One-more d-SDH in the Maurer’s GGM. The list L1 initially contains the handles to the
elements 1, Z, . . . , Zd, and the list L2 contains the handle to the elements 1, Z. The challenger
samples z ←$ Fq as the solution: the goal is to prove that z remains information-theoretically
hidden from the adversary. Since the OMSDH assumption is interactive, we also give the
adversary access to the oracle Os, and the handles returned by this oracle are stored in the list
Ls.

The adversary is granted access to three types of oracles:

Group Oracles: for i ∈ {1, 2, T}, the oracle Oi takes as input two handles h1, h2 ∈ Li for
polynomials P1(Z), P2(Z) and outputs a handle h for the polynomial P1(Z) + P2(Z); Li

is accordingly updated with the handle h.

Paring Oracle: the oracle Oe on input two handles h1 ∈ L1 and h2 ∈ L2 for P1(Z) and P2(Z),
outputs the handle hT to the element P1(Z) · P2(Z) and updates LT accordingly.

SDH Oracle: The oracleOs takes as input a pair (x, i) and returns and handle hs for (Z−x)−i,
updating Ls accordingly.

Following the standard argument in the GGM, we need to bound the probability that the
so-called collision event E occurs, namely that there exist two handles h1, h2 that point to two
distinct polynomials P1(Z) and P2(Z) and such that P1(Z) ̸= P2(Z), but P1(z) = P2(z).

Definition 4.4.2. We say that the n-one-more d-SDH assumption is secure in the Maurer’s
bilinear GGM if for any no-uniform PT adversary A with oracle interfaces described above
triggers the collision event with almost negligible probability in λ.

Theorem 4.4.2. The n-one-more d-SDH assumption is secure in the Maurer’s bilinear GGM.

Proof. We notice that any no-uniform PT adversary for the OMSDH assumption in the GGM
is inherently non-adaptive. In fact, if we run twice A then it would output the same queries
to its SDH oracle, unless in one of the executions the collision event happens, in that case, the
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ExpΦ-se
A,S,E(λ)

ppG ←$ GroupGen(1λ)
ppΦ ←$ Φ0(ppG)
(srs, stS)← S(0, ppG)
(x, π, auxE , auxΦ)←AS1,S2(srs, ppΦ)
wF ← E(srs,x, π, auxE)
view← (srs, ppΦ,Qsim,QRO,Qaux)
bΦ←Φ1((x, π), view, auxΦ)
bV ←VerifyS2(srs,x, π)
bE←∀w : F(w) ̸=wF ∨ (pp,x,w) /∈R
return (bΦ ∧ bV ∧ bE)

S1(x, aux)
π, stS←S(1, stS ,x, aux)
Qsim←Qsim∪{(x, aux, π)}
return π

S2(s, aux)
if ̸ ∃aux, a : (s, aux, a)∈QRO :

a, stS ← S(2, stS , s, aux)
QRO←QRO∪{(s, aux, a)}

return a

Figure 4.1: The (Φ,F)-SE experiments in ROM.

set of queries made by A in one execution is a subset of the set of queries made by A in the
other execution.

Finally, by the composition lemma of the AGM [FKL18, Lemma 2.2], by Theorem 4.4.1 and
since the SDH assumption holds in the Maurer’s GGM, the theorem follows.

4.5 Simulation-Extractable CP-SNARKS in the AGM
We extend the definitional framework of Section 3.4 to the F -extractability setting, introduced
by [BCKL08], where the extractor extracts a function of the witness. Notice that the simulation
policy may depend on the function F . Clearly, when F is the identity function, we obtain the
policy-based notion of simulation extractability of Definition 3.4.4. We define the policy-based
SE game in Fig. 4.1. In the figure, the extraction policy Φ takes as input the public view of the
adversary view (namely, all the inputs received and all the queries and answers to its oracles).
The set Qsim is the set of queries and answers to the simulation oracle. The set QRO is the
set of queries and answers to the random oracle. The set Qaux is the set of all the auxiliary
information sent by the adversary (depending on the policy, this set might be empty or not).
All these sets are initially empty and stored in the state of the simulator. The oracles S1 and
S2 deal respectively with the simulation queries and the random oracle queries of A.

Definition 4.5.1 (Φ-Simulation F -extractability). A NIZK Π for a relation R and simulator
S is (Φ,F)-simulation extractable in the SRS model if for every PPT adversary A there exists
an efficient extractor E such that the following advantage is negligible in λ:

AdvΦ-se
Π,A,S,E(λ) := Pr

[
ExpΦ-se

Π,A,S,E(λ) = 1
]

Moreover, given a family of policies Φ and a family of functions F , we say that a NIZK Π is
(Φ,F)-simulation-extractable if Π is (Φ,F)-simulation-extractable for any Φ ∈ Φ and F ∈ F .
We say that Π is Φ-simulation-extractable if Π is (Φ, id)-simulation-extractable and id is the
identity function.
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4.5.1 Simulation Extractability for KZG-based CP-SNARKs
We specialize the notion introduced in the previous section for CP-SNARKs based on the KZG
commitment scheme. First, we specialize the definition of policy-based SE to the algebraic
group model.

Definition 4.5.2 (Simulation extractability in the AGM). Let Π be a NIZK for a relation
R with a simulator S. Π is (Φ,F)-simulation-extractable (or simply (Φ,F)-SE) if there ex-
ists an efficient extractor E such that for every PPT algebraic adversary A, the advantage
AdvΦ-se

Π,A,S,E(λ) ∈ negl(λ).

KZG-based CP-SNARKs. We recall that the KZG commitment scheme allows for simple
and efficient evaluation proofs which, in the framework of [CFQ19], is a CP-SNARK for the
relation Revl((c, x, y), f) = 1 if and only if f(x) = y ∧ c = [f(s)]1. Informally, we say that a
CP-SNARK is KZG-based if it internally calls, implicitly or explicitly, the CP-SNARK CPevl

defined in the previous paragraph. This definition is rather informal, thus, we give below a
formal notion that includes all the KZG-based CP-SNARKs.

Definition 4.5.3 (KZG-based CP-SNARK). We say that CP is KZG-based if CP is a CP-
SNARK (for some relation R and) for the KZG commitment scheme, where: the proofs can be
parsed as vectors of elements in G1 and F, and the verification on (x, π) consists of equations
of the form: ∑

i e(xi, [pi(s)]2) +∑
i e(qi, [p′i(s)]2) = [p′′(s)]T

where (xi)i are the G1-elements of the instance x, (qi)i are the G1-elements of the proof π, and
the (linear) polynomials pi, p

′
i and p′′ are functions of the instance x, the proof π, and possibly

of the random oracle.

Algebraic Consistency. In Definition 3.5.1 we defined a necessary property to achieve ex-
tractability in the presence of a simulation oracle for any KZG-based SNARKs. The property
is motivated by the generalization of the simple attack described in Remark 3.5.1 and that we
briefly recall. If for a commitment c an adversary is given two simulated KZG evaluation proofs
π1, π2 on the same evaluation point x and for two different evaluation values y1 and y2, by the
homomorphic property of KZG, the adversary can forge an evaluation proof on the statement
((α+β)c, x, αy1 +βy2) by setting the proof απ1 +βπ2. This attack can be generalized whenever
the adversary can leverage algebraic inconsistencies provided by simulated proofs, as we explain
hereafter.

Let A⃗ ∈ F[X]m×n, and let b⃗ ∈ F[X]m. We have that (A⃗∥⃗b) describes a linear system of
polynomial equations that admits a solution if there exists a vector z⃗ ∈ (F[X])n such that
A⃗ · z⃗ = b⃗.

Definition 4.5.4 (Algebraic Consistency). Let Π be a KZG-based CP-SNARK. Let view be the
view of A at the end of the SE game ExpΦ-se

Π,A,S,E for an adversary A. We say that the view view
is algebraic consistent if the linear system S of polynomial equations, that we describe next,
admits a solution.

Let coms be the list of simulated commitments in ppΦ, where coms := (ck)k and ∀k : ck ∈ G1,
and proofs be the list of simulated proofs proofs := (πk)k (where πk := (qk,j)j, y⃗k and ∀k, j : qk,j ∈
G1, yk,j ∈ F) included in the view view. We assign to each simulated commitment ck in view



4.5. Simulation-Extractable CP-SNARKS in the AGM 87

a formal variable (defining a polynomial) Zk, similarly we assign to each G1-group element
of the simulated proofs qk,j formal variables (defining polynomials) Qk,j ∈ F≤d[X]. For each
simulation query we define new equations derived by the verification equations of Π and from
the algebraic representations of the instances queried to the simulation oracle. In particular,
for the k-th simulation query with instance xk and whose G1-elements are (xk,j)j and simulated
proof πk, we can associate the polynomials of the verification equation pk,i, p

′
k,i and p′′k, and we

add the following equation to the linear system of polynomial equations S:∑
i

(
fk,i(X) + ⟨c⃗k,i, Z⃗⟩+ ⟨o⃗k,i, Q⃗⟩

)
pk,i(X) +∑

i Qk,i · p′k,i(X) = p′′k(X)

where Z⃗ is the vector of all variables Zj for any j and Q⃗ is the vector of all the variables Qi,j

for any i, j, and the algebraic representation of xk,i is (f⃗k,i, c⃗k,i, o⃗k,i) and fk,i(X) = ∑
j(f⃗k,i)jX

j.

As a concrete example, for the KZG-based CP-SNARK CPevl, from the k-th simulation
query with instance (c, x, y) we can derive and add to the linear system of polynomial equations
the equation:

(f(X) + ⟨c⃗, Z⃗⟩+ ⟨o⃗, Q⃗⟩)− y −Qk(X − x) = 0
where c = [f(s)]1 + ⟨c⃗, coms⟩ + ⟨o⃗, proofs⟩. Notice that once we have computed a solution for
S, the linear system of polynomial equations, we can represent it in a reduced form.

Definition 4.5.5 (Reduced solution). Given a solution (z⃗, q⃗) for a linear system S defining
the algebraic consistency of SE experiment (see Definition 4.5.4), we say that z⃗ is its reduced
solution.

Given a reduced solution for S, it is possible to determine the (non-rational) polynomials
qi(X). In fact, once we assign the values for the variables Z⃗ to z⃗, the linear system has |proofs|
variables and |proofs| (independent) equations, thus admits one solution.

4.5.1.1 Strengthening the simulation extractability of KZG

In Chapter 3, KZG was proved simulation-extractable under a semi-adaptive policy. The main
limits of that policy are that the adversary can query simulated proofs on instances (cj, xj, yj)
where only the evaluation values yj can be adaptively chosen. Instead, the evaluation points
xj must be selectively chosen independently of the commitment key, and the commitments cj

cannot depend on the simulated proofs. In this chapter we prove that KZG achieves simulation
extractability in AGM and RO:

1. under q-SDH assumption, for a semi-adaptive policy more flexible than the one in Chap-
ter 3

2. under the OMSDH assumption, for a fully adaptive policy.

We describe our extraction policy. First, we notice that to prove simulation extractability
for the KZG-based CP-SNARK CPm-evl (and in general for any KZG-based CP-SNARK), we
can consider the (stronger) SE experiment where the simulation oracle returns simulated proofs
for CPevl. In fact, we can consider the reduction that, at any simulation oracle call for CPm-evl

from the adversary, would first call the simulation oracle for CPevl and then assemble a valid
simulated proof for CPm-evl.
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To enable the adversary to ask simulation proofs for commitments c whose representation
depends on previously obtained simulated proofs (what we call a proof of a proof ), we need to
introduce the following definition.

Definition 4.5.6 (Nesting level of a proof). Let view be the view of an adversary at the end of
the SE game for a KZG-based CP-SNARK, and let x1, . . . , xn be the list of all the evaluation
points in the simulation queries. For each (single-eval) simulation statement ((c, x, y), π) ∈ Qsim
let c⃗ (resp. o⃗) be the coefficients associated with the commitments coms := (cj)j (resp. simulated
proofs proofs := (πj)j) in the algebraic representation of c. Let bk be equal to 1 if x = xk and 0
otherwise. Let bj,k be equal to 1 if x = xk and cj ̸= 0, and 0 otherwise.

For all j ∈ [|coms|], k ∈ [n], the nesting level νπ(j, k) of the simulated proof π on the
simulated commitment cj and the point xk is equal to:

νπ(j, k) := max
i:oi ̸=0∧νπi (j,k)̸=0

{νπi
(j, k) + bk} ∪ {bj,k}

We define the maximum nesting level ν̄ := maxj
∑

k maxπi
νπi

(j, k).

Informally, the idea behind the maximum nesting level ν̄ is that each proof of a proof in-
volving at some point one of the simulated commitments can (possibly but not always) increase
the degree of the denominator of the rational function associated with such a simulated proof.
The value ν̄ is the minimal upper bound on the degree of (the denominators of) the rational
functions associated with the simulated proofs (see Lemma 4.3.1). We consider the following
constraints, parametrized by a set I ⊆ [n].

Point check: given a set of points Qx ∈ ppΦ, return 1 if ∀x queried to S1, we have that
x.x ∈ Qx

Hash check with Linearized Commitment (and parameter I): Parsing the forgery in-
stance x∗ := (x∗, (c∗i , y∗i )i∈[n]), return 1 if and only if there exist group elements (bi,r)r,
polynomials Ai,r(X), a non-constant polynomial h such that:

• ∀i ∈ [n] : c∗i = ∑
r Ai,r(x∗)bi,r

• ∀i ∈ I : ((bi,r)r; (Ai,r)r, h)→RO a.
• h(a) = x∗

• ∀i ∈ I : {Ai,r}r are ν̄-independent polynomials, where ν̄ is the maximum nesting
level (cf. Definition 4.5.6)

Looking ahead, the point check does require some form of programmability of the RO at SNARK
level, while the hash check (with linearized commitment) essentially consists of checking the
hash of the “virtual” representation of a group element and is weak enough to capture schemes
tailored for optimizations, like the linearization trick [GWC19, OL].

Definition 4.5.7. Let Φadpt
m-evl,I (resp. Φs-adpt

m-evl,I) be the set of policies ΦD = (ΦD0 ,Φ1) for a
distribution D where:

• ΦD0 on input group parameters ppG outputs ppΦ := coms, where coms is a vector of com-
mitments sampled from D (resp. additionally it outputs a set Qx ⊆ F).
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[FFK+23] Φs-adpt
m-evl Φadpt

m-evl

Hash check w/ L.C. ✓ ✓
Hash check ✓
Point check ✓ ✓

Commitment check ✓
Assumption (AGM) (Q+d+1)-DL (Q+d+1)-DL (Q, d)-OMSDH

Table 4.1: Comparison of extraction policies in terms of constraints and security assumptions
with related work.

• Φ1 is the hash check with parameter I defined above (resp. Φ1 is the logical conjunction
of the hash check, with parameter I, and the point check).

• D is witness sampleable and the D-Aff-MDH assumption holds.

In Table 4.1 we compare our new extraction policies with the extraction policy of [FFK+23].
We stress that our hash check with linearized commitment is more permissive than their hash
check constraint, therefore, our theorem is stronger. In the table, Q is the number of simulation
queries and d is the maximum degree supported by the scheme.

For any set I ⊆ [n], let us denote with σI the I-projection function, namely the function
that takes as input a list (a1, . . . , an) and returns the list (ai)i∈I .

Theorem 4.5.1. ∀I ⊆ [n], CPm-evl is (Φadpt
m-evl,I , σI)-SE under the OMSDH assumption and is

(Φs-adpt
m-evl,I , σI)-SE under the (Qsim + d)-dlog assumption in the AGM.

Proof intuition. We consider an algebraic adversary A whose forgery satisfies the extrac-
tion policy. In particular, the view is algebraic consistent, thus there exists a solution for the
polynomial system of linear equations defined by the view. As the first important step of the
proof, we simplify this system of equations and find alternative representations where each
simulated proof depends either on one single simulated commitment or on one single simu-
lated proof. This simplification allows rewriting the forged linearized commitment in the more
manageable form c∗ = [m0(s)]1 +∑ [log(ci) ·mi(s)]1 where ci are the simulated commitments.
Here, we can prove that mi(X) ≡ 0 for i > 0. In fact, assume otherwise and assume the
commitments are uniformly random9, then we can break the representation problem finding
log(∑mi(x∗)ci) = y∗ −m0(x∗) where the forgery of the adversary is (c∗, x∗, y∗).

We are still not done because m0(X) is a rational function of the form

f(X)−
∑

Ai(X)(
∑

j

ojqi,j(X))

where f is the polynomial we would like to extract, the qi,j are rational functions whose degree
is bounded by the maximum nesting level ν̄ and the oj are the coefficients in the algebraic
representation of c∗ that depend on the simulated proofs. If we assume that the forgery is
valid then we would obtain m0(x∗) = y∗, otherwise we could break the OMSDH assumption,
moreover, we can show this case happens when ∑

Ai(x∗)(
∑

j ojqi(x∗)) = 0 but, the extractor
9In our proof we consider the more general case where the simulated commitments are sampled from an

Aff-MDH-secure distribution.
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would still fail if there exists at least one oj ̸= 0. Here we crucially use our hypothesis on
ν̄-independence of the Ai to show that this cannot happen and thus all oj = 0.

One might wonder if this last step is an artifact of our proof technique, and whether the
independence is necessary. We show the latter is the case with an attack similar to the one
presented in Section 4.2.3. The attack asks for a simulated proof on (c, 0, 1) for a simulated
commitment c and sets the forged linearized commitment to c∗ = c − x∗π for an arbitrary
evaluation point x∗ and y∗ = 1, the attack works because c∗−[1]1 = c−x∗c/s−x∗/s+1 = π(s−
x∗). The formal polynomial associated to c∗ would be of the form 0− (1−X · 1

X
)+Z(1−X · 1

X
)

where Z is the formal variable associated to the simulated commitment, o1 = 1 and A1(X) = 1
and A2(X) = −X and where the latter polynomials are 1-linearly dependent.

Proof of Theorem 4.5.1. We recall that the set I contains the indexes i such that E needs to
extract the witness polynomials fi committed in c∗i .

By the definition of algebraic adversary (cf. Definition 2.2.2) for each group element output,
A additionally attaches a representation (f, r⃗) of such a group element with respect to all the
elements seen during the experiment (included elements in coms and the simulated proofs). In
particular, we assume that for each query (x, aux) to the oracle S1 we can parse the value aux
as ((fi, r⃗i)i, aux′), where (fi, r⃗i) is a valid representation for x.ci.

The adversary also encodes a polynomial h(X) in auxϕ. The commitments c∗i of the
forgery come along with representation (Ai,r(X), bi,r)r, stored in auxE ; the adversary also stores
(fbi,r

, r⃗bi,r
) to represent the group element bi,r. Namely, given the commitments coms and all

the proofs proofsA output by S1, it holds that c∗i = ∑
r Ai,r(x∗)(fbi,r

(s) + ⟨r⃗bi,r
, coms∥proofsA⟩).

Without loss of generality, we restrict the class of the algebraic adversaries that we consider.
Given an algebraic adversary A we can define a new adversary A′ such that:

• A′ makes (single-eval) simulation queries, i.e., each statement x given as input to S1 can
be parsed as (c, x, y)

• each commitment in x is a linear combination of simulated commitments and proofs, but
not of elements of the SRS

The adversary A′ runs internally A and forwards all its queries and answers to the simulation
oracle in the following way:

• Upon query x := (x, (ci, yi)) to S1, with representation (fi, r⃗i) such that ci = [fi(s)]1 +
⟨r⃗i, coms∥proofsA⟩, A′ queries n times the simulation oracle with (ci−[fi(s)]1 , x, yi−fi(x)),
receiving the proof πi. Outputs the proof π′ := ∑

i ρ
i−1(πi+Proveevl(ek, ([fi(s)]1 , x, fi(x)), f)),

where ρ← RO(batch∥x)

By the homomorphic properties of CPm-evl, the correctness of the proofs readily holds.
We define our extractor E to be the extractor that returns, for all i ∈ I the polynomial

fi(X) := ∑
r Ai,r(x∗)fbi,r

(X); this turns out to be equivalent to the canonical extractor in the
AGM, because, as we show, the remaining entries in the representation sum up to zero.

We let H0 be the ExpΦ-se
A,S,E experiment, and we denote by ϵi := Pr[Hi = 1].

Hybrid H1. We set H1 to be the same experiment but with the alternative adversary A′
defined below:
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1. The alternative adversary runs A forwarding all its queries until A sends its
forgery. Let x̄ = (x̄, (c̄i, ȳi)i), π̄ be its forgery. Let Qx be the set of points xj

for which the adversary queried S1.
2. If x̄ ∈ Qx, namely when the adversary made a simulation query with evaluation

point set to x̄, then it finds values yi such that x := (x̄, (c̄i, yi)i) is algebraic
consistent with the view of the adversary, and queries the simulation oracle S1
with x′ receiving back π. (Else it outputs x̄, π̄.)

3. It computes the forgery x∗ = (c∗, x∗, y∗), π∗, where:

c∗ ← (π̄ − π) π∗ ← π̄ − π
x̄− x∗

y∗ ←
∑

i ρ
i−1(ȳ − y)
x̄− x∗

the forgery point x∗ ← RO(s), and s is a string never queried to the RO by A
and containing c∗ as substring, which yields c∗ →RO x∗.

4. It aborts if x∗ ∈ Qx, otherwise it outputs the forgery.

We show that, unless it occurs the bad event that x∗ ∈ Qx, the forgery of the adversary A′ is
valid whenever the forgery of A is valid. First we notice, by the verification equation of KZG,
that (π̄ − π)(s− x̄) = ∑

i ρ
i−1 [yi − ȳi]1. Thus:

π∗(s− x∗) = π̄−π
x̄−x∗ (s− x∗ + x̄− x̄) = π̄−π

x̄−x∗ (−x∗ + x̄) + π̄−π
x∗−x

(s− x̄) = c∗ − [y∗]1 (4.1)

Moreover, the probability of the bad event is at most QRO+1
q

, where QRO is the number of queries
of A to the random oracle. We have that ϵ1 ≤ ϵ0 + QRO+1

q

Hybrid H2. Recall that D is witness sampleable, thus according to Definition 2.3.3 there
exists a PPT algorithm D̃ associated with the sampler D. The hybrid H2 is identical to the
previous one, but the group elements in coms are sampled “at the exponent”, i.e., we use D̃
to generate the field elements γ⃗, and we let coms ← [γ⃗]1. By the witness sampleability of D,
H1 ≡ H2, thus ϵ2 = ϵ1.
Hybrid H3. In this hybrid we add some more entries to the list of simulated proofs Qsim.

The experiment runs A until completion. Since the view of the adversary is algebraic
consistent, we can define a set of polynomial equations that admits solutions derived from the
simulation queries of A. Let (zi(X))i∈[Qsim] be a reduced solution (Definition 4.5.5) for this set
of polynomial equations. The experiment submits additional queries to S1 as follows. First, for
all j, k, define the value ν̄j,k := maxπ νπ(j, k).

Then ∀j, k such that ν̄j,k ̸= 0, does the following. It queries S1 with (comsj, xk, zj(xk)),
and let π̄j,k,1 be the output of S1 on each of these queries; then, for l ∈ [ν̄j,k − 1], obtains the
proof π̄j,k,l+1 on the statement (π̄j,k,l, xk, qj,k,l(xk)), where: qj,k,1(X) := zj(X) and ∀l > 0 the
polynomial qj,k,l+1(X) := (qj,k,l(X)−qj,k,l(xk))(X−xk)−1. We notice all these additional proofs
are of the form:

π̄j,k,l =
[
γj −

∑
l′∈[l](s− xk)l′−1qj,k,l′(xk)

(s− xk)l

]
1

(4.2)

We call them “core” proofs, as they will play an important role in the next hybrid, and we
denote with proofs the vector of all the core proofs, to distinguish them from the adversary’s
proofs proofsA, namely the set of simulated proofs requested by the adversary. These additional
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simulation queries are algebraic consistent w.r.t. the view of A: in particular, ∀j, k each proof
π̄j,k,1 is an evaluation proof for the commitment comsj on the point xk and the evaluation value
zj(xk), which by definition of the polynomials zj(X) is algebraic consistent. For all l > 1 the
proof π̄j,k,l is a proof on the point xk for a commitment that is a quotient derived from zj(X),
and the evaluation value is chosen to be consistent with it. The change introduced in this
hybrid does not alter the winning probability of A, hence ϵ3 = ϵ2.

Hybrid H4. In this hybrid we change the representation of the forgery of A. In particular,
once A has submitted the (successful) forgery (x∗, π∗), attaching its representation, we replace
it with new coefficients that only depend on coms, and proofs, but not on the adversary’s proofs
proofsA.

The change introduced in this hybrid is only syntactical and does not alter the winning
probability of A, as we show hereafter.

Lemma 4.5.1. ϵ4 = ϵ3

Proof. We give a recursive procedure that rewrites the algebraic representations of all the Qsim
adversary’s proofs proofsA in the base defined by proofs. We prove by induction on the number
of simulation queries made by the adversary the correctness of the procedure.
Base. Let π be the first proof computed by S1, for an instance (c, xk∗ , y), where the commitment
c = ∑

j cj [γj]1. We have that, by the correctness of the proof, π(s − xk∗) = ∑
j cj [γj]1 − y.

By algebraic consistency, we have that there exists an equation of the form ∑
j(cjYj(xk∗)) = y

with variables (the coefficients of) the polynomials Yj, and the list of polynomials (zj(X))j is a
reduced solution by the change introduced in H3. We derive that π is equal to:[∑

j
cj(γj−zj(xk∗ ))

s−xk∗

]
1

=
[∑

j
cj(γj−qj,k∗,1(xk∗ ))

s−xk∗

]
1

=
∑

j

cjπ̄j,k∗,1

Inductive Step. Let now assume that all the first t proofs can be expressed as linear combination
of elements of proofs. We show that also the (t+ 1)-th proof can be written in the same way.

Let (c, xk∗ , y) be the (t+1)-th (valid) query submitted to S1, where c = ∑
j cj [γj]1+∑j≤t ojπj

and proofsA = (πj)j∈[Qsim]. By induction, there exist coefficients o′j,k,l such that: c = ∑
j cj [γj]1 +∑

j,k,l o
′
j,k,lπ̄j,k,l. The proof π computed by S1 (we set πt+1 := π) is such that π(s−xk∗) = c−[y]1.

Let π = [p]1, then we have that:

p = 1
s−xk∗

∑
j

cjγj +
∑
j,k,l

o′j,k,l

γj−
∑

l′∈[l](s−xk)l′−1qj,k,l′ (xk)
(s−xk)l − y


Also, y = ∑

j cjzj(xk∗) + ∑
j,k,l o

′
j,k,lqj,k,l(xk∗) by algebraic consistency, and it can be expanded

as:

∑
j

cjzj(xk∗) +

ȳ︷ ︸︸ ︷∑
j,k ̸=k∗,l

o′j,k,l

zj(xk∗ )−
∑

l′∈[l](xk∗−xk)l′−1qj,k,l′ (xk)
(xk∗−xk)l

+
∑
j,l

o′j,k∗,lqj,k∗,l(xk∗)
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We first notice that, by plugging the equation above, we can rewrite p as:

∑
j

cj
γj−zj(xk∗ )

s−xk∗
+ r +

∑
j,l

o′j,k∗,l

γj−
∑

l′∈[l+1](s−xk∗ )l′−1qj,k∗,l′ (x∗
k)

(s−xk∗ )l+1

where r = 1
s−xk∗

(∑
j,k ̸=k∗,l o

′
j,k,l

γj−qj,k,l(xk)
s−xk

− ȳ
)
. Note that the first and the third addends of [p]1

are linear combination of elements in proofs. The only thing left to prove is that [r]1 can be
written as linear combination of elements of proofs.

Let Nj,k,l := γj −
∑

l′∈[l](s− xk)l′−1qj,k,l′(xk). For all j, k, l, we have that:

π̄j,k,l

s− xk∗
= [Nj,k,l]1

(s− xk)l(s− xk∗)

= [Nj,k,l]1


l−1∑
ℓ=0

(−1)ℓ (xk − xk∗)−(ℓ+1)

(s− xk)l−ℓ︸ ︷︷ ︸
αj,k,l,ℓ

+ (−1)l (xk − xk∗)−l

(s− xk∗)︸ ︷︷ ︸
βj,k,l


Also, for all ℓ ∈ [0, l − 1], we have that [Nj,k,l]1 αℓ is equal to:

(−1)ℓπ̄j,k,l−ℓ + (−1)ℓ+1(x− xk∗)ℓ−1 ∑
l′∈[ℓ]

[qj,k,l′(xk)]1 (s− xk)l′−1

Also, we have that [Nj,k,l]1 β is equal to:

(−1)lπ̄j,k∗,l + (−1)l+1
[
zj(xk∗)−∑l′∈[l](s− xk)l′−1qj,k,l′(xk)

s− xk∗

]
1

=

(−1)lπ̄j,k∗,l +
[
zj(xk∗)−∑l′∈[l](xk − xk∗)l′−1qj,k,l′(xk)

(s− xk∗)(x∗k − xk)l

]
1

=

+
l−1∑
ℓ=0

(−1)ℓ(x− xk∗)ℓ−1 ∑
l′∈[ℓ]

[qj,k,l′(xk)]1 (s− xk)l′−1

Using the above equations, we can write [r]1 as:

∑
j,k ̸=k∗,l

o′j,k,l

[Nj,k,l]1
(s− xk)k(s− xk∗) −

[ȳ]1
s− xk∗

=

∑
j,k ̸=k∗,l

o′j,k,l [Nj,k,l]1

(
l−1∑
ℓ=0

αj,k,l,ℓ + βj,k,l

)
− [ȳ]1
s− xk∗

=

∑
j,k ̸=k∗,l

o′j,k,l

(
l−1∑
ℓ=0

(−1)ℓπ̄j,k,l−ℓ + (−1)lπ̄j,k∗,l

)
+ [ȳ]1
s− x∗k

− [ȳ]1
s− xk∗

=

∑
j,k ̸=k∗,l

o′j,k,l

(
l−1∑
ℓ=0

(−1)ℓπ̄j,k,l−ℓ + (−1)lπ̄j,k∗,l

)
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Before moving to the next hybrid, we set some notation. First, ∀i, r, let parse r⃗bi,r
= c⃗i,r∥o⃗i,r.

From the definition of H4, we have that c∗i = [fi(s)]1 +∑
r Ai,r(x∗)(⟨c⃗i,r, coms⟩+ ⟨o⃗i,r, proofs⟩)

From the change introduced in H3, S1 outputs “core” proofs π̄j,k,l(s, coms) ∈ proofs, where
π̄j,k,l(X, Y⃗ ) := (Yj −

∑
l′∈[l](X − xk)l′−1qj,k,l′(xk))(X − xk)−l.

By the guarantees of the AGM, for all i ∈ [n] we can write c∗i = [c∗i (s, coms)]1, where
c∗i (X, Y⃗ ) is equal to:

∑
r

Ai,r(x∗)fbi,r
(X) +

∑
r

Ai,r(x∗)
∑

j

(ci,r,jYj +
∑
k,l

oi,r,j,k,lπj,k,l(X, Y⃗ ))
︸ ︷︷ ︸

Bi,r(X,Y )

(4.3)

and, if the verification equation is satisfied, we have that:

v(s) = π∗(s− x∗)

where v(X) := ∑
i ρ

i−1(c∗i (X, coms)− y∗i ).
Hybrid H5. This hybrid is equal to H4 but it returns 0 if there exists i ∈ [n] such that
c∗i (x∗, coms) ̸= y∗i .
Lemma 4.5.2. ϵ5 ≤ ϵ4 + ϵOMSDH + n/q

Proof. If there exists i ∈ [n] such that c∗i (x∗, coms) ̸= y∗i , with overwhelming probability 1−n/q,
we have that v(x∗) ̸= 0 because, by the hash check, ρ is chosen uniformly at random after
the polynomials c∗i (X, Y⃗ ) are determined. Then, we can make a forgery to the OMSDH10

assumption as follows.
The reduction gives the adversary the same SRS generated by the OMSDH challenger. The

oracle Os allows the reduction to compute the proofs for any statement x := (c, x, y), where c
is a linear combination of elements of the SRS, coms and previously seen simulated proofs. As
shown in the previous hybrid, a proof for x can be computed using group elements of the form
[s− xk]−l

1 (that can be retrieved using Os), the coefficients γj and the algebraic representation
of c, which is all known to the reduction. Let q(X), r be such that v(X) = q(x) + r(X − x∗).
The reduction submits the forgery (x∗, y∗), where y∗ := r−1(π∗− [q(s)]1). This is a valid forgery
because y∗ is equal to [(s− x∗)−1]1 and x∗ was never queried to O by the change introduced in
H1.

Hybrid H6. Let H6 return 0 if there is an index i ∈ I such that fi extracted by E is not a
valid witness.
Lemma 4.5.3. ϵ6 ≤ ϵ5 + |I|ϵAff-MDH + deg(h)(∑i∈I maxr deg(Ai,r) + ν̄)/q

Proof. We prove it through a series of n hybrids. Let H6,0 ≡ H5, and let H6,i be the same as
H6,i−1 and if i ∈ I it additionally returns 1 if fi is not a valid witness. Clearly, for i ̸∈ I, it
holds that ϵ6,i = ϵ6,i−1.

For i ∈ I, let Ei be the event that ∑r Ai,r(x∗)Bi,r(X) ≡ 0.
Case 1. We show that Pr[H6,i = 1 ∧ Ei] = 0. We recall that the extractor E returns the
polynomial fi(X) := ∑

r Ai,r(x∗)fbi,r
(X). Conditioning on Ei, we have that c∗i (X, Y⃗ ) = fi(X),

10When the policy is semi-adaptive, we can reduce to discrete log because of Theorem 4.4.1.



4.5. Simulation-Extractable CP-SNARKS in the AGM 95

and c∗i = [fi(s)]1. E returns a valid witness if fi(x∗) = y∗i , which is enforced by the check
introduced in H5.
Case 2. We show that Pr[H6,i = 1 ∧ ¬Ei] ≤ ϵAff-MDH + deg(h)(ν̄ + maxr deg(Ai,r))/q. First, it
must be that there exist indexes r∗, j∗, k∗, l∗ such that either ci,r∗,j∗ ̸= 0 or oi,r∗,j∗,k∗,l∗ ̸= 0, as
otherwise Bi,r ≡ 0,∀r.

Let ĉi(X, Y⃗ ) := m0(X)+∑mj(X)Yj be a multilinear polynomial with coefficient in F≤q(X)
where:

m0(X) = fi(X)−
∑

r

Ai,r(X)
∑
j,k,l

oi,r,j,k,l

∑
l′∈[l](X−xk)l′−1qj,k,l′ (xk)

(X−xk)l

mj(X) =
∑

r

Ai,r(X)(ci,r,j +
∑
k,l

oi,r,j,k,l

(X−xk)l︸ ︷︷ ︸
mj,r(X)

), ∀j > 0

Notice that by definition we have that: ĉi(x∗, Y⃗ ) = c∗i (x∗, Y⃗ ).
∀j let pj(X) := ∏

k(X−xk)ν̄j,k , and notice that the set {pj(x)}∪{ pj(x)
(X−xk)l}k,l is an independent

set of polynomials w.r.t F and mj,k(X) · pj(X) is in the span of such a set of polynomials, thus,
because of the condition of Case 2, mj∗,r∗(X) ̸= 0.

Let ν∗j := ∑
k ν̄j,k. By definition, ν∗j ≤ ν̄ that we recall is equal to maxj

∑
k ν̄j,k. Because of

the Hash check, we have that {Ai,r}r are ν̄-independent polynomials; moreover, by Lemma 4.3.1
there is a morphism between the span of the set {1} ∪

{
(X − xk)−l

}
k,l∈ν̄j,k

and F≤ν∗
j
[X]. Thus,

we conclude that mj∗(X) ̸= 0.
Since c∗i (x∗, coms) = [y∗]1 by the check introduced in H5, and c∗i (x∗, coms) = ĉi(x∗, coms) by

definition, we can reduce to Aff-MDH as follows. The reduction generates the SRS and simulates
using the trapdoor s, while the commitments coms are received by the Aff-MDH challenger11.
The reduction outputs ((µj)j, ŷ), where the coefficients µj ← mj(x∗) and ŷ = y∗ −m0(x∗).

Given that the Hash check is satisfied, ((bi,r)r; (Ai,r)r;h) →RO a, and h(a) = x∗, which
implies that c∗i is a function of the coefficients ci,r,j, oi,r,j,k,l and the polynomials Ai,r that are
fixed before a (and hence x∗) is computed. By Schwartz-Zippel, we derive that the coefficient
µj∗ = mj∗(x∗) is null only with negligible probability deg(h)(ν̄ + maxr deg(Ai,r))/q.

Finally, we notice that in H6, E successfully extracts all the witness polynomials fi, for
i ∈ I. Then we conclude that ϵ6 = 0.

4.5.2 Simulation Extractability of the Linearization Trick
In this section we formalize the linearization trick for KZG commitments [GWC19, OL] as a
CP-SNARK for the relation Rlin that upon instance:

x := ((cj)j∈[m], (bi)i∈[n], (Gi)i∈[n], x, y),
whose witness w = (Cj)j∈[m], (Bi)i∈[n] are polynomials committed in the instance, and that
outputs 1 if and only if

n∑
i=1

Ai(x)Bi(x) = y,

11In particular, this means that the commitments are sampled from D, which is identically distributed to D̃,
as argued in H2.
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and where Ai(X) := Gi((Cj(X))j, X) with Gi ∈ F[X1, . . . , Xm, X].
We call the polynomials Cj (resp. commitments cj) the core polynomials (resp. commit-

ments); moreover, we call the polynomials Ai and Bi (resp. the commitments bi) the left and
right polynomials (resp. commitments).

We define CPlin that uses CPm-evl as inner scheme:

Provelin(ek,x,w): compute πm-evl ← Provem-evl(xm-evl, ((Cj)j, R)), whereR(X) := ∑
i Ai(x)Bi(X),

r := ∑
i Ai(x)bi, and xm-evl := (x, (cj, Cj(x))j, (r, y)). Output π := (πm-evl, (Cj(x))j)

Verifylin(vk,x, π): parse π as (πm-evl, (yj)j), compute r as ∑i Gi((yj)j, x)bi. Output Verifym-evl(vk,
xm-evl, πm-evl), where xm-evl := (x, ((cj, yj)j, (r, y)))

This scheme is not zero-knowledge as the proofs leak some information on the witness, that
are the values yj = Cj(x). Formally, it achieves Llin-leaky zero-knowledge where Llin(x,w) :=
(w.Cj(x.x))j. We define the simulator S := (S0,S1), where S0 outputs the trapdoor information
s together with the srs, and S1 simulates proofs for x := ((cj)j∈[m], (bi)i∈[n], (Gi)i∈[n], x, y) and
leakage (yj)j∈[m] computing πm-evl := (s − x)−1(∑j ρ

i−1(cj − [yj]1) + ρm(r − y)), where ρ :=
RO(batch∥x, (cj, Cj(x))j, (r, y)), r := ∑

i Ai(x)bi and outputs the proof π := (πm-evl, (yj)j).
The extraction policy. Let ΦJ ,ν

lin be the policy parametrized by ν ∈ N and J ⊆ [n], for
n ∈ N, described below:

Hash Check (for the linearization trick): parse the forged instance x∗ := ((c∗j)j, (b∗i )i, (G∗i )i,
x∗, y∗), return 1 if and only if there exists a polynomial h such that:

• ((c∗j)j, (b∗i )i; (G∗i )i, h)→RO a and h(a) = x∗;
• ∀j : ν > ∑

k maxπ∈proofs νπ(j, k) where proofs is the list of simulated proofs.

Partial-Extraction Check: parse auxE , find polynomials (B∗i )i∈J and return 1 if and only if
b∗i commits to B∗i , ∀i ∈ J .

Definition 4.5.8. Let ΦJ ,ν
lin be the set of policies ΦD = (ΦD0 ,Φ

J ,ν
lin ) for a distribution D where:

• ΦD0 on input group parameters ppG outputs ppΦ := coms, where coms is a vector of com-
mitments sampled from D.

• D is witness sampleable and the D-Aff-MDH assumption holds.

The Partial-Extraction Check allows to define the concept of partial extractability (see [BCF+21,
CFH+22]) within the framework of Φ-simulation extractability. The definition of partial ex-
tractability allows the adversary to provide to the extractability experiment one part of the
witness, while the extractor must find the remaining part. Looking ahead, this check allows
defining more flexible notions of extractability, for example, PLONK’s verifier needs to check
two linearization trick instances on a non-disjunct set of polynomials, thus we can partition
the polynomials to extract between the two instances and, in doing so, we can loosen the
independence requirements from the two instances. We give more details in Section 4.6.4.

To formalize the extractability of the linearization trick we crucially rely on the framework
of F -extractability. In particular, we consider the function FJ ,ν(w), for parameters J ⊆
[n] and ν ∈ N, that parses w as (Cj)j, (Bi)i, computes for all i the polynomial Ai(X) :=
Gi((Cj(X))j, X), and outputs w if (Ai)i̸∈J are ν-independent, otherwise outputs only (C∗j )j.
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The FJ ,ν-extractability and the Hash Check go hand in hand, the former specifies the
condition under which extraction of the right polynomials can happen while the latter sets the
rules, for the adversary, so that such condition holds.

Theorem 4.5.2. For any n, ν ∈ N,J ⊆ [n], CPlin is (ΦJ ,ν
lin ,FJ ,ν)-simulation-extractable in the

AGM under the OMSDH assumption.

Proof Intuition. Thanks to the heavy lifting of Theorem 4.5.1 the proof of Theorem 4.5.2
is not much different than a proof of (standard) extractability in the AGMOS [LPS23] would
be. In fact, the proof can be summarized as two direct reductions to the SE of CPm-evl. In the
first reduction, which is almost straight-forward, we show how to extract the core polynomials.
On the other hand, the second reduction needs a careful analysis as, in fact, the extractor of
CPm-evl extracts R(X) = ∑

Ai(x∗)Bi(X) while we need to show how to extract the polynomials
(Bi(X))i. For simplicity, assume that the adversary obtains an obliviously sampled element c,
thus we can write bi = [Bi(s)]1 + B̄i(s) · c. We need to show that B̄i ≡ 0, and we can assume,
thanks to the SE of CPm-evl, that ∑Ai(x∗)B̄i(X) ≡ 0. In proving knowledge extractability, we
can just rely on the linear independence of the polynomials Ai and the Schwartz-Zippel lemma,
for simulation extractability we additionally use the ν-independence and the second item of the
Hash Check property.
Removing the Hash Check. ΦJ ,ν

lin is a sufficient ingredient of our compiler to prove the
simulation extractability of zkSNARKs such as PLONK or Marlin: as we explain in Section 4.6,
in these two protocols the verifier checks that the polynomials sent by the prover satisfy some
predicate on some random points, which allows us to reuse the proofs of an adversary to
the SNARKs in the reduction to the simulation extractability of CPlin since they match the
Hash check. Looking ahead, we call these checks focal as they play an important role in our
compilation strategy.

However, there may be other protocols that involve also checking equations over some
fixed, or not sufficiently random, points. In this paragraph, we show that we can prove CPlin
simulation extractable even when the Hash Check is not satisfied, as long as the adversary is
able to produce a proof algebraic inconsistent w.r.t. view. This allows us to enlarge the class of
protocols that our compiler to zkSNARKs captures. A similar result was proved for the scheme
CPm-evl in [FFK+23]. Let Φlin+ be the policy that performs the following check:

• Algebraic Check: let x := ((cj)j, (bi)i, (Gi)i, x, y) and π := (π̂, (yj)j), returns 1 if and
only if there exists a tuple (x′ = ((cj)j, (bi)i, (Gi)i, x, y

′), π′ = π̂′, (y′j)j) in Qsim such that

y′ ̸= y ∨ ∃j : yj ̸= y′j (4.4)

Theorem 4.5.3. CPlin is (Φlin+, id)-simulation-extractable in the AGM under the OMSDH as-
sumption.

Proof. We show a reduction B to the (Φ∅,0lin , id)-simulation extractability of CPlin. For the
simulation, the reduction simply proxies all the queries back and forth between the adversary
and the challenger. At forgery time, B finds the commitments (cj)j∈[m], (bi)i∈[n] in the forgery
instance x, and derives the linearization commitment r as the verifier would do when verifying
the forgery proof π, namely using Gi, x and the field elements yj contained in it and the
commitments bi. Also, let ρ be the batch coefficient used by the verifier in this step, and let y′j
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be the field elements contained in the simulated proof π′ that is not algebraic consistent with
π: if the adversary complies with the extraction policy, this proof exists; this means that, for
all j, B can find in π′ the values y′j such that the pairs (cj, y

′
j) are algebraic consistent with the

current view view; B can also find y′r such that (r, y′r) is algebraic consistent with view. Then
B queries S1 to get (single-eval) proofs π̄j and π̄r associated with the pairs defined above, and
defines

π̄ :=
∑

j

ρj−1π̄j + ρmπ̄r

If π̄ = π, B aborts. Otherwise, B submits the instance forgery x∗ := ((c∗, [0]1), x∗, 0) and the
proof π∗ := (π̂∗, y∗) where:

c∗ ← (π̄ − π)
π̂∗ ← (π̄ − π)(x− x∗)−1

y∗ ← (
∑

j

ρj−1(y′j − yj) + ρm(y′r − y))(x− x∗)−1

the forgery point x∗ ← RO(s), and s is a string never queried to the RO and containing c∗ as
substring that yields c∗ →RO x∗.

First, we show that the probability that B aborts when the adversary complies with the
policy and submits a successful forgery is only negligible. Let πj := (cj − yj)(s − x∗)−1, and
let πr := (r − y)(s− x∗)−1. We have that the proof π = ∑

j ρ
j−1πj + ρmπr. Also, by definition

of Eq. (4.4), and because the KZG (single-eval) proofs π̄j and π̄r are unique, either πr ̸= π̄r or
there exist j such that π̄j ̸= πj. Since the coefficient ρ is chosen uniformly at random after the
proofs of the adversary are fixed, and is also independent of the proofs π̄j, π̄r of the reduction,
we conclude by Schwartz-Zippel that π = π̄ with probability at most equal to m

q
.

Second, we observe that B complies with the policy in the extractability experiment: the
Hash Check is satisfied because we define the point x∗ as the output of a RO query including
the commitment c∗, and moreover the Partial-Extraction Check is trivially satisfied because
the reduction does not have to add any polynomial in auxE .

Finally, the forgery (x∗, π∗) satisfies the verification equation. In the verification procedure,
the linearization commitment is set to be y∗ ·[0]1 = [0]1. Because of the homomorphic properties
of KZG, then, the verifier has only to check that π̂∗ is a valid proof for the (single-eval) statement
(c∗, x∗, y∗), whose correctness follows from Eq. (4.1).

Proof. We define our extractor EJ ,ν to be the extractor that, by looking at the algebraic repre-
sentations, returns the polynomials Cj(X) := fcj

(X) for all j ∈ [m], computes the polynomials
Ai(X), and if {Ai}i̸∈J are ν-independent, it additionally returns Bi(X) := fbi

(X) for all i ∈ [n].
We let H0 be the ExpΦ-se

[ ΦJ ,ν
lin ]A,S, E experiment, and we denote by ϵi := Pr[Hi = 1].

Hybrid H1. This hybrid is the same as H0, and it returns 0 if there exists j ∈ [m] such that
cj ̸= [Cj(s)]1 or Cj(x∗) ̸= y∗j .
Lemma 4.5.4. ϵ1 ≤ ϵ0 + ϵm-evl

Proof. Recall that σI is the I-projection function. We reduce to the (Φadpt
m-evl, σ[m])-simulation

extractability of CPm-evl. We recall that the extractor of the experiment does only guarantee
(if the policy is satisfied) to extract the first m polynomials.

The reduction B takes as input the SRS and the commitments coms from the challenger
and forwards them to A. It trivially answers the queries of A:
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• RO-query: Proxy the query to S2.

• SIM-query: On input an instance xlin, and leakage (yj)j∈[m] define the multi-eval in-
stance xm-evl as the honest prover would do, and query S1 on it.

Upon forgery (x∗, π∗) from A, where x∗ = (x∗, (cj)j, (bi)i, y
∗), and π∗ = (π∗m-evl, (y∗j )j), B returns

a multi-eval forgery (x∗m-evl, π
∗
m-evl) where the statement is x∗m-evl = (x∗, ((cj)j, r), ((y∗j )j, y

∗)), with
r = ∑

i Gi((yj)j, x)bi, and π∗m-evl is the proof in π∗.
Notice that this forgery passes the Hash check predicate for CPm-evl when the forgery of

A passes the Hash check for CPlin: in particular, for some polynomial h we have that, for all
j ∈ [m], (cj;h)→RO a, and h(a) = x∗. We have that the (canonical) extractor for CPm-evl would
successfully extract, unless with probability ϵm-evl, all the witness polynomials Cj(X) associated
with the commitments cj and such that Cj(x∗) = y∗j .

Hybrid H2. This hybrid is the same as H1, except it returns 0 if {Ai}i̸∈J are ν-independent
polynomials and:

• ∑
i∈[n] Ai(x∗)Bi(x∗) ̸= y∗

• or there exists i ∈ [n] such that bi ̸= [Bi(s)]1

Lemma 4.5.5. ϵ2 ≤ ϵ1 + ϵAff-MDH + ϵm-evl + deg(h)(maxi deg(Ai)+ν̄)
q

Proof. Notice that for all i ∈ J , bi = [Bi(s)]1, where the polynomials (Bi)i∈J are output by the
adversary itself, by definition of the Partial-Extraction Check in the extraction policy. If the
distinguishing event occurs, namely {Ai}i̸∈J are ν-independent and ∑

i∈[n] Ai(x∗)Bi(x∗) ̸= y∗

or bi ̸= [Bi(s)]1 for i /∈ J , we can reduce to the simulation extractability of CPm-evl as follows.
The reduction B simulates the experiment forA as in the reduction described in Lemma 4.5.4.

Then, upon forgery (x∗, π∗) fromA, where x∗ = ((cj)j, (bi)i, (G∗i )i, x
∗, y∗), and π∗ = (π∗m-evl, (y∗j )j),

B computes the values:

qj :=
[
(Cj(s)− Cj(x∗))(s− x∗)−1

]
1
, ∀j ∈ [m]

qm+1 :=
∑
i∈J

[
(Ai(s)Bi(s)− Ai(x∗)Bi(x∗))(s− x∗)−1

]
1
.

The adversary B sets as forgery the statement x′m-evl := (x∗, r′, y′) and proof π′m-evl, where:

r′ ←
∑
i∈[n]

Ai(x∗)bi −
∑
i∈J

[Ai(s)Bi(s)]1

y′ ← y∗ −
∑
i∈J

Ai(x∗)Bi(x∗)

π′m-evl ← ρ−m(π∗m-evl −
∑

j∈[m+1]
ρj−1qj)

and ρ← RO(batch∥x∗m-evl). Notice that the above forgery is for a multi-eval of size 1, namely it
is a single-eval forgery, and thus the batch coefficient ρ′ ← RO(batch∥x′m-evl) is actually never
used by the verifier to check the proof: this is why it passes the verification equation when the
forgery of A satisfies the verification equation.



100 100

Differently from the reduction in Lemma 4.5.4, the extractor of CPm-evl can extract only one
witness, i.e., the polynomial committed in r′.

If the Hash check for CPlin is satisfied, so does the Hash check for CPm-evl: in particular,
by definition of the distinguishing event, the polynomials (Ai(X))i̸∈J are ν-independent. We
have that, unless with probability ϵm-evl, the canonical extractor of CPm-evl would extract from
r′ := ∑

i/∈J Ai(x∗)bi the polynomial

R′(X) :=
∑
i̸∈J

Ai(x∗)Bi(X)

such that R′(x∗) = y′.
Similarly to the proof of Theorem 4.5.1 (just before Hybrid H5), for all i /∈ J we can

associate the commitment bi with a polynomial equal to Bi(X)+B̃i,0(X)+∑j YjB̃i,j(X), where
B̃i,0(X) depends only on the simulated proofs, while B̃i,j(X) depends on the simulated proofs
and simulated commitment cj, and we can associate the commitment r′ with a polynomial
R′(X, Y⃗ ) such that r′ = R′(s, coms) and R′(X, Y⃗ ) is equal to M0(X) +∑

j Mj(X)Yj, where:

M0(X) =
∑
i/∈J

Ai(x∗)Bi(X) +
∑
i/∈J

B̃i,0(X),

Mj(X) =
∑
i/∈J

Ai(x∗)B̃i,j(X), ∀j > 0,

and it holds that:

1. B̃i,0(X) ≡ 0 if for all j > 0 : B̃i,j ≡ 0.

2. For all i, j, B̃i,j is an element of a space isomorphic to F≤ν [X].

3. R′(x∗, coms) = [y′]1.

To see Item 1, notice that a simulated proof for (c, x, y) is equal to c/(s− x) + [−y/(s− x)]1.
The rational function B̃i,0(X) accounts the second addends −y/(X − x) from all the simulated
proofs while the B̃i,j for j > 0 take care of the remaining addends. If the latter rational functions
are 0 then it means that the adversary did not query the simulation oracle and therefore also
the B̃i,0 are 0 polynomials.

When the Hash Check holds the polynomials B̃i,j are fixed before x∗ is computed by the
RO, similarly to the proof of Theorem 4.5.1, these polynomials are fixed by the algebraic
representation of the commitment r. If r→RO x∗, then the claim holds.

First, we notice that if for all i /∈ J and for all j, the polynomial B̃i,j ≡ 0, then R′(X, Y⃗ ) =
R′(X). We derive that∑

i∈[n]
Ai(x∗)Bi(x∗) =

∑
i∈J

Ai(x∗)Bi(x∗) +R′(x∗) = y∗

We now bound the probability that there exist indexes i, j such that B̃i,j ̸≡ 0. Assume,
to reach a contradiction, that there exist i∗, j∗ such that B̃i∗,j∗ ̸≡ 0. First, we notice that,
by Item 1, we can assume j∗ > 0. Second, we notice that Mj∗ ̸≡ 0 because {Ai}i/∈J are ν-
independent by definition, and, by Item 2, for all i, j B̃i,j is an element of a space isomorphic
to F≤ν [X]. More in detail, let M̂j∗(X) = ∑

i Ai(X)Bi(X), because of the ν-independence and
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the bound on the degree of the B̃i,j we have that M̂j∗(X) ̸≡ 0. Now assume Mj∗(X) ≡ 0,
then Mj∗(x∗) = 0 and thus M̂j∗(x∗) = 0. However, notice that M̂j∗ is defined by the forged
instance and therefore before x∗ is sampled, which means that applying the Schwartz-Zippel
lemma Mj∗(X) ≡ 0 only with probability:

deg(Mj∗ ◦ h)/q = deg(h)(max
i

deg(Ai) + ν̄)/q.

When Mj∗ ̸≡ 0, we can reduce to Aff-MDH. The reduction generates the SRS and simulates
using the trapdoor s, while the commitments coms are received by the Aff-MDH challenger.
The reduction to Aff-MDH outputs ((µj)j, ŷ), where the coefficients µj ← mj(x∗) and ŷ =
y′ −m0(x∗). Item 3 implies the correctness of the forgery of the reduction to Aff-MDH.

Putting together, the distinguishing event implies either a forgery for CPm-evl or a forgery
for the Aff-MDH assumptions, therefore the statement of the lemma follows.

Finally, we notice that ϵ2 = 0 because the extractor returns the witness polynomials Cj, for
all j ∈ [m], by the change introduced in H1. Also, if {Ai}i/∈J are ν-independent, then it also
extracts valid witnesses Bi, for all i ∈ [n], because of the change introduced in H2.

4.6 Generalizing Polynomial Interactive Oracle Proofs
We generalize PIOPs by allowing the verifier’s queries to be (arbitrary) predicates over the
prover’s oracles. To this end, we use the formalism of oracle relations introduced in [CBBZ23].
Roughly speaking, an oracle relation could be seen as the oracle-world counterpart of commit-
and-prove relation. In particular, as we use them in the next definition, oracle relations are a
useful abstraction which allows defining predicates over the oracles sent by the prover in the
execution of a PIOP.
Definition 4.6.1 (Oracle Relations, [CBBZ23]). An oracle (indexed) relation R is an (in-
dexed) relation when the instances x of R contain pointers to oracle polynomials over some
field F. The actual polynomials corresponding to the oracles are contained in the witness.
We denote the pointer to the oracle polynomial f by JfK, let (x,w) ∈ R we denote with
oracles(x) = {Jf1K, Jf2K, . . . , JfkK} for some k the pointers to the polynomial oracles in x and
w = (f1, f2, . . . , fk).
Definition 4.6.2 ((Holographic) R̂-PIOP). Let F be a family of finite fields, let R be an
oracle indexed relation and R̂ be an oracle relation. A (public-coin non-adaptive) Holographic
R̂-PIOP over F for R is a tuple PIOP := (r, n,m,D, I,P,V) where r, n,m,D : {0, 1}∗ → N are
polynomial-time computable functions, and I,P,V are three algorithms for the indexer, prover
and verifier respectively, that work as follows.
Offline phase: The indexer I(F, i) is executed on input a field F ∈ F and a relation description

i, and it returns n(0) polynomials {p0,j}j∈[n(0)] encoding the relation i.

Online phase: The prover P(F, i,x,w) and the verifier VI(F,i)(F,x) are executed for r(|i|)
rounds; the prover has a tuple (F, i,x,w) ∈ R and the verifier has an instance x and
oracle access to the polynomials encoding i.
In the i-th round, P sends m(i) messages {πi,j ∈ F}j∈[m(i)], and n(i) oracle polynomials
{Jpi,jK : pi,j ∈ F[X]}j∈[n(i)] of degree at most D := D(|i|), while V replies (except for the
last round) with a uniformly random message ρi ∈ F.
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Decision phase: Let r := r(|i|), n := ∑r
k=0 n(k), m := ∑r

k=1 m(k). After the r-th round, let
the verifier V I(F,i)(F,x, π⃗, ρ⃗), on input the description of the field F, the verifier messages
ρ⃗ := (ρ1, . . . , ρr−1), the messages of the prover π⃗ := (π1, . . . , πm) outputs the instance x̂

with oracles(x̂) ⊆ {Jp1K, . . . , JpnK}. The verifier accepts if x̂ ∈ LR̂.

We simply say that PIOP is an r-rounds PIOP if the number of rounds is constant and
independent of the size of the index. We give some additional notation. In the following, we
will use two different ways to index (the pointers to) the oracle polynomials in a PIOP protocol’s
execution. We will refer to the oracle polynomials sent by the prover and by the indexer either
as Jpi,jK, with double indexes, or as the JpkK, with a single index, where k = ∑

i′=1,...,i−1 n(i′)+j.
We define the oracle index index(JfK) as the index in the transcript associated with (the pointer
to) the polynomial oracle JfK. Similarly to the set oracles(x̂), we define the set indexes(x̂) :=
{index(JfK) : JfK ∈ oracles(x̂)} the indexes in the transcript associated with (the pointers to)
the polynomial oracles involved in x̂.
Simulation-friendly polynomial oracles. Hereafter, we introduce the notion of simulation-
friendly polynomial oracles to abstract how our compiler generates instance-independent com-
mitments for the oracles sent during a PIOP protocol’s execution.

Definition 4.6.3 (PIOP with simulation-friendly polynomial oracles). A PIOP PIOP has
simulation-friendly polynomial oracles if for every F and (i,x,w) ∈ R the distribution (Com(ck, pi))i

is computationally indistinguishable from the uniform distribution over Cn where C is the com-
mitment space and where (pi)i are the oracles sent by the prover P(F, i,x,w) in the interaction
with V(F,x).

If the commitment scheme is hiding then this property is trivially true. For the case of
non-hiding commitments, one may rely on Decisional Uber Assumption [Boy08] that reduces
to discrete log for algebraic adversaries [RS20].
Verifier Checks. It is often the case that the relation R̂, for an R̂-PIOP, is the logical
conjunction of a (sub)relation. In this case, we consider x̂ := (x̂k)k and the verifier returns 1
when all the checks x̂i are satisfied. When looking at concrete examples of PIOPs, in the rest
of this section, we will assume that this natural approach is used by the verifier: for sake of
simplicity, we extend Definition 4.6.2 of an R̂-PIOP and allow the verifier to output ne checks
(x̂k)k, and the verifier accepts if and only if x̂k ∈ LR̂ for all k ∈ [ne].
PIOPs with Delegation. There are cases in which the PIOP can be thought of as a two-phase
protocol, sharing the same indexer I where: (i) in the first phase of the protocol, the prover
P1 takes as input the field F, the index i, the instance x and the witness w, and interacts
for a certain number of rounds with the verifier, while (ii) in the second phase, the prover P2
that, crucially, does not take as input the witness w, interacts with the verifier for only two
rounds.12 Since we require the output of P2 to be uniquely determined by its input (which
is also computable by an “inefficient” verifier), we call this last (witness-independent) phase a
delegation phase.

The reason to add this new definition is to enlarge the class of PIOPs for which the technical
condition in [FFK+23] (sufficient to prove Simulation Extractability of the compiled SNARK)
holds.

12We could consider a more general setting with multiple delegation rounds; however, all the optimized
constructions we are aware of only require two.
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Definition 4.6.4 (Delegation Phase for a PIOP). Let PIOP be an r + 1-rounds R̂-PIOP over
F for R. We say that PIOP is R̂-PIOP with delegation phase if we can parse P (resp. V) as
P1 and P2 (resp. as V1 and V2) such that there exists a verifier Ṽ taking as additional input the
index i where (1) PIOP1 = (P1, Ṽ) is a (r−1)-rounds R̂-PIOP over F for R and the queries of Ṽ
and V1 are identical for any inputs, (2) PIOP2 = (P2,V2) is a 2-rounds R̂-PIOP over F for the
(P-)language of strings (F, i, (x, (π⃗j)j∈[r], (ρj)j∈[r−1])) where Ṽ(F, i,x, (π⃗j)j∈[r], (ρj)j∈[r−1])) = 1
assuming that the Ṽ’s queries to R̂ are answered positively.

Uniqueness of delegation phase. Moreover, we have that for all F, i,x, (π⃗j)j∈[r], (ρj)j∈[r−1]
the probability, taken over the V2’s message ρr ←$ F, that V2 on input (F,x, (π⃗j)j∈[r], (ρj)j∈[r−1])
accepts on two transcripts, that are different in the first tuple of messages and polynomials, is
negligible in log |F|.

In the following, we simply refer to an r-rounds R̂-PIOP with a Delegation Phase, denoting
it as PIOP1∥PIOP2, as the (r + 1)-rounds R̂-PIOP in which the prover P first runs P1 and
interacts with the verifier V1 for r rounds, then runs P2 in the last phase, while the verifier
outputs the checks of V1 and V2, and accepts if and only if all the checks are satisfied.13 Note,
we say that a PIOP with delegation has simulation-friendly polynomial oracles if so does PIOP1.

4.6.1 Polynomial R̂lin-PIOP
Similarly to Section 4.5.2, let R̂lin be the oracle indexed relation that upon an instance

x̂ := ((JcjK)j∈[m], (JbiK)i∈[n], (Gi)i∈[n], x, y),

outputs 1 if and only if ∑i ai(x)bi(x) = y, where ∀i: ai(X) := Gi(c1(X), . . . , cm(X), X). We
refer to the polynomial oracles (JcjK)j as the core polynomial oracles, while the polynomial
oracles (JaiK)i and (JbiK)i as the left and right polynomial oracles respectively. We use the
shorthand x̂.ai to refer to the ai defined above.

Below we formalize a class of R̂lin-PIOPs in which each evaluation point x chosen by the
verifier for a R̂lin query is a function x = ṽ(ρ⃗) of its random coins, where ṽ is a polynomial
that can be defined by the verifier depending only on the index i and the instance x. The R̂lin
checks relying on a ṽ which is non-constant in the r − 1-th random coin are called “focal”, as
they have a focal role to ensure extractability.

Definition 4.6.5 (Structured R̂lin-PIOP and focal checks). An r-rounds R̂lin-PIOP PIOP is
structured if there exists a deterministic PT algorithm Ṽ such that for all i, x, π⃗, ρ⃗, k ∈ [ne]
we have that ṽk(ρ⃗) = x̂k.x, where (ṽk)k ← Ṽ(F, i,x) and (x̂k)k ← V I(F,i)(F,x, π⃗, ρ⃗).

If degr−1(ṽk) ≥ 1 we say that the check x̂k is focal. We denote by Kf the set of all indexes
k such that x̂k is focal.

Finally, we introduce the notion of compilation-safeness for R̂lin-PIOPs. The idea of the
definition below is that focal checks can be ordered in such a way that we can incrementally
extract all the polynomials, starting from the trivially extractable polynomials, namely the
index polynomials, and using the partial extractability property derived from Definition 4.5.8.

13The prover can send all the messages of the first round of PIOP2 on the r-th round of PIOP1, thus yielding
an r + 1 (rather than r + 2) rounds protocol.
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Definition 4.6.6 (Compiler-safe R̂lin-PIOP). An r-rounds R̂lin-PIOP PIOP is compiler-safe if
for any i and x, for any π⃗ and any ρ⃗ there are no polynomial oracles in the last message of
the prover and there is an ordering of the focal checks (x̂k)k∈Kf

such that (1) for any k ∈ Kf

we have {x̂k.ai : x̂k.bi /∈ Jk−1} are ν-independent and (2) we have Jne is the set of all the
polynomials including index polynomials sent by the prover, where:

• J0 is the set of n(0) index polynomials

• for all k ̸∈ Kf , Jk := Jk−1

• for all k ∈ Kf , Jk := Jk−1 ∪ {x̂k.cj : j ∈ [m]} ∪ {x̂k.bi : i ∈ [n]}

• ν is the maximum number of distinct points for which the verifier evaluates a non-index
polynomial, i.e.,

ν := max
i>n(0)

|{x̂k : JpiK ∈ oracles(xk), k ∈ [ne]}|

Moreover, an R̂lin-PIOP with a delegation phase PIOP1∥PIOP2 is structured (resp. compiler-
safe) if PIOP1 and PIOP2 are both structured (resp. compiler-safe).

4.6.2 Polynomial R̂poly-PIOP
As mentioned in Section 4.1, when designing a new scheme, it is easier to describe the PIOP
by specifying a list of polynomial equations between the polynomial oracles as, for example,
in [GWC19, CFF+21, RZ21, FFK+23]. In this section we formalize this class of PIOPs using
the oracle relation R̂poly that upon the instance xpoly := ((JpjK)j∈[n], F, (vj)j∈[n]), outputs 1 if
and only if:

F (p1(v1(X)), . . . , pn(vn(X)), X) ≡ 0

where vj ∈ F[X], ∀j and F ∈ F[X1, . . . , Xn, X].
We consider R̂poly-PIOPs that are structured as described below.

Definition 4.6.7 (Structured R̂poly-PIOP). An r-rounds R̂poly-PIOP PIOP is structured if
there exists a deterministic PT algorithm Ṽ such that for any i and x, for any π⃗ and for any
ρ⃗, j ∈ [n],k ∈ [ne] we have that:

ṽj,k((ρi)i∈[r−2], X) = xk.vj(X)

where (ṽj,k)j,k ← Ṽ(F, i,x) and {x̂k}k ← V I(F,i)(F,x, π⃗, ρ⃗).
Moreover, an R̂poly-PIOP with a delegation phase PIOP1∥PIOP2 is structured if PIOP1 and

PIOP2 are both structured.

We extend the compiler-safe definition of [FFK+23] to capture R̂poly-PIOPs with delegation
phase. We require that for each polynomial sent by the prover in the first r−1 rounds there must
be an equation that involves evaluating it on a (non-constant function of) the last random coin
sent by the verifier. Crucially, we require that the prover does not send any polynomial in the
last round. We do not make any restriction on the index polynomials. Our notion of compiler-
safe is more inclusive than in [FFK+23], as it holds for PIOPs such like Marlin [CHM+20] and
Lunar [CFF+21] without any changes.
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Definition 4.6.8 (Compiler-safe R̂poly-PIOP). An r-rounds R̂poly-PIOP PIOP is compiler-safe
if for any i and any x, ∀π⃗, n(r) = 0 and:

∀j ∈ [n] \ [n(0)] : ∃k s.t. degXr−1
(ṽj,k) ≥ 1

where (ṽj,k)j,k ← Ṽ(F, i,x).
Moreover, an R̂poly-PIOP with a delegation PIOP1∥PIOP2 is compiler-safe if PIOP1 and

PIOP2 are both compiler-safe.

4.6.3 From R̂poly-PIOP to R̂lin-PIOP

Arguably, the notion of compiler safe for R̂poly-PIOP is very easy to check. In particular, it is
much easier to check than the same notion for R̂lin-PIOP. In this section, we show that we can
transform a compiler-safe R̂poly-PIOP into a compiler-safe R̂lin-PIOP. We believe this can give
an easy-to-follow recipe when designing new KZG-based SE zkSNARKs from PIOPs because
the cryptographer needs only to focus on designing compiler-safe R̂poly-PIOP.

Our transformation is similar to the general strategy proposed by [GWC19], but it explicitly
makes sure that the derived checks result into a compiler-safe R̂lin-PIOP. We start by giving
the transform for the case in which there is one14 polynomial check G and all the (vi)i∈[n] are
equal to some non-constant polynomial v. Let J0 be the set of the index polynomials, we need
to find a subset I ⊂ [n] of minimal size m < n, and polynomials (Gi)i∈Ī , where Ī = [n] \ I,
such that:

• F (X1, . . . , Xn, X) = ∑
i∈Ī Gi((Xj)j∈I , X) ·Xi,

• (Gi((pj(v(X)))j∈I , X))i/∈J0 are 1-independent.

We define the instance x̂lin := ((JpiK)i∈I , (JpiK)i∈Ī , (Gi)i∈Ī , v(ρ⃗), 0). This transform minimizes
the number of core polynomial oracles, which results in minimizing the size of the proof of CPlin.

When there are distinct polynomials vi the optimization problem gets more complex. In
this case, assume that the number of distinct polynomials vi is equal to ν, then the transfor-
mation needs to find sets I1 and I2 and minimizes the size of I = I1 ∪ I2, such that it can
decompose F into ν − 1 instances for batch-evaluation15 that check pi(vi(ρ⃗)) = yi for all i ∈ I1
and for values yi that are sent as part of the last message of the R̂lin-PIOP prover, and one
polynomial F ′((Xi)i∈Ī1 , X) = F ((yi)i∈I1 , (Xi)i∈Ī1 , X) where, similar to the previous case, F ′
can be decomposed as:

• F ′((Xi)i∈Ī1 , X) = ∑
i∈I2 Gi((Xj)j∈Ī , X) ·Xi,

• (Gi((pj(vj(X)))j∈Ī , X))i/∈J0∪I are ν-independent.

Finally, when the PIOP has a delegation phase, we can just apply the transform both to
PIOP1 and PIOP2, this works because the checks involve two disjoint sets of polynomial oracles
(excluding the index polynomials, that however are shared among the two phases).

14When there are multiple checks with the same non-constant v we can simply batch together the equations
in one single equation.

15We notice that a R̂lin-instance can be trivially reduced to a batch-evaluation by having an empty set of
right polynomial oracles.



106 106

4.6.4 Notable PIOPs
In what follows, we show how to express in R̂lin form the PIOPs underlying PLONK and Marlin
(with all optimizations); it is easy to extend this analysis to Lunar and Basilisk that are very
similar to Marlin and PLONK, respectively.

P JqMK, JqLK, JqRK, JqOK, JSσ1K, JSσ2K, JSσ3K, JPIK V

JaK, JbK, JcK

β, γ

JzK

α

JtloK, JtmidK, JthiK

z

z̄ω := z(zω)

x̂1 checks: z(zω) = z̄ω

x̂2 checks:
// Below, the right polynomials are index polynomials:

a(z)b(z)qM(z) + a(z)qL(z) + b(z)qR(z) + c(z)qO(z) + qC(z)− α2L1(z)
+ PI(z)− αβz̄ω(a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)Sσ3(z)
− αz̄ω(a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)(c(z) + γ)

// Below, the right polynomial z is extracted from x̂1:

+α
(
(a(z)+βz+γ)(b(z)+βk1z+γ)(c(z)+βk2z+γ)+αL1(z)

)
z(z)

// Below, right polynomials extracted thanks to independence of left polynomials:

+ ZH(z)tlo(z) + ZH(z)zntmid(z) + ZH(z)z2nthi(z) = 0

Figure 4.2: The R̂lin-PIOP PLONK. For x̂2, we highlight the core polynomials, the left poly-
nomials that are linearly independent, and the right polynomials.

PLONK. We show in Fig. 4.2 how PLONK [GWC19] can be written as a 4-rounds R̂lin-PIOP
in which the verifier outputs two checks. The maximum number of distinct points for which the
verifier evaluates a non-index polynomial is 2 since the oracle polynomial JzK is evaluated on z
and zω. In x̂1 the verifier tests that z(zω) equals the field element z̄ω sent in the last round by
the prover. Moreover, all but JtloK, JtmidK, JthiK of the right oracle polynomials of x̂2 are part of
the index or are extracted from x̂1. However, the corresponding left oracle polynomials, that we
highlight in the figure, are linearly independent w.r.t. F≤2[X], which results in a compiler-safe
PIOP according to Definition 4.6.6.
Marlin. We show in Fig. 4.3 how Marlin [CHM+20, ark21] can be written as a 3-rounds
R̂lin-PIOP with a Delegation Phase.
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P J ˆrowK, JĉolK, J ˆrowcolK, Jv̂alAK, Jv̂alBK, Jv̂alCK V

JŵK, JẑAK, JẑBK, JŝK

ηA, ηB, ηC , α

JtK, Jg1K, Jh1K

β

vt := t(β), Jg2K, Jh2K

γ

x̂1 checks: uH(α, β)(ηA + ηC ẑB(β))ẑA(β) + ŝ(β)
− vH(β)h1(β) + uH(α, β)ηB ẑB(β)− vtx̂(β)− βg1(β)
− vX(β)t(β)ŵ(β) = 0

x̂2 checks: (a(γ)− b(γ)(γg2(γ) + vt
|K|)− vK(γ))h2(γ) = 0

Figure 4.3: The R̂lin-PIOP Marlin, where: vH (resp. vK , vX) denotes the vanishing polynomial
of the subgroup H (resp. K,X) of F; uH is the formal derivative of vH ; the polynomials a and b
are computed using the index polynomials and the coins α and β. We highlight the delegation
phase, the core and right polynomials of x̂1.

4.7 Revisiting the PIOP-to-zkSNARK compiler
We show how to turn compiler-safe R̂lin-PIOPs into simulation-extractable zkSNARKs. We
stress that, although the formalism we adopt differs from previous work, the resulting compiler’s
construction is the usual one with the linearization trick optimization.

Definition 4.7.1. We say that Π is strong simulation-extractable in the algebraic group model
with oblivious sampling if and only if Π is Φsse-simulation-extractable where for any (Φ0,Φ1)
in the family of policies Φsse we have that Φ0 outputs group elements coms = (ci)i from an Aff-
MDH secure and witness sampleable distribution and Φ1 checks that the forgery (x∗, π∗) ̸∈ Qsim.

Theorem 4.7.1. Let CPlin be the CP-SNARK for Rlin defined in Section 4.5.2. Let PIOP
be a compiler-safe R̂lin-PIOP for relation R that is state-restoration straight-line extractable,
bounded zero-knowledge, and with simulation-friendly polynomial oracles. Let Π be the zk-
SNARK compiled from PIOP using the compiler in Fig. 4.4. Then Π is zero-knowledge and
strong simulation-extractable in the AGM. Furthermore, if R is an oracle relation, then Π is a
CP-SNARK.

Proof intuition. The proof of zero-knowledge follows rather easily from the bounded zero-
knowledge, the simulation-friendly polynomial oracles and the (leaky) zero-knowledge of CPlin.
Moreover, the simulation strategy makes sure that the view of the adversary is always algebraic
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Π.Derive(srs, i) :
p⃗0 ← I(F, i);
for j ∈ [n(0)] do : cj ← [p0,j(s)]1
eki ← p⃗0, vk

i
← (cj)i∈[n(0)]

return (eki, vk
i
)

Π.Verify(vk
i
,x, πΠ) :

derive (π̄1, . . . , π̄r)
for i ∈ [r(|i|)− 1] do : // Fiat-Shamir transform

ρi ← RO(vk
i
,x, π̄1, . . . , π̄i)

{x̂k}k ← V(F,x, π⃗, ρ⃗)

return
∧

k∈[ne]

Verifylin(srs,xk, πk)

Π.Prove(srs, eki,x,w) :
for i ∈ [r(|i|)] do :

// Get messages from PIOP prover(
p⃗i, π⃗i

)
← P(F, i,x,w, ρ1, . . . , ρi−1)

t←
∑

j∈[i−1] n(j)
for j ∈ [n(i)] do : ct+j ← [pi,j(s)]1
// Fiat-Shamir commitments and messages of this round

π̄i := (ct+1, . . . , ct+n(i), π⃗i)
if i < r : ρi ← RO(vk

i
,x, π̄1, . . . , π̄i)

{x̂k}k ← V
I(F,i)(F,x, π⃗, ρ⃗)

for k ∈ [ne] : πk←Provelin (srs,xk, (pi : i ∈ indexes(x̂k)))
return (⃗c, π⃗, (πk)k)

Figure 4.4: The compiler based from R̂lin-PIOPs and KZG commitment scheme to Universal
zkSNARKs. We associate to the instance x̂k for the oracle relation R̂lin the instance xk for
the commit-and-prove relation Rlin, the latter instance is identical to x̂k but where any oracle
JpK ∈ oracles(x̂k) is substituted with the commitment [p(s)]1.

consistent and that the maximum nesting level is at most equal to the number of R̂lin instances
queried by the verifier in a single proof.

For the proof of simulation extractability, we need to show that for any adversary A, there
is an extractor E who outputs a valid witness whenever A submits a valid forgery, i.e., a new
and valid pair of statement and proof. To do that, we reduce the simulation extractability of Π
to the state-restoration knowledge soundness of the PIOP. Our extractor parses the algebraic
representation of the commitments sent by the adversary when querying the RO (to compute
the next coin of the verifier), and extracts from them the underlying polynomials. The lat-
ter polynomials are used as the prover oracles sent in the reduction to the state-restoration
knowledge soundness experiment to define a verifier state and retrieve the next coins of the
verifier. Notice that this reduction would not work if the adversary used simulated elements
in (the transcript) of his forgery. We bound the probability of this bad event by reducing
to the simulation extractability of CPlin. More in detail, for each focal check we perform one
reduction to the Φlin-SE of CPlin and in the k-th reduction we extract the polynomials Jk with
the knowledge of the polynomials in Jk−1 (i.e., we use partial extractability), where the sets
(Jk)k come from the compiler-safeness (c.f. Definition 4.6.6).

Proof. In what follows, we assume that PIOP is in fact an R̂lin-PIOP with a delegation phase,
i.e., the prover interacts with the verifier for r + 1 rounds.

Zero-Knowledge. We start showing the zero-knowledge simulator for Π and an adversary
submitting Q queries. The simulator is in Fig. 4.5. We define the bounded (leakage) list Leakx̂
as the list of all tuples (i, x̂.x) such that i ∈ indexes(x̂) and JpiK is a left oracle polynomial of
x̂. We recall that indexes(x̂) is the list of indexes of the polynomial oracles sent by the prover
that are involved in the instance x̂.
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The zero-knowledge guarantees of the simulator come from the simulation-friendly poly-
nomial oracles of PIOP (see Definition 4.6.3), the bounded zero-knowledge property of the
PIOP, and the Llin-leaky zero-knowledge property of CPlin, where Llin(x,w) := (w.Cj(x.x))j (cf.
Section 4.5.2).

We can show this with a simple hybrid argument. Let G0 be the real-world experiment
where A interacts with a real prover and the random oracle.

• The first hybrid G1 is the same as G0 but where, at every call to the prover, we addition-
ally compute the bounded (leakage) list Leak computed by the real prover. This hybrid
is obliviously identically distributed to the previous one.

• The second hybrid G2 is the same as G1 but where the SRS is generated using CPlin.S0 and
the proofs ofRlin for the instances in K1 are generated using the simulator CPlin.S1. Notice
that, since CPlin is only leaky-zero-knowledge, to generate such proofs, the simulator
additionally needs the leakage which we can compute using the bounded list Leakx̂ over
the polynomials computed by the prover. The proof of indistinguishability between the
two hybrids follows easily from the leaky zero-knowledge property of CPlin.

• The third hybrid G3 is the same as G2 but where, at every call to the prover, we sample
the commitments as uniformly random G1-group elements. For this step we use that
PIOP (or PIOP1, if PIOP = PIOP1∥PIOP2 has a delegation phase) has simulation-friendly
polynomial oracles (cf. Definition 4.6.3).

• The last hybrid G4 is the same a G3 but where (1) we finally switch to use the zero-
knowledge of the R̂lin-PIOP and (2) we use the leakage using the simulator. In particular,
we need to use the simulator for an (honest) verifier that samples its messages by comput-
ing the random oracle on the transcript so far16. This allows showing that the simulator
is in the non-programmable random oracle. The last hybrid is identically distributed to
the ideal-world experiment where A interacts with the simulator and the random oracle.

Finally, we show that, independently of the strategy of the adversary A, the view at the end
of the simulation extractability experiment for the compiled zkSNARK and with the simulator
described in Fig. 4.5 is algebraic consistent.

When the relation R is not an oracle relation, namely when the instances do not contain
any commitment, we can easily show that the view is algebraic consistent by noticing that
the simulator, at the q-th query, produces ne simulated proofs on the commitments coms(q),
moreover, since the PIOP prover can only prove algebraic consistent statements then also
the simulator can only compute algebraic consistent statements, otherwise we would have a
distinguisher for the zero-knowledge of the PIOP.

We need a more careful analysis when the relation R is an oracle relation, in which case
Π is a CP-SNARK. In fact, assume that, at the q-th simulation query, the adversary includes
a simulated commitment c̃ in the queried instance x, namely either c̃ ∈ coms(j) for j < q
or c̃ ∈ coms′. We observe that the simulator trivially preserves the algebraic consistency
across multiple proofs for focal checks since they involve evaluation on random coins, thus on
evaluation points that were not queried before. As for non-focal checks, notice that, because of

16Technically, we can hardcode the full description of the random oracle inside the verifier and rely on the
statistical zero-knowledge property.
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S(0, ppG)
srs, stCP ←$ CPlin.S(0, ppG)
µ← 0 // S1 queries counter

for j ∈ [Q] do :
coms(j) ←$ Gn−n(r)

1

coms′ ←$ Φ0(ppG)
stS←(stCP, µ, (coms(j))j , coms′)
return srs, stS

S(2, stS , s, aux)
if (s, aux, a) ∈ QRO :

return a, stS

a←$ F
QRO ← QRO ∪ (s, aux, a)
return a, stS

S(1, stS , srs, (i,x))
stS ← (stCP, µ, (coms(j))j , coms′)
c1, . . . cn−n(r) ← coms(µ)

for i ∈ [r − 1] do :
π⃗i ← PIOP.S0(F, i,x, ρ1, . . . , ρi−1)
t←

∑
j∈[i−1]n(j)

π̄i = (ct, . . . , ct+n(i), π⃗i)
ρi ← RO(vk

i
,x, π̄1, . . . , π̄i)

(p⃗r,π⃗r)← P2(F, i,x, π⃗, ρ1, . . . , ρr−1)∥PIOP.S0(F, i,x, ρ1, . . . , ρr−1)
(cn−n(r)+1, . . . , cn)← ([pr,j(s)]1)j∈[n(r)]

π̄r = (cn−n(r)+1, . . . , cn, π⃗r)
ρr ← RO(vk

i
,x, π̄1, . . . , π̄r)

π⃗r+1 ← P2(F, i,x, π⃗, ρ⃗)
{x̂k}k∈K1

, {x̂k}k∈K2
← V I(F,i)(F,x, π⃗, ρ⃗)

for k ∈ K1 :
leak← PIOP.S1(F, i, x̂k, Leakx̂k

)
πk←CPlin.S1(stCP,xk, leak)

for k ∈ K2 :
πk←CP.Prove (srs,xk, (pi : i ∈ indexes(x̂k)))

π ← (⃗c, π⃗, (πk)k)
stS ← (stCP, µ + 1, (coms(j))j , coms′)
return π, stS

Figure 4.5: The simulator S for a Π compiled from an r-rounds R̂lin-PIOP with a delegation
phase. We highlight the parts needed only for the delegation setting.

the b⃗-bounded zero-knowledge of the PIOP we have that c̃ (or better say the oracle associated
to it) must be a right polynomial oracle in all the R̂lin instances where it appears. Otherwise,
the PIOP would not be able to support leakage on this oracle. Moreover, in all the non-
focal instances where it appears as a left polynomial either the instance contains another left
polynomial that is sent by the prover or the instance evaluates to a constant value y, again,
because of the bounded zero-knowledge property of the PIOP. Notice, in the first case the
algebraic consistency holds because c̃ is evaluated together with a simulated commitment from
coms(q). In the second case, algebraic consistency holds because c̃ is evaluated on an evaluation
point and to a constant value, thus consistently with the previous simulated proofs.

Simulation Extractability. We define the extractor for Π for a given adversary AΠ. We make
some simplifying assumptions on the behavior of AΠ: (1) the adversary always queries first the
RO on a string that can be parsed as (i,x) before querying the simulation oracle on the same
string, (2) the auxiliary string auxE output by AΠ can be parsed as a list of strings (si, auxi, sti)i

and a string aux′E where for any i we have (si, auxi, sti) string is identical to the auxiliary input
output at the i-th query of the adversary. These assumptions are without loss of generality.
In fact, given an adversary AΠ that does not respect these rules we can always define another
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adversary that runs internally AΠ, collects all the necessary information to comply with (2)
and moreover follows the rule (1).

Finally, we emphasize that in our proof strategy we need to extract the witness polynomials
from the proofs according to some order, thus we would first need to sort the proofs of the
adversary and then proceed. However, w.l.o.g., we assume that the focal checks output by the
verifier are already sorted so to match the compilation-safeness property (Definition 4.6.6), and
such that all the “delegation checks”, namely (x̂k)k∈K2 , come before the others: notice that
it is always possible to define such sorting since the non-delegation checks and the delegation
checks involve two disjoint sets of polynomials (excluding the index polynomials that however
are already in J0).

Before proceeding, we set some notation:

• Let oraclesb(x̂) and oraclesc(x̂) be respectively the right and the core oracles of x̂. Similarly,
let indexesb(x̂) and indexesc(x̂) be respectively the indexes of the right and the core oracles
of x̂.

• For all k, let CI(x̂k) := oraclesb(x̂k) ∩ Jk be the compiler-safe index set, namely the set
of the indexes of the polynomials sent by the prover that are either part of the index or
may be extracted from x̂k′ , for k′ < k.

• For all k, we define {γj,k}j
:= indexesc(x̂k) and {βi,k}i

:= indexesb(x̂k). Whenever it is
clear from the context, we may omit the index k.

• Let Pi be the indexes of the polynomials sent at the i-th round by the prover.

• Given a proof π for Π, we define the RO-queries of π the list of strings

((vk
i
,x), . . . , (vk

i
,x, π̄1, . . . , π̄r))

• We say that the adversary copied up to round i (the transcript of) its proof πΠ from a
simulated proof π′Π if the first i+ 1 entries of their RO-queries are equal.

• We say that a proof πΠ uses a simulated element if there is a non-zero coefficient depending
on the simulated elements provided by S in the algebraic representation of any of the
commitments in πΠ.

• We say that a coin is fresh if it does not appear in any of the simulated transcripts of the
proofs output by S.

• We use K1 and K2 to denote the indexes of the checks output in PIOP1 and PIOP2
respectively, where PIOP := PIOP1∥PIOP2

• We let ECom be the canonical AGM extractor of the KZG polynomial commitment, namely
the one that parses the algebraic representation of a commitment c as (f, r⃗) and returns
the polynomial f(X). Notice the extractor fails when r⃗ ̸= 0⃗.

The extractor EΠ(xΠ, πΠ, auxE):
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1. Parse auxE as the concatenation of a list (si, auxi, sti)i and aux′E , where (si, auxi, sti)
is the output of AΠ at the i-th query to the ROM and aux′E the remaining aux-
iliary information given by the adversary (namely, the auxiliary information
associated with its last output).

2. Take the commitments (ci)i∈[n] in both xΠ (if it is a commit-and-prove relation)
and πΠ; from πΠ derive the messages π̄1, . . . , π̄r and find the indexes qi such
that sqi

= (vk
i
,x, π̄1, . . . , π̄i).

3. Return ⊥ if πΠ uses a simulated element of one of the proofs.
4. For i ∈ [n], let pi ← ECom(ci).
5. Return ⊥ if for some i, ∃j ∈ Pi : cj ̸= [pi(s)]1.
6. Let x̂k = ((cγj

)j∈[m], (cβi
)i∈[n], (Gi)i∈[n], x, y). If ∃k: ∑i Gi(pγ1(x), . . . , pγm(x), x)pβi

(x) ̸=
y, return ⊥.

7. Return EPIOP(i,xΠ, (pj)j)

To analyze the success of the extractor we define a series of hybrid games. We start from
the first hybrid that is the Expsr

APIOP,PIOP(F) experiment for PIOP (see Definition 3.6.2) for an
adversary APIOP that we define next.

The adversary APIOP:

1. Run simulator srs, stS ← S(0, ppG) and set QRO,Qsim empty sets.
2. Run AΠ(srs) and answer all the simulation queries of AΠ with S1.
3. Upon i-th query (si, auxi) from AΠ to S2:

(a) if si is in the RO-queries of a simulated proof in Qsim then run S2 on input
si.

(b) Else parse si as a (partial) transcript trns = (vk
i
,x, π̄1, . . . , π̄r′); parse π̄j

as (⃗cj, π⃗j); find the witness polynomials w := (fr′,j)j that are the alge-
braic representation (depending on ck) of c⃗r′ ; find in SeenStates the state
cvs = (i,x, π⃗1, {p1,i}i∥ρ1∥ . . . ∥π⃗r′−1, {pr′−1,i}i∥ρr′−1), set the verifier state
to cvs, and send the message (w, π⃗r′) to the PIOP verifier. Receive the
challenge ρr′ from the verifier. Finally, program the random oracle adding
(si, auxi, ρr′) to QRO.

4. Eventually the adversary outputs a valid forgery (xΠ, πΠ). From πΠ derive
the (full) PIOP transcript trns := (i,x, π̄1, ρ1, . . . , π̄r). Let i be the index of
RO query of the partial transcript (i,x, π̄1, ρ1, . . . , π̄r−1); as described in the
previous step, find the cvs in SeenStates associated with si, set the verifier
state to cvs, extract the (last) witness polynomials w and send (w, π⃗r) to the
verifier. The state cvs and the last messages (w, π⃗r) define a full transcript:
this would trigger the verifier to perform the decision phase of the PIOP and
set the decision bit d of the game.

Let H0 be the Expsr
APIOP,PIOP(F). By the state-restoration knowledge extractability of PIOP:

Pr[H0] ∈ negl(|F|)
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Consider H1 that additionally returns 1 if the adversary AΠ copies a simulated transcript
up to and including the last round from a simulated proof π′Π.
Lemma 4.7.1. Pr[H1] ≤ Pr[H0] + ϵlin

Proof. We have that the forged proof πΠ and a simulated proof π′Π share the same commitments
c⃗, the same messages π⃗, and therefore the same set of instances (x̂k)k∈[ne].

We parse πΠ = (⃗c, π⃗, (πk)k∈[ne]) and the simulated proof as π′Π = (⃗c, π⃗, (π′k)k∈[ne]), if the two
hybrids diverge then there must be an index k ∈ [ne] such that the proof πk ̸= π′k, where,
depending on the index k,π′k was either honestly generated (for k ∈ K1) or was simulated using
CPlin.S1 (for k ∈ K0).

Let πk = (π̄, (yj)j) and π′k = (π̄′, (y′j)j), by case analysis, either ∃j : yj ̸= y′j or ∀j : yj = y′j
and π̄ ̸= π̄′.

The latter case cannot happen by the uniqueness of KZG proofs, notice the uniqueness
of KZG proofs holds even when the trapdoor is known by the adversary. The former case is
covered by the ΦJ ,ν

lin+-simulation extractability of CPlin. We describe below a reduction.

Reduction B(srs, ppΦlin
)

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1

defined in Fig. 4.5, namely using CPlin.S1.
3. Given the forgery ((i,xΠ), πΠ) output by AΠ, find the instance x̂k and the

corresponding proof πk; submit the forgery (x̂k, πk)

We recall that the policy ΦJ ,ν
lin+, since the instance for πk and π′k is the same, holds when

∃j : yj ̸= y′j. Thus, by the Theorem 4.5.3, we bound the probability that the B wins to ϵlin.

Consider the hybrid H2 that, for all i ∈ [n], computes pi ← ECom(ci) and, additionally,
returns 1 if

∃k ∈ K2 :
∑

i

Gi(pγ1(x), . . . pγm(x), x) · pβi
(x) ̸= y ∨

∃j ∈ Pr : cj ̸= [pj(s)]1

where x̂k =
(
(cγj

)j, (cβi
)i, (Gi)i, x, y)

)
.

Lemma 4.7.2. Pr[H2] ≤ Pr[H1] + |K2| · ϵlin

Proof. Notice that, because of the winning condition added in H1, we can focus on the case
in which the adversary AΠ does not copy a simulated transcript (up to and including the last
round) from a simulated proof π′Π. We also notice that, by our simplifying assumption on
the order of the verifier’s queries, we have K2 = {1, . . . , |K2|}, namely, the indexes in K2 are
consecutive numbers.

We prove this lemma through a series of hybrids. Let H1,0 ≡ H1. For any k > 1, let H1,k

be the same as H1,k, but that additionally returns 1 if:∑
i

Gi(pγ1(x), . . . , pγm(x), x)pβi
(x) ̸= y ∨

∃i : cβi
̸= [pβi

(s)]1 ∨ ∃j : cγj
̸=
[
pγj

(s)
]

1
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where x̂k =
(
(cγj

)j, (cβi
)i, (Gi)i, x, y)

)
. Finally, we have that H2 ≡ H1,|K2|.

Let I := CI(x̂k) be the compiler-safe index set of x̂k (namely, the set of polynomials that
the PIOP’s specification guarantees we can extract from the instance x̂k, see Section 4.7). We
reduce to the (ΦI,ν

lin ,FI,ν)-simulation extractability of CPlin. We define the reduction Blin,k.

Reduction Blin,k(srs, ppΦlin
)

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1

defined in Fig. 4.5 and use oracle access to CPlin.S1.
3. Upon query to S2:

(a) If it can be parsed as a partial transcript trns = (vk
i
,x, π̄1, . . . , π̄r), derive

the list of single-variable polynomials (ṽk′)k′ ← Ṽ2(F, i,x) and forward the
query to CPlin.S2 adding the polynomial (ṽk(X)) to the auxiliary informa-
tion.

(b) Otherwise, simply forward the query to the simulator
4. Given the forgery ((i,xΠ), πΠ) output by AΠ, define the instance x̂k and the

corresponding proof π̂k.
5. For i ∈ indexes(Jk−1), run pi ← ECom(ci)
6. Return the forgery (x̂k, π̂k) and set the auxiliary input auxE as the adversary
AΠ does and include the polynomials (pi)i extracted at the previous step.

By inspection, if the forgery of AΠ passes the verification equation, then the forgery of Blin,k

passes the verification equation too.
Since the adversary AΠ has not fully copied the transcript from any simulated proof, the

random coin ρr computed by the verifier to verify the proof πΠ is, with overwhelming probability,
a fresh coin, which implies that the simulator has never output a proof on it. Moreover, since
the check x̂k is focal, the point x̂k.x is equal to ṽk(ρr) and degX(ṽ) ≥ 1. The forgery of the
reduction satisfies the Hash Check of Φlin because the reduction adds ṽk(X) to the auxiliary
information of the RO query including all the commitments of x̂k at Item 3a. Moreover, when
the distinguishing event between the two consecutive hybrids happens, the Partial-Extraction
Check of the policy is satisfied:

• For k = 1 since, by definition, the index polynomials (pi)i∈n(0) are honestly generated and
therefore equal to what ECom extracts.

• For k > 1, because of the changes introduced in the hybrids H1,1, . . .H1,k−1, the list of
polynomials extracted in Item 5 are correctly extracted and included in the auxiliary
information.

Finally, because of the compilation-safeness property, the linear independence check between
the left polynomials of x̂k allows us to conclude that the forgery of Blin,k matches the policy,
while the distinguishing event asserts that the extractor fails. This bounds the probability of
the distinguishing event to be at most ϵlin.

Consider H3 that additionally returns 1 if the adversary AΠ copies a simulated transcript
up to r-th round from a simulated proof π′Π.
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Lemma 4.7.3. Pr[H3] ≤ Pr[H2] + ϵdel

Proof. In this case, we have that πΠ and π′Π use the same commitments c⃗, the same messages π⃗
in the first r rounds, and there must be at least one commitment or a message in the last round
that is different. Because of the change introduced in the previous hybrid, the distinguishing
event focuses on the case in which the commitments sent in the last round can be extracted
using ECom, and moreover they satisfy the focal checks xk, for k ∈ K2.

However, by the uniqueness of PIOP with delegation phase property (see Definition 4.6.4),
we have that the probability of the distinguishing event, which implies two different PIOP2-
transcripts for the same instance that differ on the first prover message (and polynomials) is
ϵdel ∈ negl(log |F|).

Consider H4 that (similarly to H2) additionally returns 1 if

∃k ∈ K1 :
∑

i

Gi(pγ1(x), . . . pγm(x), x) · pβi
(x) ̸= y ∨

∃j : cj ̸= [pj(s)]1

where x̂k =
(
(cγj

)j, (cβi
)i, (Gi)i, x, y)

)
.

Lemma 4.7.4. Pr[H4] ≤ Pr[H3] + |K1| · ϵlin

Proof. The proof of this lemma proceeds almost identically to Lemma 4.7.1. The main difference
is that, by the definition of compilation-safeness, a focal check x̂k with k ∈ K1 queries the
polynomials at point x = ṽk(ρ1, . . . , ρr−1) where degXr−1

(ṽk) ≥ 1, thus we need to use the
change introduced in H3 to make sure that the challenge ρr−1 is different than in all the
simulation proofs, and thus the evaluation point x is fresh, namely that the simulator of CPlin
has never simulated a proof with x as evaluation point.

For completeness, we give the full proof of lemma.
We start noticing that, by our simplifying assumption on the order of the verifier’s queries,

we have that the indexes in K1 are consecutive numbers, in particular K1 := {|K2|+1, . . . , |K2|+
|K1|}.

We prove this lemma through a series of hybrids. Let H3,|K2| ≡ H3. For any k > |K2|, let
H3,k be the same as H3,k, but that additionally returns 1 if:∑

i

Gi(pγ1(x), . . . , pγm(x), x)pβi
(x) ̸= y ∨

∃i : cβi
̸= [pβi

(s)]1 ∨ ∃j : cγj
̸=
[
pγj

(s)
]

1

where x̂k =
(
(cγj

)j, (cβi
)i, (Gi)i, x, y

)
. Finally, we have that H4 ≡ H3,|K2|+|K1|.

Let I := CI(x̂k) be the compiler-safe index set of xk. We reduce to the (ΦI,ν
lin ,FI,ν)-

simulation extractability of CPlin. We make use of a reduction similar to the one used in the
proof of Lemma 4.7.1.

Reduction Blin,k(srs, ppΦlin
)

1. Run AΠ(srs).
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2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1
defined in Fig. 4.5, namely using CPlin.S1.

3. Upon query to S2:
(a) If it can be parsed as a partial transcript trns = (vk

i
,x, π̄1, . . . , π̄r−1),

derive the list (ṽk′)k′ ← Ṽ2(F, i,x), forward the query to CPlin.S2 adding
the single-variable polynomial (ṽk(ρ1, . . . , ρr−2, X))j to the auxiliary infor-
mation.

(b) Otherwise, simply forward the query to the simulator
4. Given the forgery ((i,xΠ), πΠ) output by AΠ, define the instance x̂k and the

corresponding proof π̂k.
5. For i ∈ indexes(Jk−1), run pi ← ECom(ci)
6. Return the forgery (x̂k, π̂k) and set the auxiliary input auxE as the adversary
AΠ does and include the polynomials (pi)i extracted at the previous step.

Since the adversary AΠ has not copied, up to the r-th round, the transcript from any simulated
proof, the last random coin ρr−1 computed by the verifier to verify the proof πΠ is, with
overwhelming probability, a fresh coin. Moreover, since the check x̂k is focal, the point x̂k.x is
equal to ṽk(ρ1, . . . ρr−1) and degXr−1

(ṽk) ≥ 1. The forgery of the reduction satisfies the Hash
Check of Φlin because the polynomial ṽk(ρ1, . . . , ρr−2, X) is added to the auxiliary information
of the RO query including all the commitments of x̂k. Similarly to the proof of Lemma 4.7.1,
the Partial-Extraction Check of the policy is also satisfied.

Finally, because of the compilation-safeness property, the linear independence check between
the left polynomials of x̂k allows us to conclude that the extractor would also extract its core
and the right polynomials. By inspection, the list of polynomials extracted by ECPlin is equal to
(pi)i at the step 5 of the reduction.

Consider H5 that additionally returns 1 if

∃k ∈ [ne] :
∑

i

Gi(pγ1(x), . . . pγm(x), x) · pβi
(x) ̸= y ∨

∃j : cj ̸= [pj(s)]1

where x̂k =
(
(cγj

)j, (cβi
)i, (Gi)i, x, y

)
. Namely, if the polynomials extracted above do not satisfy

the non-focal checks of V .

Lemma 4.7.5. Pr[H5] ≤ Pr[H4] + (ne − |Kf |) · ϵlin

Proof. We can show a reduction to the Φlin+-simulation extractability of CPlin. Similarly to the
proof of Lemma 4.7.1, the reduction isolates the pair (x̂k, πk) such that the distinguish event
happens. Using the polynomials pi ← ECom(ci) that are a valid witness for the focal checks
because of the change introduced before, the reduction can create an algebraic inconsistent
proof: given the result of Theorem 4.5.3, we can be bound the probability of such an event to
ϵlin.

Finally, we prove that the probability that APIOP wins in H5 is equal to the probability that
AΠ wins the strong simulation-extractibility experiment.
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Lemma 4.7.6. Pr[H5] = AdvΦSE-se
AΠ,S,EΠ

(λ)

Proof. We now show that the probability that H5 outputs 1 is equal to the probability that
the adversary AΠ wins the ΦSE-se experiment against EΠ. First, we notice that srs is generated
by S(0, ppG) in both experiments. Because of the checks introduced in H2, H4 and H5, upon
a valid forgery ((i,xΠ), πΠ), we have that:

• The proof πΠ cannot contain a simulated element (see Item 3 of APIOP). In fact, because
of H4, all the polynomials can be extracted, and therefore cannot be simulated. Thus, all
the RO queries of AΠ that constitute πΠ (namely the queries q1, . . . , qr) are forwarded to
the challenger in Item 3b of APIOP (in particular, any of the queries is already answered
by the programming of the RO by the simulator S1). This implies that the complete
transcript sent by APIOP is in the list SeenStates.

• The extractor EΠ does not abort neither at Item 5 nor at Item 6 because the polynomials
(pi)i extracted by ECom satisfy the linearized checks x̂k, for all k ∈ [ne]. This implies that
the extractor EPIOP in the Expsr

APIOP,PIOP in H5 is fed with the same polynomials extracted
by EΠ.

Thus, the decision bit in the state-restoration game is 1.

Having bound the probability that the adversary AΠ wins the ΦSE-se experiment against EΠ
along the hybrids concludes the proof.
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Chapter 5

Non-malleable Virtual Machines

This chapter is extracted from "SNARKs for Virtual Machines are Non-Malleable",
published in EUROCRYPT 2025.

5.1 Introduction
zkSNARKs for Virtual Machines (zkVMs) are behind the design of deployed systems with
non-malleability requirements.

The approach we take in this chapter is:

(i) to analyze the simulation extractability of a concrete, representative zkVM design to use
as a case study.

(ii) to provide, at the same time, a set of methodological tools for the study of the simu-
lation extractability of zkVMs in general—that is, beyond our specific choice of zkVM
construction in item (i). In fact, as we elaborate on below, we will provide a set of tech-
nical results useful for an even broader family of SNARK constructions, namely Lego-ish
SNARKs (which we define below).

Simulation extractability of Jolt. We will choose as a case study a design loosely based on
Jolt, a lookup-singularity SNARK VM for the RISC-V instruction set, at the heart of which
is Lasso, an argument for lookups with attractive efficiency features. This makes Jolt/Lasso
a likely adoption in different settings in the near future [Tha22, Tha24c]. However, besides
their efficiency, Jolt/Lasso constitute a natural choice since they together provide the first
example of lookup-singularity SNARK VM having been concretely described and implemented.
Finally, and crucially, Jolt [AST24] and Lasso [STW24], might be the most formal treatment
of SNARKs for VMs in the literature at the present moment. This is important for us since
otherwise we would not be able to carry out the type of formal analysis required by simulation
extractability. To be more precise, the concrete design we will consider will not be exactly
identical to that sketched in [AST24]. First off, the original description of Jolt and Lasso is not
zero-knowledge. Since the framework of simulation extractability presupposes zero-knowledge,
we have to naturally start from a zero-knowledge version of Lasso/Jolt. Second, for sake of
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generality and simplicity, we will abstract out some parts of the Jolt design. At the high-
level, Jolt runs a VM dividing it into three parts1 each proven by a different “sub-SNARKs”:
instruction execution (via Lasso), instruction-fetching and memory-checking (both proven via
Spartan-like proof systems [Set20]). In our concrete result (Corollary 5.8.1) we assume that
instruction execution applies (our variant of) Lasso, while we abstract out the remaining sub-
SNARK specifying what properties they need to satisfy in order for the final zkVM to be
simulation-extractable.

zkVMs through the lens of modularity. Our discussion above hints to how it may be
possible to approach the simulation extractability of zkVMs in general: since SNARKs for VMs
lend themselves to modular designs, this is potentially something we can leverage2. Thus, on our
way towards our goal in item (ii) above, we tackle a more broadly interesting problem: the non-
malleability of modular (or Lego-ish) SNARKs [CFQ19], i.e. SNARKs that are obtained from
the composition of several “sub-SNARKs”, each possibly of a different design. In particular,
we address this question:

What can we say about the non-malleability of a modular SNARK knowing that (some of) its
building blocks are non-malleable?

Modular SNARKs have been identified as worth of a systematic investigation of their own be-
cause of their simplicity and efficiency [ABC+22, BCF+21, CFF+21, CFQ19]; general treatment
of open problems in SNARKs designs—efficient distributed proving—have recently benefited
from an explicit modular approach [RMH+24]. While we do have a general theoretical frame-
work to reason about knowledge-soundness and zero-knowledge of Lego-ish SNARKs [CFQ19],
to the best of our knowledge, no work prior to ours systematically studied the simulation
extractability of modular SNARKs.

Challenges of Lego-ish SIM-EXT. We remark that composing non-malleable objects while
maintaining their non-malleability does not come for free. For instance, as demonstrated in
[FFK+23], there are copy-paste attacks when composing different Interactive Oracle Proofs
(IOPs) (see Ben-Sasson, Chiesa and Spooner [BCS16]) into one simulation-extractable zk-
SNARK. These attacks consider compositions of schemes for arbitrary relations without any
shared knowledge. Briefly, our framework shows how to circumvent these attacks by “gluing”
together the witnesses, either by considering a shared witness or by considering witnesses that
are somehow logically linked (we will elaborate more in the next section and make these in-
tuitions precise in our compilers in Section 5.7). To prove a statement composed of different
relations, we will have to identify specific constraints for both the relations themselves and the
sub-SNARKs used to prove each individual relation.

1We stress that in the Jolt paper, this distinction is sketched, and the reader can think of this paragraph
as our own (intentionally fuzzy) paraphrase. A formal treatment of different components of a VM is highly
dependent on the VM at hand. We will attempt a general formal treatment in Section 5.8.2.

2This modularity is not a mere technical artifact of the work in Jolt [AST24]. It has been used explicitly in
other works [LZZ+24], and it is a natural design approach: different sub-components of VMs will have distinct
features where sub-SNARKs of different designs will shine. Arguably, a modular design is already explicitly at
the core of “lookup-singularity” SNARKs since their defining principle is to use a specialized SNARK (a lookup
argument) for a specific component (instruction execution).
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Figure 5.1: Intuition for why SIM-EXT results for Lego-ish SNARKs are useful for zkVMs in
general: zkVMs in general lend themselves easily to a modular design; this is especially true
for lookup-singularity based ones. See also Section 5.8.

Figure 5.2: Informal description of two of our composition results for SIM-EXT of Lego-ish
SNARKs (Theorem 5.7.1).

5.1.1 Our Contributions
5.1.1.1 Simulation Extractability of Joltish

Our main result consists in proving that, under the discrete log assumption, a lookup-based
singularity zkVM based on Jolt—that we call Joltish—is simulation-extractable.

Our Joltish is based on our simulation-extractable lookup argument zkLasso, which makes
Joltish a lookup-singularity zkVM. In the technical overview in Section 5.2 we give more details
on how we obtain Joltish.

5.1.1.2 A toolbox for composition of simulation-extractable CP-SNARKs

A commit-and-prove argument of knowledge is an argument of knowledge where the witness
is committed using a (non-interactive) commitment scheme. The work LegoSNARK of Cam-
panelli, Fiore, and Querol [CFQ19] shows that commit-and-prove SNARKs are very useful for
composing different SNARKs together in meaningful ways.

We show two compositions derived from commit-and-prove schemes that are simulation
extractable. In particular, we provide two natural ways to compose schemes.

The first composition we consider is the conjunction of two relations. At first glance, given
an argument for a relation RF and an argument for a relation RG, we can realize an argu-
ment for "their conjunction" by running the two arguments independently. This composition
is knowledge-sound; however, it is not simulation-extractable, as we can mount a copy-paste
attack where the attacker knows a witness for the instance in RF and uses a simulated proof
for RG (see [FFK+23] for more details). We avoid this attack by considering a conjunction of
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relations where the committed witness is shared between the two instances. Given this, we show
that if the two arguments (for RF and RG) are simulation-extractable, then their composition
is also simulation-extractable.

The second composition is what we call function composition. Consider a SNARK for
correct function execution, namely, a SNARK that proves F (x,w) = y for a function F , with
public input x, private input w, and output y. Consider two commit-and-prove schemes: one
that proves F (xf ,wf ) = yf , and a second that proves G(xg,wg) = yg and let us call them
ΠF and ΠG respectively. Now we can compose them together to prove G ◦ F (xf ,xg,wf ) :=
G(xg, F (xf ,wf )). The idea is to generate the first and second instances so that they share the
commitment to yf , thus linking the private output of F with the private input of G. Also in
this case, we can show that if the two commit-and-prove schemes are simulation-extractable,
then their composition is also simulation-extractable.

These two results are rather straightforward and rely only on the fact that when the two
schemes share knowledge, one cannot mount the trivial copy-paste attack described above.

We can actually improve the conditions of the results by assuming an extra property from
one of the relations, which we refer formally as efficient witness computability (WIT-SAMP).
Loosely speaking, this property states that we can find easily valid witnesses for the (non-
committed part of the) instances. For example, in the functional composition, if the prover has
the freedom to sample the commitment to yf = wg, then the zero-knowledge simulator for the
composed scheme could sample a dummy input (xf , 0⃗) for F , run the honest prover for ΠF ,
and simulate the proof for ΠG. Since the simulator for the composed scheme does not use the
simulator for ΠF , we can (1) reduce the simulation extractability of the composed scheme to
the knowledge soundness of ΠF , and (2) reduce the zero-knowledge of the composed scheme
to the witness indistinguishability of ΠF . There is a caveat in this composition: ΠF could be
re-randomizable, allowing the adversary to create a forgery for an instance where it has already
seen a simulated proof (i.e., we can only prove weak simulation extractability for the composed
scheme). However, we can address this issue, and prove full simulation extractability for the
composed scheme, by assuming that ΠG is a signature-of-knowledge (SoK) and by signing the
proof for ΠF using ΠG. In Fig. 5.2 we give a graphical representation of our results on generic
composition of commit-and-prove SNARKs and summarize in the following informal version of
Theorem 5.7.1.

Informal statement of Theorem 5.7.1. There exists a black-box transformation from two
SIM-EXT commit-and-prove SNARK ΠF , ΠG to a SIM-EXT conjunction (resp. composition)
proof system ΠF∧G (resp. ΠG◦F ). Moreover, there exists a black-box transformation to a SIM-
EXT conjunction proof system ΠF∧G (resp. for functions composition ΠG◦F ) from two commit-
and-prove SNARKs ΠF , ΠG where (1) ΠF is KSND and (statistically) WI and RF satisfies
WIT-SAMP and (2) ΠG is a signature of knowledge.

Recipes for parallelizable SIM-EXT SNARKs. A problem when using signature of knowl-
edge is that we can call ΠG only after having computed the proof for ΠF , which forces sequen-
tiality in the proof generation. To mitigate such a bottleneck, in Section 5.8.3 we describe a
notion of signature of knowledge where, roughly speaking, the message can be fed at the very
end of the prover’s computations. We refer to this as a signature of knowledge with delayed
message. We give two instantiations of SoK with delayed message. We show (1) that the clas-
sical Fiat-Shamir approach for signature of knowledge can be adapted to the delayed message
setting extending the results on Fiat-Shamir-based simulation-extractable argument [DG23]
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and (2) we give a black-box construction of signature-of-knowledge with delayed message from
(classical) signature-of-knowledge and one-time signatures.

5.1.1.3 Other contributions

At the technical basis of our results on the non-malleable zkVMs lies a series of contributions
that we are going to present in more detail in the next section. First, we give a zero-knowledge
version of Lasso and provide the analysis of its simulation extractability. Second, we revisit
the technical results of [DG23], weakening their requirements and achieving tighter bounds for
Spartan and Bulletproofs. Finally, we give a proof of the simulation extractability of HyraxPC,
which may be of independent interest.

5.1.2 Organization of the chapter
In Section 5.2 we elaborate more on our results and the technical challenges that we had to
overcome. In Section 5.3, we give a formal definition of interactive and non-interactive argu-
ments in the ROM. In Section 5.4 we show an efficient tree-builder and we prove the knowledge
soundness of the arguments compiled using the Fiat-Shamir transform. In Section 5.5 we in-
troduce the Hyrax polynomial commitment and we prove that it is simulation-extractable.
In Section 5.6, we introduce the Lasso lookup argument and we show how to make it zero-
knowledge and simulation-extractable. Finally, in Section 5.7 we give our toolbox on composi-
tion of simulation-extractable CP-SNARKs and we elaborate on the applications to zkVMs in
Section 5.8.

5.2 A Technical Overview of Our Results

Simulation extractability of zkLasso. The technical core of our contribution is providing
a simulation-extractable indexed lookup argument derived from Lasso. We take the work of
[DG23] as our starting point. They prove the simulation extractability of (zero-knowledge vari-
ants of) schemes such as Bulletproofs and Spartan. Their work follows the results of simulation
extractability for Fiat-Shamir based arguments inspired by the work of Faust et al. [FKMV12]
and further investigated in [GKK+22, GOP+22, KPT23].

Their approach works in three steps which together provide simulation extractability: (i)
have ZK version of the protocols;3 (ii) prove that all the inner (sub)protocols are computational4

special-sound, i.e., it is possible to extract a witness from a sufficient number of valid proofs and
whose transcript possibly satisfies some additional predicate; (iii) proving that for a specific k
(where k is a round index) the protocol satisfies two properties referred as k-ZK and k-unique
response (k-UR for short). k-ZK restricts the ZK simulator by allowing it to reprogram the
random oracle only at the k-th round. k-UR states that the malicious prover’s responses are
uniquely determined after the k-th round.

To achieve step (i), Dao and Grubbs need to replace all the occurrences of the inner pro-
tocols, such as the sum-check-based reductions, with their blinded versions. For example, if

3The usual notion of simulation extractability makes sense for ZK protocols only.
4If the extractor fails to extract a witness, then we argue that the malicious prover is able to break some

computationally-hard problem, e.g., finding a nontrivial discrete log relation between the Pedersen generators.
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we consider the classical sum-check protocol which eventually evaluates on a random point x⃗
defined by the verifier’s challenges a committed polynomial f , the blinded counterpart would
instead commit to f(x⃗), for example using Pedersen, and then show in zero-knowledge that
such a commitment opens to the evaluation of f on x⃗. Thus, the scheme blinds the value y
which might leak information about the witness.

While several of the building blocks of Lasso are common to those of Spartan, and we
naturally use some of the same “low-level” technical tools, our analysis diverges substantially
from that of [DG23] and requires developing some more machinery. More in detail, we fol-
low [DG23] and substitute the sub-protocols with their blinded versions. To do so, we need
to define a blinded version of the grand product argument due to [Tha13] and prove it com-
putational special-sound. Once done that, we need a stronger analysis of the computational
special soundness of the hash-based multi-set fingerprinting used in Spartan. Specifically, Lasso
and Spartan use Spark as their underlying (sparse) polynomial commitment scheme; however,
while in Spartan some of the sparse polynomials are committed honestly by the verifier, in
Lasso these polynomials are committed by the untrusted prover. Crucially, in our case these
sparse polynomials encode the matrix of the lookup indexes, i.e., the witness we wish to extract
from the proof of the adversary, and this discrepancy introduces non-trivial differences between
our work and [DG23] when analyzing the computational special soundness.

A second component of both Lasso and Spartan is (yet another) polynomial commitment
called HyraxPC [WTs+17]. We improve the analysis for HyraxPC. Specifically, digging into the
technical details of [DG23], to prove computational special soundness of Hyrax, we need first
to define a tree of transcripts where the edges of each node satisfy a set of constraints that
Dao and Grubbs formalize through a set of predicates. We show that we need to introduce one
more predicate to fix the proof of computational special soundness of HyraxPC. Moreover, we
additionally prove that HyraxPC achieves k-ZK and k-UR, and thus, as additional result, we
can prove that this polynomial commitment is simulation-extractable.

By revisiting the techniques of [DG23], we also introduce some improvements that directly
apply to Spartan and Bulletproofs, as well as to Lasso. First, we design a (slightly) tighter
blinded sum-check protocol that only relies on the simple distinctness predicate, and for which
it is sufficient to use the tree-builder of Attema et al. [ACK21]. Second, and more importantly,
we achieve a tighter bound in our extractor (cf. Theorem 5.4.1) avoiding a loss quadratic in
the number of the prover’s queries and by solving a problem left open in the previous work.

We observe that our approach is still rewinding-based and so the provable SIM-EXT security
we get is “low” in terms of security bits, however this seems inherent to this type of analysis.

From zkLasso to Joltish. We provide a model for arguments of knowledge for virtual machine
execution. While similar formalizations exist in the literature [BCG+13, BCG+18, DOTV22,
ZGK+18], our framework focuses on abstracting zkVMs based on the lookup singularity. We
isolate the logical components in the VM that lookup argument can handle from the rest and
demonstrate that our compiler for conjunction, described in Section 5.7, is sufficient to achieve
simulation-extractable zkVMs. More in detail, we adopt an indirect way to achieve such a
formalization: we define a commit-and-prove relation R⋆ as the series of logical and memory
constraints and checks to perform to the trace of the program execution which, together with
the correct instructions execution handled by the lookup argument, prove correct program
execution. This abstraction results in a conjunction of a scheme for R⋆ and a lookup argument.
Thus, we can use our general non-malleable composition results (see the informal theorem at
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page 122 and the associated Theorem 5.7.1). In particular, we can leverage on a simulation-
extractable lookup argument to weaken the necessary security properties of the scheme for R⋆.
To do so, we show that R⋆ is WIT-SAMP, by showing how to derive a valid trace of a program
execution that uses an invalid instruction set. As a consequence, the scheme for R⋆ needs only
to be WI and knowledge sound, which open the doors to many instantiations.

Next, we demonstrate how to integrate our zkLasso into the framework, resulting in a broad
class of zkVMs that, as we argue, includes Joltish, our zero-knowledge variant of Jolt [AST24].
This task is easier since we can use the knowledge-soundness results for the scheme(s) for R⋆

of [AST24]. We emphasize that our composition theorem for zkVMs, Theorem 5.8.1, is general
and allows for the replacement of components in Joltish with different SNARKs, which is why
we refer to a large class of zkVMs.

5.3 Arguments in the ROM
In this chapter, we focus on SNARKs whose setup is transparent. In this setting, the simulator
is trapdoor-less, i.e., it can only reprogram the random oracle to simulate the proofs, and may
rewind the adversary. For this reason, we prefer to slightly depart from the syntax and definition
of NIZKs given in Section 2.4.3.1.

5.3.0.1 Interactive Arguments

A public-coin interactive argument for a relationR is a tuple of PPT algorithms Π := (Setup,P ,V)
where:
Setup(1λ, ppG)→ pp: outputs parameters pp given global parameters ppG
⟨P(w),V⟩(pp,x)→ {0, 1}: a public-coin interactive protocol whereby the prover P , holding

a witness w, interacts with the verifier V on common input (pp,x) to convince V that
(pp,x,w) ∈ R. At the i-th round, V samples its message uniformly at random from the
challenge space Ci. At the end, V outputs a bit to accept or reject.

We consider interactive arguments that satisfy the standard properties completeness, knowledge
soundness and honest-verifier zero-knowledge.

Completeness: For any adversary A we have that:

Pr
[
(pp,x,w) ̸∈ R ∨
⟨P(w), V ⟩(pp,x) = 1

∣∣∣∣∣ pp← Setup(1λ, ppG)
(x,w)← A(pp)

]
= 1

Knowledge-Soundness: There exists an EPT extractor E such that for any stateful PPT
adversary P∗:

Pr

b = 1 ∧ (pp,x,w) ̸∈ R

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ, ppG)
(x, stP∗)← P∗(pp)
b← ⟨P∗(stP∗),V⟩(pp,x)
w← EP∗(pp,x)

 ≤ negl(λ)

where E gets black-box access to each of the next-message functions of P∗ in the interactive
protocol and can rewind P∗ to any point in the interaction.
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Game KSP∗

0,ΠFS,R(λ)
pp←$ Setup(1λ, ppG)
(x, π)← P∗H(pp)
b← VH(pp,x, π)
return b

Game KSE,P∗

1,ΠFS,R(λ)
pp←$ Setup(1λ, ppG)
(x, π)← P∗H(pp)
b← VH(pp,x, π)
w← EP∗(pp,x, π)
return b ∧(pp,x,w) ∈ R

Figure 5.3: Knowledge soundness security games. The extractor E is given black-box access to
P∗, it simulates H and and can rewind P∗ to any point.

Honest-Verifier Zero-Knowledge: There exists a PPT simulator S such that for all pp ←
Setup(ppG) and (pp,x,w) ∈ R, the following distributions are statistically indistinguish-
able:

{ViewV⟨P(w),V⟩(pp,x)} ≈s {S(pp,x)}
where ViewV⟨P(w),V⟩(pp,x) denotes the view of the verifier, consisting of the transcript
and its own randomness.

5.3.1 Non-Interactive Arguments
A non-interactive argument (in the ROM) for a relation R is a tuple of PPT algorithms Π :=
(Setup,P ,V) where: Setup(ppG)→ pp generates the public parameters PH(pp,x,w)→ π gen-
erates a proof π VH(pp,x, π) → b checks if a proof is valid or not and outputs a bit b ∈ {0, 1}
and H is a random oracle.5

We consider non-interactive arguments that satisfy the following two properties.
Completeness: For any adversary A we have that:

Pr

(pp,x,w) ̸∈ R ∨
VH(pp,x, π) = 1

∣∣∣∣∣∣∣∣
pp← Setup(1λ, ppG)
(x,w)← AH(pp)
π → PH(pp,x,w)

 = 1

Knowledge-Soundness: There exists an EPT extractor E such that for any stateful PPT
adversary P∗, the following probability is negligible in λ:

AdvKS
ΠFS,R(E ,P∗) :=

∣∣∣Pr
[
KSP∗

0,ΠFS,R(λ)
]
− Pr

[
KSE,P∗

1,ΠFS,R(λ)
]∣∣∣

and the knowledge soundness games are defined in Fig. 5.3.

Zero-Knowledge: There exists a PPT simulator S such that for pp ←$ Setup(ppG) and any
unbounded adversary A:6

Pr
[
AH(·),P(pp,·,·)(1λ) = 1

]
≈s Pr

[
AH(·),SRePro(pp,·,·)(1λ) = 1

]
5For public-coin (2r + 1)-message interactive arguments with challenge spaces C1, . . . , Cr, we actually need r

independent random oracles Hi : {0, 1}∗ → Ci with i ∈ [r]. For simplicity, we denote these by a single random
oracle H, and it will be clear from context which random oracle is being used in a given round.

6Zero-knowledge is a security property that is only guaranteed for valid statements in the language, hence
A never queries P/S with a pair (x,w) such that (pp,x,w) ̸∈ R.
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Figure 5.4: An (n1, . . . , nr)-tree of transcripts for a (2r + 1)-message public-coin protocol.

where RePro is an oracle that on input a pair (a, b) reprograms H(a) := b.

We stress that zero-knowledge is defined in a model where the random oracle is explicitly-
programmable [Wee09] by the simulator: in particular, S can reprogram the random oracle H
(using RePro).

To turn public-coin interactive arguments into their non-interactive versions, we can employ
the Fiat-Shamir (FS) transform in a setting where P and V have black-box access to a random
oracle H. We use ΠFS to denote the non-interactive argument derived by applying the FS
transform to the argument Π.

5.3.2 Tree of Transcripts
A (n1, . . . , nr)-tree of transcripts for a (2r+ 1)-message public-coin protocol is a set of ∏i∈[r] ni

transcripts arranged in the following tree structure (see Fig. 5.4 for a graphical illustration):

• The nodes in this tree correspond to the prover’s messages and the edges correspond to
the verifier’s challenges.

• Every node at depth i has precisely ni children.

• Every transcript corresponds to exactly one path from the root to a leaf.

This notion, introduced by [ACK21], was later generalized by [DG23] to support custom
predicates for the verifier challenges. In particular, in the generalization of [DG23], the edges
(i.e., the verifier’s challenges) of each node need to be distinct, and they also need to jointly
satisfy a predicate ϕi where i is the depth of their corresponding node. In this work, we consider
only the following predicates:

• ϕ± that on input n field elements (c1, . . . , cn) returns 1 if and only if for all i ∈ [n], there
is not j ̸= i such that ci + cj = 0. We use the shortcut n± to indicate a node supporting
this predicate.

• ϕ:k that on input n challenges (c1, . . . , cn) ∈ Fn·m returns 1 if and only if all the inputs
have different prefixes of length k. We use the shortcut n:k to indicate a node supporting
this predicate.

We give a formal definition hereafter.
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Game SST E,A
Π,R,(ϕ⃗,n⃗)(λ)

pp←$ Setup(1λ, ppG)
(x, T)← A(pp)
w← T E(pp,x, T)
return (pp,x,w) ̸∈ R ∧ IsAccepting((ϕ⃗, n⃗), pp,x, T)

Figure 5.5: Computational Special Soundness security game.

Definition 5.3.1 (Tree of Transcripts). Let Π be a (2r + 1)-message public-coin interactive
argument for a relation R, with challenge spaces C1, . . . , Cr. Let n⃗ := (n1, . . . , nr) ∈ Nr, and let
ϕ⃗ := (ϕ1, . . . , ϕr) with ϕi : Ci → {0, 1}, for all i ∈ [r], we say that T is a (ϕ⃗, n⃗)-tree of accepting
transcripts for pp if:

1. T is a tree of depth r + 1,

2. For all i ∈ [r+1], each vertex at depth i is labeled with a prover’s message ai, and if i ≤ r
it has exactly ni outgoing edges to its children, with each edge labeled with a verifier’s
challenge ci,1, . . . , ci,ni

∈ Cni
i , satisfying ϕi(ci,1, . . . , ci,ni

) = 1. Additionally, the root label
is prepended with x (its label becomes (x, a1)),

3. The labels on any root-to-leaf path form a valid input-transcript pair (x, tr).

We say that T is accepting with respect to an input-transcript pair (x, tr) if (x, tr) corresponds
to the left-most path of T. We define an acceptance predicate IsAccepting((ϕ⃗, n⃗), pp,x, (π, )T)
to check whether T is a (ϕ⃗, n⃗)-tree of accepting transcripts for pp and x, and optionally π.

We now define computational special soundness that essentially guarantees that there exists
a tree-extractor algorithm T E that, given as input a tree of accepting transcripts produced by
an efficient adversary, outputs a valid witness with high probability.

Definition 5.3.2 (Computational Special Soundness). Let Π be a (2r + 1)-message public-
coin interactive argument for a relation R with challenge spaces C1, . . . , Cr. For any n⃗ :=
(n1, . . . , nr) ∈ Nr and any ϕ⃗ := (ϕ1, . . . , ϕr) with ϕi : Cni

i → {0, 1}, we say Π is (ϕ⃗, n⃗)-
computational special sound if there exists a PPT tree-extraction algorithm T E such that for
every EPT adversary A, the following probability is negligible in λ:

AdvSS
Π,R,(ϕ⃗,n⃗)(T E ,A) := Pr

[
SST E,A

Π,R,(ϕ⃗,n⃗)(λ)
]

and the special soundness game is defined in Fig. 5.5

Attema et al. prove the existence of an efficient tree-builder algorithm that can generate
n⃗-trees of accepting transcripts having oracle access to a (malicious) prover P∗. This result was
later generalized by [DG23] to support partition predicates; in Section 5.4 we show how to adapt
their result to achieve tighter bounds for the predicates needed to instantiate Spartan [Set20]
and Bulletproofs [BBB+18].
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Game SES,P∗

0,ΠFS,R(λ)
pp←$ Setup(1λ, ppG)
(x, π)← P∗H,S(pp)
b← VH′

FS(pp,x, π)
return b ∧ (x, π) ̸∈ QS

Game SEE,S,P∗

1,ΠFS,R(λ)
pp←$ Setup(1λ, ppG)
(x, π)← P∗H,S(pp)
b← VH′

FS(pp,x, π)
w← EP∗(pp,x, π)
return b ∧ (x, π) ̸∈ QS ∧(pp,x,w) ∈ R

Figure 5.6: Simulation extractability security games. S returns a proof π upon an input x (and
may reprogram the random oracle), while QS records all the pairs (x, π) queried by P∗. H′
denotes the modified RO after all the proof simulation queries. E is given black-box access to
P∗; in particular, it simulates H and S for P∗ and can rewind P∗ to any point in its execution
(with same initial randomness).

5.3.3 Simulation extractability
Simulation extractability requires that extractability holds even when the malicious prover is
given access to simulated proofs, possibly for false statements.
Definition 5.3.3 (Simulation extractability). Let Π := (Setup,P ,V) be a public-coin zero-
knowledge interactive argument for relation R with associated NIZK ΠFS := (Setup,PFS,VFS).
We say ΠFS is simulation extractable (with respect to a simulator S) if there exists an EPT
extractor E such that for every PPT adversary P∗, the following probability is negligible in λ:

AdvSIM−EXT
ΠFS,R (S, E ,P∗) :=

∣∣∣Pr
[
SES,P∗

0,ΠFS
(λ)

]
− Pr

[
SEE,S,P∗

1,ΠFS
(λ)

]∣∣∣
and the security games are defined in Fig. 5.6.

Hereafter, we introduce two more properties, namely k-zero-knowledge and k-unique re-
sponse. Roughly speaking, the former notion captures zero-knowledge when the simulator is
only allowed to reprogram the random oracle in the k-th round, while the latter states that the
malicious prover’s responses are uniquely determined after the k-th round. These two properties
together with knowledge-soundness imply simulation extractability [GKK+22, DG23].
Definition 5.3.4 (k-Zero-Knowledge, [DG23]). Let Π := (Setup,P ,V) be a (2r + 1)-message
public-coin interactive. We say that ΠFS satisfies (perfect) k-zero-knowledge, for some k ∈ [r],
if there exists a zero-knowledge simulator SFS,k that only needs to program the random oracle
in round k, and whose output is identically distributed to that of honestly generated proofs.
Definition 5.3.5 (k-Unique Response, [DG23]). Let Π := (Setup,P ,V) be a (2r + 1)-message
public-coin interactive argument. We say that ΠFS satisfies k-unique response, for some k ∈ [r],
if for every PPT adversary A:

Pr

b ∧ b
′ ∧ π ̸= π′ ∧ π|k = π′|k

∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ, ppG)
(x, π, π′, c)← AH(pp)
b← VH[(pp,x,π|k)→c]

FS (pp,x, π)
b′ ← VH[(pp,x,π′|k)→c]

FS (pp,x, π′)

 ∈ negl(λ)

where H[x→ c] denotes the RO when the input x is reprogrammed to output c.



130 130

Theorem 5.3.1 ([DG23]). Let Π be a (2r+1)-message public-coin interactive argument. If ΠFS
is knowledge-sound and there is k ∈ [r] such that ΠFS satisfies k-zero-knowledge and k-unique
response, then ΠFS is simulation extractable.

5.4 A Tree Builder for Efficiently-decidable Partitions
A technical tool we leverage is an efficient tree-builder to prove the knowledge soundness of
computational special sound arguments compiled using the Fiat-Shamir transform, that was
studied in the work of [DG23] in the wake of the results of [GKK+22, GOP+22].

We start by introducing the notions of an abstract adversary and an abstract tree of tran-
scripts that can be defined independently of any interactive argument Π.

Definition 5.4.1 (Abstract Adversary). Let S1, . . . ,Sr be finite sets and let H := (H1, . . . ,Hr)
be a collection of random oracles Hi : {0, 1}∗ → Si. An r-round and Q-query random oracle
adversary A against (S1, . . . ,Sr) is a deterministic adversary having oracle access to H, making
at most Q total accesses to these random oracles, and returning ((a1, . . . , ar+1), v) where (ai)i∈[r]

are strings and v ∈ {0, 1}. The success probability of A is Pr
[
v = 1 | ((a1, . . . , ar), v)← AH

]
and this probability is defined over the randomness of choosing H.

Definition 5.4.2 (Abstract Tree of Transcripts). Let S1, . . . ,Sr be finite sets, A be any abstract
adversary against S1, . . . ,Sr, and n⃗ := (n1, . . . , nr) ∈ Nr. An n⃗-abstract tree of transcripts T
for A and H := (H1, . . . ,Hr) is a labeled n⃗-tree where:

• Each vertex at depth i ∈ [r + 1] is labeled with a message ai

• Each of the ni edges coming from a vertex at depth i ∈ [r] is labeled with a different
element s ∈ Si

• For any root-to-leaf path, if the edges are labeled (s1, . . . , sr) and the vertices are labeled
(a1, . . . , ar+1) then ((a1, . . . , ar+1), 1)← AH′ where H′ := (H1[a1 → s1], . . . ,Hr[(a1, . . . , ar)→
sr]).

Let Π be a (2r+ 1)-message public-coin interactive argument with challenge sets C1, . . . , Cr.
From any deterministic adversary P∗ against the knowledge-soundness of ΠFS, we can build
an abstract adversary A against the sets C1, . . . , Cr by running (x, (a1, . . . , ar+1)) ← P∗H(pp)
(with pp hard-coded) and also v ← VH

FS(pp,x, π). A then outputs (((x, a1), a2, . . . , ar+1), v).
An n⃗-tree of accepting transcripts for (pp,x, π) can be seen as an n⃗-abstract tree of transcripts
for A.

Definition 5.4.3 (Partition Predicates). Let C := ⋃
i∈[C] C(i) be a partition P of a set C into

C blocks. We assume the partition is efficient, i.e. given an index i ∈ [C], we can enumerate
the set C(i) in polynomial time. For n ∈ N, we define the corresponding partition predicate
ϕP,n : Cn → {0, 1} to output 1 on input (c1, . . . , cn) if and only if c1, . . . , cn belong to distinct
blocks of C.

We consider the following partition predicates:
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• C := F is partitioned into singletons {x}. This is the distinctness predicate, namely the
one that outputs 1 if and only if all the inputs c1, . . . , cr are distinct challenges. We
implicitly assume that it is the default predicate, and we may omit it, i.e., we abbreviate
a tree T supporting this predicate as an n⃗-tree of accepting transcripts

• C := Fm, for some m ∈ N, is partitioned into {(x, y) | y ∈ Fm−k} for all x ∈ Fk. This is
the k-prefix distinctness predicate, namely the one that outputs 1 if and only if all the
inputs c1, . . . , cr have different prefixes of length k. We abbreviate this predicate into the
number n of challenges as n:k.

• C := F is partitioned into {x,−x} for all x. We abbreviate this predicate into the number
n of challenges as n±.

• C := F2 is partitioned into {c · x | c ∈ F∗} for all x ∈ {(0, 0), (0, 1)} ∪ {(1, a) | a ∈ F} that
captures the linear independence between two vectors. We abbreviate this predicate into
the number n of challenges as nli .

Definition 5.4.4 (ϵ-Uniform Partition). Let C := ⋃C
i=1 C(i). We say that {C(i)}i∈[C] is ϵ-uniform

if there exists I ⊆ [C] such that |⋃i̸∈I C(i)| = ϵ · C and for all i, j ∈ I: |C(i)| = |C(j)|.

All the partitions defined in the above predicates satisfy this property. In particular, the
distinctness predicate, the k-prefix distinctness (for all k) and the n± predicate use 0-uniform
partitions, while nli uses 1/(|F|+ 2)-uniform partitions.

We now restate the guarantees of the (abstract) tree-builder of [ACK21, DG23].

Theorem 5.4.1 (Efficient Abstract Tree Builder). Consider any sets S1, . . . ,Sr that have an
efficiently decidable partition Si := ⋃Ci

j=1 Si,j, and any n⃗ := (n1, . . . , nr) ∈ Nr with N := ∏r
i=1 ni.

There exists a probabilistic algorithm T such that for any Q-query abstract adversary A with
success probability νA against (S1, . . . ,Sr), T outputs an n⃗-abstract tree of transcript T with
probability

νT ≥ νA −
(Q+ 1)(∑r

i=1 ni − r)
C

where C := mini∈[r] Ci.

Finally, we restate a theorem asserting the existence of an efficient tree-builder that can
generate (ϕ⃗, n⃗)-trees of accepting transcripts, where ϕ⃗ consists of partition predicates as de-
fined above. Similarly to [DG23], our proof relies on the tree-builder constructed in the work
of [ACK21], but we achieve a tighter bound since we do not incur in a quadratic dependence
on the number of queries Q.

Theorem 5.4.2 (Efficient Tree Builder). Let Π be a (2r + 1)-message public-coin interactive
argument with challenge spaces C1, . . . , Cr. Consider any efficiently decidable and ϵi-uniform
partition Ci := ⋃Ci

j=1 Ci,j, with ϵi ∈ negl(λ) for all i ∈ [r], with minimum partition size C :=
mini Ci, and let ϕ⃗ := (ϕ1, . . . , ϕr) be the corresponding partition predicate. Consider the tree-
building experiment in Fig. 5.7. There exists a probabilistic algorithm A such that for any
n⃗ := (n1, . . . , nr) ∈ Nr, with N := ∏r

i=1 ni, and any (malicious) prover P∗:

Pr
[
TBA,P∗

ΠFS,(ϕ⃗,n⃗)(λ)
]
≥ Pr

[
KSP∗

0,ΠFS,R(λ)
]
− (Q+ 1)(∑r

i=1 ni − r)
C

−Q ·max
i
ϵi
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Game TBA,P∗

ΠFS,(ϕ⃗,n⃗)(λ)

pp←$ Setup(1λ, ppG)
(x, π)← P∗H(pp)
T← AP∗(pp,x, π)
return VH(pp,x, π) = 1 ∧ IsAccepting((ϕ⃗, n⃗), pp,x, T)

Figure 5.7: Tree-building security game. A is given black-box access to P∗.

where A makes in expectation at most (Q + 1)(N − 1) + 1 rewinding calls to P∗, and Q is an
upper bound to the number of RO queries of P∗.

Proof. Without loss of generality, we assume that P∗ is deterministic because if we can prove
the theorem for every choice of P∗’s randomness, then by averaging we also prove the theorem
for arbitrary P∗. Thus, the only source of randomness in the game KSP∗

0,ΠFS,R(λ), and of the
success probability of P∗ is the choice of the random oracle H.

For all i ∈ [r], let Hi : {0, 1}∗ → [Ci]. Moreover, for all i ∈ [r], let Ir the subset of [Ci] for
which the challenge space Ci admits an ϵi-uniform partition.

We construct an abstract adversary B against the sets [I1], . . . , [Ir], having access to random
oracles H∗ := (H∗1, . . . ,H∗r) and to the malicious prover P∗. It does the following:

• Get pp← Setup(ppG) and run P∗ on input pp

• When P∗ makes an oracle query to Hi on input a message a, search through the (initially
empty) table T for an entry of the form (i, a, (·, c)), and return c. If no such query exists,
query H∗i (a) and obtain the value j

– If j ∈ Ci then sample c←$ Ci,j uniformly at random, add (i, a, (j, c)) to T , and return
c as the answer to P∗

– Otherwise abort

• When P∗ outputs (x, π := (a1, . . . , ar+1)), run v ← VH(pp,x, π), where H is determined
by T , and output (((x, a1), a2, . . . , ar+1), v).

We now define our tree-builder algorithm A. Given oracle access to P∗, it emulates the
abstract adversary B, then run the abstract tree-builder T (cf. Theorem 5.4.1) on B. If T
returns an n⃗-abstract tree of transcripts T, then A returns a (ϕ⃗, n⃗)-tree of accepting transcripts
TΠ for ΠFS as follows:

• For each vertex at depth i ∈ [r + 1] of T with label ai, the same vertex for TΠ has label
ai too

• For each edge labeled j going from a vertex labeled a at depth i ∈ [r], the same edge for
TΠ has the label c, where c is the unique challenge such that (i, a, (c, j)) ∈ T

First, we observe that the abstract adversary A is nearly as efficient as P∗ since it runs
P∗ once and does some other tasks in comparable time (managing the table T , running the
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algorithm Setup and the verifier procedure VFS). The tree-builder A invokes once on B the
tree-builder T of [ACK21] (cf. Theorem 5.4.1), hence inheriting its expected running time:
concretely, the expected running time of A is at most (Q− 1) · (N + 1) + 1 times the running
time of P∗.

We show that if B does not abort, TΠ is indeed a (ϕ⃗, n⃗)-tree of accepting transcripts. It is
clear that TΠ is of the right arity. For any vertex v at depth i ∈ [r], we know that the edges
coming from v are labeled with different (ji,1, . . . , ji,ni

) in T. This implies that for TΠ, the edges
coming from the corresponding vertex v has challenges (ci,1, . . . , ci,ni

) satisfying ci,k ∈ Ci,ji,k
for

all k ∈ [ni]. Hence, TΠ satisfies the partition predicate ϕ⃗.
Moreover, B perfectly simulates the random oracles H for P∗. For all i ∈ [r] it first samples

a partition index j and then samples from the j-th partition Ci,j a random challenge: this
procedure is equivalent to uniformly sampling a challenge from the challenge space Ci since
the partitions are ϵi-uniform and, in particular, have the same size. Then we have that the
winning probability of A is the same as P∗, conditioned on the event that B does not abort.
We now bound the probability that B aborts. Since for all i ∈ [r] the partition {Ci,j}j∈[Ci] is
ϵi-uniform, the probability that on input a message a the abstract adversary B aborts is at
most ϵi ∈ negl(λ). By union bound on the number of RO queries we derive that B aborts with
probability at most Q ·maxi ϵi.

5.5 Simulation extractability of Hyrax

5.5.1 An overview of Hyrax
We give a brief overview and provide some intuition on the multilinear polynomial commitment
HyraxPC that was first introduced in [WTs+17]. It is a polynomial commitment scheme equipped
with a (µ+ 1)-rounds Eval protocol for a µ-variate multilinear polynomial.

Let bin : N→ {0, 1}∗ be the function that computes the binary representation of an integer.
Moreover, given a matrix T⃗ with n rows and m columns and a column vector w⃗ with n · m
rows, we say that the column-major order of T⃗ is w⃗ if and only if ∀i, j : Ti,j = wi+n·(j−1).

To evaluate on a point x ∈ Fµ a multilinear polynomial p(X1, . . . , Xµ), given its evaluations
(wi)i∈[2µ] over the hypercube {0, 1}µ, we can use the following formula to compute p(x):

∑
k∈{0,1}µ

p(k) ·
µ∏

i=1
ẽq(xi, ki) =

∑
k∈[2µ]

wk ·
µ∏

i=1
ẽq(xi, bin(k)i)

=
∑

k∈[2µ/2]

∑
ℓ∈[2µ/2]

wk+2µ/2ℓ ·
µ/2∏
i=1

ẽq(xi, bin(k)i)︸ ︷︷ ︸
L⃗

·
µ/2∏
i=1

ẽq(xµ/2+i, bin(ℓ)i)︸ ︷︷ ︸
R⃗

= L⃗ · T⃗ · R⃗⊤

where T⃗ is the 2µ/2 × 2µ/2 matrix whose column-major order is (wi)i∈2µ , i.e., ∀i, j ∈ [2µ/2] :
Ti,j := wi+2µ/2·(j−1).

The prover P commits individually to each row of T⃗ , using Pedersen, and outputs a list of
commitments C⃗ := (C1, . . . , C2µ/2). We observe that the verifier V can compute a commitment
to L⃗ · T⃗ , namely CL⃗·T⃗ ←

∏2µ/2

k=1 C
Lk
k since this just requires public information.
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• Setup(µ, ppG): abort if µ is odd. Parse ppG as a group description (G,F). Sample
g1, . . . , gµ/2, h←$ G and output pp = (F,G, g, g1, . . . , gµ/2, h).

• Com(pp, p(X1, . . . , Xµ); ω): ∀i ∈ [2µ] let wi := p(bin(i)), define T⃗ ∈ F2µ/2×2µ/2 s.t. ∀i, j ∈
[2µ/2] : Ti,j := wi+2µ/2·(j−1).
(Namely, w⃗ is the column-major order of T⃗ .)
∀i ∈ [2µ/2], sample ωi ←$ F and compute Ci := ∏2µ/2

j=1 g
Ti,j

j · hωi .
Output C⃗ := (C1, . . . , C2µ/2) and opening ω := (ωi)i∈[2µ/2].

• Eval⟨P(p, ω, v, ωv),V⟩(pp, C, x, Cv): given a commitment Cv as public input, with an eval-
uation point x ∈ Fµ

1. Let ẽqL(Y ) = ∏µ/2
i=1 ẽq(xi, Yi) and ẽqR(Y ) = ∏µ

i=µ/2+1 ẽq(xi, Yi).

2. P and V compute P = Cv ·
∏2µ/2

k=1 C
ẽqL(bin(k))
k and r⃗ = (ẽqR(k))k∈{0,1}µ/2 .

3. P also computes ωP := ωv +∑k∈[2µ/2] ωk · ẽqL(bin(k)) and

l⃗ :=

 ∑
k∈[2µ/2]

Tk,j · ẽqL(bin(k))


j∈[2µ/2]

4. P and V engage in LogDotProd, on input ((2µ/2, g, g, h), (P, r), (l, v, ωP )), to prove that
P = gv · g⃗ l⃗ · hωP and v = ⟨⃗l, r⃗⟩.

• Open⟨P(p, ω),V⟩(pp, C):

1. V samples challenge x←$ Fµ, P replies with Cv = gvhωv , where v = p(x)
2. P and V engage in Eval on input (pp, C, x, Cv).

Figure 5.8: Description of HyraxPC. The function bin : N → {0, 1}∗ computes the binary
representation of an integer. The protocol LogDotProd is defined in Fig. 5.9.

Finally, P and V can run an inner product argument to confirm that (L⃗ · T⃗ ) · R⃗⊤ equals
p(x), supposedly committed in Cv, having access to the commitments CL⃗·T⃗ and CR⃗. This part
is handled by a logarithmic-size dot product proof LogDotProd (see Fig. 5.9) that is similar to
the inner product argument of Bulletproofs [BBB+18], but also achieves zero-knowledge.

5.5.2 Proof of the simulation extractability of Hyrax

We recall that HyraxPC has been proved (2µ/2, (4±)µ/2, 2) computational special sound in [DG23].7

7Their proof has some technical flaw, but we show how to fix it.
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1. Set n0 ← n,g(0) ← g, P (0) ← P, a(0) ← a,x(0) ← x, y(0) ← y, r
(0)
P ← rP .

For i = 1, . . . , k :

(a) Li ← gy
(i)
L ·

(
g(i−1)

)x(i−1)
[:ni] · hr

(i)
L , Ri ← gy

(i)
R ·

(
g(i−1)

)x(i−1)
[ni:] · hr

(i)
R .

(b) V sends challenge ci
$← F.

(c) P and V both compute P (i) ← L
c2

i
i · P (i−1) ·Rc−2

i
i and

a(i) ← c−1
i · a

(i−1)
[:ni] + ci · a(i−1)

[ni:] , g(i) ←
(
g(i−1)

[:ni]

)c−1
i ◦

(
g(i−1)

[ni:]

)ci

.

(d) P computes x(i) ← ci · x(i−1)
[:ni] + c−1

i · x
(i−1)
[ni:] and

y(i) ← c2
i · y

(i)
L + y(i−1) + c−2

i · y
(i)
R , r

(i)
P ← c2

i · r
(i)
L + r

(i−1)
P + c−2

i · r
(i)
R .

2. Set ĝ ← g(k), P̂ ← P (k), â← a(k), x̂← x(k), ŷ ← y(k), r̂P ← r
(k)
P . P samples d, rβ, rδ

$←
and sends β ← gd · hrβ , δ ← ĝd · hrδ .

3. V sends challenge c $← F.

4. P sends z1 ← d+ c · ŷ and z2 ← â · (c · r̂P + rβ) + rδ.

5. V checks that
(
P̂ c · β

)â
· δ ?=

(
ĝ · gâ

)z1 · hz2 .

Figure 5.9: Description of LogDotProd. For n = 2k, RLogDotProd = {((n, g,g, h), (P, a),x, y, rP ) :
P = gy · gx · hrP , y = ⟨x, a⟩}.

The protocol Eval is a public coin interactive argument for the relation:

REval =

ck, (Cp, x, Cv), (p, ωp, v, ωv) :
Cp = Com(ck, p;ωp),
Cv = Com(ck, v;ωv),
p(x) = v ∧ p is multilinear,


In [DG23], the authors prove the computational special soundness of Eval under the additional
condition that the evaluation point x ∈ Fµ is sampled uniformly at random. Although con-
ceptually sound, their statement does not fulfill the formalism of Definition 5.3.2. We fix this
inconsistency of the notation of Dao and Grubbs by, first, defining a different relation:

ROpen = {ck, (C), (p, ω) : C = Com(ck, p;ω) ∧ p is multilinear}

We then define a protocol Open which, basically, runs Eval on a random challenge x (cf. Fig. 5.8),
and we prove computational special soundness for Open: crucially, in the proof we can rewind
the prover feeding different challenges x.
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By additionally proving that the Open protocol achieves µ-zero-knowledge and µ-unique-
response, we derive that HyraxPC is simulation-extractable.

We start by proving that the Eval protocol of HyraxPC achieves µ-ZK and µ-UR, where µ
is the number of variables of the polynomials committed.

Lemma 5.5.1. HyraxPC.Eval is µ-ZK and µ-UR.

Proof. We start by proving the µ-ZK property.
The simulator SHyraxPC for HyraxPC.Eval, on input (pp, C⃗, x, Cv), computes the instance (P, r⃗)

for LogDotProd, as the honest prover would do, and then invokes the simulator SLogDotProd on
input ((2µ/2, g, g⃗, h), (P, r⃗)) that does the following:

1. For i ∈ [µ] samples the group elements Li and Ri at random. Retrieves the challenge ci

(as the honest prover would do) and computes the values P (i), a⃗(i) and g⃗(i) accordingly.

2. Let ĝ := g⃗(µ), P̂ := P (µ) and â := a⃗(µ). Samples random field elements c, z1, z2 and a
random group element β. Finally, computes δ := (ĝ · gâ) · hz2/(P̂ c · β)â and invokes RePro
to make c be the final challenge output by V on input the transcript, including β and δ.

SHyraxPC only makes a single RO reprogramming, in particular when invokes the simulator for
LogDotProd. The output of SHyraxPC is indistinguishable from that of a real transcript: the
random group elements Li, Ri are indistinguishable from the hiding commitments used in a
real proof; similarly, the distribution of the field elements z1, z2 and the elements β, δ is also
indistinguishable from the one in a real proof.

As for the µ-UR property, it is sufficient to notice that once the transcript of a proof has
been fixed up to µ-th round, if we are given two accepting last-round pairs (z1, z2) ̸= (z′1, z′2)
we can always reduce to the discrete log problem as we can find a non-trivial relation between
the generators g and h.

We observe that this result implies the following corollary.

Corollary 5.5.1. HyraxPC.Open is (µ+ 1)-ZK and (µ+ 1)-UR.

Proof. Since the Open protocol consists of a random challenge sent by the verifier followed by
an execution of the protocol Eval, the proof of (µ+ 1)-UR follows directly by the µ-UR of Eval.
Finally, it is easy to see that we can define a simple simulator that first obtains the random
coin of the verifier and then runs the code of the simulator SHyraxPC defined above that needs to
reprogram the random oracle only at the µ-th round and produces transcripts indistinguishable
from those of real proofs.

Finally, we show that HyraxPC.Open is computational special sound. Despite similar to the
proof of special soundness of [DG23], we notice that we rely on the prefix distinctness predicate
to extract the witness.

Lemma 5.5.2. For all µ ∈ N, the protocol HyraxPC.Open (cf. Fig. 5.8) is computational special
sound, i.e., there exist a tree extractor T EHyraxPC and an EPT adversary B such that given an
n⃗ := ((2µ/2):µ/2, (4±)µ/2, 2)-tree of accepting transcripts (produced by an adversary A) for the
(µ+ 2)-rounds Open protocol, we have that:

AdvSS
Open,n⃗(T EOpen,A) ≤ 2µ/2

(
AdvDL

G (B) + 1
|F|

)
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1. P → V : The prover sends 3α different (log m)-variate multilinear polynomials E1, . . . , Eα,
dim1, . . . , dimα, read_ts1, . . . , read_tsα and α different ( 1

c log N)-variate multilinear polynomials
final_ts1, . . . , final_tsα, where ∀i ∈ [α]: Ei is purported to specify the values of each of the m reads
into Ti, dimi is the multilinear extension of nzi, while read_tsi and final_tsi are the “counter polynomi-
als” for the i-th sub-table Ti.

2. V → P : The verifier picks a random r ∈ Flog m and sends it to P. The verifier makes one evaluation
query to ã to learn v := ã(r).

3. P ↔ V : sum-check protocol to check that v =
∑

k∈{0,1}log m ẽq(r, k) · f̂(E1(k), . . . , Eα(k))

• log m rounds of interaction in which the prover sends univariate polynomials and the verifier replies
with a random coin

• The verifier checks that Ei(rz) = vi for all i ∈ [α], where (vi)i are values provided by the prover at
the end of the sum-check protocol. The verifier checks the equation above with one oracle query
to each Ei.

4. V → P : The verifier picks two random field elements γ, τ

5. P ↔ V : α sum-check-based protocols (in parallel) for “grand products” to check that Hτ,γ(WS) =
Hτ,γ(RS) · Hτ,γ(S). The verifier checks the equations hold with an oracle query to each of
Ei, dimi, read_tsi, final_tsi.

Figure 5.10: A description of Lasso [STW24]. T is a decomposable lookup table of size N .

Proof. The first layer in the tree of transcripts consists of 2µ/2 distinct verifier’s challenges
((xi,ℓ)ℓ∈[µ])i∈[2µ/2], each one corresponding to an evaluation point; the rest of the tree then
corresponds to an instance of LogDotProd. The tree extractor T EHyraxPC runs the tree extractor
T ELogDotProd (that is similar to the one of the inner-product argument of Bulletproofs, and
so we refer to [BBB+18, DG23]) on each ((4µ/2)±, 2)-subtree to recover the underlying linear
combinations

l⃗(i) :=
 ∑

k∈[2µ/2]
wk+2µ/2(j−1) · ẽq((xi,1, . . . , xi,µ/2), bin(k))


j∈[2µ/2]

Here, the tree extractor T ELogDotProd either succeeds or we can build an adversary B against
the discrete log problem in G.

Finally, for each j ∈ [2µ/2], we can use the j-th entry of all the l⃗(i), for i ∈ [2µ/2], correspond-
ing to the 2µ/2 different verifier’s challenges, and we solve for wk+2µ/2(j−1) for all k ∈ [2µ/2]. This
is possible because the Lagrange polynomials {ẽq((xi,1, . . . , xi,µ/2), k)}i,k are independent since
the challenges ((xi,ℓ)ℓ∈[µ])i∈[2µ/2] crucially satisfy the µ/2-prefix distinctness predicate ϕ:µ/2.

5.6 Simulation extractability of Lasso

In this section, we recall the Lasso indexed lookup argument [STW24], and we show how we can
apply Theorem 5.3.1 to prove that a zero-knowledge version of Lasso is simulation-extractable.
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5.6.1 Overview of Lasso
The starting point of Lasso is to model the lookup argument in a sparse way, as it is done in
schemes like Caulk [ZBK+22] or Baloo [ZGK+22]: given a commitment to a table t ∈ Fn and a
commitment to a vector a ∈ Fm, the prover can prove to know a sparse matrix M ∈ Fm×n such
that (1) each row of M is a unit vector, i.e., there are n − 1 zeroes and one cell is equal to 1,
and (2) M · t = a. This turns out to be equivalent, up to negligible soundness error logm · |F|−1,
to check that: ∑

y∈{0,1}log n

M̃(r, y) · t̃(y) = ã(r) (5.1)

when r ∈ Flog m is chosen uniformly at random by the verifier after the prover has sent (a
commitment to) M̃ . The core idea of Lasso is to use Surge, a generalization of the Spark
commitment scheme [Set20], to commit to M̃ and then prove that Eq. (5.1) holds by evaluating
M̃ in a point (r, rx) chosen by the verifier. To do that, the table t needs to be “decomposable”
as we define hereafter.8

Definition 5.6.1 (Decomposable Table). A table t ∈ Fn is decomposable if there is k ≥ 1
and α := kc tables t1, . . . , tα, each of size n1/c, as well as an α-variate multilinear polynomial
f̂ such that for every (r1, . . . , rc) ∈ ({0, 1}

1
c

log n)c:

t[r1, . . . , rc] = f̂(t1[r1], . . . , tk[r1], tk+1[r2], . . . , t2k[r2], . . . , tα−k+1[r − c], . . . , tα[rc])

Let nz(i) denote the (unique) column in the i-th row of M that contains the value 1. First,
we observe that can rewrite Eq. (5.1) as:∑

k∈{0,1}log m

ẽq(k, r) · t[nz(i)] = ã(r) (5.2)

and if t is decomposable we can further rewrite it as:∑
k∈{0,1}log m

ẽq(k, r) · f̂(t1[nz1(i)], tk[nz1(i)], . . . , ta−k+1[nzc(i)], . . . , tα[nzc(i)]) = ã(r) (5.3)

for some polynomial f̂ , where nz1(i), . . . nzc(i) are the “chunks” in which nz(i) has been decom-
posed.

For all j ∈ [c], let dimj : Flog m → F be equal to ñzj. Moreover, for all i ∈ [α], let Ei : Flog m →
F be the logm-variate multilinear polynomial that interpolates all the m lookups into ti, namely
∀k ∈ {0, 1}log m, we have that Ei(k) := ti[dimi(k)]. Given this, we can rewrite Eq. (5.3) simply
as: ∑

k∈{0,1}log m

ẽq(k, r) · f̂(E1(k), . . . , Eα(k)) = ã(r) (5.4)

In Lasso, the prover commits to M sending commitments to dim1, . . . , dimc, Ei, . . . , Eα and
the “counter polynomials” for the i-th sub-table Ti, read_tsi and final_tsi. Then, the prover
and the verifier engage in a sum-check protocol to check that Eq. (5.4) holds. Finally, the prover
needs to convince the verifier that the polynomials Ei are actually encoding the values read
from the (honest) memory ti: to do that, they apply a memory checking procedure [BEG+91]

8In previous work, this is also referred to as Spark-only structure (SOS).
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Setup Phase. Let pp := (ppG, g, g1, . . . , gµ/2, h), where µ := max (deg(f̂), log m, 1
c log N), deg(f̂) is the

total degree of g and (g1, . . . , gµ/2) are random generators of G. Let ppPedersen,1 := (ppG, g, h) be the parameters
for Pedersen with message space F; for ν > 1, let ppPedersen,ν := (ppG, g1, . . . , gν , h) be the parameters for
Pedersen with message space Fν . For ν ∈ N let ppHyraxPC,2ν := (ppG, g1, . . . , gν) be the parameters for HyraxPC
with message space F[X1, . . . , X2ν ].

Interaction Phase.
1. P sends to V HyraxPC commitments to 3α different (log m)-variate multilinear polynomials E1, . . . , Eα,

dim1, . . . , dimα, read_ts1, . . . , read_tsα and α different ( 1
c log N)-variate multilinear polynomials

final_ts1, . . . , final_tsα, where ∀i ∈ [α]: Ei is purported to specify the values of each of the m reads
into Ti, dimi is the multilinear extension of nzi, while read_tsi and final_tsi are the “counter polynomi-
als” for the i-th sub-table Ti.

2. V picks a random r ∈ Flog m and sends it to P.

3. P sends a Pedersen commitment Cv to the value v supposedly equal to ã(r).

4. P and V engage in a sum-check to check that v =
∑

k∈{0,1}log m u(k), where u(X) := ẽq(r, X) ·
f̂(E1(X), . . . , Eα(X)): after log m rounds of interaction, the prover sends a Pedersen commitment Cex

to the value ex supposedly equal to u(rz)

5. P sends the Pedersen commitments Cv1 , . . . , Cvα to values v1, . . . , vα, supposedly equal to
E1(rz), . . . , Eα(rz)

6. P and V engage in GenPfg,α to check that f̂(v1, . . . , vα) = exẽq(r, rz)−1

7. The verifier checks using HyraxPC.Eval that Ei(rz) = vi for all i ∈ [α].

8. V picks two random field elements γ, τ .

9. For i = 1 to α:

• P sends to V the Pedersen commitment Chi
to the value hi supposedly equal to Hγ,τ (WSi) and

Hγ,τ (RSi) ·Hγ,τ (Si).
• P and V engage in GrandProd to check that Hτ,γ(WSi) = hi and Hτ,γ(RSi) ·Hτ,γ(S) = hi.

10. P and V engage in HyraxPC.Eval to check that v = ã(r)

Figure 5.11: The indexed lookup argument zkLasso.

that finally results into a sum-check-based grand product argument. More in detail, let WS and
RS be two sets accounting for the write and read operations, respectively, and let S be the final
state of the memory. Every time a read operation (i.e., a lookup) is issued, a write operation
is performed too with the goal of updating the “counter” (i.e., the timestamp) associated with
that memory location. The goal of the prover is to convince the verifier that the invariant
“every value that has been read must have been written” is maintained at the end of the
lookup process, i.e., WS = RS ∪ S. Lasso is not zero-knowledge since a proof essentially leaks
evaluations of M̃ in some random coins sent by the verifier.

5.6.2 Zero-Knowledge Lasso

We define the main protocol in Fig. 5.11. It uses Pedersen, HyraxPC, three (2-perfect special
sound) Σ-protocols (see also Fig. 5.12) sharing the same setup:
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1. P sends to V : α← gb1 · hb2 , β ← gb3 · hb4 , γ ← Xb3 · hb5 , where (b1, . . . , b5)←$ F5

2. V responds with challenge c←$ F \ {0}

3. P sends to V : z1 ← b1 +cx, z2 ← b2 +crx, z3 ← b3 +cy, z4 ← b4 +cry, z5 ← b5 +c(rz−rxy)

V checks that α · Cc
x = gz1 · hz2 , β · Cc

y = gz3 · hz4 and δ · Cc
z = Cz3

x · hz5

Figure 5.12: The Σ-protocol ProdPf to check that the prover knows (x, y, rx, ry, rz) such that
Cx = gxhrx , Cy = gyhry , Cz = gxyhrz , given the commitments (Cx, Cy, Cz) and generators g, h.

• ProdPf to prove that three commitments Cx, Cy, Cz satisfy xy = z,

• DotProdPf to prove that a multi-commitment Cx⃗ and a commitment Cy satisfy y = ⟨x⃗, a⃗⟩
for a public vector a⃗

• GenPff̂ ,n to prove that n commitments (Cvi
)i satisfy f̂((vi)i∈[n−1]) = vn

and the following sub-protocols:

• A protocol SumCheck (see Fig. 5.13) to reduce the task of proving that ∑x∈{0,1}µ p(x) = v,
given the commitments (Cp, Cv), to the claim that p(rx) = ex for a random rx ∈ Fµ

sampled randomly by the verifier, and some claimed value ex ∈ F, where Cex is provided
by the prover at the end of the procedure.

• A sum-check-based protocol GrandProd for “grand products” (see Fig. 5.14).

On the instantiation of GenPf and GrandProd. If f̂ is a simple string concatenation, we can
exploit the homomorphism of Pedersen and reduce GenPf to a single invocation of a Σ-protocol
for the equality of two commitments (cf. EqPf in [DG23, WTs+17]). As for GrandProd, we
use a commit-and-prove version of the Thaler’s grand product argument [Tha13] that is an
optimized application of the GKR protocol for circuit evaluation to a circuit computing a
binary tree of multiplication gates. Another possibility would be to use the protocol due to
Setty and Lee [SL20] that reduces the communication cost, and hence the proof size, at the
cost of committing to additional field elements.

Lemma 5.6.1 ([STW24]). Lasso has soundness error O(m+log m
|F| ).

Lemma 5.6.2. For all Π ∈ {ProdPf, DotProdPf}, Π is 2-perfect special sound, i.e., there exists
a tree-extraction algorithm that can extract a valid witness for Π given any 2-tree of accepting
transcripts.

We analyze the computational special soundness of the sumcheck (sub)protocol in Fig. 5.13.
Although very similar, our scheme is different from the one used in [DG23] since we change
the way the prover computes the vector a⃗ of the batched evaluations. Besides a negligible
improvement in the efficiency, this change allows us to provide a (tighter) extractor that relies
only on the distinctness predicate.
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Let e0 = v. For i = 1 to µ:

1. P computes the polynomial pi(X) := ∑
x∈{0,1}µ−i p(r1, . . . , ri−1, X, x), parses it as a vector

of coefficients, then sends Cpi
← Com(pp, pi;ωpi

) to V .

2. V responds with challenge ri ←$ F.

3. P computes ei ← pi(ri), then sends Cei
← Com(pp, ei;ωei

) to V .

4. V responds with challenges wi ←$ F.

5. P and V compute a⃗← (1, . . . , 1, 2) +wir⃗
k
i and Cyi

← Cei−1C
wi
ei

. In addition, P computes
yi ← ei−1 + wiei and ωyi

← ωei−1 + wiωei
.

6. P and V engage in DotProdPf on input (pp, (Cpi
, Cyi

, a⃗), (pi, ωpi
, yi, ωyi

)).

It is left to check that p(r1, . . . , rµ) = eµ.

Figure 5.13: The protocol SumCheck to reduce the task of proving that ∑x∈{0,1}µ p(x) = v,
given the commitments (Cp, Cv), to the claim that p(rx) = eµ for a random rx ∈ Fµ sampled
randomly by the verifier, and some claimed value eµ ∈ F, where Ceµ is provided by the prover
at the end of the procedure.

Let z0 = r1 = 0. P also sets e1 ← v. For i = 1 to d− 1:

1. If i > 1 P and V engage in a (i rounds) sum-check to reduce the task of proving that
∑

p∈{0,1}i g
(i)
zi−1(p) =

Ṽi(zi−1) to the claim that g
(i)
zi−1(ri) = ei, for some ri and Cei

← Com(pp, ei; ωei
) provided by the prover

by the end of the protocol.

2. P sends Cw1,i
← Com(pp, Ṽi+1(ri, 0); ωw1,i

) and Cw2,i
← Com(pp, Ṽi+1(ri, 1); ωw2,i

)

3. P and V engage in ProdPf on input (pp, (Cw1,i , Cw2,i , C
1/ẽq(zi−1,ri)
ei ),

(w1,i, ωw1,i
, w2,i, ωw2,i

, ei/ẽq(zi−1, ri), ωei
))

4. V sends a challenge βi ←$ F

5. P and V set zi ← li(βi), where li(X) is the unique line such that li(0) = (ri, 0) and li(1) = (ri, 1)

6. P and V set Cvi ← C
(1−βi)
w1,i · Cβi

w2,i
. Additionally, P sets vi ← w1,i(1− βi) + wi,2βi

Finally, P and V engage in HyraxPC.Eval to prove that Ṽd(zd−1) = vd−1.

Figure 5.14: The protocol GrandProd to prove that the product of 2d inputs equals v, given a
commitment Cv and a commitment to the MLE Ṽd of the input vector to a binary-tree circuit of
depth d. The output gate is labelled 0, and the two inputs to a layer-i gate labelled p ∈ {0, 1}i

are labelled as (p, 0) and (p, 1) respectively; hence GrandProd allows to prove that V1(0) = v.
For all i ∈ [d− 1] and for all p ∈ {0, 1}i, we have that g(i)

z (p) := ẽq(z, p) · Ṽi+1(p, 0) · Ṽi+1(p, 1)
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On input (Ca, T1, . . . , Tα), the simulator does the following:

1. Sample a “dummy” witness M ∈ {0, 1}m×n, such that all the rows of M are unit vectors.

2. Compute the vector of looked-up values b←M · T

3. Run Lasso prover, until the second to last round, on input (Cb, T1, . . . , Tα) and witness
M , where Cb ←$ Com(pp, b̃)

4. To prove that v = ã(r), use the ZK-simulator for HyraxPC.Eval on input (pp, (Ca, r, Cv))

Figure 5.15: Our (r − 1)-ZK Simulator S for Lasso, where r is the number of rounds.

Lemma 5.6.3. For all µ ∈ N, the sum-check protocol SumCheck in Fig. 5.13 is computational
special sound, i.e., there exist a tree extractor T ESumCheck and an EPT adversary B such that
given an n⃗ := (1, 2, 2)µ-tree of accepting transcripts (produced by an adversary A) for the µ-
rounds sum-check protocol, we have that:

AdvSS
SumCheck,n⃗(T ESC,A) ≤ µ

(
AdvDL

G (B) + 1
|F|

)

Proof. We construct a tree extractor T ESumCheck that does the following for each iteration i ∈ [µ].
Given a (1, 1, 2)-tree of transcripts:

1. Run T EDotProdPf on each (1, 1, 2)-subtree (corresponding to an instance Cpi
, Cyi

, a⃗) to
extract (pi, ωpi

, yi, ωyi
), where yi is supposedly equal to ei−1 + wiei

2. Given two distinct challenges wi, w
′
i, with extracted witnesses (pi, ωpi

, yi, ωyi
) and (p′i, ω′pi

, y′i, ω
′
yi

)
from the previous step, abort if (pi, ωpi

) ̸= (p′i, ω′pi
). Otherwise, solve for ei−1, ei, ωei−1 , ωei

the system:

{
yi = ei−1 + wiei

y′i = ei−1 + w′iei

{
ωyi

= ωei−1 + wiωei

ω′yi
= ωei−1 + w′iωei

The goal is to prove that T ESC either outputs polynomials p1(X), . . . , pµ(X) that satisfy
the information-theoretic sumcheck protocol, or we can build an adversary B, as efficient as
T ESumCheck and A combined, against the discrete log problem in G.

We have that ⟨pi, ai⟩ = yi and ⟨pi, a
′
i⟩ = y′i by the guarantees of T EDotProdPf. We derive

that, if T ESumCheck does not abort, it would extract values such that pi(0) + pi(1) = ei−1 and
pi(ri) = ei, i.e., it extracts valid polynomials for the information-theoretic sumcheck protocol.
In this case, we have that Cpi

= g⃗pi · hωpi = g⃗p′
i · hω′

pi , and by Lemma 2.3.1 we conclude that
the probability to abort is bound by the probability to solve the discrete log problem in G. By
union bound on the number of rounds, we derive the claimed bound.

Below we analyze the special soundness of GrandProd (cf. Fig. 5.14).

Lemma 5.6.4. For all d > 1, the protocol GrandProd is computational special sound, i.e., there
exist a tree extractor T EGrandProd and EPT adversaries B,B′ such that given an n⃗GrandProd,d :=
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((n⃗0, 2, 2), . . . , (n⃗d−2, 2, 2))-tree of accepting transcripts (produced by an adversary A) for the
grand product, we have:

AdvSS
GrandProd,n⃗(T EGrandProd,A) ≤AdvSS

HyraxPC.Open,((2d/2):d/2,(4±)d/2,2)(T EHyraxPC,B)

+
d−2∑
i=1

4i ·AdvSS
SumCheck,(1,2,2)i(T ESumCheck,B′)

where n⃗0 is the empty string and n⃗i := (4, 2, 2)i for all i > 0.

Proof. We construct a tree extractor T EGrandProd that does the following.

1. For each iteration i ∈ [d− 1]:

(a) If i > 1, run T ESumCheck on each of the 4i different (1, 2, 2)i-subtrees, associated
with the different random challenges r(j)

i , to extract the polynomials sent during the
sum-check

(b) Run T EProdPf on each 2-subtree to extract the values (w(j)
1,i , w

(j)
2,i , e

(j)
i ) and let fi be

the polynomial that interpolates all the pairs (r(j)
i , e

(j)
i )

2. Extract the polynomial Ṽd running T EHyraxPC on the subtree obtained by merging each
((4±)d/2, 2)-subtree corresponding to a different challenge point

At each iteration, the protocol GrandProd performs a sum-check to reduce the task of proving
that a certain polynomial equals some claimed value over a hypercube of a given size, and a
“reduction to a line” to batch two claims into one. Notice that the polynomial in the sum-check
is only “virtually” represented and is never directly evaluated. We need to prove that at each
iteration the prover performs a sum-check on a polynomial that is “consistent” wrt to the MLE
of the input Ṽd that we extract using T EHyraxPC.

We start by focusing on the last iteration of the protocol. Let fz(X) := ẽq(z,X) · Ṽd(X, 0) ·
Ṽ (X, 1). We need to prove that the polynomial fd−1 extracted by T EGrandProd at the (d− 1)-th
iteration is equal to fz(X) for some z (corresponding to an ancestor of the current subtree).

First, by the guarantees of the information-theoretic sum-check and the special soundness of
ProdPf, we have that ∑p∈{0,1}d−2 fi(p) = vd−2, for a value vd−2 that has been committed at the
previous iteration. Second, we observe that fd−1 is a (d − 1)-variate polynomial of individual
degree at most 3: this is because the polynomials sent during the sum-check are univariate
polynomials of maximum degree 3, due to the number of Pedersen generators in pp and later
used to run ProdPf. Moreover, by definition fz is a (d − 1)-variate polynomial of individual
degree 3. Let Agree be the event that fd−i(r(j)

d−1) = fz(r(j)
d−1) for all j. Since there is a unique

(d−1)-variate polynomial, of individual degree at most 3, that “densely” interpolates the pairs
(r(j)

d−1, fz(r(j)
d−1)) [Zip90], we conclude that, conditioned on Agree, fd−1 ≡ fz. When Agree does

not occur, we have that there is at least one challenge r := r
(j)
d−1 such that fd−1(r) ̸= fz(r).

In particular, this implies that w(j)
1,d−1 ̸= Ṽd(r, 0) ∨ w(j)

2,d−1 ̸= Ṽd(r, 1). Let ℓ be the unique line
interpolating ((r, 0), w(j)

1,d−1), ((r, 1), w(j)
2,d−1); then, there exists at most one field element β such

that ℓ(β) = Ṽd(r, β). However, when Agree does not occur, we can find in the corresponding
subtrees two distinct challenges β(j)

d−1, β
′(j)
d−1 such that the above equation holds, from which we

conclude that Pr[Agree] = 1.
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A similar analysis can be run for all the layers of the circuit. We do not need to run T ESC
when we reach the first iteration since the protocol does not invoke the SumCheck protocol. At
the first layer, we only rely on the special soundness of ProdPf to extract the value v consistent
with the output Ṽ1(0).

Lemma 5.6.5. zkLasso satisfies n⃗-computational special soundness, where

n⃗ = (2log m, (2, 2, 2)log m, 2, (4±)(log log m)/2, 2, 3, µ+ 1, (n⃗GrandProd,µ)α, (4±)(log log m)/2, 2)

Proof. We construct a tree extractor T ELasso that, given an n⃗-tree of accepting transcripts,
does the following:

1. Run T ESumCheck on the first sum-check sub-protocol on each (1, 2, 2)log m subtree to extract
the polynomials sent during the sum-check for h(X)

2. Run T EGenPf on each corresponding 2-subtree to extract the values v1, . . . , vα such that
f̂(v1, . . . , vα) = ex/ẽq(r, rz)

3. Run T EHyraxPC on the subtree obtained by merging each ((4±)log m/2, 2)-subtree, corre-
sponding to different challenge points, to extract α logm-variate multilinear polynomials
Ei such that Ei(rz) = vi for all i ∈ [α]

4. Run T EGrandProd on each n⃗GrandProd,µ-subtree to extract the multilinear polynomials dimi,
read_tsi, write_tsi, for all i ∈ [α], corresponding to the MLE of the last layer of the
circuit

5. Output matrix M derived from the encoding of its non-zero entries in dimi

We show that, conditioned on the event that none of the sub-extractor fails, the matrix M
extracted by T ELasso is a valid witness. In particular, from the guarantees of T EGrandProd and
T ESumCheck and the soundness of the corresponding protocols, we have that the prover uncon-
ditionally passes the verifier’s checks for the sum-check and the memory checking argument
(cf. Lemma 5.6.6) and, moreover, the rows of M are unit vectors. Also, from the guarantees
of T ESumCheck, T EHyraxPC and the soundness of the sum-check protocol we have that M · t = a
because the check holds for more than logm random rows.

We are ready to present our main theorem on zkLasso.

Theorem 5.6.1. zkLasso is simulation-extractable.

Proof. We prove that zkLasso is (r − 1)-ZK and (r − 1)-UR, where r is the number of rounds.
By combining Theorem 5.3.1 and Lemma 5.6.5, we derive a direct proof of the theorem.

We leverage a simple (r − 1)-ZK simulator S for zkLasso that, at high-level, executes all
sub-protocols using a dummy witness and invokes the simulator for the final HyraxPC.Eval. For
sake of completeness, we give the code of this simulator in Fig. 5.15.

First, by inspection, it is clear that the proofs produced are accepting: this is because the
verifier accepts if both the Lasso proof (until the last round) is valid (let call this proof π1),
and if the final proof π2 for HyraxPC.Eval is valid too. In fact, π1 is a composition of honestly
generated (sub)proofs, and by the completeness of Lasso, we derive that the verifier accepts
all of them. The last proof π2 is generated by invoking the ZK simulator for HyraxPC.Eval
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(cf. Lemma 5.5.1), and in this case the validity follows from the NIZK guarantees. Second,
we observe that S only makes a single RO reprogramming, in particular when invokes the ZK
simulator for HyraxPC.Eval. Finally, we need to prove that the output of S is indistinguishable
from that of a real transcript. Since the Lasso prover only employs hiding commitments as
inputs to the inner sub-protocols and, additionally, all the sub-protocols used in Lasso are
zero-knowledge, we conclude that the honestly generated proofs made by our simulator are
identically distributed to the proofs in a real transcript. In the final (sub)protocol HyraxPC.Eval,
indistinguishability is due to the guarantees of the ZK simulator.

The last sub-protocol of Lasso consists of an invocation of the (µ+ 1)-rounds HyraxPC.Eval
protocol that satisfies computational µ-UR (cf. Lemma 5.5.1). Hence, we conclude that zkLasso
satisfies perfect (r − 1)-UR.

5.6.3 On Multi-Set Fingerprinting
Lemma 5.6.6. The extracted multi sets in Step 9 of Fig. 5.11 are the same except with negligible
probability.

Proof. Let A and B be the two multisets and let n := |A| = |B| (we can exclude that they have
different cardinalities from the extraction procedure). Recall that each element in A or B is a
tuple of three elements (x, v, t). In order to check their equality we check the equality of their
fingerprints: Hτ,γ(A) = Hτ,γ(B), where Hτ,γ(A) = ∏

(x,v,t)∈A (hγ(x, v, t)− τ), and hγ(x, v, t) =
x · γ2 + v · γ + t denotes the Reed-Solomon fingerprinting.

Now assume that A ̸= B and let us bound the probability that the fingerprint test verifies.
Below we denote by α⃗ (resp. β⃗) the elements of the tuple (hγ(Aj))j∈[n] (resp. Bj) where, in the
indexing, we assume the elements of A (resp. B) are lexicographically ordered9.

We observe that:

Pr [Hτ,γ(A) = Hτ,γ(B)]
= Pr

[
Hτ,γ(A) = Hτ,γ(B) ∧ α⃗ ̸= β⃗

]
+ Pr

[
Hτ,γ(A) = Hτ,γ(B) ∧ α⃗ = β⃗

]
≤Pr

[
Hτ,γ(A) = Hτ,γ(B) | α⃗ ̸= β⃗

]
+ Pr

[
α⃗ = β⃗

]
Intuitively the first summand in the last line refers to the event where the final product

check passes even though the Reed-Solomon fingerprints somehow differ. The second summand
in the last line is the probability that all the Reed-Solomon fingerprints are the same (despite
A and B being distinct).

We observe:

Pr
[
Hτ,γ(A) = Hτ,γ(B) | α⃗ ̸= β⃗

]
= Pr

∏
j

(αj − τ) =
∏
j

(βj − τ) | α⃗ ̸= β⃗


and in order to bound the last probability we can simply apply Schwartz-Zippel (the left- and
right-hand side are two distinct polynomials of degree n evaluated in a random point τ) and
conclude that it is lower or equal to n

|F| .

9It could in fact be any canonical ordering. Having some ordering is going to simplify some observations in
our proof.
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We now bound the other summand. First, we observe that, from our assumption A ̸= B
there must exist some index j∗ such that Aj∗ ̸= Bj∗ (recall we are assuming a lexicographic
ordering of the multisets). Therefore:

Pr
[
α⃗ = β⃗

]
= Pr

∧
j

αj = βj

 ≤ Pr [αj∗ = βj∗ ]

By the definition of hγ we can then apply Schwartz-Zippel again and conclude that the last
event can occur with probability at most 2

|F| .
We showed that if A ̸= B then the probability that the test passes is at most n

|F| +
2
|F| . Since

this quantity is negligible this concludes the proof.

5.7 Modular Composition of Non-malleable Arguments
We describe two variations of two compilers for modular compositions of non-interactive ar-
guments of knowledge. The first two compilers handle conjunction of relations with shared
witness; the other two handle functional compositions.

5.7.1 General Results on Conjunction and Functional Composition
In both cases, the compilers start from commit-and-prove arguments that are simulation-
extractable. However, for two of the compilers, we require the slightly more general notion
of signature-of-knowledge.

Definition 5.7.1. We say that a non-interactive argument Π is a signature-of-knowledge for
a relation R, if Π is a complete, simulation extractable and zero-knowledge non-interactive
argument for the (augmented) relation R′ such that:

∀msg ∈ {0, 1}λ : R(pp,x,w) ⇐⇒ R′(pp, (msg,x),w),

where msg is referred to as the signed message.

(Generalized) Conjunction of arguments. We consider two compilers for conjunction
of relations with common witnesses with different trade-offs. Additionally, we generalize the
notion of conjunction with common witness by assuming a (possible) processing through a
function M to such a common witness. Specifically, given relation RA and RB we define RM

A∧B

the relation such that RM
A∧B(pp,xA,xB,w) ⇐⇒ RA(pp,xA,w) ∧RB(pp,xB,M(w)).

Definition 5.7.2. Let M be a polynomial time function, we say that a commitment scheme
CS is M-malleable if there exist efficiently computable functions Mc,Mρ such that, for any
commitment c to w with opening ρ we have that Mc(c) is a valid commit to M(w) with opening
Mρ(ρ). Namely, ∀pp, c,w, ρ : VerCom(pp, c,w, ρ)⇒ VerCom(pp,Mc(c),M(w),Mρ(ρ)).

We define a compiler from simulation-extractable arguments (resp. signature-of-knowledge)
Π∧ (resp. Π̄∧) for RM

A∧B in Fig. 5.16.
Functional composition of arguments. For any polynomial-time function f let the relation
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Domain separation: H1 and H2 are two random oracles.
// Conjunction proofs Π∧ and Π̄∧ (including boxed instructions )
Prover: PH1,H2(pp, (xA,xB),w) does:

1. commit c, ρ←$ CS.Com(ck,w),

2. prove πA ←$ ΠA.PH1(pp, (c,xA), (w, ρ)),

3. prove πB ←$ ΠB .PH2(pp, ( msg , Mc(c),xB), (M(w), Mρ(ρ)))
where msg := xA∥πA

Verifier: VerifyH1,H2(pp, (xA,xB), π) parses π = (c, πA, πB), return 1 if and only if
VerifyH1(pp, (c,xA), πA) = 1 and VerifyH2(pp, ( msg, Mc(c),xB), πB) = 1 // Composition proofs

Πg◦f and Π̄g◦f (including boxed instructions )
Prover: PH1,H2(ci, co,xi,xo,wi,wo, ρi, ρo) does

1. parse xi = xf,i∥xg,i and xo = xf,o∥xg,o and xf = (xf,i, xf,o),

2. let (xf,o, wg,i)← f(xf,i, wf,i) and c′, ρ′ ← CS.Com(ck, wg,i)

3. prove πF ← Πf .PH1(ci, c′, (xf,i, xFo), (wi, wg,i), ρi, ρ′),

4. prove πG ← Πg.PH2( msg , c′, co, (xg,i, xg,o), (wg,i, wo), ρ′, ρo)
where msg := ci∥xF ∥π1

Verifier: Verify((ci, co,xi,xo), π) parses π = (c′, π1, π2), return 1 if and only if
Πf .VerifyH1((ci, c′, xf,i, xf,o), π1) = 1 and Πg.VerifyH2((msg, c′, co, xg,i, xg,o), π2) = 1.

Figure 5.16: Compiler to proofs for conjunction (top) and function composition (bottom).
For X ∈ {A,B, f, g} ΠX is assumed to be a commit-and-prove non-interactive argument over
commitment scheme CS (assumed to be M -malleable for the compiler for conjunction). For Π̄∧
(resp. Π̄g◦f ) we additionally assume that ΠA (resp. Πg) is a signature of knowledge.

Rf be such that Rf (pp, (xi,xo), (wi,wo)) ⇐⇒ f(xi,wi) = (xo,wo). We define g ◦ f to be the
functional composition of g and f , namely, the function that on input ((xf,i, xg,i), wf,i) computes
(xf,o, wg,i)← f(xf,i, wf,i), computes (xg,o,wo)← g(xg,i, wg,i) and outputs ((xf,o, xg,o),wo). See
Fig. 5.17 for a graphical representation of functional composition.

We define a compiler to functional composition from simulation-extractable arguments Πg◦f
and from a signature of knowledge Π̄g◦f for Rg◦f in Fig. 5.16.

Additional Definitions and Theorem on Compilers Security. We are almost ready to
state the theorem. We first need two additional definitions.

Definition 5.7.3. We say that a relation R is efficiently witness computable if there exists
an EPT algorithm M such that for any pp and x we have either R(pp,x,M(pp,x)) = 1
or (pp,x) ̸∈ LR. We say that a relation R is always satisfiable if, for any pp, the language
LR,pp = {0, 1}∗, where the latter is the language associated to the relation for given parameters
pp.

The definition above indicates that the relationR can be decided by an expected polynomial-
time algorithm. At first glance, one might consider an argument of knowledge for a relation
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Figure 5.17: Graph for the functional composition g ◦ f .

in P 10 to be somewhat trivial. However, the scenario becomes more compelling in the context
of commit-and-prove relations. In this case, while R is decidable, the corresponding commit-
and-prove relation R̂ is not, unless, we allow the prover to sample the commitment to the
witness.

Nicely, when the relation RA (resp. Rf ) efficiently witness computable we can weaken
the zero-knowledge property of ΠA (resp. Πf ) in the compilers to witness indistinguishability
(WI)11. Furthermore, for WI to hold, it is not necessary to reprogram the random oracle.

Definition 5.7.4. A non-interactive argument for R is statistically witness-indistinguishable
(WI) if for any pp and any x,w1,w2 such that (pp,x,wi) ∈ R the distributions PH(pp,x,wi)
for i ∈ {1, 2} are statically close.

Theorem 5.7.1. Assuming that the commitment scheme CS is hiding and binding, the following
statements hold true:

1. For any PT M , if CS is M-malleable, and ΠA and ΠB are trapdoorless zero-knowledge
and simulation extractable then Π∧ for the relation RM

A∧B is simulation-extractable.

2. If Πf and Πg are trapdoorless zero-knowledge and simulation extractable then Πg◦f is
simulation-extractable.

3. For any PT M , CS is M-malleable, and if ΠA is knowledge sound and statistically wit-
ness indistinguishable, RA is always satisfiable and efficiently witness computable and
ΠB is trapdoorless zero-knowledge and a signature-of-knowledge then Π′ is simulation-
extractable.

4. If Πf is knowledge sound and statistically witness indistinguishable, Rf is always satis-
fiable and efficiently witness computable or the public output of f is the empty string,
namely for any xf,i,wi we have |xf,o| = 0 where xf,o, wf,o = f(xf,i,wi), and Πg is trap-
doorless zero-knowledge and a signature-of-knowledge then Π̄g◦f is simulation-extractable.

Before proving the theorem we remark that the notion of trapdoorless zero-knowledge is
key for the four statements to hold. This is evident, for example, in the proof of the fourth
statement, where we can invoke the knowledge soundness of Πf in the presence of simulated
proofs for Πg. We can do this because to simulate proofs we only need to reprogram the random
oracle H2 which does not interfere with Πf . On the other hand, if we needed a trapdoor for
the simulations then we would need to make sure that the knowledge sound of Πf held in the
presence of such a trapdoor (for example, by sampling independent reference strings for the
two schemes, which is unnatural and cumbersome in many practical scenarios).

10More precisely, the class AvgP .
11Zero-knowledge implies witness indistinguishability, see Feige and Shamir [FS90].
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Proof of Theorem 5.7.1. We proceed statement by statement.

First statement. Completeness of ΠA and ΠB, together with the M -malleability of the
commitment scheme, imply the completeness of Π∧.

As for simulation extractability, let P∗ be an adversary for the simulation extractability of
Π∧. Given the set Qsim of queries and answers to the simulation oracle, we can derive the set
Qsim,i of queries and answers to Πi for i ∈ {A,B}. Specifically, if (x, π) ∈ Qsim and x = (xA,xB)
and π = (c, πA, πB) then ((c,xi), πi) ∈ Qsim,i for i ∈ {A,B}. As a shortcut, given a tuple (x, π)
for Π∧, we can define (x, π)i the derived tuple of instance and proof for Πi.

Let (x̃, π̃) be the forgery of the adversary, where x̃ := (x̃A, x̃B) and π̃ := (c̃, π̃1, π̃B), and
consider the event bad:

(x̃, π̃) ̸∈ Qsim ∧

 ∧
i∈{A,B}

(x̃, π̃)i ∈ Qsim,i

 (5.5)

It is easy to check that the Pr[bad] = 0. In fact, if (x̃, π̃)1 ∈ Qsim,1 then either x̃B or π̃B are fresh,
namely either ∀π′2 : (c̃, x̃B, π

′
2) ̸∈ Qsim,2 or ∀x′2 : (c̃,x′2, π̃B) ̸∈ Qsim,2, as otherwise (x̃, π̃) ∈ Qsim.

The other alternative is (x̃, π̃)2 ∈ Qsim,2, which is handled similarly.
First we show that Π∧ is indeed zero-knowledge. Let Si be the zero-knowledge simulator

for Πi, and consider the zero-knowledge simulator S∧ that runs SA,SB in parallel, in particular
the simulator provides three interfaces to the adversary, the simulation oracle query on the
appropriate instances the simulators SA and SB (following the specification as in the prover),
while the other two oracles are the simulator for the random oracles, in particular, S∧ queries
SA for the queries directed to H1 and SB for the queries directed to H2. Because of the
domain separation, the simulators can handle the RO-queries independently. More in detail,
the simulation oracles are handled as follows:

• Parse the instance as x as (xA,xB).

• Sample a commitment to a dummy value, namely c, ρ← CS.Com(ck, 0̄).

• Run the simulator SA on (c,xA) and SB on (Mc(c),xB).

It is rather straight-forward to show that if ΠA and ΠB are zero-knowledge and the commitment
scheme is hiding, then Π∧ is zero-knowledge.

Let P∗i be the adversary for the simulation extractability of Πi that internally runs P∗ and
the simulator Sī where i ∈ {A,B} and ī is set to B if i = A and to B otherwise. Specifically,
the adversary does:

• Upon simulation query x for Π∧, similarly to the simulator S, it samples a commitment
c, ρ ← CS.Com(ck, 0̄), runs Sī on the derived instance (c,xī) and queries the simulation
oracle for the instance (c,xi).

• Forward the query to the random oracle appropriately: either internally handled by Sī,
or externally forwarded the queries to P∗i ’s random oracle.

• Upon forgery (x̃, π̃) output the forgery (x̃, π̃)i.
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Since the event bad defined in Eq. (5.5) never happens, from a valid forgery for Π∧ we can
derive either valid forgery for ΠA or for ΠB, thus:

Pr
[
SES,P∗

0,Π∧ (λ)
]
≤ Pr

[
SESA,P∗

A
0,ΠA

(λ)
]

+ Pr
[
SESB ,P∗

B
0,ΠB

(λ)
]

(5.6)

We define the knowledge extractor E for Π∧:

• For i ∈ {A,B}, run Ei interacting with P∗i and let ŵi := (wi, ρi) be the output of Ei.

• If (M(wA),Mo(ρA)) ̸= (wB, ρB) abort, otherwise output wA.

Notice, the description above is incomplete because we did not describe how E provides the
interaction between Ei and P∗i . More in detail, the extractor can provide a virtual interface
to P∗i given oracle access to P∗ using the same strategy we define the adversary P∗i using
only oracle access to P∗. Moreover, the two (internal) extractors are run with independent
randomness. We can show that:

Pr
[
SEE,S,P∗

1,Π∧ (λ)
]

= Pr
[
SES,P∗

0,Π∧ (λ) ∧ ¬
(
∧i(c̃, x̃i, ŵi) ∈ R̂i ∧ ¬Abort

)]
≤
∑

i

Pr
[
SEEi,Si,P∗

i
1,Πi

(λ)
]

+ Pr[Abort] (5.7)

The running time of the extractor is the sum of the running times of EA and EB, and when Abort
happens, we can break the binding property of the commitment scheme. Putting Eqs. (5.6)
and (5.7) together we have:

AdvSIM−EXT
Π∧,R (S, E ,P∗) ≤

∑
i∈{A,B}

AdvSIM−EXT
Πi,Ri

(Si, Ei,P∗i ) + negl(λ)

Second Statement. The proof for this statement is almost the same as the previous proof.
The main difference is the definition of the extractor which aborts in case it finds two different
openings for the commitment c′. We give more details on the extractor in the proof of the forth
statement.
Third Statement. Similarly to the proof of the first statement, we consider P∗ be an adversary
for the simulation extractability of Π̄∧. Given the set Qsim of queries and answers to the
simulation oracle, we can derive the set Qsim,i of queries and answers to Πi for i ∈ {A,B}. The
only difference is that from a tuple (x, π) for Π̄∧ we derive the tuple (x, π)B = (msg, c,xB, πB)
where msg = xA∥πA for ΠB. Thanks to this difference, if the forgery (x̃, π̃) ̸∈ Qsim then the
derived forgery (x̃, π̃)2 ̸∈ Qsim,2.

First we show that Π̄∧ is indeed zero-knowledge. Let SB be the zero-knowledge simulator
for ΠB, and consider the zero-knowledge simulator S∧ that:

• Parse the instance as x = (xA,xB).

• Let M be the algorithm satisfying the efficient witness computability of RA, compute
wA ←M(xA).

• Sample ρA and computes honest proof πA for (c,xA,w, ρA) ∈ R̂A where c, ρA ← CS.Com(ck,wA).

• Run the simulator SB on (msg, c,xB).
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We show that if ΠA is statistical witness-indistinguishable, ΠB is zero-knowledge, and the com-
mitment scheme is hiding, then Π∧ is zero-knowledge. We start from the real-world distribution
of honestly generated proofs and move to the ideal distribution of simulated proofs through a
hybrid argument.

• The first hybrid H1 is the same as the real-world distribution but the proof πB is computed
using the simulator SB on message (msg, c,xB). It is easy to show that the real world and
the hybrid H1 are statistically close thanks to the (statistical) zero-knowledge property
of ΠB.

• In the second hybrid H2, the prover, on input (x,w), additionally computes w′ ←M(xA)
and breaks the binding of the commitment c finding ρ′ such that VerCom(ck, c,w′, ρ′) = 1.
It aborts if it cannot find such an opening ρ′. The difference between the two hybrids
is the event that H2 might abort. We can show that, since the commitment scheme is
statistically hiding, the event happens with negligible probability. Briefly, the reduction
fixes messages w and w′ ←M(xA) and, given a challenge commitment c, it outputs 1 if
it can brute-force the commitment on a valid opening w.r.t. w′. Notice, if the challenge
commitment is a commitment to w, the reduction outputs 0 with the same probability of
the aborting event, while if c is a commitment to w′ there always exists a valid opening
so the reduction eventually outputs 1.

• The hybrid H3 is the same as H2 but the proof πA is computed using witness (w′, ρ′).
The two hybrid are statistically close thanks to the statistical witness indistinguishability
of ΠA.

• The last hybrid H4 is the same as H3, but the commitment is computed directly as a
commitment to w′. Again, we can reduce to the hiding of the commitment scheme. Also
notice, this last hybrid is equivalent to the simulated world.

We are ready to prove simulation extractability. Let P∗A be an adversary for the knowledge
extractability of ΠA that internally runs P∗ and S2. Notice that, even ifRA is efficiently witness
computable, the relation R̂A (proved by ΠA) is not polynomially decidable, thus the notion of
knowledge extractability is still meaningful.

Specifically the adversary P∗A does:

• Upon simulation query x for Π̄∧, similarly to the simulator S described above, it computes
wA ← M(xA) and samples commitment c, ρA ← CS.Com(ck,wA), it runs S2 on the
derived instance (msg, c,x2).

• Internally forward the query to H2 to SB, and (externally) forward the queries to H1.

• Upon forgery (x̃, π̃) output the forgery (x̃, π̃)A.

Almost identically, let P∗B be an adversary for the simulation extractability of ΠB that internally
runs P∗. Specifically the adversary P∗B does:

• Upon simulation query x for Π̄∧, similarly to the simulator S described above, it computes
wA ← M(xA) and samples commitment c, ρA ← CS.Com(ck,wA), and it queries the
simulation oracle on the derived instance (msg, c,xB).
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• Forward the query to Hi for i ∈ {A,B} to the appropriate oracles.

• Upon forgery (x̃, π̃) output the forgery (x̃, π̃)B.

Identically to the proof of the first statement, we define the knowledge extractor E for Π̄∧ to:

• For i ∈ {A,B}, run Ei interacting with P∗i and let ŵi = (wi, ρi) be the output of Ei.

• If M(wA),Mo(ρA) ̸= wB, ρB abort, otherwise output wA.

As in the proof of the first statement, the extractor can provide a virtual interface to P∗i given
oracle access to P∗ using the same strategy we define the adversary P∗i using only oracle access
to P∗. The only difference is that P∗1 is an adversary for the knowledge extractability (it does
not need simulation queries). Moreover, the two (internal) extractors are run with independent
randomness. It is rather straight-forward to show that:

Pr
[
SEE,S,P∗

1,Π∧ (λ)
]

= Pr
[
SES,P∗

0,Π∧ (λ) ∧ ¬
(
∧i(c̃, x̃i, ŵi) ∈ R̂i ∧ ¬Abort

)]
≤

≤ Pr
[
SEEB ,SB ,P∗

B
1,ΠB

(λ)
]

+ Pr
[
KSEA,P∗

A
A,ΠA

(λ)
]

+ Pr[Abort] (5.8)

The running time of the extractor is the sum of the running times of EA and EB, and when
Abort happens, we can break the binding property of the commitment scheme. Putting things
together we have:

AdvSIM−EXT
Π̄∧,R (S, E ,P∗) ≤ AdvKS

ΠA,RA
(EA,P∗A) + AdvSIM−EXT

ΠB ,RB
(SB, EB,P∗B) + negl(λ). :

Fourth Statement. Given the set Qsim of queries and answers to the simulation oracle, we can
derive the sets Qsim,f and Qsim,g of queries and answers to Πf and Πg respectively. Specifically,
if x, π ∈ Qsim and x = (ci, co,xi,xo) and π = (c′, πf , πg) then (ci, c′, xf,i, xf,o), πf ∈ Qsim,f and
(msg, c′, co, xg,i, xg,o), πg ∈ Qsim,g where msg = c′∥xf∥πf . As a shortcut, given a tuple x, π for
Πg◦f , we can define (x, π)X the derived tuple of instance and proof for ΠX for X ∈ {f, g}.

Similarly to the simulator for zero-knowledge in the proof of the third statement. We
can define a simulator for Πg◦f that makes use of the efficient witness computability of Rf .
Additionally, we give a second simulator for the special case where xf,o is the empty string for
any assignments of the public and private inputs xf,i, wf,i.

Let Sg the zero-knowledge simulator for Πg, and consider the zero-knowledge simulator S
(resp. the zero-knowledge simulator S ′ that executes Item 2b instead of Item 2a) that:

1. Parse the instance as x = (xf ,xg).

2. Execute one of the two steps:

(a) LetM be the algorithm satisfying the efficient witness computability ofRf , compute
wf = (wf,i, wf,o)←M(xf ).

(b) Set wf,i := 0̄ compute wf,o ← f(xf,i, wf,o) and let wf := (wf,i, wf,o).

3. Compute honest proof πF for (ci, c′,xf ,wf ) ∈ R̂f where c′, ρ′ ← CS.Com(ck, wf,o) and
ci, ρi ← CS.Com(pp, wf,i).

4. Sample dummy commitment co, ρo ← CS.Com(ck, 0̄), run the simulator Sg on (msg, c′, co,xg).
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The proofs of zero-knowledge w.r.t. the two simulators follow similarly to the proof of zero-
knowledge in the third statement. In particular, in both cases, we first switch to simulated
proofs for Πg and then use the hybrid argument that use a combination of the hiding property
and the witness indistinguishability property. Also to prove simulation extractability we proceed
similarly to the proof of the third statement. We omit the details as the proof is almost
identical.

5.7.2 Discussion and Applications
We note that, if we disregard the aspects of commitment malleability (see Definition 5.7.2),
the compilers for functional composition are more general than those for conjunction. Specifi-
cally, we could think of the function f as computing the relation RA and passing the witness,
unchanged, to the next function g, which in turn computes the relation RB.

We chose to present two distinct types of compilation (conjunctions and functional com-
positions) because this approach arguably makes it easier to present our results. Additionally,
the simpler compiler (for conjunction) allows us to handle the commitment malleability aspects
more directly.

In terms of assumptions, the third and fourth results trade the (additional) efficient wit-
ness sampleability property (see Definition 5.7.3) for weaker assumptions on the security of
the arguments of knowledge. While the assumption of efficient witness sampleability might
seem strong, for functional composition, we can omit this assumption by requiring a structural
property on f . This is another reason why we include the fourth result, even though in the
following discussion on zkVM in Section 5.8, we only require the compilers for conjunction.

5.8 Simulation extractability of zkVMs

5.8.1 Preliminaries on SNARK VMs
Here we provide an abstract treatment of virtual machines. We start from this general defini-
tion:

Definition 5.8.1 (Instruction Set (Execution)). Let γ, k ∈ N. An instruction set for a virtual
machine with k registers and codewords of size γ is an efficiently computable function Execute :
{0, 1}γ·(k+4) → {0, 1}γ·k.

We want to describe the relation which describes a virtual machine execution. Consider the
circuit in Fig. 5.18. This is parameterized by an instruction set Execute, an execution bound
t, a bound on the number of register k, codewords of size γ, and a bound on the output size
o. We denote the circuit thus parameterized as VMExecute,t,o. (For simplicity, we hide all the
parameters but Execute, and simply write VMExecute whenever the parameters are clear from the
context.) Following [AST24], we define the commit-and-prove relation:

RExecute
zkVM ((t, o), (Pcode,x,y), z) ⇐⇒ VMExecute(Pcode,x, z) = y (†)
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The virtual machine VMExecute(Pcode,x, z):
Set (sregs, regs)← 0k+4, mem← x∥z.
Iterate for t times the following:

• Update Program-Counter: sregs[0]← regs[0].

• Fetch: sregs[1]← Pcode[sregs[0]].

• Read-and-Write Operations:

– sregs[2]← mem[regs[1]], //read from memory
– sregs[3]← regs[3], //load to special register
– mem[regs[2]]← sregs[3], //write to memory

• Execute: regs← Execute(sregs)

Output y = mem[0 : o].

Figure 5.18: The VM with parameters the instruction set Execute and a time bound t. The inputs are the
program code Pcode, a public input x and a private input z, the output of the VM is y. The machines load
on the memory the inputs and executes t steps, the output y of the machine is the state of the memory after
t steps. There are four special registers: sregs[0] stores the current program counter, sregs[1] stores the next
instruction, while sregs[1] and sregs[2] store the (two) operands for the next instruction, in particular, sregs[1]
stores data fetched from the main memory and sregs[2] stores data from the result of the previous instruction.
The instructions in Execute do not change the content of the special registers and update the program counter
for the fetch of the next instruction in regs[0]. The VM, at any iteration, writes in memory at location regs[2]
the content of sregs[3] and at sregs[3] the content of regs[3], these are (somewhat arbitrary) operations to allow
flow of information from regs to sregs and from sregs to memory: notice that different architectures performing
additional reading/writing operations are theoretically (and practically) equivalent.

5.8.1.1 Splitting RzkVM in its logical components.

We now show how to approach proving the relationRzkVM from a modular perspective. The way
we “split” relation RzkVM will roughly follow the lookup-singularity approach in [AST24]. For
this reason we will isolate an execution component (which in [AST24] is performed through the
lookup argument Lasso) and “anything else” (in relation R⋆) roughly consisting of instruction
fetching (which we abstracted out in our VM model) and memory checking. For simplicity,
we do not break this second part further; our goal is to showcase the modular flavor of zkVMs
and to provide a blueprint that can be specialized in follow-up works12. We thus define the
commit-and-prove relation below:

RExecute(wregs,wsregs) ⇐⇒ ∀i ∈ [t− 1] : Execute(wsregs[i]) = wregs[i+ 1]

Here (wsregs[i],wregs[i]) is the state of the registers of the virtual machine at the i-th step of
computation. Looking ahead, we associate the tuple (wsregs,wregs) with the trace of the virtual
machine in the computation of the program Pcode on input (x, z).

12The work in [AST24] actually logically separates memory checking and instruction fetching. Both the
components they use for these modules can be thought of more or less specialized versions of Spartan. Therefore,
in spirit, our the instantiations we present in Section 5.8.4 are still applicable to the original presentation
in [AST24].
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Definition 5.8.2. The zkVM-complementary relation is the relation R⋆ such that for any
execution set Execute, and for any input (Pcode,x,y), z:

RExecute
zkVM ((Pcode,x,y), z) ⇐⇒ ∃(wregs,wsregs,wmem) :

RExecute(wregs,wsregs) ∧
R⋆(Pcode,x,y, (wregs,wsregs,wmem))

where RExecute
zkVM is the relation defined as in Eq. (†).

Intuitively, the relation R⋆ needs to handle the logic of the virtual machine and make sure that
the memory accesses, during the execution of the program, are consistent (namely, that we
read the correct instructions from Pcode, we perform the read and write operations, and that
if the virtual machine reads from the memory the value v at location i, it means that the last
time the virtual machine wrote at location i, it wrote the value v).

5.8.2 A General Theorem on the Non-Malleability of SNARK VMs
We say that a commit-and-prove argument of knowledge for R⋆ has separate commitments (for
CS) if the witnesses wregs,wsregs and wmem are committed separately. Namely, the witness w :=
(wregs,wsregs,wmem) for R⋆ is committed as cX , ρX ← Com(ck,wX) for X ∈ {regs, sregs,mem}
and c := (cregs, csregs, cmem).

Theorem 5.8.1. For any instruction set Execute, let Π be a zero-knowledge argument of knowl-
edge for RExecute that is simulation extractable, and let Π⋆ be an argument of knowledge for R⋆

that has separate commitments. There exists a simulation-extractable zkVM if one of the fol-
lowing holds:

1. Π⋆ is simulation-extractable and zero-knowledge.

2. Π⋆ is witness-hiding and Π is a signature-of-knowledge.

The theorem follows as an application of Theorem 5.7.1. The interesting case is when Π⋆

is WI. In this case, we additionally need to prove efficient witness sampleability by showing an
altered instruction set that simply prints the output y into memory.

Proof. The theorem follows as an application of Theorem 5.7.1 and in particular of the first
statement assuming the conditions in item (1) and third statement assuming the condition
in item (2). We start with the more interesting case where we combine a knowledge-sound
and witness-hiding scheme for R⋆ with a simulation-extractable scheme for RExecute. We can
assume that the witness w := (wregs,wsregs,wmem) for R⋆ is committed separately, namely
cX , ρX ← Com(ck,wX) for X ∈ {regs, sregs,mem} and c := (cregs, csregs, cmem).

We define the functionsMc(csregs, cregs, cmem) = (csregs, cregs), and similarly, M(w) = (wsregs,wregs)
and Mρ(ρsregs, ρregs, ρmem) = (ρsregs, ρregs). It is trivial to show that the commitment for Π⋆ is
M -malleable and M(w) is a witness for RExecute as required by the third statement of Theo-
rem 5.7.1. We define the simulation-extractable zkVM as the composition Π̄∧ in Theorem 5.7.1
with M -malleable commitment between Π and Π⋆. We need to show that R⋆ is efficiently wit-
ness sampleable and always satisfiable. For the former, consider the following “altered” virtual
machine.
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The altered virtual machine VM′Execute:

• Run for (t− o) iterations the code of VMExecute(Pcode,x, z) with z← 0̄ .
• For i ∈ [o] runs the following:

– Update Program-Counter: sregs[0]← regs[0].
– Fetch: sregs[1]← Pcode[sregs[0]].
– Read-and-Write Operations:

∗ sregs[2]← mem[regs[1]], //read from memory
∗ sregs[3]← regs[3], //load to special register
∗ mem[regs[2]]← sregs[3], //write to memory

– Execute: regs← (0, 0, i,yi, 0̄)

• Output y = mem[0 : o].

We can compute the trace w := (wsregs,wregs,wmem) associated with the execution of the altered
virtual machine VM′Execute. In the code of VM′Execute, the only difference with respect to an execution
of VMExecute(Pcode,x, 0̄) is that at the end we force to write to the first o locations of the memory
the value y, thus forcing the output of VM′Execute to y. Notice that w is a valid witness for R⋆ on
instance (Pcode,x,y), this is because R⋆ does not enforce the consistency of the registers regs
between two consecutive steps and, in particular, during the last o iterations.

Additionally, we notice that, if the commitment scheme is perfectly hiding, then language
LR̂⋆ is always satisfiable because we can execute the procedure above to create a valid witness
w and, although inefficiently, we can always find ρ such that the commitment opens to w with
opening ρ.

If we assume (2) we can define the simulation-extractable zkVM as the composition in
Theorem 5.7.1 between Π and Π⋆.

5.8.3 Signature-of-Knowledge with delayed message
The previous theorem highlights that, in many scenarios, we can obtain simulation extractabil-
ity even when one of the components of the composed argument is malleable. However, the
caveat is that we need to require that the second component is not only simulation extractable
but also a signature of knowledge. It is rather easy to instantiate a signature of knowledge
from an FS-based simulation extractable argument of knowledge, by including the message to
the hashed view. However, there is an efficiency bottleneck in doing so in our compilers from
Theorem 5.7.1. In fact, for example in the third statement, the message contains the proofs
πA, which enforce a sequentiality in the proofs’ generation by the prover, namely πA needs to
be generated before πB.

To mitigate such a bottleneck, we describe a notion of signature of knowledge where, roughly
speaking, the message can be fed at the very end of the prover’s computations. We refer to
this as a signature of knowledge with delayed message. Informally, the prover’s algorithm P can
be divided into two procedures P1 and P2: the first procedure P1 takes as input the instance
and witness (thus it is independent of the message), while P2 receives the internal state of P1
and the message, namely P(pp, msg,x,w) = P2(msg,P1(pp,x,w)). The efficiency property we
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are interested in is that non-trivially t(P2) < t(P1) where, very roughly speaking, t(A) is the
computational complexity of the algorithm A.
Fiat-Shamir-based Approach. We show that in Fiat-Shamir-based signature-of-knowledge
the message does not need to be hashed until the round k where k-zero-knowledge and k-
unique-response hold. This might enable for delayed message when the index k is the last (or
more generally, when all the commitments have been computed and sent).

Theorem 5.8.2. Let Π be a (2r + 1)-message public-coin interactive argument. Let ΠFS∗,k be
the Fiat-Shamir transform where the k-th challenge is derived as H(pp, msg,x, π|k) for an input
message msg. If there is k ∈ [r] such that ΠFS∗,k satisfies knowledge-soundness, k-zero-knowledge
and k-unique response, then ΠFS∗,k is a signature of knowledge.

Sketch. The proof proceeds exactly as Theorem BLA in [DG23]. In particular, we can define a
knowledge-sound adversary B for ΠFS∗,k from the sim-ext adversary A for ΠFS∗,k by internally
program the random oracle only on the input defined by the k-th round when running the
zero-knowledge simulator and reply all the other queries using the random oracle interface.

Eventually A outputs its forgery. Such a forgery is considered valid for B if the verifier does
not need to query the random oracle at the input programmed by B when verifying the forgery.
When such an event happens we say that π̃ contains a critical RO-query.

Let ( ˜msg, x̃, π̃) be the forgery of A and ( ˜msg, x̃, π̃) ̸∈ Qsim, we can proceed with a case
analysis:

• If (∗, x̃, ∗) ̸∈ Qsim then π̃ does not contain any critical queries, and we can reduce directly
to the knowledge soundness.

• Otherwise, if π̃|k = π|k and ˜msg ̸= msg for simulated (msg, x̃, π), then we can break k-UR
since H( ˜msg, π|k) ̸= H(msg, π|k) with overwhelming probability.

• Finally, if ( ˜msg, x̃, ∗) ∈ Qsim but π̃|k ̸= π|k then π̃ does not contain any critical queries,
and we can reduce directly to the knowledge soundness.

Black-box approach. A second, black-box approach is based on a technique (which we believe
to be folklore) relying on one-time signature.

Definition 5.8.3. We say that Σ = (KGen, Sign,Verify) is a one-time signature if:

Syntax. The three algorithms are PPT where KGen(1λ) returns a pair pk, sk of public and
secret keys, Sign(sk, msg) with msg ∈ {0, 1}λ returns a signature σmsg, and Verify(pk, msg, σ)
returns a decision bit.

Correctness. For any (pk, sk) ∈ KGen(1λ) and any msg ∈ {0, 1}λ we have:

Verify(pk, msg, Sign(ss, msg)) = 1

One-time unforgeability. For any PT adversary A that upon input the public key and an
adaptively chosen message msg (and a signature σ for it) outputs ( ˜msg, σ̃), with ( ˜msg, σ̃) ̸=
(msg, σ):

Pr
[
Verify(pk,A(pk, Sign(sk, msg))) = 1 : (pk, sk)← KGen(1λ)

]
∈ negl(λ)
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Let Π be a signature of knowledge for R and Σ a one-time signature, consider the protocol
Π′ := (P ,V) for R where:

• P(pp, msg,x,w) samples (pk, sk)← KGen(1λ), computes π ← Π.P(pp, pk,x,w) and σ ←
Sign(sk, msg∥x), returns π′ := (π, pk, σ).

• V(pp, msg,x, π′) returns Π.V(pk,x, π) and Verify(pp, pk,x, σ).

Theorem 5.8.3. If Π is a signature-of-knowledge for R and Σ is a one-time signature then Π′
is a signature-of-knowledge for R.

sketch. The event that there exist two simulation queries that have the same public key for
the one-time signature scheme is negligible, as otherwise we can break one-time unforgeability.
Let ( ˜msg, x̃, (p̃k, π̃, σ̃)) be the forgery of the adversary. If p̃k is not fresh, i.e., there exists a
simulated proof (pk, π, σ) such that pk = p̃k, then it must be ( ˜msg, σ̃) = (msg, σ), as otherwise
we break one-time unforgeability, but then (x̃, π̃) ̸= (x, π) which implies that ( ˜msg, x̃, π̃) is a
valid forgery for the inner-scheme Π. On the other hand, when p̃k is fresh, (p̃k, x̃, π̃) is a valid
forgery for Π independently of the signed message ˜msg.

5.8.4 The Lookup-Singularity is Non-Malleable
As already mentioned in this section, we can realize an argument of knowledge for RExecute
using a lookup argument. The basic idea is to consider the truth table of the instruction set
Execute as the table, and the execution trace wExecute as the subvector. Although the truth
table of the instruction set Execute is exponentially large, [AST24] shows that the truth table
for the instruction set of RISC-V is decomposable (Definition 5.6.1).

Below we use the concept that an instruction set is decomposable if it can be described by
a decomposable table (Definition 5.6.1).

Theorem 5.8.4. If Execute is a decomposable instruction set, then zkLasso (see Section 5.6)
implies a simulation-extractable argument of knowledge and a signature of knowledge with de-
layed message for RExecute.

Proof. Fixed Execute, we can define the argument system for RExecute that runs the prover and
verifier of zkLasso with parameter a table E that encodes the truth table of Execute. Namely, E
is the table such that E[sregs] = Execute(sregs) for any sregs ∈ {0, 1}3·γ. Recall that the truth
table of Execute, namely E, is decomposable. To prove RExecute(wsregs,wregs) we prove that
Rlookup(E,wsregs,wregs) where wsregs defines the committed indexes and wregs the committed
sub-table.

Additionally, we notice that Theorem 5.6.1 and Theorem 5.8.2 imply we can apply the
FS-transform to zkLasso to create a signature-of-knowledge with delayed messages and thus a
signature-of-knowledge with delayed messages for RExecute.

Definition 5.8.4 (Joltish). Let Execute be a decomposable instruction set and let Π⋆ be an
argument of knowledge for R⋆. We call Joltish (instantiated with Π⋆) the argument for RExecute

zkVM
derived from the one of the compilers for conjunction in Fig. 5.17 and Theorem 5.8.1 where
ΠExecute for RExecute is zkLasso.
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5.8.4.1 An efficient SIM-EXT zkVM for RISC-V

Following [AST24], and as a corollary of Theorems 5.6.1 and 5.8.1, we have the following:

Corollary 5.8.1. Let Execute be a decomposable instruction set, then there exists Π⋆ as in
Definition 5.8.4 s.t. Joltish instantiated with Π⋆ is simulation-extractable zkVMs for RzkVM
yielded by Execute.

To argue that Jolt, or more precisely its zero-knowledge version, is simulation-extractable,
it remains to show that the hypotheses of Theorem 5.8.1 hold for Jolt’s implementation of the
argument of knowledge for R⋆.

In detail, in [AST24], Arun, Setty, and Thaler show how to realize a succinct argument
of knowledge for R⋆ using a commit-and-prove argument of knowledge for R1CS (they use
Spartan [Set20]) and a commit-and-prove argument of knowledge for memory consistency based
on the grand-product argument and memory checking techniques from [BEG+91].

More specifically, the latter parses wmem as a list of memory operations of the form (M, τ, o, l, v),
where M ∈ {Pcode,mem} indicates which of the memories13 to read from or write to, τ is a
timestamp, o is the operation (e.g., read or write), l is a location, and v is a value. The former
proves that, assuming the memory accesses are consistent, the logic of the virtual machine
is executed correctly; namely, the fetch and read-and-write operations (on the registers) are
executed and iterated t times.

In Fig. 5.14, we show a zero-knowledge variant of the grand-product argument, which allows
us to state that the sub-scheme for R⋆ in Joltish is both knowledge-sound and zero-knowledge,
thus enabling us to use the result from our theorem Theorem 5.7.1.

13The Pcode is a read-only memory, thus additional optimizations are available, while mem is a read-and-write
memory.
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Chapter 6

Mix-Nets from Re-Randomizable PKE
This chapter is extracted from "Mix-Nets from Re-Randomizable and Replayable
CCA-secure Public-Key Encryption", published in SCN 2022.

6.1 Introduction
Mixing Networks (aka mix-nets), originally proposed by Chaum [Cha81], are protocols that
allow a set of senders to send messages anonymously. Typically, a mix-net is realized by a chain
of mix-servers (aka mixers) that work as follows. Senders encrypt their messages and send the
ciphertexts to the first mix-server in the chain; each mix-server applies a transformation to
every ciphertext (e.g., partial decryption, or re-encryption), re-orders the ciphertexts according
to a secret random permutation, and passes the new list to the next mix-server. The idea is
that the list returned by the last mixer contains (either in clear or encrypted form, depending
on the mixing approach) the messages sent by the senders in a randomly permuted order.

Mix-net protocols are fundamental building blocks to achieve privacy in a variety of ap-
plication scenarios, including anonymous e-mail [Cha81], anonymous payments [JM99], and
electronic voting [Cha81]. Informally, the basic security property of mix-nets asks that, when
enough mix-servers are honest, the privacy of the senders of the messages (i.e., “who sent
what”) is preserved. In several applications, it is also desirable to achieve correctness even in
the presence of an arbitrary number of dishonest mixers. This is for example fundamental in
electronic voting where a dishonest mixer could replace all the ciphertexts with encrypted votes
for the desired candidate.
Realizing Mix-Nets. A popular design paradigm of mixing networks are re-encryption mix-
nets [PIK94] in which each server decrypts and freshly encrypts every ciphertext. Interestingly,
such a transformation can be computed even publicly using re-randomizable encryption schemes
(e.g., ElGamal). The process of re-randomizing and randomly permuting ciphertexts is typically
called a shuffle. Although shuffle-based mix-nets achieve privacy when all the mix-servers
behave honestly, they become insecure if one or more mixers do not follow the protocol. An
elegant approach proposed to solve this problem is to let each mixer prove the correctness of its
shuffle with a zero-knowledge proof. This idea inspired a long series of works on zero-knowledge
shuffle arguments, e.g., [BG12, FS01, Gro03, Gro10b, Nef01, TW10, Wik05, Wik09]. Notably,
some recent works [BG12, TW10, Wik09] improved significantly over the early solutions, and
they have been implemented and tested in real-world applications (elections) [Wik10]. In spite
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x1 x3

x2 x4

x3 x2

x4 x1

Figure 6.1: Example of MixNet with 4 senders and 2 mixers.

of the last results, zero-knowledge shuffle arguments are still a major source of inefficiency in
mix-nets. This is especially a concern in applications like electronic voting where mix-nets need
to be able to scale up to millions of senders (i.e., voters).

Mix-Nets from Replayable CCA Security. Most of the research effort for improving the
efficiency of mix-nets has been so far devoted to improving the efficiency of shuffle arguments.
A notable exception is the work of Faonio et al. [FFHR19]. Typical mixing networks based on
re-randomizable encryption schemes make use of public-key encryption (PKE) schemes that are
secure against chosen-plaintext attack (CPA), thus to obtain security against malicious mixers
they leverage on the strong integrity property offered by the zero-knowledge shuffle arguments.
The work of Faonio et al. instead showed that, by requiring stronger security properties from
the re-randomizable encryption scheme, the NP-relation proved by the zero-knowledge shuffle
arguments can be relaxed. This design enables faster and more efficient instantiations for the
zero-knowledge proof but, on the other hand, requires more complex ciphertexts and thus a re-
randomization procedure that is slower in comparison, for example, with the re-randomization
procedure for ElGamal ciphertexts. More in detail, Faonio et al. propose a secure mixing
network in the universal composability model of Canetti [Can01] based on re-randomizable
PKE schemes that are replayable-CCA (RCCA) secure (as defined by Canetti et al. [CKN03])
and publicly-verifiable. The first notion, namely RCCA security, is a relaxation of the standard
notion of chosen-ciphertext security. This notion offers security against malleability attacks
on the encrypted message (i.e. an attacker cannot transform a ciphertext of a message msg
to a ciphertext of a message msg′) but it still allows for malleability on the ciphertext (i.e.
we can re-randomize the ciphertexts). The second requirement, namely public verifiability,
requires that anyone in possession of the public key can check that a ciphertext decrypts
correctly to a valid message, in other words, that the decryption procedure would not output
an error message on input such a ciphertext. Unfortunately, this second requirement is the
source of the major inefficiency in the mixing networks of Faonio et al.. For example, the
re-randomization procedure of the state-of-art non publicly-verifiable re-randomizable PKE
scheme with RCCA-security (Rand-RCCA PKE, in brief) in the random oracle model of Faonio
and Fiore [FF20] costs 19 exponentiations in a pairing-free cryptographic group, while the re-
randomization procedure of the publicly-verifiable Rand-RCCA PKE of [FFHR19] costs around
90 exponentiations plus 5 pairing operations.
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6.1.1 Our Contributions
We revisit the mix-net design of Faonio et al. [FFHR19]. Our contributions are two-fold: we
generalize the mix-net protocol of [FFHR19] showing how to get rid of the cumbersome public
verifiability property, and we give a more efficient instantiation for the mix-net protocol based
on the (non publicly-verifiable) Rand-RCCA scheme of [FFHR19]. Our generalization of the
mix-net protocol is based on two main ideas. The first idea is that, although the verification
of the ciphertexts is still necessary, it is not critical for the verification to be public and non-
interactive. In particular, we can replace the public verifiability property with a multi-party
protocol (that we call a verify-then-decrypt protocol) that verifies the ciphertexts before the
decryption phase and that decrypts the ciphertexts from the last mixer in the chain only
if the verification succeeded. The second idea is that in the design of the verify-then-decrypt
multiparty protocol we can trade efficiency for security. In particular, we could design a protocol
that eventually leaks partial information about the secret key and, if the Rand-RCCA PKE
scheme is resilient against this partial leakage of the secret key, we could still obtain a secure
mix-net protocol. Along the way, we additionally (1) abstract the necessary properties required
by the zero-knowledge proof that the mixers need to attach to their shuffled ciphertexts and
(2) give a more careful security analysis of the mixnet protocol. More technically, we define the
notion sumcheck-admissible relation w.r.t. the Rand-RCCA PKE scheme (see Definition 6.5.1)
which is a property of an NP-relation that, informally, states that given two lists of ciphertexts
if all the ciphertexts in the lists decrypt to valid messages, then the sum of the messages in the
first list is equal to the sum of the messages in the second list. For example, a shuffle relation
is a sumcheck-admissible relation, however simpler (and easier to realize in zero-knowledge)
NP-relations over the lists of ciphertexts can be considered as well.

Our second contribution is a concrete instantiation of the mix-net protocol. The main
idea of our concrete protocol is that many (R)CCA PKE schemes can be conceptually di-
vided into two main components: the first “CPA-secure” component assures that the messages
are kept private, while the second component assures the integrity of the ciphertexts, namely,
the component can identify malformed ciphertexts and avoid dangerous decryptions through
the CPA-secure component. Typical examples for such PKE schemes are those based on the
Cramer-Shoup paradigm [CS02]. Intuitively, these schemes should be secure even if the ad-
versary gets to see the secret key associated with the second component under the constraint
that once such leakage is available the adversary must lose access to the decryption oracle.
This suggests a very efficient design for the verify-then-decrypt multiparty protocol: the mixers
commit to secret shares of the secret key, once all the ciphertexts are available the mixers open
to the secret key material for the second component, now any mixer can non-interactively and
efficiently verify the validity of the ciphertexts. If all the ciphertexts are valid the mixers can
engage a CPA-decryption multiparty protocol for the ciphertexts in the last list. As last con-
tribution, we show that the Rand-RCCA PKE scheme of [FFHR19] is leakage resilient (under
the aforementioned notion) and we instantiate all the necessary parts.

A final remark, an important property of a mixnet protocol is the so-called auditability1,
namely the capability of an external party to verify that a given transcript of a protocol ex-
ecution has produced an alleged output. Intuitively, mixnets based on non-interactive zero-
knowledge proofs of shuffle usually should have this property. However, one must be careful,

1This notion is sometimes called verifiability, however, we prefer to use the term “auditability” to avoid
confusion with the verifiability of the ciphertexts.
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because not only the shuffling phase, but the full mixnet protocol should be auditable. In
particular, for our mixnet protocol to be auditable the verify-then-decrypt protocol should be
auditable as well. We show that the latter protocol for our concrete instantiation is indeed
auditable.

6.2 All-but-One tag-based NIZK systems
Let NIZK = (Init,P,V) be a NIZK proof system for a relation R with tag space T , and let
TPInit(pp, τ) be an algorithm that upon input pp and a tag τ ∈ T outputs a common reference
string crs and trapdoor information (tpe, tps). Let τ ∈ T , and T ′ subset of T . We define the
following three properties:

• We say that TPInit is CRS indistinguishable w.r.t. NIZK if the common reference string
generated by Init(pp) and the one generated by TPInit(pp, τ) are computationally indis-
tinguishable, i.e. if for any sequences of {ppλ ← Setup(1λ)}λ∈N, and for any PT adversary
A:

|Pr[A(crs) = 1 : crs←$ Init(ppλ)]−
Pr[A(crs) = 1 : crs, tpe, tps←$ TPInit(ppλ)]| ∈ negl(λ)

• We say that NIZK is T ′-tag Composable Perfect Zero-Knowledge if there exists a PT
TPInit that is CRS indistinguishable w.r.t. NIZK and for any pp, τ and any (crs, tpe, tps)←
TPInit(pp, τ), and any (x,w) ∈ R and any τ ′ ∈ T ′ we have that the distributions
P(crs, τ ′, x, w) and Sim(tps, τ ′, x) are equivalently distributed.

• We say that NIZK is T ′-tag Adaptive Perfect g-Extractable if there exists a PT TPInit
that is CRS indistinguishable w.r.t. NIZK and for any pp, τ there exists a PT extractor
E such that for any pp, τ , for any (crs, tps, tpe) ← TPInit(pp, τ), and for any (possibly
unbounded) adversary (τ ′, x, π) ← A(crs) we have that if τ ′ ∈ T ′ and V(τsnd, x, π) = 1
then E(tpe, τsnd, x, π) outputs z such that ∃w : (x,w) ∈ R ∧ g(w) = z.

• We say that NIZK is T ′-tag Adaptive Perfect Sound if there exists a PT TPInit that is
CRS indistinguishable w.r.t. NIZK and for any pp, τ , for any pp, τ , for any (crs, tps, tpe)←
TPInit(pp, τ), and for any (possibly unbounded) adversary (τ ′, x, π)← A(crs) we have that
if τ ′ ∈ T ′ and V(τsnd, x, π) = 1 then ∃w : (x,w) ∈ R.

Definition 6.2.1 (All-but-One NIZK). We say that a tag-based NIZK NIZK for a relation R
and with tag-space T is:

• All-but-one Perfect Sound if for all τ ∈ L it is {τ}-tag Composable Perfect Zero-Knowledge
and T \ {τ}-tag Adaptive Perfect Sound.

• All-but-one Perfect Hiding and g-Extractable if for all τ ∈ L it is T \{τ}-tag Composable
Perfect Zero-Knowledge and {τ}-tag Adaptive Perfect g-Extractable.

For ABO-NIZK we sometimes use the alias ABOInit for the algorithm TPInit.
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Experiment ExplRCCA
A,PKE,f (λ, b)

pp← Setup(1λ)
(pk, sk)←$ KGen(pp)

(msg0, msg1, z)← AODec
1 (pk)

C←$ Enc(pk, msgb)

z′ ← AODec
2 (C, z)

b′ ← A3(f(sk), z′)

return b′ ?= b

Oracle ODec(C)
msg← Dec(sk, C)
if msg ∈ {msg0, msg1} :

return ⋄
return msg

Figure 6.2: The lRCCA security experiment.

Construction of an ABO Perfect Hiding. Consider the instantiation of GS Proof system
of [EHK+13] based on Dk-MDDH. The common reference string is of the following two forms:

[A⃗∥A⃗w⃗] Perfect Sound Mode
[A⃗∥A⃗w⃗ − z⃗] Perfect Hiding Mode

where A⃗ ←$ Dk, w⃗ ←$ Zk
q and z⃗ /∈ span(A⃗) is a fixed and public vector. We can consider a

NIZK with tags where the common reference string is made by two independent CRSs crs1, crs2,
both the verifier and the prover on input a tag τ ∈ Zq derive a CRS crsτ = crs1 + crs2 · τ . We
are ready to define the ABOInithid.

ABOInithid(pp, τ ∗):

1. Sample A⃗1, A⃗2 and w⃗1, w⃗2 and set crs′1 = (A⃗1∥A⃗1w⃗1) and crs′2 = (A⃗2∥w⃗2 − z⃗);
2. Set crs1 = crs′1 − crs′2 · τ ∗ and crs2 = crs′2;
3. Output crs1, crs2.

The all-but-one composable zero-knowledge comes readily from the Dk-MDDH assumption
and the composable zero-knowledge of GS proofs. The all-but-one adaptive perfect soundness
comes readily from the adaptive perfect soundness of GS proofs, in fact we notice that crsτ∗ =
crs′1 − τ ∗crs′2 + τ ∗crs′2 = crs′1 which allows for perfectly sound proofs.

6.3 Replayable CCA with Leakage Security
We rely on the following notion of security for Rand-PKE. Our notion is similar to the RCCA
security game, with the difference that here A is given the additional leakage f(sk) just before
committing to the verdict bit b′. A cannot invoke the decryption oracle after the leakage occurs.

Definition 6.3.1 (RCCA with leakage Security). Consider the experiment ExplRCCA
A,PKE,f in

Fig. 6.2, with parameters λ, an adversary A := (A1,A2,A3), a PKE scheme PKE, and a
leakage function f . PKE is leakage-resilient replayable CCA-secure (lRCCA-secure) w.r.t. a
leakage function f if for any PPT adversary A:

AdvlRCCA
A,PKE,f (λ) :=

∣∣∣2 Pr
[
ExplRCCA

A,PKE,f (λ, b) = 1, b←$ {0, 1}
]
− 1

∣∣∣ ∈ negl(λ).
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The ideal functionality has as parameters a public-key encryption scheme PKE :=
(Setup, KGen, Enc, Dec), an efficiently-computable function f and (implicit) group parameters
pp ∈ Setup(1λ). It interacts with m parties Pi and with an adversary S.

Public Key. Upon message (KEY, sid) from a party Pi, i ∈ [m], if (sid, pk, sk) is not in the
database sample (pk, sk)←$ KGen(pp) and store the tuple (sid, pk, sk) in the database. Send
(KEY, sid, pk) to Pi.

Verify then Decrypt. Upon message (VTDEC, sid, CV , CD) from party Pi:

• If the tuple (sid, pk, sk) does not exist in the database, ignore the message.
• Check that a tuple (sid, CV , CD, I) where I ⊆ [m] exists in the database; if so, update I

including the index i, otherwise create the new entry (sid, CV , CD, {i}) in the database.

If |I| = m and CD ⊆ CV then:

• Send (sid, f(sk)) to the adversary S.
• Parse CV as (CV

i )i∈[|CV |] and CD as (CD
i )i∈[|CD|]

• Compute the vector b⃗ ∈ {0, 1}|CV | such that for any i, bi = 1 if and only if Dec(sk, CV
i ) ̸=

⊥.
• If ∃i : bi = 0 set Mo := (), else compute Mo := (Dec(sk, CD

i ))i∈[|CD|], send a public
delayed output (VTDEC, sid, b⃗, Mo) to the parties Pi for i ∈ [m],

Figure 6.3: The UC ideal functionality FPKE,f
VtDec for Verify-then-Decrypt.

6.4 The Verify-then-Decrypt Ideal Functionality
We give in Fig. 6.3 the formal definition of this ideal functionality. Informally, the ideal func-
tionality accepts two lists of ciphertexts, such that the first list includes all the ciphertexts in
the second list, it first verifies that all the ciphertexts in the first list decrypt to valid messages
(i.e. no decryption error) and releases such output together with the decryption from the second
list. The functionality has parameter f that denotes the leakage of secret information allowed
to realize such functionality.

6.5 Mix-Net
We now describe our mixnet protocol that UC-realizes the ideal functionality FMix with setup
assumptions FVtDec and Fcrs. We start by giving the definition of Sumcheck-Admissible relation
with respect to a PKE. In this definition we abstract the necessary property for the zero-
knowledge proof system used by the mixers in the protocol.

Definition 6.5.1 (Sumcheck-Admissible Relation w.r.t. PKE). Let PKE be a public-key en-
cryption scheme with public space PK and the ciphertext space being a subset of CT . For any λ,
any pp ∈ Setup(1λ), let Rpp

ck : (PK×CT 2n)×{0, 1}∗ be an NP-relation. We parse an instance of
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The functionality has n sender parties PSi , m mixer parties PMi .

Input. Upon activation on message (INPUT, sid, msg) from PSi (or the adversary if PSi is cor-
rupted), if i ∈ LS,sid ignore the message else register the index i in the list of the senders LS,sid
and register the message msg in the list LI,sid of the input messages. Notify the adversary
that the sender PSi has sent an input.

Mix. Upon activation on message (MIX, sid) from PMi (or the adversary if PMi is corrupted),
register the index i in the list of the mixers Lmix,sid and notify the adversary.

Delivery. Upon activation on message (DELIVER, sid) from the adversary S If |Lmix,sid| = m and
|LS,sid| = n then send a public delayed output Msid ← Sort(LI,sid) to all the mixer parties.

Figure 6.4: The UC ideal functionality FMix for MixNet.

The functionality interacts with n parties Pi and an adversary S and has parameters a PPT algo-
rithm Init that outputs obliviously sampleable common-reference string and an (implicit) public
parameter pp.

Initialization. Upon activation, sample crs←$ Init(pp) and store it.

Public Value. Upon activation on message CRS from a party Pi, i ∈ [n], send crs to Pi.

Figure 6.5: The UC ideal functionality F Init
CRS for Common Reference String parametrized by

group parameters pp and a NIZK setup Init.

Rpp
ck as x = (pk, L1, L2) where Lj = (Cj

i )i∈[n] for j ∈ {1, 2}. Rck is Sumcheck-Admissible w.r.t.
PKE if:

(Sumcheck) For any (pk, sk) ←$ KGen(pp) and for any x := (pk, L1, L2) we have that if
x ∈ L(Rck) and ∀j, i : Dec(sk, Cj

i ) ̸=⊥ then ∑
i Dec(sk, C1

i )− Dec(sk, C2
i )=0.

(Re-Randomization Witness) For any (pk, sk) ←$ KGen(pp) and for any x := (pk, L1, L2)
such that there exists (ri)i∈[n] where ∀i ∈ [n], ∃j ∈ [n] : C2

i = Rand(pk, C1
j ; ri) we have that

(x, (ri)i∈[n]) ∈ Rck.

Building Blocks. Let PKE be a Rand-PKE scheme, let f be any efficiently-computable
function and let Rck be any Sumcheck-Admissible relation w.r.t. PKE. The building blocks for
our Mix-Net are:

1. A Rand-PKE scheme PKE that is lRCCA-secure w.r.t. f according to Definition 6.3.1.

2. An All-but-One Perfect-Sound tag-based NIZK (cf. Section 6.2) NIZKmx := (Initmx,Pmx,Vmx)
for proving membership in the relation Rck, with tag space [m].

3. An All-but-One Perfect-Hiding tag-based NIZK NIZKsd = (Initsd,Psd,Vsd) for knowledge of
the plaintext, i.e. a NIZK for the relation Rmsg := {(pk, C), (msg, r) : C = Enc(pk, msg; r)},
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Input. Upon activation on message (INPUT, sid, msg), PSi computes C ←$ Enc(pk, msg), and
πsd ←$ Psd(crssd, i, (pk, C), (msg, r)). Broadcasts (sid, i, C, πsd).

Mix. Upon activation, the party PMi , depending on its state, does as follow:

• If it is the first activation with message (MIX, sid) from the environment sends the message
(KEY, sid) to FVtDec and return.

• If the message (KEY, sid, pk), the messages (sid, i, C, πsd) for all the senders and the messages
(sid, Lj , πj

mx) for all the mixers with index j ≤ i− 1 were received:

1. Samples a permutation ζi

2. Reads the pair message (Li−1, πi
mx) sent by the party PMi−1 (or simply reads L0 if this

is the first mixer party) and parses the list Li−1 as (Ci−1,j)j∈[n].
3. Shuffles and re-randomizes the list of ciphertexts: produces the new list Li ←

(C′ζi(j))j∈[n], where C′j ← Rand(pk, Ci−1,j ; rj) and rj is a uniformly random string.

4. Computes the sumcheck proof πi
mx ←$ Pmx(crsmx, (pk, Li−1, Li), (rj)j∈[n]) for the two

lists of ciphertexts.
5. Sends to all the mixers (sid, Li, πi

mx).

• If the message (sid, Lm, πm
mx) was received, checks that all the mixer proofs πi

mx, for i ∈ [m]
accept, else abort.

• Computes L := Concat(L1, . . . , Lm) and sends (VtDEC, sid, L, Lm) to FVtDec

• If the message (sid, b⃗, Mo) from FVtDec was received, if ∃i : bi = 0 then returns ⊥, else
computes and returns Lo := Sort(Mo)

Figure 6.6: Our protocol ΠMix.

with tag space [n]. In particular, a weaker notion of extractability that guarantees that
the message msg is extracted is sufficient.

4. An ideal functionality FPKE,f
VtDec , as defined in Fig. 6.3.

5. An ideal functionality for the common reference string (see Fig. 6.5) of the above NIZKs.
In particular, the functionality initializes a CRS crsmx for NIZKmx, and an additional CRS
crssd for NIZKsd.

Finally, we implicitly assume that all parties have access to point-to-point authenticated chan-
nels.
Protocol Description. To simplify the exposition, we describe in this section the case of a
single invocation, i.e. the protocol is run only once with a single, fixed session identifier sid;
in Fig. 6.6 we describe in detail the protocol for the general case of a multi-session execution.
At the first activation of the protocol, both the mixer parties and the sender parties receive
from the functionality FVtDec the public key pk for the scheme PKE and the CRSs from FCRS.
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At submission phase, each sender PSi
encrypts their input message msgi by computing Ci ←$

Enc(pk, msgi), and attaches a NIZK proof of knowledge πi
sd of the plaintext, using i as tag.

Finally, the party PSi
broadcasts their message (Ci, π

i
sd). After all sender parties have produced

their ciphertexts, the mixers, one by one, shuffle their input lists and forward to the next
mixer their output lists. In particular, the party PMi

produces a random permutation of the
input list of ciphertexts Li−1 (L0 is the list of ciphertexts from the senders) by re-randomizing
each ciphertext in the list and then permuting the whole list, thus computing a new list Li.
Additionally, the mixer computes a NIZK proof of membership πi

mx with tag i, for the instance
(pk, Li−1, Li) being in the sumcheck-admissible relation, because of the re-randomization witness
property of Definition 6.5.1, the mixer holds a valid witness for such an instance. After this
phase, the mixers are ready for the verification: the mixers invoke the Verify-then-Decrypt
functionality FVtDec to (i) verify that each list seen so far is made up only of valid ciphertexts
and (ii) decrypt the ciphertexts contained in the final list. Finally publishes the list of the
messages received by FVtDec, sorted according to some common deterministic criterion, e.g. the
lexicographical order.

Theorem 6.5.1. For any arbitrary leakage function f , if PKE is lRCCA-secure w.r.t. f ,
NIZKmx is ABO Perfect Sound, NIZKsd is ABO Perfect Hiding, then the protocol described in
Fig. 6.6 UC-realizes the functionality FMix, described in Fig. 6.4, with setup assumptions FPKE,f

VtDec
and Fcrs.

Proof. We now prove the existence of a simulator S, and we show that no PPT environment
Z can distinguish an interaction with the real protocol from an interaction with S and the
ideal functionality FMix (the ideal world), i.e. the distribution (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ) is
indistinguishable from IdealZ,FMix,S(λ). In our proof, we give a sequence of hybrid experiments
in which the (FVtDec,Fcrs)-hybrid world is progressively modified until reaching an experiment
that is identically distributed to the ideal world. In what follows, we indicate with h∗ the index
of the first honest mixer. For label ∈ {in, hide}, we introduce the set Ψlabel consisting of tuples
(x, y). We define the functions ψlabel and ψ−1

label associated with the corresponding set:

ψlabel(x) :=
{
y if (x, y) ∈ Ψlabel

x otherwise
ψ−1

label(y) :=
{
x if (x, y) ∈ Ψlabel

y otherwise

Informally, the pair of functions ψin, ψ
−1
in helps the hybrids to keep track of the ciphertexts

sent by the honest senders while they are mixed by the first h∗ − 1 mixers, while the pair of
functions ψhide, ψ

−1
hide helps to keep track of the ciphertexts output by the first honest mixer

while they are mixed by the remaining mixers in the chain. We recall that in the protocol the
mixers PMi

, for i ∈ [m], send a message which includes a list Li of ciphertexts. Whenever it
is convenient we parse Li as (Ci,j)j∈[n]. Let Invalid be the event that, during the interaction
of Z with the simulator/protocol, there exist i ∈ [m], j ∈ [n] such that Dec(sk, Ci,j) = ⊥ or
Verify(crsmx, (pk, Li−1, Li), πi

mx) = 0 (namely, πi
mx does not verify). Clearly, when the event

Invalid occurs, the protocol aborts.
Hybrid H0. This first hybrid is equivalent to (FVtDec,Fcrs)-HybridZ,ΠMix,A(λ).
Hybrid H1. In this hybrid, we change the way crsmx is generated. We run (crsmx, tps) ←$

ABOInit(pp, h∗). Also, the proof πh∗
mx of the first honest mixer is simulated. This hybrid is indis-

tinguishable from the previous one because of the ABO Composable Perfect Zero-Knowledge
property of the NIZK (cf. Section 6.2).
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Hybrid H2. The first honest mixer PMh∗ , rather than re-randomizing the ciphertexts re-
ceived in input, decrypts and re-encrypts all the ciphertexts. If the decryption fails for some
ciphertext Ci, PMh∗ re-randomizes this “invalid” ciphertext and continues. This hybrid is indis-
tinguishable from the previous one because the PKE scheme PKE is perfectly re-randomizable
(cf. Definition 2.4.1): because of the tightness of the decryption property, we have that ∀j, if
Dec(sk, Ch∗−1,j) = msgh∗−1,j ̸= ⊥ then Ch∗,j ∈ Enc(pk, msgh∗−1,j) with overwhelming probabil-
ity; also, by the indistinguishability property, the distribution of the re-randomized ciphertext
Rand(pk, Ch∗−1,j) and a fresh encryption Enc(pk, msgh∗−1,j) are statistically close.

Hybrid H3. Here we introduce the set Ψhide, and we populate it with the pairs (msgh∗−1,i, Hi)i∈[n],
where the messages H1, . . . , Hn are distinct and sampled at random from the message spaceM.
When we simulate the ideal functionality FVtDec, we output ψ−1

hide(msg) for all successfully de-
crypted messages msg. The only event that can distinguish the two hybrids is the event that
¬Invalid and ∃j, j′ : Dec(sk, Cm,j) = Hj′ . However, the messages H1, . . . , Hn are not in the view
of Z, thus the probability of such event is at most n2

|M| . This hybrid and the previous one are
statistically indistinguishable.

Hybrid H4. In this hybrid, rather than re-encrypting the same messages, the first honest
mixer re-encrypts the fresh and uncorrelated messages H1, . . . , Hn (used to populate Ψhide).
Specifically, PMh∗ samples a random permutation ζh∗ and computes the list Lh∗ := (Ch∗,j)j∈[n],
with Ch∗,ζh∗ (j) ←$ Enc(pk, ψhide(msgh∗−1,j)). This hybrid is indistinguishable from the previous
one, and the proof can be reduced to the lRCCA security of the scheme PKE.

Lemma 6.5.1. Hybrids H3 and H4 are computationally indistinguishable.

Proof. We use a hybrid argument. Let H3,i be the hybrid game in which the first honest mixer
computes the list Lh∗ := (Ch∗,j)j∈[n] as:

Ch∗,ζh∗ (j) :=
{

Enc(pk, ψhide(msgh∗−1,j)) if j ≤ i
Enc(pk, msgh∗−1,j) if j > i

In particular, it holds that H3 ≡ H3,0 and H4 ≡ H3,n. We prove that ∀i ∈ [n] the hybrid H3,i−1
is computationally indistinguishable from H3,i, reducing to the lRCCA-security of the scheme
PKE. Consider the following adversary against the lRCCA-security experiment.

Adversary B(pk) with oracle access to ODec(·).

• Simulate the hybrid experiment H3,i−1, in particular, when the environment
instructs a corrupted mixer to send the message (KEY, sid) simulate the ideal
functionality FVtDec sending back the answer (KEY, sid, pk).

• When it is time to compute the list of the first honest mixer Lh∗ , namely, when
the mixer PMh∗ is activated by the environment and has received for all j ∈ [n]
the messages (sid, j, C, πsd) from the senders and the messages (sid, Lj, π

j
mx) from

all the mixers with index j ≤ h∗ − 1, first decrypt all the ciphertexts received
so far using ODec(·). Let msgh∗−1,i be the decryption of the ciphertext Ch∗−1,i.
If msgh∗−1,i = ⊥ then output a random bit, else send the pair of messages
(msgh∗−1,i, Hi) to the lRCCA challenger, thus receiving a challenge ciphertext
C∗.
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• Populate the list Lh∗ by setting Cζh∗ (i) ← C∗, and computing all the other
ciphertexts as described in H3,i−1. Continue the simulation as the hybrid does.

• When all the mixers have sent the message (VtDEC, L, Lm), to FVtDec, check
that all the mixer proofs accept, otherwise abort the simulation and output
a random bit. Then decrypt all the ciphertexts in L by sending queries to
the guarded decryption oracle, i.e. send the query Ci′,j, receiving back the
message msgi′,j ∈ M∪ {⋄,⊥}. If msgi′,j = ⊥, abort and output a random bit.
If msgi′,j = ⋄, then set msgi′,j := msgh∗−1,i. Simulate the leakage from FVtDec
through the leakage received by the lRCCA security experiment: in particular,
the reduction loses access to the guarded decryption oracle, receives the value
f(sk) and sends the message (sid, b⃗, {msgm,j}j∈[n]) as required by the protocol.

• Finally, forward the bit returned by Z.

First we notice that when the guarded decryption oracle returns a message msgi′,j = ⋄ then
the reduction can safely return msgh∗−1,i. In fact, the ciphertext would decrypt to either Hi or
to msgh∗−1,i, however by the change introduced in H3, we have that msgh∗−1,i = ψ−1

hide(Hi) and
msgh∗−1,i = ψ−1

hide(msgh∗−1,i).
It is easy to see that when the challenge bit b of the experiment is equal to 0, the view of

Z is identically distributed to the view in H3,j−1, while if the challenge bit is 1, the view of
Z is identically distributed to the one in H3,j. Thus, |Pr[H3,j−1(λ) = 1] − Pr[H3,j(λ) = 1]| ≤
AdvlRCCA

B,PKE,f (λ).

Hybrid H5. Let Vm := (msgm,j)j∈[n] (resp. Vh∗ := (msgh∗,j)j∈[n]) be the list of decrypted
ciphertexts output by the last mixer PMm (resp. by the first honest mixer PMh∗ ). In the hybrid
H5 the simulation aborts if ¬Invalid and Vm ̸= Vh∗ .

Lemma 6.5.2. Hybrids H4 and H5 are computationally indistinguishable.

Proof. Since |Vm| = |Vh∗| and the messages H1, . . . , Hn are distinct, the event Vh∗ ̸= Vm holds if
and only if there exists an index j ∈ [n] such that Count(Hj, Vm) ̸= 1. Let H4,i be the same as
H4 but the simulation aborts if ¬Invalid and ∃j ∈ [i] : Count(Hj, Vm) ̸= 1. Clearly, H4,0 ≡ H4
and H4,n ≡ H5. Let Badi be the event that (¬Invalid∧Count(Hi, Vm) ̸= 1). It is easy to check
that:

|Pr[H4,i−1(λ) = 1]− Pr[H4,i(λ) = 1]| ≤ Pr[Badi].

In fact, the two hybrids are equivalent if the event Badi does not happen.
We define an adversary to the lRCCA security of PKE that makes use of the event above.

Adversary B(pk) with oracle access to ODec(·).

1. Simulate the hybrid experiment H5; in particular, when the environment in-
structs a corrupted mixer to send the message (KEY, sid) simulate the ideal
functionality FVtDec sending back the answer (KEY, sid, pk). (Thus embedding
the public key from the challenger in the simulation.)

2. When it is time to compute the list of the first honest mixer Lh∗ , namely,
when the mixer PMh∗ is activated by the environment and has received the
messages (sid, i, C, πsd) for all the senders and the messages (sid, Lj, π

j
mx) for all
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the mixers with index j ≤ h∗ − 1, first decrypt all the ciphertexts received so
far using the guarded decryption oracle. If there is a decryption error, output
a random bit b′.

3. Sample H(0), H(1) ←$ M and send the pair of messages (H(0), H(1)) to the lR-
CCA challenger, receiving back the challenge ciphertext C∗. Set the list Lh∗ =
(Ch∗,j)j∈[n] as follows:

Ch∗,ζh∗ (j) :=
{

Enc(pk, msgh∗−1,j) if j ̸= i
C∗ else

}

where recall that ζh∗ is the random permutation used by the h∗-th mixer.
Continue the simulation as the hybrid does.

4. When all the mixer have sent the message (VtDEC, L, Lm), to FVtDec, decrypt
all the ciphertexts in L by sending queries to the guarded decryption oracle,
namely, send the query Ci′,j for all i′ > h∗ and all j ∈ [n], receiving back as
answer the plaintext messages msgi′,j ∈M∪ {⋄,⊥}.
If the event Invalid holds, then abort the simulation and output a random
bit b′.

5. Let C ← Count(⋄, Vm), if C = 1 then abort the simulation and output a
random bit b′.

6. From now one we can assume that ¬Invalid and C ̸= 1; Compute

msg← (C − 1)−1 ·

 ∑
j∈[n],msgm,j ̸=⋄

msgm,j −
∑

j ̸=ζh∗ (i)
msgh∗,j

 . (6.1)

Output b′ s.t. msg = H(b′).

First, we notice that the simulation B provides to the environment Z is perfect, indeed, in-
dependently of the challenge bit, the message H(b) is distributed identically to Hj. Thus, the
probability that Badi happens in the reduction is the same as the probability the event happens
in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).

Let Wrong be the event that ∃j : Dec(sk, Cm,j) = H(1−b); notice that the message H(1−b) is
independent of the view of the environment Z, thus the probability of Wrong is at most n/|M|.
Moreover, we have Badi ≡ ¬Abort∧¬Wrong because, by definition of ¬Wrong, all the ciphertexts
that decrypt to ⋄ in Lm are indeed an encryption of H(b); thus, assuming the event holds, C ̸= 1
if and only if Count(H(b), Vm) ̸= 1. The probability of guessing the challenge bit when B aborts
is 1

2 , thus we have:

Pr[b = b′] ≥ 1
2 Pr[¬Badi] + Pr[b = b′|Badi] Pr[Badi]− n

|M| (6.2)

We now compute the probability that b = b′ conditioned on Badi. First notice that ¬Invalid
implies that the ciphertexts in the lists Lh∗ , . . . , Lm decrypt correctly and that the proofs πj

mx
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for j > h∗ verify. Thus, by applying the sumcheck-admissibility w.r.t. PKE of the relation Rmx
and by the ABO perfect soundness of NIZKmx we have:∑

j∈[n]
Dec(sk, Ch∗,j)−

∑
j∈[n]

Dec(sk, Cm,j) = 0.

If we condition on ¬Wrong then:
H(b) +

∑
j ̸=ζh∗ (j∗)

msgh∗,j

−
C · H(b) +

∑
j∈[n],msgm,j ̸=⋄

msgm,j

 = 0.

By solving the above equation for H(b), we obtain msg = H(b), therefore B guesses the challenge
bit with probability 1 when conditioning on ¬Abort ∧ ¬Wrong.

Hybrid H6. In this hybrid, we modify the decryption phase. When for all j ∈ [m] the mixer
has sent (VtDEC, sid, L, Lm) to FVtDec, the hybrid simulates the answer of the ideal functionality
sending the message (sid, b⃗,M ′

o) where b⃗ is computed as defined by the ideal functionality FVtDec
and M ′

o is the empty list () if Invalid occurs; else, if all the messages in L correctly decrypt and
the mixer proofs are valid, compute M ′

o ← (msgh∗−1,ζo(j))j∈[n], where ζo is a uniformly random
permutation. Notice that H6 does not use the map ψ−1

hide at decryption phase.
We show that this hybrid and the previous one are equivalently distributed. First, by

the change introduced in the previous hybrid, if the hybrid does not abort then Vm = Vh∗−1.
Moreover, the two sets below are equivalently distributed:

{(msgh∗−1,j, Hj) : j ∈ [n]} ≡ {(msgh∗−1,j, Hζo(j) : j ∈ [n])}

because the messages H1, . . . , Hn are uniformly distributed.
Hybrid H7. Similarly to what done in H3, in this hybrid we introduce the set Ψin, and
we populate it with the pairs (msgi, ˜msgi)i≤[n], where the messages msgi are the inputs of the
honest senders, and the messages ˜msgi are distinct and sampled uniformly at random from the
message spaceM. When we simulate the ideal functionality FVtDec, in case all the ciphertexts
decrypts, we output the list Mo := (msgo,i)i, where msgo,ζo(i) ← ψ−1

in (msgh∗−1,i). We notice that
if Vh∗−1∩MH ̸= ∅, the map ψ−1

in would modify the returned value; however, since the messages
˜msgi are not in the view of Z, there is a probability of at most n2

|M| that this event happens and
that Z distinguishes H6 from H7.
Hybrid H8. In this hybrid, we encrypt the simulated (honest) sender inputs ˜msgj instead of
the (honest) sender inputs msgj to populate the list L0. The proof that this hybrid and the
previous one are computationally indistinguishable follows by the lRCCA security of PKE and
the zero-knowledge of NIZKsd.

Lemma 6.5.3. Hybrids H7 and H8 are computationally indistinguishable.

Proof. First, we switch to hybrid H′7 and H′8 that are exactly the same but where the crssd
is sampled with ABOInit(j) for an arbitrary index j for a corrupted party. The hybrids can
be shown indistinguishable based on the lRCCA-security of the scheme PKE, and the zero-
knowledge of NIZKsd. We can use a hybrid argument. Let H′7,j be the hybrid game in which we
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encrypt the simulated sender inputs ˜msgi, for i ≤ j, and we encrypt the honest sender inputs
msgi for i > j. In particular, H′7 ≡ H′7,0 and H′8 ≡ H′7,n. We can prove that the hybrids H′7,j−1
is indistinguishable from H′7,j, ∀j ∈ [n]. In particular, when the j-th party is corrupt, the two
hybrids are identically distributed. We focus on the more interesting case when the j-th sender
party is honest.

Adversary B(pk) with oracle access to ODec(·).

1. Start simulating the ideal functionality FVtDec sending the answer (KEY, sid, pk)
to the mixer parties, when instructed by the environment, thus embedding the
public key from the challenger in the simulation.

2. When the honest sender party PSi
is activated by Z on input (INPUT, msgi),

if i < j sample a random message ˜msgi, encrypt ˜msgi, and add the pair
(msgi, ˜msgi) to the set Ψin, and finally simulate the proof πi

sd. Instead, if i > j,
behave like in H8 encrypting the honest sender input msgi. For i = j, sample
a random message ˜msgj and submit the pair (msgj, ˜msgj) to the lRCCA chal-
lenger, thus receiving back the challenge ciphertext C∗; produce a simulated
proof πj

sd to be attached to C∗ and continue the simulation.
3. When all the mixers have sent the message (VtDEC, L, Lm) to FVtDec, decrypt

all the ciphertexts in L by sending queries to the guarded decryption oracle,
i.e. send the query Ci′,j, receiving back the message msgi′,j ∈ M∪ {⋄,⊥} and
if msgi′,j = ⋄ then set msgi′,j := ψ−1

in ( ˜msgj). If a decryption error is returned for
any of the queries, or any of the proofs attached to the ciphertexts are not valid
(i.e. in case of Invalid), abort and output a random bit b′. Else, simulate the
leakage from FVtDec through the leakage received by the lRCCA security exper-
iment; receive the value f(sk) and send the message (sid, b⃗, (msgh∗−1,ζo(j))j∈[n])
as described by the hybrid.

4. Finally, when the simulation is complete, outputs the same as Z.

We notice that if the challenge bit b of the lRCCA game is equal to 0, the simulation of B
offered to Z is identically distributed to the view in H′7,j−1, while if the challenge bit is 1, Z
is given a view identically distributed to the one in H7,j. Also, whenever the event Invalid
occurs, the reduction B outputs a random bit, so conditioning on Invalid the advantage in
the lRCCA security game is equal to 0. We have that for an environment Z, AdvlRCCA

B,PKE,f (λ) =
|Pr

[
H′7,j−1 = 1

]
− Pr[H7,j = 1]|.

We now introduce the latest two hybrids that ensure that none of the inputs of the honest
senders is duplicated or discarded: we start by introducing a check on malicious senders, while
in H10 we ensure that no malicious mixer can duplicate or discard the honest inputs.

Hybrid H9. LetMH be the set of simulated messages { ˜msgi}i≤[n] for the honest sender parties
and let V0 be the decryption of the list of ciphertexts received by the first mixer. If ¬Invalid
and a message msg ∈MH appears more than once in the list V0 then the simulation aborts.

Lemma 6.5.4. Hybrids H8 and H9 are computationally indistinguishable.
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Proof. We rely on the lRCCA security of PKE and the soundness of NIZKsd, that indeed prevents
the adversary from sending valid ciphertexts whose messages are correlated with the honest
ones, to show that this abort happens only with negligible probability. Let H8,i be the hybrid
that aborts if ¬Invalid and a message msg ∈MH appears more than once in the list (msg0,j)j≤i.
Clearly, H8,0 ≡ H8 and H8,n ≡ H9. Next, let H′8,i be the same as H8,i but where the common
reference string crssd is sampled using ABOInit(i). We now show that H′8,i−1 is indistinguishable
from H′8,i for all i ∈ [n]. Notice that only difference between them is when one hybrid aborts
while the other does not. Let Badi be the event that (¬Invalid∧ msg0,i ∈MH). It holds that:

|Pr
[
H′8,i−1(λ) = 1

]
− Pr

[
H′8,i(λ) = 1

]
| ≤ n · Pr[Badi].

We focus on the case where i is the index of a malicious sender, as the other case is obvious.
We can show a reduction to the lRCCA security of PKE.

Adversary B(pk) with oracle access to ODec(·).

1. Simulate the hybrid experiment H′8,i; in particular, when Z instructs a cor-
rupted mixer to send the message (KEY, sid), simulate FVtDec sending back
the answer (KEY, sid, pk), embedding the public key from the challenger in the
simulation. Also, sample crssd ←$ ABOInit(i).

2. Sample ˜msg(0), ˜msg(1) ←$ M and send the pair of messages ( ˜msg(0), ˜msg(1)) to
the lRCCA challenger, receiving back the challenge ciphertext C∗.

3. Sample an index h ∈ [n], such that the h-th sender is honest.
4. When the honest sender party PSj

is activated on input (INPUT, sid, msgj),
if j ̸= h sample a random message ˜msgj (and populate the set Ψin), compute
C←$ Enc(pk, ˜msgj), the honest proof πj

sd (as in H8) and send to the other parties
(sid, j, Cj, π

j
sd). For j = h, instead, send (sid, h, C∗, π̃h

sd), where the proof π̃h
sd is

simulated. Wait for all the senders to broadcast their messages (sid, j, Cj, π
j
sd)

and continue the simulation.
5. When all the mixers have sent the message (VtDECsid, L, Lm), decrypt all the

ciphertexts in the list L by sending queries to the guarded decryption oracle,
namely, send the query Ck,j for all k ∈ [m] and all j ∈ [n], receiving back as
answer the plaintext messages msgk,j ∈M∪ {⋄,⊥}.
If the event Invalid holds, then abort the simulation and output a random
bit b′.

6. If msg0,i ̸= ⋄ then abort the simulation and output a random bit b′.

7. From now one we can assume that ¬Invalid and msg0,i ∈ { ˜msg(0), ˜msg(1)};
extract from the proof πi

sd the plaintext message msg. Output b′ s.t. msg =
˜msg(b′). If the extraction fails, output a random bit.

First, we notice that the simulation B provides to the environment Z is perfect: indepen-
dently of the challenge bit b, the message ˜msg(b) is distributed identically to ˜msgh, and the
simulated proof is indistinguishable from the honest one, due to the ABO Zero-Knowledge
property of NIZKsd. Thus, the probability that Badi happens in the reduction is the same as
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the probability the event happens in the hybrid experiments, conditioned on the fact that the
guess of index h is correct (i.e. our strategy works with probability 1

n
).

With an analysis similar to what done in Lemma 6.5.2, we can easily prove that the event
Wrong, i.e. the fact that msg0,i = ˜msg(1−b), only happens with negligible probability 1

|M| . Con-
ditioning on ¬Wrong ∧ ¬Abort, we have that B always outputs the correct bit b′ = b.

Hybrid H10. Recall that Vh∗ := (msgh∗,j)j∈[n] is the list of decrypted ciphertexts output by the
first honest mixer PMh∗ . In the hybrid H10 the simulation aborts if ¬Invalid and ∃i ∈ [n] such
that Count( ˜msgi, Vh∗−1) ̸= 1, i.e., some of the simulated honest inputs do not appear or appear
more than once, encrypted, in the list received in input by the first honest mixer. With this
check we ensure that none of the inputs of the honest senders has been discarded or duplicated
by the (malicious) mixers.
Lemma 6.5.5. Hybrids H9 and H10 are computationally indistinguishable.

Proof. First, we switch to hybrid H′9 and H′10 that are exactly the same but where the crssd is
sampled with ABOInit(j) for an arbitrary index j for a corrupted party.

We prove this using a hybrid argument. Let H9′,i the hybrid in which the simulation aborts
if ¬invalid and ∃j ≤ i such that Count( ˜msgj, Vh∗−1) ̸= 1. Clearly we have that H′9 ≡ H′9,0
and H′10 ≡ H′9,n. We now show that for all i ∈ [n], the hybrid H′9,i−1 is indistinguishable from
H′9,i. This is trivially true when the i-th sender is corrupted (H′9,i−1 and H′9,i in this case are
identically distributed).

Let Badi be the event that (¬Invalid ∧ Count( ˜msgi, Vh∗−1) = 0). It is easy to check that:

|Pr
[
H′9,i−1(λ) = 1

]
− Pr

[
H′9,i(λ) = 1

]
| ≤ Pr[Badi].

In fact, the two hybrids are equivalent if the event Badi does not happen.
We define an adversary to the lRCCA security of PKE that makes use of the event above.

Adversary B(pk) with oracle access to ODec(·).

1. Simulate the hybrid experiment H′9,i; in particular, when the environment
instructs a corrupted mixer to send the message (KEY, sid), simulate the ideal
functionality FVtDec sending back the answer (KEY, sid, pk), embedding the
public key from the challenger in the simulation.

2. Sample ˜msg(0), ˜msg(1) ←$ M and send the pair of messages ( ˜msg(0), ˜msg(1)) to
the lRCCA challenger, receiving back the challenge ciphertext C∗.

3. When the honest sender party PSj
is activated on input (INPUT, sid, msgj),

if i ̸= j sample a random message ˜msgj (and populate the set Ψin), encrypt
the message ˜msgj as in H10 and continue the simulation by sending to the
other parties (sid, j, Cj, π

j
sd). For j = i, instead, send (sid, i, C∗, π̃j

sd), where the
proof π̃j

sd is simulated. Wait for all the senders to broadcast their messages
(sid, j, Cj, π

j
sd) and continue the simulation.

4. When all the mixers have sent their message (sid, Lj), decrypt all the cipher-
texts in those lists by sending queries to the guarded decryption oracle, namely,
send the query Ci′,j for all i′ ∈ [m] and all j ∈ [n], receiving back as answer the
plaintext messages msgi′,j ∈M∪ {⋄,⊥}.
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If the event Invalid holds, then abort the simulation and output a random
bit b′.

5. Let C ← Count(⋄, Vh∗−1), if C = 1 then abort the simulation and output a
random bit b′.

6. From now one we can assume that ¬Invalid and C ̸= 1;Compute

msg← (C − 1)−1 ·

 ∑
j∈[n],msg0,j ̸=⋄

msg0,j −
∑

j ̸=ζh∗−1(i)
msgh∗−1,j

 . (6.3)

Output b′ s.t. msg = ˜msg(b′).

First, we notice that the simulation B provides to the environment Z is perfect, indeed, inde-
pendently of the challenge bit, the message ˜msg(b) is distributed identically to ˜msgj. Thus, the
probability that Badi happens in the reduction is the same as the probability the event happens
in the hybrid experiments.

Let Abort be the event that B aborts and outputs a random bit. Notice that:

Abort ≡ Invalid ∨ (C = 1).

Let Wrong be the event that ∃j : Dec(sk, Ch∗−1,j) = ˜msg(1−b), notice that the message ˜msg(1−b)

is independent of the view of the environment Z, thus the probability of Wrong is at most
n/|M|. Moreover, we have Badi ≡ ¬Abort ∧ ¬Wrong because, by definition of ¬Wrong, all the
ciphertexts that decrypt to ⋄ in Lh∗−1 are indeed an encryption of ˜msg(b), thus assuming the
event holds then C ̸= 1 if and only if Count( ˜msg(b), Vh∗−1) ̸= 1. The probability of guessing the
challenge bit when B aborts is 1

2 , thus we have:

Pr[b = b′] ≥ 1
2 Pr[¬Badi] + Pr[b = b′|Badi] Pr[Badi]− n

|M| (6.4)

We now compute the probability that b = b′ conditioned on the event Badi. First, we notice
that ¬Invalid implies that the ciphertexts in the lists L0, . . . , Lh∗−1 decrypt correctly and that
the proofs πj

mx for j < h∗ verify. Thus, by applying the sumcheck-admissibility w.r.t. PKE of
the relation Rmx and by the ABO perfect soundness of NIZKmx we have:∑

j∈[n]
Dec(sk, C0,j)−

∑
j∈[n]

Dec(sk, Ch∗−1,j) = 0.

If we condition on ¬Wrong then: ˜msg(b) +
∑

j ̸=ζ0(j∗)
msg0,j

−
C · ˜msg(b) +

∑
j∈[n],msgh∗−1,j ̸=⋄

msgh∗−1,j

 = 0.

By solving the above equation for ˜msg(b), we obtain that msg = ˜msg(b). We recall that the
index τ ∗ ∈ [n] is (only) computationally hidden: B is able to extract from the proof πi′

sd
with probability 1

n
− negl(λ). Therefore, B guesses the challenge bit with probability 1 when

conditioning on ¬Abort ∧ ¬Wrong ∧ τ ∗ = i′.

Simulator S.
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Initialization. Simulate the ideal functionality Fcrs by sampling crsmx in ABO Perfect Sound
mode on the tag h∗, while crssd is honestly generated with Init(1λ). Also, simulate FVtDec
by a sampling key pair (pk, sk) ←$ KGen(pp). Populate the set MH of the simulated
honest inputs, by sampling uniformly random (and distinct) messages from the message
space M.

Honest Senders. On activation of the honest sender PSi
, where i ∈ [n], simulate by executing

the code of the honest sender on input the simulated message ˜msgj chosen uniformly at
random, without re-introduction, from MH .

Extraction of the Inputs. Let Lh∗−1 be the list produced by the malicious mixer PMh∗−1 .
For any j ∈ [n], decrypt msgj ←$ Dec(sk, Ch∗−1,j) and if a decryption error occurs, or some
of the mixer proofs πj

mx is not valid, i.e. the event Invalid occurs, abort the simulation.
If msgj /∈MH then submit it as input to the ideal functionality FMix.

First Honest Mixer. Simulate by computing Lh∗ as a list of encryption of random (distinct)
messages H1, . . . , Hn, simulating the proof of mixing πh∗

mx.

Verification Phase. Receive from the ideal mixer functionality FMix the sorted output (msgi)i∈[n].
Sample a random permutation ζo and populate the list of outputs Mo := (msgo,i)i∈[n] with
msgo,ζo(i) ← msgi.

We notice that there are some differences between H10 and the interaction of S with the
ideal functionality FMix. In particular, the hybrid defines the function ψin by setting a mapping
between the inputs of the honest senders and the simulated ones, and, during the decryption
phase, and uses ψ−1

in to revert this change. S cannot explicitly set this mapping, because
the inputs of the honest senders are sent directly to the functionality and are unknown to
S. However, the simulator is implicitly defining the function ψin (and ψ−1

in ) since during the
simulation chooses a simulated input ˜msgi for each honest sender and at decryption phase
outputs the messages coming from the sorted list (given in output by the ideal functionality)
which contains the inputs of the honest senders.

6.6 A concrete Mix-Net protocol from RCCA-PKE
As already mentioned, to instantiate the blue-print protocol defined in Fig. 6.4 we need two
main components: (1) a Rand lRCCA PKE scheme PKE and (2) a verify-then-decrypt protocol
for such PKE.

6.6.1 Split PKE
We start by introducing the notion of Split Public-Key Encryption scheme. Informally, a Split
PKE scheme is a special form of PKE scheme that extends and builds upon another PKE
scheme. For example, CCA-secure PKE schemes à la Cramer-Shoup [CS98] can be seen as an
extension of CPA-secure PKE schemes. We give the formal definition in the following.

Definition 6.6.1 (Split PKE). A split PKE scheme PKE is a tuple of seven randomized algo-
rithms:
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Setup(1λ) : upon input the security parameter 1λ produces public parameters pp, which include
the description of the message (M) and two ciphertext spaces (C1, C2).

KGenA(pp) : upon input the parameters pp, outputs a key pair (pkA, skA).

KGenB(pp, pkA) : upon inputs the parameters pp and a previously generated public key pkA,
outputs a key pair (pkB, skB).

EncA(pkA, msg; r) : upon inputs a public key pkA, a message msg ∈ M, and randomness r,
outputs a ciphertext CA ∈ CA.

EncB(pkA, pkB, C; r) : upon inputs a pair of public keys (pkA, pkB), a ciphertext C ∈ CA, and
some randomness r, outputs a ciphertext CB ∈ CB.

DecA(pkA, skA, C) : upon inputs a secret key skA and a ciphertext C ∈ CA, outputs a message
msg ∈M or an error symbol ⊥.

DecB(pkA, pkB, skA, skB, C) : upon inputs secret keys skA, skB and a ciphertext C ∈ CB, outputs
a message msg ∈M or an error symbol ⊥.

Moreover, we say that a split PKE scheme PKE splits on a PKE scheme PKEA := (KGenA,EncA,DecA)
defined over message space M and ciphertext space CA, and we say that a split PKE scheme
PKE forms a PKE PKE := (KGen,Enc,Dec) defined over message space M and ciphertext
space CB where KGen(pp) is the algorithm that first runs pkA, skA ←$ KGenA(pp), then runs
pkB, skB ←$ KGenB(pp, pkA) and sets pk := (pkA, pkB), sk := (skA, skB), where Enc(pk, msg) is
the algorithm that outputs EncB(pkA, pkB,EncA(pkA, msg; r); r) and Dec := DecB.

The correctness property is straightforward: a split PKE is correct if it forms a PKE that
is correct in the standard sense. Our definition is general enough to capture a large class of
schemes. We first note that any PKE scheme is trivially split: it suffices that EncB on input C
outputs C, and DecB runs DecA. A more natural (and less trivial) example is the above-cited
Cramer-Shoup.

In this chapter, we will focus on PKE schemes that are Re-Randomizable and Verifiable.
Since, as we noted above, any PKE can be parsed as a Split PKE, Re-Randomizability is
captured by an additional algorithm Rand(pk, C; r) that takes as input a ciphertext C and
outputs a new ciphertext Ĉ (see Section 2.4.1).

As for the verifiability property, instead, there are three possible levels: (i) both the secret
keys are required to verify a ciphertext, or (ii) only skA is needed, or (iii) no secret key is
required at all. We refer to the third one as the public setting, while the other two are different
flavors of a private/designated-verifier setting. We give the definition of (ii) in what follows.

Definition 6.6.2 (verifiable split PKE). A verifiable split PKE is a split PKE, as defined
above, with an additional algorithm Verify(pk, skB, C) that takes as input the public key pk, the
secret key skB and a ciphertext C ∈ CB and outputs 1 whenever DecB(pk, sk, C) ̸= ⊥, otherwise
outputs 0 for invalid ciphertexts.
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The ideal functionality has as parameters a public-key encryption scheme PKE := (KGen, Enc, Dec)
and (implicit) public parameters pp. The functionality interacts with m parties Pi and with an
adversary S.

Public Key. Upon activation on message (KEY, sid) from a party Pi, i ∈ [m], if (sid, pk, sk) is not
in the database sample (pk, sk)←$ KGen(pp) and store the tuple (sid, pk, sk) in the database
and send (KEY, sid, pk) to Pi.

Decryption. Upon activation on (DECRYPT, sid, C) from party Pi, i ∈ [m]:

• If the tuple (sid, pk, sk) does not exist in the database, ignore the message.
• Check that a tuple (sid, C, Mo, I), where I ⊆ [m], exists in the database; if so, up-

date I including the index i. Else, parse C as (Ci)i and compute the list Mo :=
(Dec(sk, Ci))i∈[|C|], and create the new entry (sid, C, Mo, {i}) in the database.

• If |I| equals m, then send a public delayed output (DECRYPT, sid, Mo) to the parties
Pi for i ∈ [m].

Figure 6.7: UC ideal functionality FPKE
Dec for (n-out-n Threshold) Key-Generation and Decryp-

tion of PKE

6.6.2 A protocol for Verify-then-Decrypt for verifiable split PKE
We realize the Verify-then-Decrypt ideal functionality (see Section 6.4) needed to instantiate our
Mix-Net protocol. Let PKE be a verifiable split PKE. We define in Fig. 6.9 the protocol ΠVtDec
that realizes FVtDec in the FCom-hybrid model. Before doing that, we need to assume an extra
property for our verifiable split PKE, so we introduce the notion of linear key-homomorphism
for a PKE.

Definition 6.6.3 (Linearly Key-Homomorphic PKE). A PKE PKE := (Setup,KGen,Enc,Dec)
is linearly key-homomorphic if there exist PPT algorithms GenPK,CheckPK and an integer s
such that:

• The algorithm KGen(pp), where pp contains the description of a group of order q, first
executes sk←$ Zs

q, and then produces the public key pk←$ GenPK(sk).

• The algorithm GenPK is linearly homomorphic in the sense that for any sk1, sk2 ∈ Zs
q and

α ∈ Zs
q we have GenPK(α · sk1 + sk2) = α · GenPK(sk1) + GenPK(sk2).

• The algorithm CheckPK on input the public key pk outputs a bit b to indicate if the public
key belongs on the subgroup of PK spanned by GenPK. Namely, for any pk we have
CheckPK(pk) = 1 if and only if pk ∈ Im(GenPK(pp, ·)).

Moreover, a split PKE PKE is linearly key-homomorphic it forms a linearly key-homomorphic
PKE, and it splits to a key-homomorphic PKE.

It is not hard to verify that the key generation of a linearly key-homomorphic split PKE can
be seen as sampling two secret vectors skA ∈ Zs

q and skB ∈ Zs′
q for s, s′ ∈ N and then applying

two distinct homomorphisms GenPKA,GenPKB to derive the public key.
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The functionality interacts with n parties Pi and an adversary S.

Commitment. Upon activation on message (COMMIT, sid,Pi, s) from a party Pi, where s ∈
{0, 1}∗, record the tuple (sid,Pi, s) and send the public delayed output (RECEIPT, sid,Pi)
to all the parties Pj , j ∈ [n], j ̸= i.

Opening. Upon activation on message (OPEN, sid,Pi) from a party Pi, i ∈ [n], proceed as
follows: if the tuple (sid,Pi, s) was previously recoded, then send the public delayed output
(OPEN, sid,Pi, s) to all other parties Pj , j ∈ [n], j ̸= i. Otherwise halt.

Figure 6.8: UC ideal functionality FCom for (Single) Commitment.

Building Blocks. Let PKE be a split PKE that splits over PKEA, consider the following
building blocks:

1. An ideal functionality FPKEA
Dec for threshold decryption, as defined in Fig. 6.7, of PKEA.

2. A single-sender multiple-receiver commitment ideal functionality FCom [CF01] for strings,
as defined in Fig. 6.8.

We describe the protocol in Fig. 6.9. At a high level, the protocol works as follows. Each party
Pi interacts with the ideal functionality FDec to get the public key pkA and, after that, samples
the pair of keys (pki

B, ski
B). The secret key is committed through the ideal functionality FCom.

After this step, the parties compute the final key pkB as the sum of all their input public key
shares. To verify the ciphertexts CV , the parties reveal their secret key shares ski

B, verify that
all the keys are consistent, and locally verify the ciphertexts. Finally, to decrypt the ciphertexts
CD, the parties invoke FDec after checking that CD ⊆ CV .

Theorem 6.6.1. Let PKE be a verifiable split PKE that is linearly key-homomorphic, let f be
the leakage function that on input sk := (skA, skB) outputs skB. The protocol ΠPKE

VtDec described
in Fig. 6.9 UC-realizes the functionality FPKE,f

VtDec described in Fig. 6.3 with setup assumptions
FPKEA

Dec and FCom.

Proof. We now prove that there exists a simulator S such that no PPT environment Z can
distinguish an interaction with the real protocol from an interaction with S and the ideal
functionality FVtDec.
Simulator S.

Public Key. The simulator S receives in input from Z the set of corrupted parties, and receives
from FVtDec the public key pk that is parsed as the tuple (pkA, pkB). S gets to see the secret
key shares of the corrupted parties when they send the message (COMMIT, sid, ski

B). Let
h∗ be the index of an honest party. S samples at random the secret keys ski

B for all honest
parties Pi, with i ̸= h∗, from which can honestly compute the corresponding public keys
through GenPK. As for the h∗-th party, S checks if ∀j ̸= h∗ : CheckPK(pkA, pkj

B) = 1. If
so it computes directly the public key pkh∗

B := pkB −
∑

i̸=h∗ pki
B, else it samples skh∗

B and
computes the corresponding public key.
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The party Pi executes the following commands:

Public Key. Upon activation on message:

leftmargin=0cm (KEY, sid) from the environment, forward the message to FPKEA
Dec .

leftmargin=0cm (KEY, sid, pkA) from FPKEA
Dec proceed as below:

1. Sample ski
B ←$ Zs

q compute pki
B ← GenPK(ski

B).
2. Commit the secret key ski

B through the ideal functionality FCom, i.e.
send the message (COMMIT, sid, ski

B) to the functionality FCom.
leftmargin=0cm (RECEIPT, sid,Pj) from all j ∈ [m] broadcast (KEY, sid, i, pki

B).

When the parties have sent their public key shares, compute pkB := ∑
i pki

B and abort if
∃i : CheckPK(pkA, pki

B) = 0 else output (KEY, sid, pk).

Verify then Decrypt. Upon activation on message:

• (VTDEC, sid, CV , CD) send (OPEN, sid,Pi) to FCom and broadcast
(VTDEC, sid, CV , CD) to the other parties.

• (OPEN, sid,Pj , skj
B) for all i ∈ [m] compute skB := ∑

i skj
B and assert that

GenPKB(skB) ?= pkB and that all parties broadcast the same lists CV and CD. Parse
CV as (Ci

V )i∈|CV |, compute ∀j : bj ← Verify(pk, skB, Cj
V ).

If CD ̸⊆ CV or ∃i : bi = 0 return (DECRYPT, sid, b⃗, ()) else send (DECRYPT, sid, CD)
to FPKEA

Dec and upon receipt of (DECRYPT, sid, Mo), output (DECRYPT, sid, b⃗, Mo)

Figure 6.9: Our protocol ΠPKE
VtDec.
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Verification. When all the parties have sent the message (OPEN, sid,Pi) to the commitment
functionality FCom, the simulator receives the leakage (sid, skB) from FPKE,f

VtDec , it computes
the secret key for party Ph∗ , i.e. it computes skh∗

B := skB −
∑

i̸=h∗ ski
B. From this point

on, the simulation becomes trivial since the simulator follows the protocol, and can easily
verify and decrypt all the ciphertexts by interacting with the ideal functionality FVtDec.

We observe that the inputs simulated for the honest parties Pi, for i ̸= h∗, are perfectly
simulated since S chooses uniformly at random the matrices and the vectors for the secret keys
ski

B. The public key for the h∗-th party is chosen dependently of the message of the corrupted
parties. In particular, if one of the corrupted parties sends an invalid public key the h∗-th
mixer follows the specification of the protocol, thus the simulation is perfect; if all the public
keys are valid, the public key of h∗-th party is chosen as a function of the previously chosen
keys and the public key given in input to the simulator. This is distributed identically to a real
execution of the protocol: the only difference is that S computes the random public key, while
in the real execution the party Ph∗ would choose at random their secret key and then project
it to compute the corresponding public key, but this difference is only syntactical. In the next
steps, the simulation is perfect since it proceeds exactly as in the real protocol.

6.6.3 Our concrete verifiable split PKE
In this section, we show that the Rand-PKE in [FFHR19] has all the properties needed to
instantiate our protocol ΠMix. In particular, in Fig. 6.10 we parse their PKE as a split PKE,
and we prove that the scheme is lRCCA w.r.t. the leakage function f such that f(sk) := skB,
and that the scheme is linearly key-homomorphic. Moreover, we show a checksum-admissible
relation Rmx w.r.t. the PKE, we show how to instantiate the ABO perfect sound tag-based
NIZK NIZKmx using the Kiltz-Wee quasi-adaptive (QA) NIZK [KW15], and we instantiate the
NIZK NIZKsd using GS-Proofs.

The schemes in [FFHR19] are proven secure under a decisional assumption that we briefly
introduce here. Let ℓ, k be two positive integers. We call Dℓ,k a matrix distribution if it outputs
(in probabilistic polynomial time, with overwhelming probability) matrices in Zℓ×k

q .

Definition 6.6.4 (Matrix Decisional Diffie-Hellman Assumption in Gγ, [EHK+13]). The Dℓ,k-
MDDH assumption holds if for all non-uniform PPT adversaries A,∣∣∣Pr

[
A(G, [A⃗]γ, [A⃗w⃗]γ) = 1

]
− Pr

[
A(G, [A⃗]γ, [z⃗]γ) = 1

]∣∣∣ ∈ negl(λ),

where the probability is taken over G := (q,G1,G2,GT , e,P1,P2)←GroupGen(1λ), A⃗←$Dℓ,k, w⃗ ←$

Zk
q , [z⃗]γ ←$ Gℓ

γ and the coin tosses of adversary A.

Theorem 6.6.2. The split PKE PKE described in Fig. 6.10 is linearly key-homomorphic and
lRCCA-secure w.r.t. f such that f(sk) := skB under the Dk+1,k-MDDH assumption.

Proof. To show that the scheme PKE of [FFHR19] is linear key-homomorphic, we briefly sketch
that there exist the algorithms GenPK and CheckPK satisfying the property. The KGen al-
gorithm samples the secret material sk := (⃗a, f⃗ , F⃗ , g⃗, G⃗), consisting of vectors and matrices of
elements in Zq. Then, in order to compute the public key pk, the secret key is projected: GenPK
produces some matrices ([ ⃗̃fj]T , [ ⃗̃Fj]1, [⃗̃gj]T , [ ⃗̃Gj]2, [ ⃗̃Hj]1, [⃗̃Ij]2). It is also immediate to check that,
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KGenA(pp)
D⃗ ←$ Dk; a⃗←$ Zk+1

q

D⃗∗ ← (D⃗⊤, (a⃗⊤D⃗)⊤)⊤

skA ← a⃗; pkA ← ([D⃗]1, [⃗a⊤D⃗]1)
return (pkA, skA)

KGenB(pp, pkA)
E⃗ ←$ Dk; f⃗ , g⃗ ←$ Zk+1

q

F⃗ ←$ Zk+1×k+1
q , G⃗←$ Zk+1×k+2

q

skB ← (f⃗ , g⃗, F⃗ , G⃗)

pkB ← ([E⃗]2, [f⃗⊤D⃗]T , [F⃗ ⊤D⃗]1,

[g⃗⊤E⃗]T , [G⃗⊤E⃗]2, [G⃗D⃗∗]1, [F⃗ E⃗]2)
return (pkB , skB)

DecA(pkA, skA, C = [x⃗]1)
return [p]1 − [⃗a⊤u⃗]1

EncA(pkA, [msg]1; r⃗)
[u⃗]1 ← [D⃗]1 · r⃗; [p]1 ← [⃗a⊤D⃗]1 · r⃗ + [msg]1
return ([u⃗⊤]1, [p]1)⊤

EncB(pk, C = [x⃗]1; (r⃗, s⃗))
[v⃗]2 ← [E⃗]2 · s⃗

[π1]T ← [f⃗⊤D⃗]T · r⃗ + e([F⃗ ⊤D⃗]1 · r⃗, [v⃗]2)

[π2]T ← [g⃗⊤E⃗]T · s⃗ + e([x⃗]1, [G⃗⊤E⃗]2 · s⃗)
[π]T ← [π1]T + [π2]T
return ([x⃗]1, [v⃗]2, [π]T )

DecB(pk, sk, C = ([x⃗]1, [v⃗]2, [π]T ))
[π1]T ← [(f⃗ + F⃗ v⃗)⊤u⃗]T
[π2]T ← [(g⃗ + G⃗x⃗)⊤v⃗]T
if [π]T ̸= [π1]T + [π2]T return ⊥
else return DecA(skA, [x⃗]1)

Rand(pk, C = ([x⃗]1, [v⃗]2, [π]T ))
parse [x⃗]1 as ([u⃗⊤]1, [p]1)⊤, ˆ⃗r, ˆ⃗s←$ Zk

q

[ˆ⃗x]1 ← [x⃗]1 + [D⃗∗]1 · ˆ⃗r, [ˆ⃗v]2 ← [v⃗]2 + [E⃗]2 · ˆ⃗s

[π̂1]T ← [f⃗⊤D⃗]T · ˆ⃗r + e([F⃗ ⊤D⃗]1 · ˆ⃗r, [ˆ⃗v]2) + e([u⃗]1, [F⃗ E⃗]2 · ˆ⃗s)

[π̂2]T ← [g⃗⊤E⃗]T · ˆ⃗s + e([ˆ⃗x]1, [G⃗⊤E⃗]2 · ˆ⃗s) + e([G⃗D⃗∗]1 · ˆ⃗r, [v⃗]2)
[π̂]← [π]T + [π̂1]T + [π̂2]T
return ([ˆ⃗x]1, [ˆ⃗v]2, [π̂]T )

Figure 6.10: The Split RCCA-secure Scheme. pp include the description of a bilinear group.
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for any α ∈ Zq and any two secret keys sk1, sk2, the linear homomorphic property holds, i.e.
GenPK(α · sk1 + sk2) = α ·GenPK(sk1) + GenPK(sk2). To verify that CheckPK(pk), instead, it is
sufficient to check the following pairing equations:

e([ ⃗̃H]1, [E⃗]2) = e([D⃗∗]1, [ ⃗̃Gj]2)

e([D⃗]1, [⃗̃I]2) = e([ ⃗̃F ]1, [E⃗]2)

We now prove that the scheme is lRCCA-secure w.r.t. the function f , where f(sk) := skB.
We briefly recall the proof strategy from [FFHR19], and we only highlight the main differences.

• The hybrid H1 computes the challenge ciphertext using the secret key. Namely, p∗ ←
a⃗⊤u⃗∗ + msgb and similarly the proofs are π∗1 ← f⃗⊤D⃗r⃗ + v⃗⊤F⃗⊤D⃗r⃗F⃗ and π∗2 ← g⃗⊤E⃗s⃗ +
x⃗⊤G⃗⊤E⃗s⃗. This hybrid is equivalent to the lRCCA experiment.

• The hybrid H2 samples for the challenge ciphertext u⃗∗ and v⃗∗ uniformly at random from
Zk+1

q . The hybrids H1 and H2 are computationally indistinguishable. This follows by
applying the Dk-MDDH Assumption on [D⃗, u⃗∗]1 in G1 and [E⃗, v⃗∗]2 in G2. Notice that the
reduction can sample sk2 itself and easily reveal sk2 to the adversary.

From now on, we prove that each pair of consecutive hybrids is statistically close. In partic-
ular, this means that the hybrids (and, in principle, also the adversary) are allowed to run in
unbounded time.

• The hybrid H3 adds the two decryption rules, if u⃗ = D⃗r⃗ uses r⃗ to compute π1 and msg
at decryption time, similarly, if v⃗ = E⃗s⃗ then uses r⃗ to compute π2. It is easy to see that
this hybrid is equivalent to the previous by the linearity of the decryption procedure.

• The hybrid H4 adds another decryption rule, if u⃗ ̸∈ span(D⃗) and v⃗ − v⃗∗ ̸∈ span(E⃗) then
the decryption oracle returns ⊥ to the adversary. This is the main core of the technique
of [FFHR19]. In particular, they show that the probability that the proof π of the queried
ciphertext is valid when the condition holds is O(1/q). By inspection of their reduction,
we notice that the reduction stops the simulation of the hybrid H4 as soon as a decryption
query triggers the event in the newly added decryption rule. In particular, it means that
the reduction does not have to simulate for the adversary the leakage value f(sk) = sk2. In
other words, the reduction [FFHR19] works exactly the same also in our leakage resilient
experiment because it stops the adversary before the latter may receive the leaked value.

• The hybrid H5, similarly to the previous hybrid, adds a new the decryption rule that if
v⃗ ̸∈ span(E⃗) and x⃗−x⃗∗ ̸∈ span(D⃗∗) then the decryption oracle returns ⊥ to the adversary.
The proof for this hybrid is almost identical to the proof for the previous hybrid.

• The hybrid H6 adds a new decryption rule that if x⃗ − x⃗∗ ∈ span(D⃗∗) and v⃗ − v⃗∗ ∈
span(E⃗) then the proof is verified in an alternative way. In particular, let ⃗̃r, ⃗̃s be such
that x⃗− x⃗∗ = ⃗̃x = D⃗⃗̃r it computes π′ as a re-randomization of the proof of the challenge
ciphertext π∗ using randomness ⃗̃r and ⃗̃s and if π′ ̸= π the decryption oracle returns ⊥ to
the adversary. The proof of this hybrid follows the correctness of the re-randomization
algorithm for the PKE.
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• The hybrid H7 is the same as the previous, but it never uses the secret key material sk
to decrypt. This hybrid is only syntactically different from the previous; in fact, by the
decryption rules added in the previous hybrids also the H6 would never use the secret
key material for the decryption query.

At this point, we can show that H6 is independent of the challenge bit even if the adversary
additionally gets to see the leakage sk2. Notice that only dependence on b is given by p∗ =
a⃗⊤u⃗∗ + msgb. Moreover, b is independent of sk2 thus, even leaking this value the view of the
adversary is independent of the challenge bit.

6.6.4 Putting all together
We can instantiate the ABO Perfect Hiding NIZK proof of membership NIZKmx using Groth-
Sahai proofs [EG14]. In particular, notice that the necessary tag-space for NIZKmx is the set
[m] which in typical scenarios is a constant small number (for example 3 mixers). Thus, we can
instantiate the tag-based ABO Perfect Hiding NIZKmx by considering an Init algorithm that
samples m different common reference strings (crsi)i∈[m], the prover algorithm (resp. the verify
algorithm) on tag j invokes the GS prover algorithm (resp. verifier algorithm) with input the
common reference string crsj. We can instantiate the tag-based ABO Perfect Sound NIZK
NIZKsd using the technique presented in the full version of [FFHR19] (see Section 6.2 for more
details). By the universal composability theorem, once we compose the protocol ΠMix from
Fig. 6.6 and ΠVtDec from Fig. 6.9 we obtain a protocol with setup assumption FDec, FCom and
FCRS. The first ideal functionality can be implemented using classical approaches (for example,
see Benaloh [Ben06]). Briefly, the mixers can compute the shares of the public key [⃗a⊤D⃗]1 for
KGenA as in Fig. 6.10 and prove the knowledge of the secret key share a⃗(i) where a⃗ = ∑

i a⃗
(i),

to obtain UC security in the malicious setting against static corruptions we can use an ABO
Perfect Hiding NIZK proof system for this step. At decryption time, the mixers can compute
a batched zero-knowledge proof of knowledge for “encryption of zero”, they can use a NIZK
proof of membership and, for UC security, it is sufficient for such proofs to be adaptive perfect
sound.
Auditability. Here we sketch the auditability of our protocol. Roughly speaking, a protocol
Π is auditable if there exists a PT algorithm Audit that on input a transcript τ and an output y
output 1 if and only if the execution of the protocol that produces the transcript τ ends up with
the parties outputting y. We focus on the auditability of the protocol obtained composing ΠMix
from Fig. 6.6 and ΠVtDec from Fig. 6.9. The auditing algorithm, given a transcript of ΠVtDec
can reconstruct the secret key sk2 and can check that Verify(sk2, Ci,j) = 1 for all i ∈ [m] and
j ∈ [n] moreover it checks that all the NIZK proofs verify. The checks performed guarantee
that the protocol execution resulting to the transcript did not abort, moreover, the auditability
is guaranteed by the correctness of the protocol. Finally, we notice that the protocol for FDec
sketched in the previous section is auditable (see [Ben06]).
Efficiency. We analyze the efficiency of the protocol obtained composing ΠMix and ΠVtDec,
and we consider the most efficient instantiation of the scheme in [FFHR19] based on SXDH
assumption, i.e. for k = 1. Let E1, E2 (resp. ET ) be the cost of a multiplication in groups G1
and G2 (resp. exponentiation in GT ), and let P be the cost of computing a bilinear pairing.
We give an intuition on how much the protocol scales when a mixer is given N processors and
may make use of parallelism. We compare our results with the Mix-Net protocol of [FFHR19].
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In our protocol ΠMix, each mixer re-randomizes a list of n ciphertexts which requires n(7E1 +
7E2 + 2ET + 9P ), and additionally computes a proof πmx for the sumcheck relation Rmx which
requires n additions in Zq and 6E1 + 8E2. Re-randomization of a ciphertext in the list does
not depend on other ciphertexts in the list, so the parallel cost is n

N
(7E1 + 7E2 + 2ET + 9P ).

Additionally, the mixers verify all the sumcheck NIZK proofs, which requires 3nm additions in
G1 and around 8 pairings. The parallel cost is 8m

N
pairings plus logN(3n)m

N
additions.

In the protocol ΠVtDec, each mixer sends a commitment of their secret key share, which
requires a UC-commitment for the elements of the secret key sk, and receives commitments of
secret key shares of the other m − 1 mixers. Additionally, the mixers derive the public key
shares, using GenPK, this corresponds to the cost of generating m times a key pki

B and requires
m(4ET + 6E1 + 6E2). Finally, each mixer needs to verify the n ·m ciphertexts produced in the
protocol execution of the last list which requires n(m− 1)(6E1 + 4E2 + 4P ).

In the protocol of [FFHR19] the public key shares pki
B (and not the secret ones) are com-

mitted using an equivocable commitment and an ABO NIZK proof (which can be seen as
a UC-secure commitment against static corruption). The parallel cost of re-randomize their
ciphertexts is n

N
(36E1 + 45E2 + 6ET + 5P ), while the cost of verifying the ciphertexts and

decrypting the last list is equal to nm
N

36P + m
N

(2E1 +50P ). In comparison, our approach allows
saving at least n

N
(30E1 + 39E2 + 36P ) cryptographic operations, where we recall that n is the

number of shuffled ciphertexts.
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Chapter 7

Re-Randomizable PKE meets Tight
security
This chapter is extracted from "Almost Tightly-Secure Re-Randomizable and
Replayable CCA-secure Public Key Encryption", published in PKC 2023.

7.1 Introduction
Security against chosen-ciphertext attacks (CCA) is considered to be the standard notion of
security for PKE schemes. This security definition, formulated by Rackoff and Simon [RS92],
is elegant and easy to understand, and it has shown, by any means, to withstand the test of
time.
Replayable and Re-Randomizable CCA security. Canetti, Krawczyk and Nielsen [CKN03]
pointed out that CCA security is not necessary for implementing secure channels. They showed
that “replayable chosen-ciphertext” (RCCA) security suffices for secure channels, and might in
fact allow for more efficient instantiations. Subsequently, Groth [Gro04] showed that RCCA
PKE schemes (called Rand-RCCA secure) can have re-randomizable ciphertexts. Specifically,
Groth constructed a scheme with a ciphertext re-randomization procedure that, given a cipher-
text as input, produces a fresh and unlinkable ciphertext which decrypts to the same message.
Such a re-randomization procedure opens the door for applications that require secure commu-
nication and anonymity.

For instance, PKE schemes that are re-randomizable and RCCA-secure enable anonymous
and secure message transmissions (see Prabhakaran and Rosulek [PR07]), Mix-Nets (see Faonio
et al. [FFHR19] and Pereira and Rivest [PR17]), Controlled Functional Encryption (see Naveed
et al. [NAP+14]), and one-round message-transmission protocols with reverse firewalls (see
Dodis, Mironov, and Stephens-Davidowitz [DMS16]).
Tight Security. Yet another criticism to the original definition of CCA security is that while
the definition postulates that the message underlying one single ciphertext remains protected
even under CCA attacks, in the real world, a PKE scheme is used to protect a large amount of
ciphertexts from possibly many users.

Now, it is well-known that security for one single ciphertext implies, through a hybrid
argument, security for many ciphertexts and many users. However, it is unclear how much
concrete security a PKE scheme really offers when it is used in the wild. This question,
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initially posed by Bellare, Boldyreva and Micali [BBM00] created a fruitful area of research
which investigates how tight the security of an encryption scheme translates to the trust that
we have with respect to the cryptographic assumption that it relies on.

In more detail, a tight security reduction ensures that for any attack on the PKE scheme,
there exists an attack on the assumption that is similar both in terms of complexity (i.e. the
running time, the space required, etc.) and success probability. Thus, in the setting of tight
security reductions, the number of ciphertexts considered by the security definition matters.

By now, many CCA-secure PKE schemes have been proved to have tight security in the
multi-ciphertext and multi-user setting: some notable examples are the works of [GHKW16,
GHK17, HLLG19, Hof17, LJYP14, LPJY15]. However, tight security in the context of Rand-
RCCA security has not been studied, although in particular the above Rand-RCCA use cases
feature many ciphertexts or users.

7.1.1 Our Contributions
We initiate the study of tight security for Rand-RCCA secure PKE schemes in the multi-
ciphertext and multi-user setting. Our main contributions are a new security definition for
RCCA security in multi-ciphertext and multi-user setting (hereafter, mRCCA security), and
a Rand-mRCCA PKE scheme whose mRCCA security (almost1) tightly reduces to the Dd-
MDDH assumption in symmetric (a.k.a. type-1) pairing groups. Moreover, as an application,
we revise the protocol for universally composable MixNet based on Rand-RCCA PKE from
[FFHR19]. In the following paragraphs, we elaborate more about each of the contributions.
Multi-user Multi-ciphertext RCCA security. In the security experiment of the (single-
ciphertext) RCCA security notion, the decryption oracle, called “guarded decryption oracle”,
can be queried on any ciphertext, including the challenge ciphertext. However, when decryption
leads to one of the challenge messages (msg0, msg1), the oracle answers with a special symbol
⋄ (meaning “same”). As a warm-up, consider a trivial extension to the case of (single-user)
multi-ciphertext RCCA security where the attacker is given:

• an encryption oracle that, on input a pair of messages msg0, msg1, returns some valid
encryption of msgb where b is the challenge bit,

• and a guarded decryption oracle that, on input a ciphertext C, returns a message msg, or
the special indexed symbol ⋄j if C corresponds to an encryption of a message that was
given as input to the encryption oracle as j-th query.

We notice that this trivial extension of RCCA security to multiple ciphertexts is impossible
to achieve. Namely, consider the following generic attacker A that makes three queries to the
encryption oracle:

1. A sends (msg1, msg2), and receives back CA;

2. sends (msg2, msg3), and receives back CB;

3. sends (msg3, msg1), and receives back CC .
1As most of the tightly-secure schemes, the security reduction suffers from a small multiplicative loss that is

however independent of the number of uses of the scheme.
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A now queries the decryption oracle with CC . If the bit b is 0, the decryption oracle returns ⋄2;
if b is 1, the decryption oracle returns ⋄1.

Yet another natural extension of the single-ciphertext RCCA security notion to the multi-
ciphertext setting is to consider a guarded decryption oracle that upon input a ciphertext C
either returns a message or the special symbol ⋄, but without notifying the adversary of which
index j triggered the special symbol. Even if this definition avoids the attack described above,
it is not as convenient as we would like it to be. Roughly speaking, the guarded decryption
oracle reveals to the adversary that the queried ciphertext is a replay attack, but it doesn’t
tell which ciphertext was replayed; therefore, the larger the number of challenge ciphertexts,
the less informative the output of the guarded decryption oracle will be. In particular, this
definition is not sufficient for our MixNet application.

“In medio stat virtus”, as the saying goes: the definition we propose is weaker than the
first attempted (yet impossible to achieve) definition, but stronger than the above-mentioned
definition. To build some intuition, in an equivalent version of the single-ciphertext RCCA
security definition, the guarded decryption oracle would output the minimal set of messages
that the queried ciphertext could decrypt to and such that such set does not trivially break the
RCCA security definition: namely, if the ciphertext is a replay attack then the oracle replies with
the set of challenge messages {msg0, msg1}, otherwise with a message msg′ ̸∈ {msg0, msg1}. We
take a similar approach in our (multi-user) multi-ciphertext RCCA definition. The guarded
decryption oracle outputs the minimal set of messages that the ciphertext could decrypt to
without trivially breaking security. This set of messages includes all the pairs of challenge
messages for which at least one of them is equal to the decryption of the queried ciphertext.

To support the claim that our definition is indeed the most natural extension of RCCA
to the multi-ciphertext setting, we prove that the simulation-based notion for RCCA security
from [CKN03] is tightly implied by our mRCCA security notion. In a nutshell, we show that
the (computational variational) distance between the view in the ideal world and in the real
world is bounded by the advantage of an adversary with the same computational resources as
the environment in the multi-ciphertext RCCA security game. We elaborate on the details in
Section 7.5.

A Tightly-Secure Rand-mRCCA PKE scheme. Our starting points are the recent work
of Faonio et al. [FFHR19] which is the state-of-the-art for Rand-RCCA PKE scheme, and the
tightly-secure CCA PKE schemes based on the adaptive partitioning techniques of Hofheinz
[Hof17] and Gay et al. [GHKP18]. Very briefly, the main idea of our construction is to encrypt
the message similarly to [FFHR19], and additionally append a non-interactive proof of consis-
tency for (part of) the ciphertext; the latter proof needs to have a (weak) form of simulation
soundness property that can be obtained information-theoretically. Namely, using the nota-
tion of [Hof17], we append to the ciphertext a benign proof for the consistency of part of the
ciphertext (which lies in a linear language) of a proof system that is statistically sound even
when the adversary has oracle access to simulated proofs for a larger language that includes
the disjunction of two linear spaces.

Extensions and applications. Following the strategy of [FFHR19] we show that our Rand-
mRCCA PKE can be used to instantiate a PKE with the nice property of public-verifiable
ciphertexts (pv-Rand-mRCCA PKE). We propose two pv-Rand-mRCCA PKE schemes: one
based on the Matrix Diffie-Hellman Assumption (MDDH), and a second more efficient scheme
based on a new MDDH assumption which we prove secure in the generic group model. As
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an application of our framework, we show that we can plug a pv-Rand-mRCCA scheme into
the MixNet protocol of [FFHR19]. Instantiating such protocol with our schemes, we obtain
an (almost) “tightly-secure” MixNet protocol: namely a protocol, the first of its kind, whose
security guarantees depend linearly on the number of mixer parties but only logarithmically on
the number of mixed messages. To compare with the state of the art for MixNet protocols, we
notice that the Bayer and Groth [BG12] proof of shuffle is based on the Fiat-Shamir transform
applied to a multi-round Sigma protocol, thus the security reduction degrades with the number
of rounds of the underlying Sigma-Protocol, while the proof of shuffle in the bilinear-paring
setting of Fauzi et al. [FLSZ17] relies on new kinds of Dn-KerMDH assumptions (proved to
hold generically in the same paper) where n is the number of shuffled ciphertexts.

7.2 A Technical Overview of Our Results
To go from the rough idea described above to the actual scheme, we need to overcome two techni-
cal problems. The first problem is that our benign proof system needs to be re-randomizable (or,
to better say, “malleable” as it needs to be able to re-randomize proofs of re-randomized state-
ments), as we are aiming to construct a Rand-PKE scheme. We notice that none of the benign
proof systems or affine notions we are aware of (such as [AJOR18, GHK17, GHKP18, Hof17])
are re-randomizable. To solve this problem, we introduce a new malleable proof system based
on the work of Abdalla, Benhamouda and Pointcheval [ABP15], with the necessary security
guarantees.

The second (and more challenging) technical problem is that we need to reconcile the adap-
tive partitioning technique with the Rand-RCCA technique of [FFHR19]. In particular, at the
core of the adaptive partitioning technique there is a complex argument that shows that the
decryption oracle can safely reject ill-formed ciphertexts even when the adversary can observe
(many) ill-formed challenge ciphertexts. In some sense, these challenge ciphertexts are the only
ill-formed ciphertexts that correctly decrypt, while all other ill-formed ciphertexts produced by
the adversary do not. However, in our security proof the adversary can easily produce ill-formed
ciphertexts that correctly decrypt, simply by re-randomizing challenge ciphertexts.

In more detail, the adaptive partitioning technique moves the challenge ciphertexts back and
forth between two different linear spaces (different from the linear space of honestly-generated
ciphertexts). In our proof, differently than in previous works, we need to carefully define the
relationship between these different linear spaces. In particular, it is necessary to make sure
that re-randomizations of the challenge ciphertexts still lie in the prescribed linear space (and
thus can be identified by our technique when answering ⋄). More technically, a ciphertext for
our scheme can be parsed as a vector [x⃗] in the source group (the CPA-part of the ciphertext)
plus two zero-knowledge proofs of consistency. The vector [x⃗] for a well-formed ciphertext lies
in the affine space defined by the encrypted message and the span of a matrix [D⃗∗] which is part
of the public key. Re-randomization works by summing up a random vector from the span of
D⃗∗ to x⃗ (and updating the proofs accordingly). To apply the adaptive partitioning techniques,
we move the challenge ciphertexts back and forth from two well-crafted distinct super spaces of
D⃗∗. Thanks to this choice, we can recognize the challenge ciphertexts after re-randomization
by multiplying the decrypted ciphertext by a matrix orthogonal2 to D⃗∗. Thus, like previous

2This operation could be roughly interpreted as an “extended decryption” of the ciphertexts (since D⃗∗

encodes partial information of the secret key), however, we are not only interested to identify the encrypted
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adaptive partitioning approaches, we separate the randomness space of the PKE scheme into
an honest part (the span of D⃗∗) and a normally unused part (spanned by the vectors in the
mentioned super spaces, independent of D⃗∗) that is also used to hide the messages. In our
view, the main technical insight is that the span of D⃗∗ is used for re-randomization, while
the other space is kept fixed for the challenge ciphertexts. We highlight that in order for
the aforementioned strategy to work smoothly, we preferred to follow a flavor of adaptive
partitioning as in Gay et al. [GHKP18], where secret keys are randomized, instead of the
original strategy of Hofheinz [Hof17], where ciphertexts are randomized. Finally, the original
adaptive partitioning strategy relies on the pairwise universality of a hash proof system [CS98]
that guarantees simpler statements about linear languages. We adapt this proof system to
re-randomizable statements by considering higher-dimensional languages and refining the “core
lemma for Rand-RCCA” from [FFHR19]. We highlight that this lemma was designed for
the single-ciphertext scenario, thus, some extra care is needed in our adaptive partitioning
argument, more in detail, when defining the notion of critical query. In particular, a critical
query is commonly defined as a decryption query for an ill-made ciphertext that would decrypt
without errors under one of the randomized secret keys; the usual goal is to show that an
adversary cannot make such a query. In our case, we need to refine this notion by additionally
specifying when (allegedly) re-randomizations of challenge ciphertexts are critical. Since each
one of the challenge ciphertexts is an ill-made ciphertext that decrypts correctly under one of the
randomized keys, we cannot consider critical a re-randomization of such a challenge ciphertext
when it decrypts correctly under the same randomized key. Thus, after having recognized a
decryption query as a re-randomization we make sure that this ciphertext is decrypted only
using a specific (a univocally linked) secret key; on the other hand, other kind of decryption
queries can be safely decrypted with any of the secret keys. This rule allows eventually to
use the lemma of [FFHR19], which provides security even given an interface for decryption of
re-randomizations of one challenge ciphertext under one specific secret key.

7.3 Pair-wise independence of a projective hash function

The main technical tool employed by [FFHR19], to which they refer as their “core lemma”,
roughly speaking says that, for any u⃗ ∈ Zd+1

q , the projective hash function with hash key
f⃗ , F⃗ that maps v⃗ to (f⃗ + F⃗ v⃗)⊤u⃗ is pair-wise independent with respect to the quotient set
Zd+2

q /span(E⃗) when given as side information the matrix F⃗ E⃗ where E⃗ ∈ Zd+2×d
q . We generalize

their result to u⃗ ∈ Zn
q and E⃗ ∈ Zn′×d

q for any n > d and n′ > d + 1. For the sake of clarity, in
this chapter we prefer to call this lemma the “Rand-RCCA lemma”, rather than “core lemma”
(for Rand-RCCA) as in [FFHR19], because the core technical parts of our work and theirs are
different.

Lemma 7.3.1 (Rand-RCCA Lemma). Let d be a positive integer. For any matrix D⃗ ∈ Zn×d
q ,

message but also to uniquely link the decrypted (possibly re-randomized) ciphertext with one of the challenge
ciphertexts.
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E⃗ ∈ Zn′×d
q where n > d and n′ > d+ 1, and any (possibly unbounded) adversary A:

Pr


u⃗ ̸∈ span(D⃗)

(v⃗ − v⃗∗) ̸∈ span(E⃗)
z = (f⃗ + F⃗ v⃗)⊤u⃗

: f⃗ ←$ Zn
q , F⃗ ←$ Zn×n′

q ,

(z, u⃗, v⃗)←$ AO·(D⃗, E⃗, f⃗⊤D⃗, F⃗⊤D⃗, F⃗ E⃗)

 ≤ n · n′

q

where the adversary outputs a single query v⃗∗ to O that returns f⃗ + F⃗ · v⃗∗.

Proof. The original lemma was proved in [FFHR19] for slightly different parameters, namely
for matrices D⃗ ∈ Zd+1×d

q and E⃗ ∈ Zd+2×d
q and with upper bound 1/q to the winning probability

of the adversary. We show here that their lemma holds for generic n, n′ > d. To show this we
reduce to the case proved in [FFHR19]. We parse the matrices D⃗ and E⃗ as follows:

D⃗ =
 ⃗̄D

D⃗′

 · P⃗ and E⃗ =
E⃗ ′
⃗̄E

 P⃗ ′
where ⃗̄D has d+1 rows and ⃗̄E has d+2 rows and P⃗ , P⃗ ′ are two uniformly random permutation
matrices. Now consider the reduction to the original lemma where we use the matrices ⃗̄D, ⃗̄E,
We obtain from the challenger the public parameters ( ⃗̄f⊤ ⃗̄D, ⃗̄F⊤ ⃗̄D, ⃗̄F ⃗̄E) for uniformly random
⃗̄f, ⃗̄F . Now consider the vector f⃗ and matrix F⃗ implicitly defined as follows:

f⃗ =
 ⃗̄f

f⃗ ′

 and F⃗ =
 F⃗ ′ ⃗̄F

F⃗ ′′ F⃗ ′′′


where f⃗ ′, F⃗ ′, F⃗ ′′, F⃗ ′′′ are uniformly random, and can be sampled by the reduction. Notice that
we can compute the public parameters for the adversary as follows:

f⃗⊤D⃗ ← ( ⃗̄f⊤ ⃗̄D + f⃗ ′⊤D⃗′)P⃗ , F⃗⊤D⃗ ←

F⃗ ′⊤ ⃗̄D + F⃗ ′′⊤D⃗′

⃗̄F⊤ ⃗̄D + F⃗ ′′′⊤D⃗′

 P⃗
F⃗ E⃗ ←

 F⃗ ′E⃗ ′ + ⃗̄F ⃗̄E

F⃗ ′′E⃗ ′ + F⃗ ′′′ ⃗̄E

 P⃗ ′
moreover, we can handle the oracle query v⃗∗ ∈ Zn′

q of the adversary using the oracle of the
reduction. Specifically, let ⃗̄v∗ be the last d + 2 rows of v⃗∗ and v⃗′ be remaining rows, the
reduction queries ⃗̄v to its own oracle and obtain ⃗̄y = ⃗̄f + ⃗̄F⃗̄v∗. The reduction can return to the
adversary

y⃗ ←
(

⃗̄y + F⃗ ′v⃗′

f⃗ ′ + (F⃗ ′′|F⃗ ′′′)v⃗∗

)

Finally, the adversary returns (z, u⃗, v⃗), the reduction outputs tuple (z̄, ⃗̄u, ⃗̄v) where ⃗̄u are the
first d+ 1 rows of u⃗, ⃗̄v are the last d+ 2 rows of v⃗ and:

z̄ ← z − (F⃗ ′v⃗′)⊤⃗̄u− (f⃗ ′ + F⃗ ′′v⃗′ + F⃗ ′′′⃗̄v)⊤u⃗′

where v⃗′, u⃗′ are the remaining rows of respectively v⃗, u⃗.



7.4. Non-Interactive Designated Verifier Proofs 195

We need to prove that the forging probability of our reduction is as claimed in the statement
of the lemma. To do so notice that if u⃗ ̸∈ span(D⃗) then we can write u⃗ = D⃗r⃗+ z⃗ for a non-zero
vector z⃗. Thus, ⃗̄u ̸∈ span( ⃗̄D) if there exists a non-zero entry in the first d + 2 rows of z⃗ · P⃗ .
In the worst case z⃗ has only one non-zero coordinate. Thus, the probability that ⃗̄u ̸∈ span( ⃗̄D)
is d+1

n
. A similar argument shows that the probability of ⃗̄v − ⃗̄v∗ ̸∈ span( ⃗̄E) is d+2

n′ . Notice
that the permutation matrices P⃗ , P⃗ ′ are independent of the view of the adversary, thus the
aforementioned events are independent of the winning probability of A, which concludes the
proof of the lemma.

7.4 Non-Interactive Designated Verifier Proofs
In this section we define Non-Interactive Designated-Verifier Proof Systems (NIDVPS) with
tags and their malleable counterparts.

The following definition are adapted from [Hof17].

Definition 7.4.1 (Proof system). Let L = {Lpars} be a family of languages with Lpars ⊆ Xpars,
and with efficiently computable witness relation R. A non-interactive proof system (NIPS)
PS = (PGen,PPrv,PVer,PSim) for L consists of the following PPT algorithms:

• PGen(1λ, pars) outputs a proving key ppk, a verification key psk.

• PPrv(ppk, x, w), x ∈ L and R(x,w) = 1, outputs a proof π.

• PVer(psk, x, π), x ∈ X and a proof π, outputs a verdict b ∈ {0, 1}.

• PSim(psk, x), x ∈ L, outputs a proof π.

Completeness: For all pars, all (ppk, psk) in the range of PGen(1λ, pars), all x∈L, and all
w with R(pars, x, w)=1, we have PVer(psk, x,PPrv(ppk, x, w))=1.

When ppk ̸= psk we say that the proof system is designated verifier. In the definition above
we let the verification and proving key depend on the parameters of the relation, namely, the
proof systems are quasi-adaptive as defined by Jutla and Roy [JR13]. All the NIPSs of this
chapter are structure-preserving. The usual definition of structure-preserving postulates that
all the public interfaces are vectors in the source groups, all the private material is in Zq and
all the algorithms can be described with pairing-product equations. We consider the version of
the structure-preserving property of [FFHR19] where the proof π could lie in the target group.

7.4.0.1 Benign Proof Systems

All relevant security properties of a benign NIDVPS are condensed in the following definitions,
taken verbatim from [Hof17].

Definition 7.4.2 (Benign proof system). Let PS be an NIDVPS for L as in Definition 7.4.1,
and let Lsim = {Lsim

pars}, Lver = {Lver
pars}, and Lsnd = {Lsnd

pars} be families of languages. We say
that PS is (Lsim,Lver,Lsnd)-benign if the following properties hold:
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(Perfect) zero-knowledge. For all pars, all (ppk, psk) that lie in the range of PGen(1λ, pars),
and all x ∈ L and w with R(pars, x, w) = 1, we have that the distribution PPrv(ppk, x, w)
is equivalent to PSim(psk, x).

(Statistical) (Lsim,Lver,Lsnd)-soundness. Let Expsnd
A,PS be the game played by A in Fig. 7.1.

Let Advsnd
PS,A(λ) be the probability that Expsnd

A,PS(λ) = 1. We require that for all (possibly
unbounded) A that only make a polynomial number of oracle queries, Advsnd

PS,A(λ) is
negligible.

7.4.0.2 Non-Interactive Zero-Knowledge Proof Systems

We adapt Definition 7.4.1 for the case of publicly verifiable proof systems by requiring the prover
key and the verification key to be identical, and we refer to such key as the common reference
string. (Nontrivial) proof systems with this syntax are commonly called zero-knowledge proof
systems (NIZKs).

Notice that in the syntax of proof system we give in Definition 7.4.2 both the simulator
PSim and the verifier PVer receive as input the verification key, while in the usual definition of
NIZK the simulator receives a simulation trapdoor. This difference is only syntactical.

We say that a NIZK PS for L is adaptively sound if it is statistically (∅,L, ∅)-sound according
to Definition 7.4.2.

Definition 7.4.3. Let PS be a NIPS for L as in Definition 7.4.1, we say that PS is (ϵ, T )-
composable zero-knowledge if there exists a PPT algorithm PGen such that:

• For all pars, the distributions induced by the first output of PGen(1λ, pars) and PGen(1λ, pars)
are ϵ-close for any adversary with running time T .

• For all pars, all (ppk, psk) that lie in the range of PGen(1λ, pars), and all x ∈ L and w
with R(pars, x, w) = 1, we have the following equivalence of distributions:

PPrv(ppk, x, w) ≡ PSim(psk, x).

7.4.0.3 Malleable NIPS

We use the definitional framework of Chase et al. [CKLM12] for malleable proof systems.
For simplicity of the exposition we consider only the unary case for transformations (see the
aforementioned paper for more details). Moreover, we adapt their definition to the quasi-
adaptive setting by having transformation that depends on the pars. Let T = (Tel, Twit) be a
pair of efficiently computable functions, that we refer to as a transformation.

Definition 7.4.4 (Admissible transformation). An efficient relation R is closed under a trans-
formation T = (Tel, Twit) if for any (pars, x, w) ∈ R the pair (pars, Tel(pars, x), Twit(w)) ∈ R. If
R is closed under T then we say that T is admissible for R. Let T be a set of transformations,
if for every T ∈ T , T is admissible for R, then T is an allowable set of transformations.

We are ready to define malleable proof systems.
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Experiment Expsnd
A,PS

b← 0
pars ← A(1λ)
(ppk, psk)←$ PGen(1λ, pars)
AOsim(·),Over(·,·)(ppk)
return b

Oracle Over(x, π)
if x ∈ Lver

pars :
return PVer(psk, x, π)

if x ∈ Xpars\Lsnd
pars ∧ PVer(psk, x, π) ?= 1 :

b← 1
return ⊥

Oracle Osim(x)
if x ∈ Lsim

pars :
return PSim(psk, x)

else return ⊥

Experiment Expder-priv
A,PS

b∗ ←$ {0, 1}
(ppk, psk)←$ PGen(1λ, pars)
(x, w, π, T )← A(ppk, psk)

if V(ppk, x, π) ?= 0 ∨R(x, w) ?= 0 :
b←$ {0, 1}
return b

if b∗
?= 0 :

π′ ← PPrv(ppk, Tel(pars, x), Twit(w))
else π′ ← PEvl(ppk, x, π, T )
b← A(π′)

return b
?= b∗

Figure 7.1: Security experiments for benign soundness and derivation privacy of NIPS.

Definition 7.4.5 (Malleable NIPS). Let PS be an NIPS for L as in Definition 7.4.1, and let
PEvl(ppk, x, π, T ) be a PPT algorithm that takes as inputs ppk, an instance x, a proof π, and
a transformation T ∈ T , and it outputs a proof π′. We say that PS and PEvl form a malleable
proof system for L with set T of allowable transformations for R, if, for all pars, (ppk, psk) that
lie in the range of PGen(1λ, pars), all T ∈ T , and all x, π we have PVer(psk, Tel(pars, x), π′) = 1
if and only if PVer(psk, x, π) = 1.

Definition 7.4.6 (Derivation Privacy). Let PS be a malleable NIPS for L with relation R and
an allowable set of transformations T and corresponding PEvl. We say that PS is derivation
private if for any PPT adversary A:

Advder-priv
A,PS (λ) :=

∣∣∣Pr
[
Expder-priv

A,PS (λ) = 1
]
− 1

2

∣∣∣ ∈ negl(λ)

where Expder-priv is the game described in Fig. 7.1. Moreover, we say that PS is perfectly (resp.
statistically) derivation private when for any (possibly unbounded) adversary the advantage
above is 0 (resp. negligible).

Similarly to [FFHR19], we also require a technical property to show re-randomizability of
our encryption scheme that we call tightness for proofs, which roughly speaking says that it is
hard to find a proof for a valid instance that does not lie in the set of the proofs created by the
prover.
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Definition 7.4.7 (Tightness for Proofs). We say that a NIZK has tight proofs if for any (pos-
sibly unbounded) adversary A the following probability is negligible in the security parameter:

Pr
[
π ̸∈ {PPrv(ppk, x, w;ω)}ω∈{0,1}λ

∧ PVer(psk, x, π) = 1 : (ppk, psk)←$ PGen(1λ, pars)
(x,w, π)← A(ppk)

]

We notice that the property above is true for Groth-Sahai Proofs, for the quasi-adaptive
proof system of Kiltz and Wee [KW15] and for designated-verifier proof system based on projec-
tive hash functions. In particular, for GS proofs, for any commitment to the witness, the prover
generates a proof that is uniformly distributed over the set of all the possible valid proofs. The
proofs of Kiltz and Wee and the proofs for proof system based on projective hash functions are
unique, therefore the condition is trivially true.

7.4.1 Our Malleable NIDVPS based on type-1 pairing
The scheme we propose is inspired by the work of [ABP15] which shows how to instantiate the
disjunction of two SPHFs for two languages based on diverse vector spaces. We do not need
such a functionality for our benign proof system, indeed our proof system is for linear space, i.e.
the prover can generate proofs for elements that belong to the span of matrix D⃗. On the other
hand, the security property of our benign proof system allows for soundness even in presence
of simulated proofs for elements in two (possibly distinct) super-spaces of the prescribed linear
space. In other words, while [ABP15] enables for SPHFs for (arbitrary) disjoint linear spaces,
our goal is to enable for proof system for linear spaces with enhanced soundness properties
(w.r.t. simulated proofs from disjoint super-spaces).

Construction 7.4.1. Let D⃗ ∈ Zn×d
q .

• PGen(pars) parses pars as prmG, [D⃗]1 ∈ Gn×d
1 where n, d ∈ N, samples k⃗ ←$ Zn2

q , let I⃗n be
the identity matrix of dimension n, set:

psk ← k⃗ and ppk ← (k⃗⊤[D⃗ ⊗ I⃗n]1, k⃗⊤[I⃗n ⊗ D⃗]1, k⃗⊤[D⃗ ⊗ D⃗]T )

• PPrv(ppk, [u⃗]1, r⃗) computes π ← k⃗⊤[D⃗ ⊗ D⃗]T · (r⃗ ⊗ r⃗) for [u⃗]1 = [D⃗]1r⃗

• PSim(psk, [u⃗]1) computes π ← k⃗⊤([u⃗]1 ⊗ [u⃗]1)

• PVer(psk, [u⃗]1, π) returns 1 if and only if k⃗⊤([u⃗]1 ⊗ [u⃗]1) ?= π

We show that the following PS is a NIPS for L = span([D⃗]1). The first two vectors in the
ppk are necessary to enable for the malleability of the proof system. While the third element
of the public key could be efficiently derived from the previous two, we decide to publish it to
speed up re-randomization and proving time. Consider the set T of admissible transformations
for Zn

q :

T = {T : Tel(pars, [u⃗]1) = [u⃗]1 + [D⃗]1⃗̂r; Twit(r⃗) = r⃗ + ⃗̂r} (7.1)
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We note that any transformation T in the set above is uniquely determined by the vector ⃗̂r,
thus, whenever it is clear from the context, we will simply use ⃗̂r to identify the transformation.
Let PEvl(ppk, ⃗̂r, [u⃗]1, π) the algorithm that computes

π̂ ← π + k⃗⊤[I⃗n ⊗ D⃗]1 · [u⃗⊗ ⃗̂r]1 + k⃗⊤[D⃗ ⊗ I⃗n]1 · [⃗̂r ⊗ u⃗]1 + k⃗⊤[D⃗ ⊗ D⃗]T · ⃗̂r ⊗ ⃗̂r.

We show that PS and PEvl form a malleable proof system for the set of transformation T and
the language L.

Theorem 7.4.1. Let L = span([D⃗]1) and let Lsnd = Lsim = {[u⃗]1 : [u⃗]1 = [D⃗0]1r⃗ ∨ [u⃗]1 =
[D⃗1]1r⃗}, and Lver = Zn

q , where D⃗i = D⃗∥ ⃗̄Di for i ∈ {0, 1}, D⃗ ∈ Zn×d
q and ⃗̄D0,

⃗̄D1 ∈ Zn×d′
q . PS is

a (Lsim,Lver,Lsnd)-benign proof system for L as long as n2 > 2n · d + 2d′2, moreover, PS and
PEvl form a malleable proof system for L and the set of transformation T defined in Eq. (7.1).

Proof. In what follows, we prove each of the properties.

Completeness and Malleability. It is easy to prove that our benign proof system is complete,
as by Eq. (2.1) for any u⃗ = D⃗r⃗ we have (u⃗⊗ u⃗) = (D⃗⊗ D⃗) · (r⃗⊗ r⃗). We prove that our scheme
is malleable (Definition 7.4.5) with respect to set of transformation T defined in Eq. (7.1), i.e.,
we prove that for any [u⃗] and any transformation ⃗̂r, a proof π for [u⃗] verifies if and only if the
proof π̂ obtained executing PEvl on π and the transformation ⃗̂r verifies for [u⃗ + D⃗⃗̂r]. For the
first direction of the implication:

π̂ = π + k⃗⊤
(
I⃗n ⊗ D⃗

)
·
(
u⃗⊗ ⃗̂r

)
+ k⃗⊤

(
D⃗ ⊗ I⃗n

)
·
(
⃗̂r ⊗ u⃗

)
+ k⃗⊤

(
D⃗ ⊗ D⃗

)
·
(
⃗̂r ⊗ ⃗̂r

)
= k⃗⊤ (u⃗⊗ u⃗) + k⃗⊤

(
(I⃗nu⃗)⊗ (D⃗⃗̂r)

)
+ k⃗⊤

(
(D⃗⃗̂r)⊗ (I⃗nu⃗)

)
+ k⃗⊤

(
(D⃗⃗̂r)⊗ (D⃗⃗̂r)

)
= k⃗⊤(u⃗⊗ u⃗+ u⃗⊗ (D⃗⃗̂r) + (D⃗⃗̂r)⊗ u⃗+ (D⃗⃗̂r)⊗ (D⃗⃗̂r))
= k⃗⊤

(
(u⃗+ D⃗⃗̂r)⊗ (u⃗+ D⃗⃗̂r)

)
We highlight that the second equation holds because of the definition of π and (2.1), while
the third equation is obtained by grouping the previous line by k⃗⊤. The sequence of equations
above also proves the other direction; indeed, if π ̸= k⃗⊤u⃗⊗ u⃗, then π̂ ̸= k⃗⊤(u⃗+ D⃗⃗̂r)⊗ (u⃗+ D⃗⃗̂r).

Soundness. We recall that D⃗ ∈ Zn×d
q , ⃗̄Di ∈ Zn×d′

q . If we only consider the view of the adversary
given the verification key and the outputs of the simulation oracle we have that the proving
key is uniformly distributed over a set of cardinality qn2−2nd−2d′2 . Therefore, we require that
n2 > 2n · d+ 2d′2 holds.

To see this, think of k⃗ as formal variable and notice that publishing the information
k⃗⊤
(
D⃗ ⊗ I⃗n

)
counts for n · d equations; also, k⃗⊤

(
I⃗n ⊗ D⃗

)
counts for n · d equations which

in total gives us 2n ·d equations. Moreover, in order to simulate proofs for [u⃗]1 ∈ span([D⃗i]) the
oracle gives away, at the worst case, the equations k⃗⊤

(
⃗̄Di ⊗ ⃗̄Di

)
which count for d′2 equations

for each i ∈ {0,1} which sum up to 2d′2 equations in total. Indeed, expanding k⃗⊤
(
D⃗i ⊗ D⃗i

)
we obtain k⃗⊤

(
D⃗ ⊗ D⃗| ⃗̄Di ⊗ D⃗|D⃗ ⊗ ⃗̄Di| ⃗̄Di ⊗ ⃗̄Di

)
. The vectors k⃗⊤

(
⃗̄Di ⊗ D⃗

)
and k⃗⊤

(
D⃗ ⊗ ⃗̄Di

)
can be computed given the proving key and D⃗0, D⃗1. In fact, computing k⃗⊤

(
D⃗ ⊗ I⃗

)(
I⃗ ⊗ ⃗̄Di

)
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Experiment ExpmRCCA
A,PKE(λ)

b∗ ←$ {0, 1}
prm← Setup(1λ)
b′ ← AOkgen(),Oenc(·,·,·),Odec(·)(prm)

return b′
?= b∗

Oracle Okgen()
z ← z + 1
Qz ← DisjointSet()
(pkz, skz)← KGen(prm)
return pkz

Oracle Oenc(j, msg0, msg1)
if j /∈ [z] :

return ⊥
Qj .union({msg0, msg1})
C←$ Enc(pkj , msgb∗)
return C

Oracle Odec(j, C)
msg← Dec(skj , C)
J ← Qj .find(msg)
if J ̸= ⊥ :

return ⋄J
return msg

Figure 7.2: The multi-user and multi-ciphertext RCCA Security Experiment.

we obtain k⃗⊤
(
D⃗I ⊗ I⃗ ⃗̄Di

)
= k⃗⊤

(
D⃗ ⊗ ⃗̄Di

)
. And similarly, we can compute k⃗⊤

(
⃗̄Di ⊗ D⃗

)
. In

total, we are giving up 2n · d+ 2d′2 equations and the length of our key k is n2.

Notice that the adversary can gather additional information about the proving key k⃗ through
the verification oracle. Indeed, whenever it sends a query ([u⃗]1, π) with [u⃗]1 ∈ Lver \ Lsnd either
it wins the security game or the adversary learns that π ̸= k⃗⊤[u⃗]1 ⊗ [u⃗]1.

Consider the hybrid experiment Hj where the first j-th queries ([u⃗]1, π) to the verification
oracle with [u⃗]1 ̸∈ Lsnd are answered with 0, in particular, the bit b is left unmodified, while
the remaining queries are handled as in the soundness experiment. Clearly, H0 is the original
experiment, while HQ where Q is an upper bound on the number of verification oracle queries
made by the adversary is a trivial experiment where the adversary cannot win (since the
bit b will never be set to 1), thus Pr[HQ = 1] = 0. The distinguishing event between two
consecutive hybrids is the event that the adversary wins the soundness experiment at the j-th
query, which happens with probability 1/qn2−2nd+2d′2 ≤ 1/q, as it is the same as the event of
guessing a uniformly random vector from a subspace of dimension n2 − 2nd+ 2d′2 of Zn2

q , thus
Pr[Hj = 1] ≤ Pr[Hj+1 = 1] + 1/q. Finally, by the triangular equation and noticing that Q is
polynomial in the security parameter we can conclude our proof of soundness.

Derivation Privacy and Zero-Knowledge. The scheme satisfies perfectly derivation privacy
and zero-knowledge. For the former, notice that, for any ⃗̂r, we have that PPrv(ppk, [u⃗+D⃗⃗̂r]1, r⃗+
⃗̂r) = k⃗⊤[D⃗ ⊗ D⃗]T · ((r⃗ + ⃗̂r) ⊗ (r⃗ + ⃗̂r)) = PEvl(ppk, π, ⃗̂r). For the latter, given an instance [u⃗]1
such that [u⃗]1 = [D⃗]1r⃗, we have that PSim(psk, [u⃗]1) = k⃗⊤([u⃗]1 ⊗ [u⃗]1) = k⃗⊤([D⃗r⃗]1 ⊗ [D⃗r⃗]1) =
PPrv(ppk, [u⃗]1, r⃗).
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7.5 Rand RCCA PKE for multi-users and multi-ciphertexts
Definition 7.5.1 (multi-user and multi-ciphertext Replayable CCA Security). Consider the
experiment ExpmRCCA in Fig. 7.2, with parameters λ, an adversary A, and a PKE scheme PKE.
We say that PKE is indistinguishable secure under replayable chosen-ciphertext attacks in the
multi-user and multi-ciphertext setting (mRCCA-secure) if for any PPT adversary A:

AdvmRCCA
A,PKE(λ) :=

∣∣∣∣Pr
[
ExpmRCCA

A,PKE(λ) = 1
]
− 1

2

∣∣∣∣ ∈ negl(λ).

In Fig. 7.2, for each user j we define Qj to be a partition of the set of the challenge messages
sent to the encryption oracle for the user j. To do so we use the classical Disjoint-Set (also
called Union-Find) data structure from Tarjan [Tar75]. Whenever two challenge messages are
submitted to the encryption oracle, indeed, we merge the sets to which they belong so that
a future call to the guarded decryption oracle behaves consistently. This allows us to express
in Fig. 7.2 the syntax of the encryption and the guarded decryption oracle in terms of three
operations: DisjointSet() that allows to initialize the partition (initially empty), union(S) that
adds to the partition the minimal subset of the challenge messages that contains the messages
in S meanwhile maintaining invariant the partition property (i.e. a collection of disjoint sets),
and find(msg) that returns the set in the partition where msg belongs to, or ⊥ if msg is not in
the set of challenge messages of the user j.

We confirm that our definition is indeed the right multi-user and multi-ciphertext extension
of the IND-RCCA definition of [CKN03] by showing that our definition tightly implies the UC-
RCCA definition of the same paper3. In Fig. 7.3 we recall the definition of the ideal functionality
FRPKE which formalizes the notion of replay security for public-key encryption scheme in the
universal composability model.

Theorem 7.5.1. Let PKE be a PKE scheme with message space D. There exists a simulator
S such that for any static-corruption environment Z with running time TZ there exists an
adversary B whose running time is O(TZ(λ)) such that:∣∣∣Pr[RealZ,ΠPKE(λ) = 1]− Pr

[
IdealFRPKE

Z,S (λ) = 1
]∣∣∣ ≤ 2Advmumc−RCCA

B,PKE (λ) + TZ
|D|

Proof. The simulator is the same as the one presented at page 14 of [CKN03]. In particular:

• At first activation of the simulator it sets the set of random messagesM∗ to be the empty
set.

• When S receives the message (KeyGen, id) from the ideal functionality, then it runs
pk, sk←$ KGen(prm), returns pk to the ideal functionality and stores the key-pair.

• When S receives a message (Encrypt, id, e′, Pj) if e′ = pk then the simulator samples
a uniformly random message msg∗ from the set Dλ \ M∗ and adds msg∗ into the set
M∗, computes C ←$ Enc(pk, msg∗), store te tuple (C, msg∗) and returns C, otherwise it
additionally receives a message msg from the ideal functionality, it returns Enc(e′, msg).

3In [CKN03], the IND-RCCA notion implies the UC-RCCA notion with a loss of security that is proportional
to the running time of the environment.
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Key Generation: Upon receiving a value (KeyGen, id) from some party Pi

1. Hand (KeyGen, id) to the adversary.

2. Receive a value e from the adversary, and hand e to Pi.

3. If this is the first activation then record the value e.

Encryption: Upon receiving from some party Pj a value (Encrypt, id, e′,m)

1. If m /∈ Dk then return an error message to Pj.

2. If m ∈ Dk then hand (Encrypt, id, e′, Pj) to the adversary. (If e′ ̸= e or e is
not yet defined then hand also the entire value m to the adversary.)

3. Receive a ciphertext c from the adversary, record the pair (c,m), and hand
c to Pj. If e′ ̸= e or e is not yet defined then do not record the pair (c,m). If
the tag c already appears in a previously recorded pair then return an error
message to Pj.

Decryption: Upon receiving a value (Decrypt, id, c) from Pi (and Pi only)

1. If there is a recorded pair (c,m) then hand m to Pi.

2. Otherwise, hand the value (Decrypt, id, c) to the adversary, and receive a
value (α, v) from the adversary. If α = plaintext then hand v to Pi. If
α = ciphertext then find a stored pair (c′,m) such that c′ = v, and hand
m to Pi. (If no such c′ is found then halt.)

Figure 7.3: The ideal functionality FRPKE, when parameterized by message domain ensemble
D = {Dλ}λ∈N and security parameter λ, and interacting with an adversary S, and parties
P1, . . . , Pn.

• When S receives a message (Decrypt, id, c) from the ideal functionality it first computes
msg = Dec(sk, c). If it exists a recorded tuple (C, msg) then it returns (ciphertext, C)
otherwise it returns (plaintext, msg).

We reduce to our multi-ciphertext RCCA security notion of Definition 7.5.1. Consider the
reduction B that runs the environments Z and answers its messages as follows:

• Upon message (KeyGen, id) to party Pi, if this is the first activation then B queries its
own key generation oracle and receives pk which returns as output of Pi. Else it generates
a key-pair and returns pk as output of Pi.

• Upon message (Encrypt, id, e′, msg) from Z to a party Pj, it checks that msg ∈ Dλ, and
otherwise it returns an error as output of Pj. If e = pk it samples a random message
msg∗ ←$ Dλ\M∗ and stores the message in the listM∗ of random messages. Additionally,
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it asserts that the message from the environment msg is not present inM∗, if such event
happens it abort. It sets (msg0, msg1) ← (msg, msg∗) and queries its own encryption
oracle obtaining C which returns as output of Pj.

• Upon message (Decrypt, id, c) sent by the environment to Pi, it queries with c the de-
cryption oracle. If the decryption oracle return ⋄J let A = J \M∗, if |A| > 1 then the
reduction aborts, else A = {msg}, and it returns msg as output of Pj. If the decryption
oracle returns msg then it returns msg as output of Pj.

Eventually, the reduction outputs the same decision bit of the environment Z.
It is easy to check that if we condition on the event that the reduction B does not abort

then the view of the environment is exactly the same as in the real world if the challenge bit of
the RCCA experiment is 0 and exactly the same as in the ideal world when the challenge bit
of the RCCA experiment is 1.

Let Abort be such event, we compute the probability of Abort conditioned on the challenge
bit being 0. Notice that, since the event can be checked efficiently, there exists a reduction
B′ with running time less or equal to the running time o B such that Pr[Abort|b∗ = 1] ≤
Pr[Abort|b∗ = 1] + AdvmRCCA

B′,PKE(λ). The reduction B′ runs B and returns 1 if B aborts, and
otherwise it outputs a random bit.

Notice that when b = 0 the random messages in M∗ are not in the view of Z (since
the ciphertexts contain encryption of the real messages), thus the probability that Abort
happens because the environment sends (Encrypt, id, e′, msg), where msg ∈ M∗, is upper-
bounded by |M∗|/|Dλ|. Moreover, notice that when the decryption oracle returns ⋄J , since the
random messages msg∗ chosen by the reduction are all different, the common element in all the
encryption queries that made them to be included in J , by the Definition 7.5.1, must be the
real message sent by the Z.

Summing up all together, taking the maximum between the advantage of B and B′, and
noticing that |M∗| ≤ TZ we obtain the bound in the statement of the theorem.

7.6 Our Rand-RCCA PKE Scheme
We present our scheme in Fig. 7.4. With the goal of improving readability for developers, all the
operations (and in particular the pairing operations) in the figure are described explicitly using
e for the pairing and · for the exponentiations. The scheme can be summarized as a type-1
pairing group version of the scheme in [FFHR19] where we additionally append a benign proof
to prove almost tight-security.

The main technical component from [FFHR19] to obtain RCCA security is the consistency
check at decryption time which checks that

[y]T ?= f⃗⊤[u⃗]T + [x⃗]⊤1 F⃗⊤[u⃗]1

Perfect Re-randomizability. We prove that the scheme presented in Fig. 7.4 is perfectly
re-randomizable, according to Definition 2.4.1. We start by introducing the following lemma.
Lemma 7.6.1. For any [x⃗]1 and ⃗̂r, let [⃗̂x]1 = [x⃗]1 + [D⃗∗]1⃗̂r, we have that

(f⃗⊤ + [⃗̂x]⊤1 F⃗⊤)[⃗̂u]1 = (f⃗⊤ + [x⃗]⊤1 F⃗⊤)[u⃗]1 + [f⃗⊤D⃗]T · ⃗̂r
+ e([x⃗]1, [F⃗⊤D⃗]1 · ⃗̂r) + e([F⃗ D⃗∗]1 · ⃗̂r, [⃗̂u]1)
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Setup(1λ)
prmG = (q,G1,GT , e,P1)←$ GroupGen(1λ)
M← G1; C ← Gn+2

1 ×GT × P
prm← (prmG,M, C)
return prm

KGen(prm)
D⃗ ←$ Dn,d, a⃗←$ Zn

q

D⃗∗ ← (D⃗⊤, (⃗a⊤D⃗)⊤)⊤

f⃗ ←$ Zn
q , F⃗ ←$ Zn×n+1

q

pars ← (prmG, [D⃗]1)
ppk, psk ← PGen(pars)

pk← ([D⃗∗]1, [f⃗⊤D⃗]T , [F⃗⊤D⃗]1, [F⃗ ⃗⃗
D∗]1, ppk)

sk← (⃗a, f⃗ , F⃗ , psk)
return (pk, sk)

Enc(pk, [msg]1)
r⃗ ←$ Zd

q

[u⃗]1 ← [D⃗]1 · r⃗
π ← PPrv(ppk, [u⃗]1, r⃗)
[p]1 ← [⃗a⊤D⃗]1 · r⃗ + [msg]1
[x⃗]1 ← ([u⃗⊤]1, [p]1)⊤

[y]T ←
(
[f⃗⊤D⃗]T + e([x⃗]⊤1 , [F⃗⊤D⃗]1)

)
· r⃗

return C := ([x⃗]1, [y]T , π)

Dec(sk, C)
parse C as ([x⃗]1, [y]T , π)
parse [x⃗⊤]1 as ([u⃗⊤]1, [p]1)
[msg]1 ← [p]1 − [⃗a⊤u⃗]1
[y′]T ← f⃗⊤e([1]1, [u⃗]1) + e(F⃗ [x⃗]1, [u⃗]1)

b1 ← [y′]T
?= [y]T , b2 ← PVer(psk, [u⃗]1, π)

if b1 ∧ b2 return [msg]1else ⊥

Rand(pk, C)
parse C as ([x⃗]1, [y]T , π)
parse [x⃗⊤]1 as ([u⃗⊤]1, [p]1)
⃗̂r ←$ Zd

q , [⃗̂x]1 ← [x⃗]1 + [D⃗∗]1 · ⃗̂r
[ŷ]T ← [y]T + [f⃗⊤D⃗]T · ⃗̂r + e([x⃗]1, [F⃗⊤D⃗]1 · ⃗̂r) + e([F⃗ D⃗∗]1 · ⃗̂r, [⃗̂u]1)
π̂ ← PEvl(ppk, [u⃗]1, π, ⃗̂r)
return Ĉ := ([⃗̂x]1, [ŷ]T , π̂)

Figure 7.4: Rand-RCCA PKE scheme PKE based on the Dn,d-MDDH assumption in type-1
bilinear groups. P is the support of the proofs for PS.

Proof.

(f⃗⊤+⃗̂xF⃗⊤)⃗̂u = (f⃗⊤ + (x⃗+ D⃗∗⃗̂r)⊤F⃗⊤)(u⃗+ D⃗⃗̂r)
=(f⃗⊤ + x⃗⊤F⃗⊤)u⃗+ (f⃗⊤ + x⃗⊤F⃗⊤)(D⃗⃗̂r) + (D⃗∗⃗̂r)⊤F⃗⊤u⃗+ (D⃗∗⃗̂r)⊤F⃗⊤D⃗⃗̂r

Notice that the third term can be rewritten as:

(D⃗∗⃗̂r)⊤F⃗⊤u⃗ = (F⃗ D⃗∗⃗̂r)⊤u⃗

Indistinguishability. First, we want to focus on property (1) that says that the re-randomization
of an honest encryption is identically distributed to a fresh encryption.

Let C := ([x⃗]1, [y]1, π) be an encryption of [msg]1 with randomness fixed to r⃗, and let Ĉ :=
([⃗̂x]1, [ŷ]T , π̂) ←$ Rand(pk, C) be its re-randomization with randomness ⃗̂r. We show that Ĉ is
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identically distributed to a fresh encryption of [msg]1 with randomness (r⃗+ ⃗̂r). Notice that for
any vector r⃗, the random variable (r⃗ + ⃗̂r) is uniformly distributed.

It is straightforward to verify that this holds for the element [⃗̂x]1, indeed:

⃗̂x = D⃗∗(r⃗ + ⃗̂r) + (⃗0⊤, msg)⊤.

The proof that [ŷ]T is correctly distributed, follows easily from Lemma 7.6.1. What is left
to prove is that the element π̂ is also correctly distributed. We recall that π̂ is the result of
PEvl(ppk, [D⃗r⃗]1, π, ⃗̂r). Because of the correctness of the proof system PS, it holds that π̂ is
identical to PPrv(ppk, [D⃗(r⃗ + ⃗̂r)]1, (r⃗ + ⃗̂r)) that is exactly the distribution of [y]T computed by
Enc(ppk, msg; (r⃗ + ⃗̂r)).

Correctness. Next, we prove the second property of Definition 2.4.1, namely that for any
ciphertext C, it holds that Dec(sk, C) = Dec(sk, C′), where C′ is the output of a valid re-
randomization of C, with some randomness ⃗̂r.

First, we notice that Rand adds to x⃗ an encryption of [0]1, therefore if the third line of
Dec(sk, C) computes [msg]1, the same happens in Dec(sk, C′). Second, if C is valid, then the
correctness follows from the proof given above: C′ is also valid and Dec(sk, C) = Dec(sk, C′).
Finally, we are left with proving that if Dec(sk, C) = ⊥, then also Dec(sk, C′) returns ⊥. Assume
by contradiction that Dec(sk, C) = msg ̸= ⊥. Then it must be true that [ŷ]T = (f⃗ + F⃗ ⃗̂x)⊤[⃗̂u]1
and π̂ = k⃗⊤([⃗̂u]1 ⊗ [⃗̂u]1). For the same proof given above, and for the correctness of the
benign proof system PS, we obtain that [y]T = (f⃗ + F⃗ x⃗)⊤[u⃗]1, π = k⃗⊤([u⃗]1 ⊗ [u⃗]1), and thus
Dec(sk, C) = msg ̸= ⊥, that results in a contradiction.

Tightness of Decryption. The last property we need to prove is the third one of Defini-
tion 2.4.1. We observe that, given a vector [u⃗]1, there exists a unique value π := k⃗⊤([u⃗]1⊗ [u⃗]1)
such that PVer(psk, [u⃗]1, π) = 1. Assume there exists an adversary who is able to produce a
ciphertext that does not decrypt to ⊥, yet it is not in the encryption range of the scheme,
namely there exists no message msg, and no randomness r⃗ such that Enc(pk, msg; r⃗) outputs C.
Given the above observation, it must be the case that the first component of the ciphertext, i.e.
[u⃗]1, is not in the span of [D⃗]1: in [FFHR19] it is proven that the probability that an adversary
succeeds in forging a valid [y]T in such case, is lower or equal than 1

q
.

Security. We prove that the security of the scheme reduces to the Dn,d-MDDH assumption.
Below we state the main theorem.

Theorem 7.6.1. For every PPT adversary A that makes at most QEnc encryption and QDec
decryption queries, there exist adversaries Bmddh, Bsnd with similar running time T (Bmddh) ≈
T (Bsnd) ≈ T (A) + (QEnc +QDec) · poly(λ), where poly(λ) is a polynomial independent of T (A),
and such that

AdvRCCA
A,PKE(λ) ≤ O (d logQEnc) ·AdvMDDH

G1,Dn,d,Bmddh(λ)

+ logQEnc ·Advsnd
Bsnd,PS(λ) +O

(
n2QDecQEnc log QEnc

q

)
.

Proof. We give a proof only for the single-user, multi-ciphertext case, i.e., when the adversary
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calls the key generation oracle only once. The proof can be easily generalized4 to the multi-user
case almost equivalently to [BBM00, GHK17].

To simplify the notation, since we are in the single-user setting, we omit the index j (which
specifies the user) from both encryption and decryption queries. We let G0 be the ExpmRCCA

A,PKE
experiment, and we denote with ϵi the advantage of A to win Gi, i.e. ϵi := |Pr[Gi = 1]− 1

2 |.
The games keep track of the number of challenge ciphertexts produced. Specifically, let ctr

be a variable that counts the number of challenge ciphertexts output by the encryption oracle:
ctr is set to 0 at the beginning of the games and, whenever the adversary calls the encryption
oracle, it is increased.
Game G1. This game is identical to the previous one, but the encryption oracle computes
the values [y]T and [p] using secret keys (instead of public keys). Specifically, upon the j-
th query to the encryption oracle, the game computes the ciphertext Cj = ([x⃗j], [yj]T , πj) as
described by the encryption procedure, but where we compute [yj]T ← f⃗⊤[u⃗j] + [x⃗j]⊤F⃗⊤[u⃗j]
and [pj]← a⃗⊤[u⃗j] + [msgj,b∗ ]. By linearity, this game is perfectly equivalent to the previous one,
thus ϵ1 = ϵ0.
Game G2. This game is identical to the previous one, but the encryption oracle simulates
the benign proofs π. We rely on the perfect zero-knowledge of the benign proof system. The
reduction is standard, therefore we omit it. Since the proof system satisfies perfect zero-
knowledge we have ϵ2 = ϵ1.

Game G3. At the very beginning, the game additionally samples matrices ⃗̄Db ←$ Zn×d
q for

b ∈ {0, 1}, and sets D⃗b ←
(
D⃗| ⃗̄Db

)
. The encryption oracle in this game samples [u⃗] from

the span of [D⃗0]. We apply a standard reduction to the QEnc-fold Dn,d-MDDH assumption,
twice, and we prove that no adversary can distinguish this game from the previous one: we
first tightly switch the vectors in the challenge ciphertexts from the span of [D⃗] to uniformly
random vectors of Gn

1 ; next, we use the QEnc-fold Dn,2d-MDDH assumption to switch these
vectors from random to the span of [D⃗0]. To be formal, we build adversaries B, B′ such that for
a polynomial p(λ) independent of T (A), we have T (B) ≈ T (B′) ≈ T (A) + (QEnc +QDec) · p(λ)
and

|ϵ3 − ϵ2| ≤ AdvQEnc−MDDH
G1,Dn,d,B(λ) + AdvQEnc−MDDH

G1,Dn,2d,B′(λ)

Let ([D⃗], [V⃗ ]) be the QEnc-fold Dn,d-MDDH challenge received by B, with [D⃗] ∈ Gn×d
1 and

[V⃗ ] := ([v⃗1], . . . , [v⃗QEnc ]) ∈ Gn×QEnc
1 . Then, B samples the secret material a⃗ ←$ Zn

q , f⃗ ←$

Zn
q , F⃗ ←$ Zn×n+1

q , generates the keys for the benign proof system, running PGen([D⃗]), and
finally sends the public key to A. On the j-th query to the encryption oracle, B sets

[u⃗j]← [v⃗j]
[yj]T ← f⃗⊤[u⃗j]T + [x⃗j]⊤F⃗⊤[u⃗j]

B has generated the secret key itself, so it can perfectly simulate the decryption oracle. In
case [V⃗ ] = [D⃗R], B perfectly simulates G2. In case [V⃗ ] is uniformly random over Gn×QEnc

1 , B
4We rely on the self-reducibility of the MDDH assumption: in particular, we can generate m different matrices

D⃗j (one for each user) from one single challenge of the (many-fold) MDDH assumption and adapt accordingly
the ciphertexts, namely, by mapping the ciphertext for the j-th user through the same linear transformation
that maps the MDDH-challenge matrix to the matrix D⃗j .
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simulates an intermediary game H. Analogously, we can build an adversary B′ on the QEnc-fold
Dn,2d-MDDH assumption, who simulates H if [V⃗ ] is uniformly random over Gn×QEnc

1 , and game
G3 if [V⃗ ] = [D⃗0R⃗]. Altogether, this proves the claim stated above: from Lemma 2.3.2 and
Corollary 2.3.1, we obtain an adversary B′′ such that T (B′′) ≈ T (A) + (QEnc + QDec) · poly(λ)
where poly(λ) is independent of T (A) and

|ϵ3 − ϵ2| ≤ 2(n− d)Advmddh
G1,Dn,d,B′′(λ) + 2

q − 1 .

Game G4. In this experiment, we add an explicit check to the decryption oracle. First recall
that D⃗∗ is defined in Fig. 7.4 as the matrix whose first n rows are equal to the matrix D⃗
and last row is equal to a⃗⊤D⃗. Upon query C := ([x⃗], [y]T , π) to the decryption oracle, where
[x⃗]⊤ := ([u⃗]⊤, [p]), the oracle additionally checks that:

u⃗ ∈ span(D⃗) ∨ ∃j : D⃗∗⊥x⃗j = D⃗∗
⊥
x⃗ (7.2)

where D⃗∗
⊥
D⃗∗ = 0, and QEnc = {Cj = ([x⃗j], [yj]T , πj) : j ≤ [ctr]} is the set of challenge

ciphertexts. If the condition holds, the decryption oracle proceeds by running the decryption
procedure as usual, otherwise it returns ⊥ to the adversary. We notice that the new condition
can be checked efficiently since we know D⃗ ∈ Zn×d

q and a⃗ ∈ Zn
q .

The distinguishing event between G4 and G3 is that the adversary queries the decryption
oracle with a ciphertext that would not decrypt to ⊥ (according to the original decryption
rules of G3), but where Eq. (7.2) holds. We call such query to the decryption oracle a “critical
query”, i.e. a decryption query where:

• [u⃗] /∈ span([D⃗]) and ∀j : D⃗∗⊥x⃗j ̸= D⃗∗
⊥
x⃗ (the latter condition implies that [u⃗] is not the

result of an honest re-randomization of a previous challenge ciphertext)

• the proof π is valid, and [y]T = f⃗⊤[u⃗]T + [x⃗]⊤F⃗⊤[u⃗], i.e., the consistency check holds.

In other words, a critical decryption query consists of a ciphertext that does not decrypt to ⊥
(according to the original decryption rules), is not a re-randomization of a challenge ciphertext,
but has a [u⃗] that could not have been generated in an “honest” encryption. For this step, we
refer to Lemma 7.6.2.

Game G5. This game is equivalent to G4, but we modify the rules of the decryption oracle
once again. For any j, let msgj,0 and msgj,1 be the challenge messages queried by A at the j-th
query to the encryption oracle. Upon decryption oracle query C = ([x⃗], [y]T , π), if ∃j : D⃗∗⊥x⃗j =
D⃗∗
⊥
x⃗ where recall QEnc = {([x⃗j], [yj], πj) : j ≤ ctr}, and both the proof π verifies and the

consistency check holds, then the decryption oracle immediately returns the symbol ⋄J where
J ← Q.find(msgj,0).

Notice that we can rewrite the decryption procedure as msg = (−a⃗⊤, 1)[x⃗]. We observe
that the vector (−a⃗⊤, 1) is in the span of D⃗∗⊥, since it holds that (−a⃗⊤, 1)D⃗∗ = −a⃗⊤D⃗ +
a⃗⊤D⃗ = 0. Thus, at any decryption query, if D⃗∗⊥x⃗j = D⃗∗

⊥
x⃗j for some challenge ciphertext

Cj then (−a⃗⊤, 1)[x⃗j] = (−a⃗⊤, 1)[x⃗], and therefore the decryption oracle would compute the
message msgj,b∗ and output the symbol ⋄J , where J = Q.find(msgj,b∗). Moreover, notice that
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Q.find(msgj,b∗) = Q.find(msgj,0) by definition of the security experiment. This shows that
ϵ5 = ϵ4.

Game G6. In this last step, we encrypt random messages. Formally, at the j-th encryption
query the oracle (on input messages msgj,0, msgj,1) encrypts the message msgj,b∗ + Rj, where Rj

is random. Clearly, it holds that ϵ6 = 0 as in fact, because of the change introduced in G6, the
ciphertexts are independent of the challenge bit b∗, and, by the changes introduced in G4 and
G5, the decryption queries are independent of the challenge bit. We prove that G5 and G6 are
indistinguishable.

We first observe switching from a⃗⊤ to a⃗⊤ + r⃗⊤D⃗⊥ for a random r⃗ and using the vector
a⃗⊤ + r⃗⊤D⃗⊥ both for the encryption and decryption oracle queries does not change the view
of the adversary. So consider a new game G′5, identical to G5 but where we set a⃗⊤ + r⃗⊤D⃗⊥

instead of a⃗.
Let [u⃗j] = [D⃗0]r⃗j be the first component of the j-th challenge ciphertext, computed by

the encryption oracle. It holds that [pj] = (⃗a⊤ + r⃗⊤D⃗⊥)[u⃗j] + [msgjb∗ ], which is equal to
a⃗⊤[u⃗j] + [msgjb∗ ] + r⃗⊤(D⃗⊥[D⃗0])r⃗j. We show that the term r⃗⊤(D⃗⊥[D⃗0]), is statistically close to
a random vector [v⃗]. The reason is that for any fixed choice of the columns of ⃗̄D0, the rows of
D⃗⊥ are linearly independent with overwhelming probability (over D⃗⊥).

We now reduce to MDDH to show that |ϵ6−ϵ5′ | is negligible in the security parameter for any
adversary A: formally, we build an adversary B such that T (B) ≈ T (A)+(QEnc +QDec) ·poly(λ)
and:

|ϵ6 − ϵ5′| ≤ Advmddh
G1,U2d+1,2d,B(λ).

Let [B⃗] ∈ G2d+1×2d
1 , and let ([⃗h1], . . . , [⃗hQEnc ]) ∈ G2d+1×QEnc

1 be the U2d+1,2d-MDDH challenge
received in input. We indicate the upper values of [⃗hj] as [⃗hj] ∈ G2d

1 , and we indicate its
lower values as [⃗hj] ∈ G1. In the reduction, the encryption oracle sets [u⃗j] ← D⃗0 [⃗hj], which
implicitly sets r⃗j = h⃗j. Also, it sets [pj] = [msgjb∗ ] + a⃗⊤[u⃗j] + [⃗hj]. If ([B⃗], [⃗h1], . . . , [⃗hQ]) is
a real MDDH challenge, B simulates the game G5′ . Indeed, it must hold that h⃗j = B⃗s⃗j, for
some s⃗j ∈ Z2d

q . Also, let [B⃗] be the upper square matrix of [B⃗], and let [B⃗] be the last row
of [B⃗]. [⃗hj] = [B⃗]s⃗j = [B⃗]B⃗

−1
r⃗j. And we have that the distribution of [B⃗]B⃗

−1
is statistically

close to a random element v⃗. Otherwise, B simulates the game G6. Finally, by applying
Lemma 2.3.2, Lemma 2.3.3 and Lemma 2.3.4, we can always build a new adversary C such that
T (C) ≈ T (A) + (QEnc +QDec) · poly(λ) and:

|ϵ6 − ϵ5| = |ϵ6 − ϵ5′| ≤ (n− d)Advmddh
G1,Dn,d,C(λ) + 1

q − 1 .

Lemma 7.6.2. The security games G3 and G4 defined for the proof of Theorem 7.6.1 (security
of the RCCA symmetric scheme, see Fig. 7.4) are computationally indistinguishable. For any
PPT adversary A, we build PPT adversaries B, B′ with running times similar to A such that:

|ϵ3 − ϵ4| ≤ O(d logQEnc)AdvMDDH
G1,Dn,d,B(λ) + logQEncAdvsnd

B′ (λ)

+O
(

n2QDecQEnc log QEnc
q

)
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Proof. We denote the probability that the adversary A wins game Hx by ϵHx . In the following,
we will bound ϵH0 via a sequence of games.

Hybrid H0. This hybrid is the same as G3 but immediately outputs 1 if the adversary makes
a “critical query”. Specifically, the hybrid executes G3 but the decryption oracle upon input
C parses it as ([x⃗], [y]T , π) and checks that Eq. (7.2) holds; if it holds, the decryption oracle
continues as before. Otherwise, returns the message “critical”, and H0 stops the interaction,
immediately returning 1. Since the hybrid outputs 1 when the distinguishing event between
G3 and G4 happens, we have that |ϵ3 − ϵ4| ≤ ϵH0 . Also notice that the checks in Eq. (7.2) can
be efficiently performed given the knowledge of the matrix D⃗.

Hybrid H1. This hybrid is preparatory for the next one. We inject randomness into the
encryption/decryption keys, adding a vector (z⃗D⃗⊥) to the secret key f⃗⊤, common to all the
encryption queries, where z⃗ ∈ Zn−d

q . Specifically, at the very beginning of the experiment we
sample the vector z⃗ ←$ Zn−d

q , we sample f⃗ and compute the public key material [f⃗⊤D⃗] and
moreover:

• The encryption oracle, at the j-th query, computes the values [yj]T as follows:

[yj]T ← (f⃗⊤ +z⃗D⃗⊥ )[u⃗j]T + [x⃗j]⊤F⃗⊤[u⃗j]

• Similarly, the decryption oracle, upon input the ciphertext C = ([x⃗], [y]T , π) computes the
bit b1 (i.e. the bit of the consistency check) by computing the value [y′]T and checking if
[y]T ?= [y′]T where [y′]T is computed as:

[y′]T ← (f⃗⊤ +z⃗D⃗⊥ )[u⃗]T + [x⃗]⊤F⃗⊤[u⃗]

These new rules do not change the view of the adversary since both f⃗⊤ and f⃗⊤ + z⃗D⃗⊥ are
uniformly distributed over Z1×n

q given the public key material [f⃗⊤D⃗]. Thus, we obtain ϵH1 =
ϵH0 .

Hybrid H2. Let P : {0, 1}∗ → Z1×n−d
q be a uniformly random function. In this hybrid we use

the following rules for encryption and decryption:

• The encryption oracle, at the j-th query, computes the values [yj]T as follows:

[yj]T ← (f⃗⊤ + P (j) D⃗⊥)[u⃗j]T + [x⃗j]⊤F⃗⊤[u⃗j]

• For each decryption oracle query, we first define a set S over which the decryption oracle
iterates to test the consistency check. The definition of the set S is carefully crafted to
define the behavior of the hybrid experiment in case of replay attack from the adversary
5.

5The reader might have notice that this is where our proof strategy needs to differentiate from the original
partitioning technique from [GHK17]. In particular, we conclude the proof of Lemma 7.6.2 (see pag. 215) by
reducing to Lemma 7.3.1, the reduction will know all the secret keys but one for a (uniformly sampled) random
index.
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Recall that ctr counts the number of challenge ciphertexts output by the encryption
oracle and that QEnc = {Cj = ([x⃗j], [yj]T , πj) : j ≤ ctr}. Upon input the ciphertext
C = ([x⃗], [y]T , π), the decryption oracle first sets:

S := {j} if ∃j ≤ ctr : D⃗∗⊥[x⃗] = D⃗∗⊥[x⃗j]
S := {j : j ≤ ctr} otherwise

then it computes the bit b1 (i.e. the bit of the consistency check for C, see Fig. 7.4)
differently by checking that

∃j ∈ S : [y]T ?= (f⃗⊤ + P (j) D⃗⊥)[u⃗]T + [x⃗]⊤F⃗⊤[u⃗].

Moving from H1 to H2 requires a series of hybrids H1,i,i′ , i ∈ [log(QEnc)], i′ ∈ [6].

Hybrid H1,i,0. Let Pi be a random function that takes in input strings of length i (for i = 0,
we can imagine this as a constant function defined on the empty string) and returns row vectors
of length n− d.

• On input the j-th query, the encryption oracle samples [u⃗j] from the span of [D⃗0]. The
element [yj]T is computed as

[yj]T ← (f⃗ + Pi(j|i) D⃗⊥)[u⃗j] + [x⃗j]⊤F⃗⊤[u⃗j].

• Upon input the ciphertext C = ([x⃗], [y]T , π), define:

S := {j|i} if ∃j ≤ ctr : D⃗∗⊥[x⃗] = D⃗∗⊥[x⃗j]

S := {j|i : j ≤ ctr} otherwise

it then executes the same code of the previous hybrid.

When i = 0, for any value j the string j|0 is equal to the empty string, thus, in H1,0,0, the
random function P0 is always called on input the empty string. In particular, either when
D⃗∗⊥[x⃗] = D⃗∗⊥[x⃗j] holds or when it does not, the consistency check performed is exactly the
same. Thus, the difference between hybrid H1,0,0 and H1 is only syntactical.

Hybrid H1,i,1. This hybrid is equivalent to the previous one, but here the encryption oracle, on
input the j-th query, generates [u⃗j] in the span of [D⃗j[i+1]]. We rely on the MDDH assumption
to prove indistinguishability between the two hybrids. We proceed in two steps:

• We first switch the j-th vector [u⃗j] computed by the encryption oracle to a vector in
the span of [(D⃗|U⃗)], where U⃗ is uniform over Zn×d

q , if the (i + 1)-th bit of the binary
representation of j is equal to 1. We call this intermediate hybrid HAi

.

• Finally, we switch the j-th vector [u⃗j] computed by the encryption oracle to a vector in
the span of [(D⃗| ⃗̄D1)] = [D⃗1], if the (i+ 1)-th bit of the binary representation of j is equal
to 1.
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First we show indistinguishability between H1,i,0 and HAi
. Let BA be an MDDH adversary

receiving the QEnc-fold Dn,d-MDDH challenge ([ ⃗̄D0], [⃗h1], . . . , [⃗hQEnc ]) as input. BA can sample
a random matrix D⃗ ←$ Dn,d, a random matrix ⃗̄D1 ∈ Zn×d

q , the secret material a⃗ ←$ Zn
q ,

f⃗ ←$ Zd
q , F⃗ ←$ Zn×n+1

q and the secret material for the benign proof system (since BA knows D⃗,
this can be easily achieved running PGen([D⃗])). Finally, BA samples a challenge bit b and gives
the public key of the scheme to A. BA simulates the encryption oracle as follows. On input the
j-th pair of messages (msg0, msg1):

• if the (i + 1)-th bit of the binary representation of j is equal to 0, the adversary sets
[u⃗j]← [D⃗0]r⃗j,

• else, samples a random vector ⃗̃r ∈ Zd
q , and computes [u⃗j]← [D⃗]⃗̃r + [⃗hj].

Note that BA can still simulate the decryption oracle, because of the knowledge of the secret
material a⃗, f⃗ , F⃗ and of the matrix D⃗. Since BA knows both the matrix D⃗ and the vector a⃗, can
always find a matrix D⃗∗⊥ such that D⃗∗⊥D⃗∗ = 0. This allows BA to catch critical queries. If
the tuple is a real MDDH tuple, i.e. [⃗hj] = [ ⃗̄D0]r⃗j, the game described is perfectly equivalent
to H1,i,0. Otherwise, if the challenge vectors are uniformly random, the game simulated is
equivalent to HA,i. The next step is to switch the j-th vector [u⃗j] computed by the encryption
oracle to a vector in the span of [(D⃗| ⃗̄D1)] = [D⃗1] if the (i+1)-th bit of the binary representation
of j is equal to 1. This transformation is similar to the previous one, therefore we omit the
details. Altogether, combining the previous adversaries, and considering Lemma 2.3.2 and
Corollary 2.3.1, we obtain an adversary C such that:

|ϵH1,i,1 − ϵH1,i,0| ≤ 2(n− d)Advmddh
G1,Dn,d,C(λ) + 2

q − 1 .

Hybrid H1,i,2. We add an explicit check to the decryption oracle. Specifically, at each decryp-
tion oracle query the hybrid additionally checks if u⃗ ̸∈ span(D⃗0) ∪ span(D⃗1), and if it is the
case the decryption oracle returns immediately ⊥ to the adversary. We rely on the soundness
of the underlying benign proof system and the reduction is standard. In particular, the only
condition that would allow distinguishing between this hybrid and the previous one is to query
the decryption oracle with a ciphertext C = ([x⃗], [y]T , π) where:

• u⃗ ̸∈ span(D⃗0) ∪ span(D⃗1)

• the decryption oracle in the hybrid H1,i,1 would not return ⊥.

For such query it holds that PVer(psk, [u⃗], π) = 1. We build an adversary B against the
(Lsim,Lver,Lsnd)-soundness of the proof system. (Recall that Lsnd = Lsim = span(D⃗0) ∪
span(D⃗1), and Lver = Zn

q .)
The adversary B samples the secret material a⃗, f⃗ , F⃗ ; then, it queries the challenger to obtain

the public key of the benign proof system, associated with the matrix D⃗, and finally gives A
all the public key material. The adversary B can easily simulate the encryption oracle since
it knows all the necessary information. To compute the proof πj associated with the j-th
encryption oracle query, it queries the simulation oracle offered by the challenger: it holds
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that u⃗j ∈ Lsim, for all j ∈ [QEnc]. When the adversary makes a decryption query, B needs
to verify that the proof π is accepted by PVer; so, it forwards (u⃗, π) to the challenger. Since
Lver is equal to Zn

q , the verification oracle always returns a verdict bit, and B can proceed
in the natural way the simulation of the decryption oracle. At some point B queries the
verification oracle with some ([u⃗], π) such that u⃗ /∈ span(D⃗0) ∪ span(D⃗1), i.e., u⃗ /∈ Lsnd, but
PVer(psk, [u⃗], π) = 1. This is the event that lets B win the soundness game. The adversary B
runs in time T (B) ≈ T (A) + (QEnc +QDec) · poly(λ), where poly(λ) is a polynomial independent
of T (A). Moreover, notice that when the distinguishing event happens the adversary B wins
the soundness game, thus:

|ϵH1,i,2 − ϵH1,i,1| ≤ Advsnd
B,PS(λ).

Hybrid H1,i,3. In this hybrid we increase the entropy of the secret keys during encryption
queries.

• The encryption oracle, at the j-th query, computes the values [yj]T as follows:

[yj]T ← (f⃗⊤ + Pi+1(j|i+1) D⃗⊥)[u⃗j] + [x⃗j]⊤F⃗⊤[u⃗j].

• The decryption oracle, upon input the ciphertext C = ([x⃗], [y]T , π) additionally checks
that ∃d s.t. u⃗ ∈ span(D⃗d) and in such case it sets:

S := {j|i ∥d } if ∃j ≤ ctr : D⃗∗⊥[x⃗] = D⃗∗⊥[x⃗j]

S := {j|i ∥d : j ≤ ctr} otherwise

and it continues executing the same code of the previous hybrid.

We prove that |ϵH1,i,2− ϵH1,i,3| is negligible. We first transit to an intermediate hybrid H′i where
instead of using the function Pi(·)D⃗⊥, we use the function P ′i (·) := P

(0)
i (·)D⃗⊥0 + P

(1)
i (·)D⃗⊥1 ,

where P
(0)
i and P

(1)
i are two uniformly random functions with domain {0, 1}i. Notice that

P ′i (·) is a uniformly random function that maps strings in {0, 1}i to vectors in rowspan(D⃗⊥0 ) +
rowspan(D⃗⊥1 ) while Pi(·)D⃗⊥ is a uniformly random function that maps string in {0, 1}i to
vectors in rowspan(D⃗⊥). Thus, the distinguishing event between Hi,j,2 and this intermediate
hybrid is the event that rowspan(D⃗⊥0 ) + rowspan(D⃗⊥1 ) ̸= rowspan(D⃗⊥). The latter event
happens with probability at most 1/q, in fact the event happens if and only if the subspace
span( ⃗̄D0| ⃗̄D1) has dimension strictly less than 2d and recall that the columns of such matrices
are sampled uniformly at random. Next, we define the function P

(b)
i+1 : {0, 1}i+1 → Z1×(n−2d)

q ,
∀b ∈ {0, 1}:

P
(b)
i+1(x) =

P
(b)
i (x|i), x[i+ 1] ̸= b

P̃i
(b)(x|i), else

where Pi, P̃i are two uniformly (and independent) random functions. Notice that P (b)
i+1 is a

uniformly random function.
We define a second intermediate hybrid H′i+1 where for the encryption oracle queries instead

of using the random function P ′i applied to the indexes j|i we use the function P ′i+1 applied to
the indexes j|i+1, and for the decryption oracle queries we use P ′i+1 applied to (j|i∥d), where
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d is such that u⃗j ∈ span(D⃗d) (as described in the H1,i,3). We show that H′i and H′i+1 are
equivalently distributed. Indeed, in this second intermediate hybrid, at the j-th encryption
oracle query we compute

[yj]T ← (f⃗⊤ + P ′i+1(j|i+1))[u⃗j] + [x⃗j]⊤F⃗⊤[u⃗j].

Moreover, we have that P ′i+1(j|i+1)u⃗j = P ′i (j|i)u⃗j, in fact:

P ′i+1(j|i+1)u⃗j =
(
P

(1−j[i+1])
i (j|i)D⃗⊥1−j[i+1] + P̃i

(j[i+1])(j|i)D⃗⊥j[i+1]

)
D⃗j[i+1]r⃗j

=
(
P

(1−j[i+1])
i (j|i)D⃗⊥1−j[i+1]

)
D⃗j[i+1]r⃗j

=
(
P

(0)
i (j|i)D⃗⊥0 + P

(1)
i (j|i)D⃗⊥1

)
D⃗j[i+1]r⃗j

= P ′i (j|i)D⃗j[i+1]r⃗j = P ′i (j|i)u⃗j

In the above derivation, we first applied the definitions of Pi+1 and u⃗j, then we simplified the
second term by noticing that D⃗⊥j[i+1]D⃗j[i+1] = 0, then for the same exact reason we can add the
component P (j[i+1])

j (j|i)D⃗j[i+1], and finally we have the definition of P ′i .
Similarly, for the decryption oracle queries with input C = ([x⃗], [y]T , π) where ∃d : u⃗ ∈

span(D⃗d), we have that P ′i+1(j|i+1)u⃗ = P ′i (j|i)u⃗. The derivation is identical as before. Thus,
the two intermediate hybrids are equivalent.

Finally, we show that the second intermediate hybrid, H′i+1, is statistically close to Hi,1,3, in
fact, the only difference is that in the latter hybrid we use the function Pj+1(·)D⃗⊥. Equivalently
as before, the two random functions are not equivalently distributed only when span( ⃗̄D0∥ ⃗̄D1)
has rank less than 2d, which happens with probability at most 1/q. Thus, we can conclude
that |ϵH1,i,2 − ϵH1,i,3 | ≤ 2

q
.

Hybrid H1,i,4. We remove the direct check [u⃗]1 ∈ span([D⃗1]1) ∪ span([D⃗0]1) introduced in
H1,i,2. This removal can only increase the winning probability of the adversary.

ϵH1,i,3 ≤ ϵH1,i,4 .

Hybrid H1,i,5. To decrypt, we increase the number of keys used by the decryption oracle to
compute the bit b1.

S := {j|i ∥b : b ∈ {0, 1}} if ∃j ≤ ctr : D⃗∗⊥[x⃗] = D⃗∗⊥[x⃗j]

S := {j|i ∥b : b ∈ {0, 1}, j ≤ ctr} otherwise

This change can only increase the winning probability of the adversary since the set of the
strings S used in H1,i,5 contains the set of strings used in H1,i,4.

As for non-critical queries, we need to show that the view of the adversary does not change:
in particular, any non-critical query that decrypts to ⊥ in H1,i,4 should decrypt to ⊥ in H1,i,5

as well. This is easy to prove when the decryption query has [u⃗] ∈ span([D⃗]): indeed, even if
we modify the set S, this change does not affect the way we decrypt such queries (recall that
any key Pi+1(·) is then multiplied by D⃗⊥.) Also, a non-critical query could be a query for which
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it holds that there exists j ∈ [QEnc] such that D⃗∗⊥x⃗j is equal to D⃗∗⊥x⃗. If a query of this form
successfully decrypts in H1,i,4, the same happens in H1,i,5: again, this is because S in the latter
hybrid is a superset of S in H1,i,4. But, it is still possible that a query of this form decrypts to
⊥ in H1,i,4, but the “augmented” S in this new hybrid makes the consistency bit b1 be 1, for
some new key: we bound the probability of a similar event since we know that the only way
to learn the image of the random function Pi+1(·) is via oracle queries to Odec and Oenc. By
union bound, we obtain a statistical distance of O(QEncQDec/q).

ϵH1,i,4 −O(QEncQDec/q) ≤ ϵH1,i,5 .

Hybrid H1,i,6. This hybrid is equivalent to the previous one, but the decryption oracle com-
putes a different set S, as follows:

S := {j|i+1} if ∃j ≤ ctr : D⃗∗⊥[x⃗] = D⃗∗⊥[x⃗j]

S := {j|i+1 : j ≤ ctr} otherwise

Notice that the set S as defined in H1,i,6 might be a (strict) subset of the set S as defined in
H1,i,5. Thus, the distinguishing event is that the consistency check would pass in H1,i,5 but it
would not pass in H1,i,6. In particular, such consistency check passes for an index of the form
ji∥1, such that j[i + 1] = 0 and j ≤ ctr, and by the definition of the distinguishing event the
integer representation of (ji∥1) · 2| log QEnc|−i−1 is bigger than ctr. Thus, the key f⃗⊤+Pi(ji∥1)D⃗⊥
was never used for an encryption query. The only way an adversary can learn information
about one of such keys is via decryption queries. In particular, each decryption query can at
most decrease the set of possibilities (namely a valid y that matches the consistency check)
by one. Moreover, the number of such keys is (very loosely) upper-bounded by QEnc, thus by
union bound over all such keys and over all the decryption queries we obtain:

|ϵH1,i,6 − ϵH1,i,5| ≤
QEnc ·QDec

q −QDec
.

Hybrid H1,i+1,0. We then switch back the distribution of [u⃗j] to the span of [D⃗0]. This
transition is the reverse of what we have done to move from H1,i,0 to H1,i,1. We proceed in two
steps:

• We first switch the j-th vector [u⃗j] computed by the encryption oracle to a vector in
the span of [(D⃗|U⃗)], where U⃗ is uniform over Zn×d

q , if the (i + 1)-th bit of the binary
representation of j is equal to 1.

• Then, we switch the j-th vector [u⃗j] computed by the encryption oracle to a vector in the
span of [D⃗0].

Altogether we obtain and adversary C such that:

|ϵH1,i+1,0 − ϵH1,i,6| ≤ 2(n− d)Advmddh
G1,Dn,d,C(λ) + 2

q − 1 .
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It is easy to see that ϵH2 = ϵH1,⌈log QEnc⌉,6 . Next, we prove that ϵH2 ≤
O(n2)QEncQDec

q
. We reduce

the adversary A playing in H2 to an (unbounded) adversary B upon which we can invoke the
Lemma 7.3.1. We say that B forged a valid tuple if the output of B matches the event described
in the lemma. For any assignments of the vector a⃗ and of the matrix D⃗ in the support of Dn,d,
we can consider in the Lemma 7.3.1 the matrix E⃗ to be set equal to D⃗∗.

Claim 7.6.1. Pr[H2 = 1] ≤ O(n2)QEncQDec
q

.

Let (D⃗, D⃗∗, D⃗⊤f⃗ , D⃗⊤F⃗ , F⃗ D⃗∗) be the tuple received by B from the challenger. The adversary
B samples uniformly random values ( ⃗̄f, ⃗̄F ) such that ⃗̄f⊤D⃗ = f⃗⊤D⃗, ⃗̄F⊤D⃗ = F⃗⊤D⃗ and ⃗̄F D⃗∗ =
F⃗ D⃗∗. We can think of the tuple ( ⃗̄f, ⃗̄F ) as a “fake” proving key that matches the verification
key given by the challenger. Given D⃗ and a⃗, the reduction B can sample all the secret material
needed to simulate the hybrid H2. In particular, it can compute the proving key and verification
key of the proof system PS and sample the challenge bit. The reduction B samples an index
value j∗Enc ∈ [QEnc] and an index j∗Dec ∈ [QDec]. Recall that QEnc and QDec denote the number of
encryption and decryption queries made by A, respectively. At the j-th query to the encryption
oracle:

• If j ̸= j∗Enc, the reduction B generates x⃗j following the prescribed algorithms. Then,

it computes yj ←
((

⃗̄f + ⃗̄F x⃗j

)⊤
+ P (j)D⃗⊥

)
u⃗j, where we recall that P (·) is a random

function.

• Else, for j = j∗Enc, B computes x⃗j as prescribed, queries its own oracle with x⃗j and obtains
a value v⃗ = f⃗ + F⃗ · x⃗j, then, it uses v⃗ + P (j)D⃗⊥ to compute the proof y, associated with
u⃗j, namely: yj ←

(
v⃗⊤ + P (j)D⃗⊥

)
u⃗j.

At the j-th query to decryption oracle with ciphertext C = ([x⃗], [y]T , π) there are three possible
cases. The easiest case to handle is if u⃗ ∈ span(D⃗) or ∃j ̸= j∗Enc such that D⃗∗⊥x⃗j = D⃗∗⊥x⃗. The
reduction B can compute the consistency check using the keys ⃗̄f, ⃗̄F and the random function
P .

The second case is when D⃗∗⊥x⃗j∗
Enc

= D⃗∗⊥x⃗, in this case let r⃗′ be such that x⃗− x⃗j∗
Enc

= D⃗∗r⃗′

and compute
y′ ← yj∗

Enc
+ f⃗⊤D⃗r⃗′ + x⃗⊤j∗

Enc
F⃗⊤D⃗r⃗′ + (F⃗ D⃗∗r⃗′)⊤(u⃗j∗

Enc
+ D⃗r⃗′)

namely, compute the element [y′]T as if it was computed in the re-randomization of the cipher-
text Cj∗

Enc
using randomness r⃗′. Notice that, by definition of H2 the consistency check for [y]T

would be computed by checking if

y
?=
((
f⃗ + F⃗ x⃗

)⊤
+ P (j∗Enc)D⃗⊥

)
u⃗.

By Lemma 7.6.1 and by definition of yj∗
Enc

, the two checks are equivalent. The last case is when
u⃗ ̸∈ span(D⃗) ∧ ∀j : D⃗∗⊥x⃗j ̸= D⃗∗

⊥
x⃗, i.e., the query might be “critical":

• If j < j∗Dec then return ⊥ to the adversary A, in this case we assume that the query was
not critical and that the decryption would fail.
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• If j = j∗Dec then output the tuple (y − P (j∗Enc)D⃗⊥u⃗, u⃗, x⃗) as the forgery of B.

We condition on the event that j∗Dec is the first critical query of A and that, let the ciphertext
sent by A at the j∗Dec query be C = ([x⃗], [y]T , π) we have that the equation [y]T = (f⃗ +
P (j∗Enc)D⃗⊥ + F⃗ x⃗)⊤[u⃗] holds. Let Guess be such event. Conditioned on such a lucky event,
the adversary B indeed produces a valid forgery, in fact by the definition of a critical query
(x⃗j∗

Enc
− x⃗) ̸∈ span(D⃗∗) and u⃗ ̸∈ span(D⃗).

We show that the view provided by B to the adversary A up to the j∗Dec-th decryption query
and conditioned on Guess is equivalent to the view of the adversary up to the j∗Dec-th decryption
query in the hybrid game H2. The intuition is that the values P (j)D⃗⊥, for all j, mask the
components of (f⃗ , F⃗ ) and ( ⃗̄f, ⃗̄F ) that differ. Indeed, we know that for some row vectors v⃗, w⃗, w⃗′,
it holds that f⃗ = D⃗v⃗ + (w⃗D⃗⊥)⊤ and ⃗̄f = D⃗v⃗ + (w⃗′D⃗⊥)⊤. Similarly, for some V⃗ , W⃗ and W⃗ ′,
F⃗ = D⃗V⃗ + (W⃗ D⃗⊥)⊤, and ⃗̄F = D⃗V⃗ + (W⃗ ′D⃗⊥)⊤.

Let P ′ be a uniformly random function, and consider the following function:

P (j) =
P ′(j), j = j∗Enc

P ′(j) + ∆j, j ̸= j∗Enc

where ∆j = w⃗− w⃗′+ x⃗⊤j (W⃗ − W⃗ ′). It is not hard to see that P is a uniformly random function.
Now consider the mental experiment where B runs the same but using the random function
P defined above. Since P is uniformly random, the probability that B forges a valid tuple in
this mental experiment is the same as the probability that B forges a valid tuple in the real
experiment. Also, for any j ̸= j∗Enc the value y computed at the j-th encryption oracle query is:

y =
((

⃗̄f + ⃗̄F x⃗j

)⊤
+ P (j)D⃗⊥

)
[u⃗j] =

((
⃗̄f + ⃗̄F x⃗j

)⊤
+ (P ′(j) + ∆j)D⃗⊥

)
[u⃗j] =

=
((

⃗̄f + ((w⃗ − w⃗′)D⃗⊥)⊤ + ( ⃗̄F + ((W⃗ − W⃗ ′)D⃗⊥)⊤)x⃗j

)⊤
+ P ′(j)D⃗⊥

)
[u⃗j] =

=
((
f⃗ + F⃗ x⃗j

)⊤
+ P ′(j)D⃗⊥

)
[u⃗j].

The probability that the reduction B creates a forgery is Pr[H2 = 1 ∧ Guess], and the two
events are independent. Moreover, since Pr[Guess] = (QEncQDec)−1, by Lemma 7.3.1 we have
that Pr[H2 = 1] ≤ n(n+1)QEncQDec

q
.

7.6.1 Publicly-Verifiable Rand-RCCA PKE
We show two publicly verifiable Rand-RCCA PKE schemes based on the scheme from Sec-
tion 7.6. Following the ideas in [FFHR19], we append a malleable NIZK proof (essentially a
Groth-Sahai proof) that [y]T and π are well-formed to the ciphertexts of PKE from the previous
section. The decryption algorithm outputs the decrypted message only if the NIZK proofs are
valid. Public verifiability follows because the NIZK proofs can be verified using the public
parameters.

Let PKE1 = (KGen1,Enc1,Dec1,Rand1) be the scheme of Section 7.6 instantiated using the
benign proof system of Section 7.4.1, and let PEvl2 and PS2 = (PGen2,PPrv2,PVer2) form a
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malleable NIZK system for membership in the relation

R2 =
{

(pk, [x⃗]), ([y]T , π, r⃗) : y = f⃗⊤u⃗+ x⃗⊤F⃗ u⃗
PPrv1(ppk, [u⃗], r⃗) = π

}
,

and where the allowable set of transformations contains all the transformations (Tel, Twit) such
that it exists ⃗̂r with Tel(pk, [x⃗]) = pk, [⃗̂x], Twit([y]T , π, r⃗) = [ŷ]T , p̂k, r⃗ + ⃗̂r and ([⃗̂x], [ŷ]T , π̂) =
Rand1(pk, ([x⃗], [y]T , π); ⃗̂r); each transformation in the set of allowable transformation is uniquely
identified by a vector ⃗̂r.

The pv-Rand-PKE scheme PKE2 = (Init,KGen2,Enc2,Dec2,Rand2,Ver) is identical to PKE1,
except that

• KGen2 additionally samples the common reference string for PS2,

• the encryption procedure computes a ciphertext as in PKE1 but additionally computes a
proof π2 for PS2 and outputs a ciphertext C = ([x⃗1], π2),

• the decryption procedure first checks the proof π2 holds w.r.t. the instance (pk, [x⃗]) and,
if so, it outputs msg = (−a⃗⊤, 1)[x⃗] (and ⊥ otherwise),

• the re-randomization procedure randomizes [x⃗] as in PKE1 and uses PEvl2 for the remain-
ing part of the ciphertext, and

• Ver2 simply checks the proof π2.

Theorem 7.6.2. If PS2 is adaptively sound, (ϵ, O(T ))-composable zero-knowledge, and perfect
derivation private, and PKE1 is mRCCA secure then PKE2 is publicly verifiable, perfectly re-
randomizable, and mRCCA-secure. Specifically, for any PPT A making up to QEnc encryption
queries and QDec decryption queries and with running time T exist PPT Brcca making the same
number of queries and adversaries Bsnd,Bzk with similar running times

AdvmRCCA
A,PKE2(λ) ≤AdvmRCCA

Brcca,PKE1(λ) + Advsnd
Bsnd,PS2(λ) + ϵ

The proof of the theorem follows by inspection of the proof of Theorem 2 in [FFHR19]. In
more detail, their proof proceeds in two steps. First, it reduces to the adaptive soundness of
the NIZK proof system to claim that if a publicly-verifiable ciphertext decrypts correctly then
its respective non-publicly verifiable ciphertext should decrypt correctly too. We notice that
this step can be performed tightly relying either on statistical adaptive soundness of the proof
system or relying on the computational soundness of the proof system when the language proved
by the proof system is witness samplable. The reason is that the reduction can check which
one of the many NIZK-proofs from the adversary breaks adaptive soundness before submitting
it as its forgery. The second step uses composable zero-knowledge to first tightly switch the
way the public parameters are generated and then to switch (all together) the proofs for the
ciphertexts from real to simulated.

To instantiate the malleable NIZK, we consider a construction along the same line of
[FFHR19]. In more detail, [FFHR19] introduced an extension of the Groth-Sahai proof system
that is zero-knowledge even for pairing product equations where the GT -elements are variables.
Their idea is to commit the elements in GT using a commitment scheme with nice bilinear prop-
erties. Groth-Sahai Proofs can be instantiated under any Dk-MDDH Assumption [EHK+13]
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and, given their nice algebraic properties they posses malleability property [CKLM12]. The
verification equation uses a special projecting bilinear map ẽ : Gk+1

1 × Gk+1
2 → Gm

T . In gen-
eral, the map ẽ with the optimal m depends on Dk (not only on k), as was proven [HHH+14].
Groth-Sahai Proofs are perfect adaptive sound, however we also make use of a QA-NIZK for
linear spaces [KW15] which is computationally adaptive sound. Fortunately, the language to
be proved is witness sampleable, thus the tight-security of PKE2 holds. Recall that we need a
NIZK for the following relationship:

R2 =
{

(pk, [x⃗]1), ([y]T , π, r⃗) : y = f⃗⊤u⃗+ x⃗⊤F⃗ u⃗
PPrv1(ppk, [u⃗]1, r⃗) = π

}
,

We follow a similar approach to [FFHR19], specifically the proof includes:

1. Commitments to [y]T and commitments to [u⃗⊗ u⃗]T .

2. A commitment [⃗c0]1 ∈ G3
1 to [f⃗⊤D⃗r⃗]1 and commitments [⃗c1]1, . . . , [⃗cn+1]1 to the compo-

nents of the vector [F⃗⊤D⃗∗r⃗].

3. Commitments [⃗cn+2]1, . . . , [⃗cn+2+nd]1 to the elements of the vector [u⃗⊗ r⃗]1.

4. An (extended) GS proof of the equation [y]T = [1]1 · [f⃗⊤D⃗r⃗]1 + [x⃗⊤]1 · [F⃗⊤D⃗r⃗]1.

5. An (extended) GS proof of the equation [⃗k⊤D⃗ ⊗ I⃗]1 · [u⃗⊗ r⃗]1 = π.

6. n2 (extended) GS proofs of the equations [I⃗ ⊗ D⃗]1 · [u⃗⊗ r⃗]1 = [u⃗⊗ u⃗]T .

7. A proof that the commitments [⃗c0]1, . . . , [⃗cn+1]1 are well-formed. This can be proven with
one proof of membership in a linear space in each group [JR14, KW15]. With more detail,
the proof shows that [u⃗]1 = [D⃗]1r⃗ and that the commitments commit to r⃗ using the basis
[f⃗⊤D⃗]1 and [F⃗⊤D⃗]1 to commit.

As the reader might have noticed, the proof is quite expensive, as it contains more than mn2

elements in GT . In the next paragraph we show how to reduce the size of the proof relying on
a stronger cryptographic assumption.

A more efficient tight-secure pv-Rand-RCCA PKE. To facilitate our more efficient
scheme, we introduce a stronger variant of the MDDH assumption (cf. Definition 2.3.5) in
which the adversary gets not only a matrix [A⃗], but also the tensor product [A⃗ ⊗ A⃗] in order
to distinguish an element from span([A⃗]) and random.

Definition 7.6.1 (Tensor Matrix Diffie-Hellman assumption in Gγ). The Dℓ,k-Tensor-Matrix-
Decisional-Diffie-Hellman (TMDDH) assumption in group Gγ holds if for all non-uniform PPT
adversaries A,∣∣∣Pr

[
A(G, [A⃗⊗ A⃗]γ, [A⃗]γ, [A⃗w⃗]γ) = 1

]
− Pr

[
A(G, [A⃗⊗ A⃗]γ, [A⃗]γ, [z⃗]γ) = 1

]∣∣∣
is negligible, where the probability is taken over G = (q,G1,G2,GT , e,P1,P2)← GroupGen(1λ),
A⃗← Dℓ,k, w⃗ ← Zk

q , [z⃗]γ ← Gℓ
γ, and the coin tosses of adversary A.
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The TMDDH assumption can be seen as a generalization of the “square-Diffie-Hellman”
assumption [BDS98, MW96], and as a special case of the “Uber assumption family” [Boy08].
Since a TMDDH adversary gets quadratic terms [A⃗⊗ A⃗] “in the exponent”, it is not clear how
this assumption relates to the more standard MDDH assumption. However, we remark that
the TMDDH assumption holds generically for large enough dimensions, at least for uniformly
random A⃗.

To explain what we mean by “holds generically”, we give a brief explanation of the generic
group model (in the formulation of Maurer [Mau05]). A generic adversary on assumptions in a
group only interacts through an oracle with the investigated group. Concretely, this adversary
initially gets only the group order and so-called handles (i.e., running numbers) to the challenge
group elements. The adversary additionally gets access to oracles that allow to test group
elements for zero (which also allows testing for equality), perform the group operation on two
handles (which yields a new handle to the resulting group element), and potentially to other
operations involving group elements (such as a pairing).

It is possible to show that relative to generic adversaries, the Diffie-Hellman and discrete
logarithm assumptions hold [Nec94, Sho97b]. In fact, the Uk+1,k-MDDH assumption even holds
against generic adversaries with a symmetric k-linear map [EHK+13]. We remark that this last
fact implies that also the Uk+1,k-TMDDH assumption holds generically, even in the presence of
a (symmetric) pairing.

Lemma 7.6.3 (Generic security of TMDDH). For k ≥ 4, the Uk+1,k-TMDDH assumption holds
against generic adversaries in a symmetric pairing setting.

The idea of the second publicly-verifiable PKE scheme is to (1) add in the public key the
values k⃗⊤[D⃗ ⊗ D⃗] and (2) use a malleable proof system PS3 for membership in the relation

R3 =
{

(pk, [x⃗]), ([y]T , π, r⃗) : y = f⃗⊤u⃗+ x⃗⊤F⃗ u⃗

k⃗⊤[D⃗ ⊗ D⃗]r⃗ ⊗ r⃗ · [1] = π

}
,

with the same set of allowable transformation as in the previous publicly verifiable PKE scheme.
The languages associated to the relation R2 and R3 are identical, but we can obtain a more
efficient NIZK proof for the relation R3. More in detail, in contrast with the NIZK-proof of
PKE2, the NIZK proof of PKE3:

• It does not include the commitments to [u⃗ ⊗ r⃗], but instead it includes commitments
[⃗cn+2], . . . , [⃗cn+2+d2 ] to the components of the vector r⃗ ⊗ r⃗.

• It does not contain the (extended) GS proofs of step 5 and 6, but instead it contains a
(standard) GS proof for the equations k⃗⊤[D⃗ ⊗ D⃗](r⃗ ⊗ r⃗) · [1] = π.

Theorem 7.6.3. The pv-Rand-PKE scheme PKE3 is publicly verifiable, perfectly re-randomizable
and RCCA-secure. Specifically:

AdvRCCA
A,PKE(λ) ≤AdvTMDDH

G1,Un,d,B(λ) + O (d logQEnc) ·AdvMDDH
G1,Un,d,B′(λ)

+ logQEnc ·Advsnd
B′′,PS(λ) +O

(
n2QDecQEnc log QEnc

q

)
We only sketch the proof, which is only a slight variation of the proof of Theorem 7.6.1.

Notice that in the proof of Theorem 7.6.1 to move from G3 to G4 we use the Dn,d-MDDH
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assumption. This step changes with our modified scheme, since we add [D⃗ ⊗ D⃗] to the public
key. We thus need to rely on the stronger TMDDH assumption. Also notice that this is
the only step in the proof of Theorem 7.6.1 where the assumption over the matrix [D⃗] is used.
Finally, observe that we can prove both composable zero-knowledge and computational adaptive
soundness of the NIZK proof system for R3 using the classical Dk-MDDH assumption.

7.7 Application: Universally Composable MixNet
We can plug-and-play our pv-Rand-RCCA PKE schemes in the MixNet protocol of [FFHR19]
because their protocol works for any pv-Rand RCCA scheme that has the property of being
linear and a property that holds for both PKE2 and PKE3.

7.7.1 Linear pv-Rand PKE
Definition 7.7.1 (Linear pv-Rand-RCCA PKE,[FFHR19]). We say that a pv-Rand-RCCA
PKE scheme is linear if there exist a group G (for example G = G1) and parameters ℓ, ℓ′, ℓ′′ ∈ N
such that (1) every key pair (pk, sk) we can parse pk = ([P⃗ ], p̂k) and sk = (S⃗, ŝk), where
[P⃗ ] ∈ Gℓ×ℓ′′ and S⃗ ∈ Zℓ′×ℓ

q , (2) any ciphertext C ∈ C can be parsed as ([y⃗], Ĉ) where [y⃗] ∈ Gℓ, (3)
for any ciphertext C such that Ver(pk, C) = 1 the decryption procedure is linear, i.e., we have
Dec(sk, C) = S⃗ · [y⃗] (4) let C′ = Rand(pk, C; r⃗, r) where C′ = ([y⃗′], Ĉ′) be a re-randomization of
C = ([y⃗], Ĉ) and r⃗ ∈ Zℓ′′

q then ([y⃗]− [y⃗′]) = [P⃗ ]r⃗.

Lemma 7.7.1. The pv-Rand-RCCA PKE schemes PKE2 and PKE3 defined in Section 7.6.1
are linear schemes.

Proof. Given the definition of [P⃗ ]1, S⃗, y⃗, l, l′, l′′ in Definition 7.7.1, we set for both schemes the
following:

• l := n+ 1, l′ := 1 and l′′ := d

• P⃗ := D⃗∗

• S⃗ := (−a⃗⊤, 1)

• y⃗ := x⃗

Property 1 and 2 of Definition 7.7.1 easily follow from the above definitions. Property 3
holds because if the verification procedure outputs 1 when given in input the ciphertext C,
the decryption algorithm returns the message [p]1 − [⃗a⊤u⃗]1 = (−a⃗⊤, 1)[x⃗]1 = S⃗ · y⃗. Property 4
can be easily proved since the difference between [⃗̂x]1 and [x⃗]1, where [⃗̂x]1 is the first component
of Rand(psk, C, ⃗̂r), is equal to [D⃗∗]1⃗̂r = [P⃗ ]1⃗̂r.

We notice that to obtain our “tightly-secure” MixNet we need only to make sure that
the Rand-mRCCA PKE and the simulation-extractable NIZK proofs are tight secure. Let
Advsim−ext

A,PS (λ) be the advantage of an adversary A against the simulation extractability exper-
iment for PS, we are ready now to state the main contribution of this section.



7.7. Application: Universally Composable MixNet 221

Theorem 7.7.1. Let PKE be a linear pv-Rand RCCA PKE, PS be a simulation-extractable
NIZK, and let Π be the MixNet protocol from [FFHR19] instantiated with PKE and PS. The
protocol Π realizes FMix with setup assumptions a threshold decryption functionality FTDec[PKE]
and a common-reference string functionality FCRS. More in detail, there exist a simulator S and
negligible function negl(λ,m) such that for any static-corruption environment Z with running
time TZ there exist adversaries B,B′ whose running time is O(TZ(λ)), such that:∣∣∣∣Pr[RealZ,Π(λ) = 1]− Pr

[
{FCRS,FTDec}-HybridFMix

Z,S (λ) = 1
]∣∣∣∣

≤ 3AdvmRCCA
B,PKE(λ) + Advsim−ext

B′,PS′ (λ) + negl(λ,m)

We stress that the negligible function negl(λ,m) in the statement of Theorem 7.7.1 is inde-
pendent of the running time of the environment TZ , and only depends on the number of mixers
of the protocol (which we can think as a small number). The proof of the theorem follows by
inspection of the proof of Theorem 5 in [FFHR19] and observing that the three steps of the
proof that reduce to the pv-Rand-RCCA security of PKE can be performed tightly by relying
on the multi-ciphertext RCCA security definition (cf. Definition 7.5.1). In Section 7.7.2 we give
more details, and we show how to instantiate the necessary simulation-extractable NIZK using
the tightly-secure QA-NIZK based on the MDDH assumption of Abe et al. [AJOR18]. Thus,
instantiating the protocol with PKE2 (resp. PKE3) we obtain a MixNet protocol that reduces
almost-tightly in the number of mixed messages to the MDDH (resp. TMDDH) Assumption.

7.7.2 Quasi-Adaptive NIZK for the Input-Submission Phase
The MixNet protocol, when instantiated with either PKE2 or PKE3 also needs a simulation-
extractable NIZK proof system for the relation:

R′ = {(pk, C), (r⃗, msg) : [x⃗]1 = [D⃗∗]r⃗ + e⃗msg}

where e⃗ is the (n + 1)-th basis. In particular, it is sufficient the notion of simulation f -
extractability, where f is the efficiently computable function that maps tuples (msg, r⃗) to msg.
Moreover, we can focus on quasi-adaptive NIZK that works for distribution of relation indexed
by the public key pk.

We show a simulation f -extractable QA-NIZK based on the simulation-sound QA-NIZK for
linear spaces of Abe et al. [AJOR18].

Let PS = (PGen,PPrv,PVer) be a simulation-sound QA-NIZK for linear spaces. Consider
the proof system PS′ = (PGen′,PPrv′,PVer′) for the relation is R′pk = {[x⃗], (msg, r⃗) : [x⃗] =
[D⃗∗]r⃗ + e⃗msg} of Zn+1

q and D⃗∗ is sampled as described in the description of the RCCA-secure
PKE of Section 7.6 and where:

• PGen′(1λ) samples U⃗ ←$ Un+1,2 runs crs ←$ PGen(1λ, [P⃗ ]1) where P⃗ is the matrix D⃗∗∥U⃗
and outputs crs′ = (crs, [U⃗ ]1).

• PPrv([x⃗], (msg, r⃗)) samples s⃗, computes [⃗c] = [U⃗ ]s⃗ + e⃗msg, and then it computes a proof
π using PPrv that ([⃗c]− [x⃗]) ∈ span([P⃗ ]1) (whose witness is the vector (r⃗⊤, s⃗⊤)⊤) and it
outputs π, [⃗c].
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• PVer([x⃗], π′) verifies that [⃗c − x⃗] ̸= [⃗0] and that π is a valid proof of membership in the
linear space spanned by [P⃗ ]1 for [⃗c− x⃗]1.

Lemma 7.7.2. Let f be the function that maps (msg, r⃗) to msg, For any adversary A exists
adversary B such that

Advsim−ext
A,PS′,f (λ) ≤ Advsim−sound

B,PS (λ) +O(1/q).

The extractor uses the trapdoor U⃗ to extract from [⃗c] the message msg. Assume that the proof
verifies but that the extracted message msg′ is not the same as the message msg encrypted in
x⃗, then x⃗− c⃗ ∈ span(P⃗ ) implies that e⃗ ∈ span(P⃗ ) which can happen with probability smaller
than O(1/q) over the choice of U⃗ and D⃗∗.



Chapter 8

Conclusion

We presented in this thesis several results that deal with different aspects of the malleabil-
ity and non-malleability of cryptographic protocols, and our results aimed at improving the
understanding of the interplay and the relationship between these two properties.

However, there are still questions that remain open and in the next section we state some
of them.

8.1 Open problems

8.1.1 Non-malleability of zkSNARKs
Our framework in Chapter 3 is general enough to handle compilation from polynomial commit-
ment schemes different from KZG. Our contribution identifies a set of properties that a polyno-
mial commitment scheme needs to have so that the resulting SNARK is simulation-extractable.
We believe that, thanks to the non malleability of random oracles, the FRI polynomial com-
mitment scheme [BGKS20] readily possesses the necessary properties, which would imply the
simulation extractability of STARKs [BBHR19].

We leave as an open problem to extend our result to even more flexible polynomial IOP
models.

Recent works extend the polynomial evaluation proofs of KZG to multiple evaluation
points [TAB+20, ZBK+22]. Our simulation extractability strategy for KZG can be applied
partially to these schemes; however, our technique uses a clever argument to separate the realm
of commitments from the realm of proofs (in KZG proofs and commitments are both of the
form [p(s)]1 for some polynomial p) based on their degree as polynomials. Unfortunately, the
same technique does not work when the degree of the polynomial in the proof depends on the
number of evaluation points in the proved statement.

UC-secure SNARKs. An interesting line of research tries to address the problem of obtaining
UC-secure SNARKs, which captures a form of non-malleability. The work of Abdolmaleki,
Ramacher and Slamanig [ARS20] shows a generic compiler to simulation-extractable SNARKs
which requires key-homomorphic signatures. Their compiler produces universally-composable
SNARKs (UC-SNARKs), which they prove through black-box straight-line extractor. To obtain
a black-box straight-line extractor, they append to the SNARK proof an encryption of the
witness, thus achieving a relaxed succinctness w.r.t. the size of the circuit describing the

223



224 224

relation. The work of Ganesh, Kondi, Orlandi, Pancholi and Takahashi [GKO+23] shows how
to regain full succinctness in UC-SNARKs in the ROM through Fischlin’s transform [Fis05].
The work of [CF24] shows that a wide class of zkSNARKs is UC-secure when modeling the
Random Oracle as a shared and global functionality, although it is programmable in a restricted
way. In [BCC+24] we show that transparent UC-SNARKs can be obtained even without the
need for a programmable RO at the cost of slightly weakening the UC model.

8.1.2 Composition of CP zkSNARKs and non-malleability
We foresee applications for our toolbox results presented in Chapter 5 beyond zkVMs. For
example, it could be used to provide alternative proofs for the simulation extractability of
Spartan and Bulletproofs potentially substantially simplifying the approach in [DG23] and our
own approach for zkLasso with it. Spartan in particular is a good candidate for this given its
several moving parts which can be seen as separate block (the Hyrax polynomial commitment,
grand product arguments, etc.).

8.1.3 Tight security of Rand-RCCA PKE schemes
Our approach is semi-generic, as we work with pairing-based cryptography. We leave as open
problem to provide a generic framework to instantiate (almost) tightly-secure Rand-RCCA-
secure PKE. Possible starting points are the HPS-based frameworks of [WCY+21] for Rand-
RCCA schemes and [HLLG19] for tightly-secure (LR-)CCA-secure schemes.

We leave as open problem the extension of our analysis to tightly-secure leakage-resilient
RCCA PKE schemes to give an efficient instantiation based on non publicly-verifiable Rand-
RCCA PKE schemes and apply the benefits of the mix-net protocol described in Chapter 6.

8.1.3.1 On the Instantiability with Asymmetric Pairings

Our construction requires type-1 pairings, which are less efficient than type-3 ones. Hence,
it is natural to ask whether we can instantiate our construction also from type-3 pairings.
Unfortunately, we do not know how to do so, since it is not clear how to reconcile the adaptive
partitioning technique [Hof17] with a Rand-RCCA construction in settings with type-3 pairings
(such as the one from [FFHR19]).

In a nutshell, ciphertexts from the Rand-RCCA construction from [FFHR19] carry elements
from both source groups G1 and G2 in the ciphertext (and this also seems like a typical property
of encryption schemes in type-3 pairing settings). Hence, ciphertext re-randomization also needs
to modify (and “refresh”) elements from G1 and G2.

Now if we try to obtain tight security by applying the “adaptive partitioning” strategy to
such a scheme, we would add consistency proofs to each ciphertext, essentially stating that
all involved elements are chosen from the right joint distribution (or from some related distri-
butions only used during the proof). Since the group elements in the scheme from [FFHR19]
are tied together (even across G1 and G2), these proofs consider statements that involve both
groups simultaneously.

This last property can be problematic for our overall proof strategy: following the adaptive
partitioning strategy would mean to gradually inject entropy into the challenge ciphertexts, in
our concrete case by introducing challenge-dependent randomness in the secret keys that are
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used in the decryption oracle and to produce (“ill-formed”) challenge ciphertexts. In case of
the scheme from [FFHR19], this gradual randomization affects secret keys that refer to G1, as
well as secret keys referring to G2.

The problem with this approach is now that randomizing both types of secret keys requires
more entropy, and it is not clear where this entropy should come from. In fact, moving parts
of the ciphertext outside a certain linear space (like we did with our value of u⃗ in our proof
of Theorem 7.6.1) allows injecting the corresponding secret keys with additional entropy, but
this entropy always refers to one single group (G1 or G2). Reconciling the entropy from both
groups into one additional random function (like our function Pi) seems difficult.

In fact, an instantiation based on type-3 pairings seems to require new “entropy manage-
ment” techniques to tightly randomize many challenge ciphertexts. We leave the construction
of a tightly Rand-RCCA secure PKE scheme as an interesting open problem.
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Résumé en français

Le fil caché entre la cryptographie malléable et la cryp-
tographie non malléable
Au cours de ces dernières décennies, notre société a drastiquement changé avec l’émergence du
numérique. Presque chaque tâche, qu’il s’agisse d’envoyer des messages, d’effectuer des achats,
de participer à des élections ou de signer des contrats, s’effectue désormais électroniquement.
Cependant, cet immense terrain de jeu numérique offre également de nombreuses opportunités
pour des activités malhonnêtes ou malveillantes. Il devient alors crucial de chercher à améliorer
la sécurité de nos transactions. Le domaine de la cryptographie sert de base pour relever ce
défi, en permettant l’exploration des principes et des limites de la cybersécurité.

Cryptographie : Un aperçu
La cryptographie a une longue et fascinante histoire qui remonte aux premiers siècles de
l’humanité. Dans ce manuscrit, nous n’aborderons pas en détail le rôle que la cryptographie a
joué tout au long de l’histoire, mais nous renvoyons le lecteur au célèbre livre The Codebreakers
écrit par l’historien David Kahn [Kah67] pour un aperçu approfondi.

Cryptographie classique. Étymologiquement, le mot cryptographie vient du grec ancien
κρυπτός (“caché, secret”) et γράφειν (“écrire”). Jusqu’à la fin du 20e siècle, la cryptographie
était effectivement synonyme de “chiffrement”, à savoir le processus consistant à convertir un
message (le “texte en clair”) en un texte illisible (le “texte chiffré”), qui ne peut être lu qu’en
inversant le processus (le “déchiffrement”).

Les premiers systèmes cryptographiques étaient suffisamment simples pour être calculés et
résolus à la main, et sont donc tombés en désuétude. Nous désignons désormais cette période
sous le nom de Cryptographie classique, incluant les systèmes naïfs utilisés depuis l’époque
grecque et romaine, les chiffres élaborés de la Renaissance, mais aussi les codes développés
pendant la Seconde Guerre mondiale, comme la fameuse machine Enigma.

Cryptographie moderne. De nos jours, la cryptographie a considérablement évolué par
rapport à ses racines historiques et englobe bien plus que la “criture secrète” : elle concerne
des mécanismes permettant d’assurer l’intégrité des données ou des logiciels, de garantir la
confidentialité en ligne, de gérer les identités numériques, de concevoir des protocoles sécurisés
pour les élections électroniques, les systèmes de paiement, les applications de finance décen-
tralisée (DeFi), et bien d’autres encore. Ainsi, la cryptographie moderne est la pratique et
l’étude des techniques de communication sécurisée en présence de comportements adverses, et
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se situe à l’intersection des disciplines des mathématiques, de l’informatique, de la sécurité de
l’information, de la physique, et bien d’autres.

Dans les pages suivantes, nous proposons un aperçu très bref et de haut niveau de certaines
des principales primitives et notions de sécurité en cryptographie, telles que les schémas de
chiffrement, les preuves à divulgation nulle de connaissance et les protocoles sécurisés à plusieurs
parties.

Schémas de chiffrement

Cryptographie à clé secrète. Le développement des systèmes cryptographiques modernes a
commencé avec le travail de Feistel chez IBM au début des années 1970 [Fei73] et a culminé avec
l’adoption du Data Encryption Standard (DES) en 1977, largement utilisé pour le chiffrement
des données. Le DES utilise la cryptographie à clé symétrique, où la même clé est utilisée pour
le chiffrement et le déchiffrement (d’où le nom symétrique). De toute évidence, dans ce cadre,
la clé doit rester secrète, car elle est utilisée pour chiffrer et déchiffrer les données.

Cependant, un défi majeur réside dans la gestion des clés, chaque paire de parties commu-
nicantes devant idéalement disposer d’une clé unique, ce qui complique l’établissement sécurisé
des clés sans un canal sécurisé préexistant.

Cryptographie à clé publique. Un moment clé de l’histoire de la cryptographie a eu lieu en
1976, lorsque Whitfield Diffie et Martin E. Hellman ont introduit la notion de cryptographie à
clé publique dans leur article fondateur “New Directions in Cryptography” [DH76]. Cette inno-
vation a résolu le problème de la gestion des clés et reposait sur la difficulté computationnelle
du problème du logarithme discret (voir Section 2.3.1).

L’idée principale de la cryptographie à clé publique est de rompre la symétrie entre les clés
de chiffrement et de déchiffrement. En particulier, il existe une paire de clés, l’une publique et
l’autre privée. La clé publique permet à quiconque de chiffrer un message, qui ne pourra être
déchiffré qu’avec la clé privée correspondante. La clé privée, quant à elle, est la seule à devoir
être gardée secrète.

Bien que les premières implémentations pratiques du chiffrement à clé publique n’étaient pas
disponibles à l’époque, l’idée a suscité un intérêt considérable et a stimulé le développement de
la communauté cryptographique. En 1978, Rivest, Shamir et Adleman [RSA78] ont introduit le
premier schéma de chiffrement à clé publique pratique. Leur schéma, désormais connu sous le
nom de RSA, repose sur la difficulté de la factorisation de grands entiers, un problème qui a défié
les mathématiciens pendant des siècles. Malgré le regain d’intérêt pour le développement de
méthodes de factorisation plus efficaces, aucune avancée significative n’a compromis la sécurité
du système cryptographique RSA, qui est encore largement utilisé en pratique aujourd’hui.
Plus tard, de nouvelles constructions ont été proposées. Un exemple notable est le schéma de
chiffrement ElGamal [ElG84], qui repose sur la difficulté du problème du logarithme discret.

Protocoles à plusieurs parties
Alors que les tâches cryptographiques traditionnelles se concentrent principalement sur l’assurance
de la sécurité et de l’intégrité des communications entre deux utilisateurs, le modèle de sécurité
représente souvent l’adversaire comme une entité opérant depuis l’extérieur du système des
participants. Dans ce paradigme, en effet, les adversaires sont généralement perçus comme des
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espions qui tentent d’intercepter et d’extraire des informations des échanges entre l’expéditeur
et le récepteur. Cette perspective a servi de base pour les schémas de chiffrement et de nom-
breux protocoles cryptographiques conçus pour se protéger contre de telles menaces externes.

Cependant, à mesure que le domaine de la cryptographie continue d’évoluer, il devient
de plus en plus important d’explorer des cadres alternatifs qui remettent en question cette
vision traditionnelle. Un exemple notable remonte au travail fondamental de Yao [Yao86]
qui introduisit la calcul sécurisé à plusieurs parties (MPC) [Yao86], un cadre cryptographique
permettant à deux ou plusieurs parties de calculer conjointement une fonction sur leurs entrées
respectives tout en préservant la confidentialité de ces entrées. Dans ce contexte, le modèle
adversarial évolue considérablement ; plutôt que de simplement envisager des menaces externes,
il faut prendre en compte la possibilité que certains participants puissent agir de manière
malveillante ou déloyale.

Cela nécessite le développement de méthodes et de techniques capables de gérer différents
types de comportements adverses, qu’ils proviennent d’un seul participant ou d’une coalition
de participants qui peuvent s’entendre et être corrompus avant ou pendant le protocole. Cela
implique également des efforts pour (re)définir le modèle adversarial et intégrer la dynamique
de plusieurs parties, mais cela permet de développer des systèmes plus robustes, mieux équipés
pour gérer les complexités des interactions réelles.

Nous nous référons à Section 2.2.3.5 pour un aperçu formel du modèle de Composabilité
Universelle (UC) [Can01], un cadre notable qui offre de fortes garanties de sécurité pour les
protocoles pouvant être utilisés dans le cadre de protocoles plus larges, et qui peuvent donc
être composés en toute sécurité.

Systèmes de preuves et preuves à divulgation nulle de connaissance
Les preuves mathématiques traditionnelles sont soit évidentes d’elles-mêmes, soit basées sur des
règles et axiomes établis ; de plus, elles peuvent être écrites et leur validité peut être vérifiée
ligne par ligne.

Comme l’a expliqué Oded Goldreich [Gol95], la notion de preuve en cryptographie est
sans doute différente : un système de preuve cryptographique est un protocole interactif où le
prouveur cherche à convaincre le vérificateur de la vérité d’une affirmation. Dans le cas des
preuves à divulgation nulle de connaissance, une exigence supplémentaire est que la preuve ne
révèle rien au-delà de la validité de l’énoncé lui-même. Cela peut sembler paradoxal et contre-
intuitif au début, c’est pourquoi nous proposons un exemple simple qui peut aider à comprendre
le concept.1

Un exemple de preuve à divulgation nulle de connaissance. Imaginez un scénario où
un prouveur, capable de différencier les couleurs, souhaite convaincre un vérificateur daltonien
qu’une page particulière n’est pas monochromatique, par exemple, qu’elle contient deux couleurs
comme ceci :

1Cet exemple est adapté d’une conférence de Shafi Goldwasser.
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L’objectif du prouveur est de convaincre le vérificateur que cette page a deux couleurs sans
transférer d’informations supplémentaires ou de “connaissances” (les couleurs elles-mêmes, dans
ce cas, ou même la possibilité de les distinguer). Voici comment le processus se déroule :

1. Le vérificateur commence par lancer une pièce. Le vérificateur effectue cette action seul,
sans révéler le résultat du lancer de la pièce au prouveur. Si la pièce tombe sur pile, il
retournera la page ; si elle tombe sur face, il laissera la page inchangée.

2. Le prouveur examine la page. Puisqu’il sait à quoi la page ressemblait avant et qu’il peut
distinguer les couleurs, il peut déterminer si le vérificateur l’a retournée ou non. Il vérifie
si la page a été retournée et indique au vérificateur le résultat du lancer de la pièce.

3. Le vérificateur compare son propre lancer de la pièce avec celui deviné par le prouveur.
S’ils correspondent, il conclut que le prouveur a pu savoir si la page a été retournée, ce
qui implique qu’il doit y avoir deux couleurs sur la page. Ainsi, il accepte l’affirmation
comme étant vraie. Sinon, il rejette l’affirmation.

Si la page a effectivement deux couleurs, le prouveur peut suivre ce procédé de manière
fiable, et le vérificateur acceptera toujours l’affirmation : cette propriété est connue sous le
nom de complétude.

Cependant, si la page a une seule couleur, le prouveur ne peut pas déterminer s’il l’a
retournée ou non. Il pourrait deviner, ce qui donne une chance de 50% d’avoir raison. Ainsi, la
probabilité qu’il convainque le vérificateur est au maximum de 50%, ce qui est dû à la chance,
car l’affirmation du prouveur selon laquelle il y a deux couleurs est fausse : cette propriété
est connue sous le nom de robustesse. La probabilité de cet événement défavorable peut être
réduite en répétant le processus plusieurs fois, réduisant ainsi l’erreur de robustesse jusqu’à un
facteur très faible.

Puisque le prouveur ne révèle rien d’autre que le résultat du lancer de la pièce, cette preuve
est une preuve à divulgation nulle de connaissance.
Preuves de connaissance. Imaginez le scénario dans lequel un utilisateur souhaite s’authentifier
sur un site web. L’utilisateur affirme que l’énoncé suivant est vrai : “il existe un mot de passe
pass qui est le bon mot de passe pour le nom d’utilisateur user”. En termes cryptographiques,
pass est appelé le témoin associé à l’énoncé.

Étant donné que tous les utilisateurs enregistrés doivent avoir configuré un mot de passe, et
que nous souhaitons nous assurer que seule une personne qui connaît réellement le mot de passe
peut s’authentifier avec succès, prouver la véracité de cette affirmation ne suffit pas. C’est là
qu’intervient la preuve de connaissance (Proof of Knowledge ou PoK en anglais).

Une PoK est une preuve qui permet au prouveur non seulement de convaincre le vérificateur
que l’énoncé est vrai, mais aussi qu’il connaît un témoin valide associé à l’énoncé, ce qui, dans
ce cas, correspond au mot de passe que l’utilisateur user a utilisé pour s’enregistrer sur le site.

Si la PoK est également à divulgation nulle de connaissance, cela signifie que bien que le
vérificateur soit convaincu que l’utilisateur connaît bien le mot de passe, il ne reçoit aucune
information supplémentaire sur le témoin lui-même. Cette solution est idéale dans ce cadre car
elle garantit en plus que le mot de passe de l’utilisateur reste secret, même si un espion observe
la communication entre l’utilisateur et le site web.
Preuves non interactives. Bien que dans les exemples ci-dessus, nous ayons présenté les
preuves cryptographiques à divulgation nulle de connaissance comme des protocoles interactifs,
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où les deux parties peuvent communiquer en temps réel, les rendant ainsi adaptées à des
protocoles comme l’authentification par mot de passe, des preuves qui n’impliquent aucune
interaction entre le prouveur et le vérificateur sont également possibles et connues sous le
nom de preuves non interactives à divulgation nulle de connaissance (Non-Interactive Zero-
Knowledge Proofs ou NIZKs en anglais). Dans les preuves non interactives, le prouveur génère
une preuve qui peut être envoyée en un seul message au vérificateur. Cette caractéristique les
rend attractives pour une grande variété d’applications, cependant, une preuve non interactive
est intrinsèquement transférable [GOS06b], ce qui signifie qu’elle ne devrait pas être utilisée
dans le cadre de l’authentification par mot de passe décrite ci-dessus : en gros, l’utilisateur
user, connaissant le mot de passe correct, pourrait générer une PoK statique et non interactive
et la partager avec d’autres utilisateurs, leur permettant ainsi de s’authentifier sur le site sans
connaître eux-mêmes le mot de passe.
La transformation Fiat-Shamir. Dans certains protocoles interactifs, les messages du vérifi-
cateur sont véritablement aléatoires et indépendants des messages du prouveur : ces protocoles
sont dits être des protocoles à pièce publique. Ces protocoles peuvent être convertis en proto-
coles non interactifs en utilisant la transformation Fiat-Shamir [FS87], une méthode heuristique
qui remplace les messages aléatoires du vérificateur par une invocation d’un oracle aléatoire
(Random Oracle ou RO en anglais) sur les messages du prouveur.
Un aperçu des modèles de sécurité et des configurations. Nous savons (voir [GO94])
qu’il n’est pas possible d’avoir des NIZKs pour des “tâches” non triviales sans faire d’hypothèses
computationnelles (cf. Section 2.3), ce qui est appelé le Modèle Standard en cryptographie (cf.
Section 2.2.3.1). Cependant, il est possible de construire des NIZKs pour une large gamme de
tâches en assouplissant le modèle de sécurité ou en faisant des hypothèses supplémentaires.

Un cadre courant dans lequel les NIZKs peuvent être construits pour une large classe de
tâches est lorsque le prouveur et le vérificateur ont tous deux accès à une chaîne de bits commune
(Common Reference String our CRS en anglais) choisie par une partie de confiance : ce modèle
est appelé le modèle CRS, introduit par Ivan Damgård [Dam00]. Si le CRS doit avoir une
structure spécifique, on parle de CRS structuré (Structured Reference String en anglais), ou
simplement de SRS. D’autre part, si le CRS est une chaîne de bits aléatoire, on parle parfois de
chaîne de référence uniforme, ou modèle URS (Uniform Reference String ou URS en anglais).
Pour certains schémas, il est nécessaire de générer un CRS pour chaque tâche différente, tandis
que dans d’autres cas, un seul CRS peut être utilisé pour toutes les tâches : ce dernier modèle est
appelé le CRS universel, dans le sens où toute tâche, jusqu’à un certain niveau de complexité,
peut être gérée par un seul CRS. De plus, dans certains cas, il est possible de mettre à jour le
CRS sans avoir à en générer un nouveau, ce qui est appelé le modèle CRS actualisable (Updatable
CRS en anglais).
Preuves et arguments : une remarque sur la terminologie. Bien que dans cette intro-
duction informelle, nous utilisions les termes de manière assez interchangeable, les preuves et
les arguments sont différents. Un argument est une preuve dont la robustesse est supposée ne
tenir que contre des proveurs malhonnêtes qui s’exécutent en temps polynomial, ce qui signifie
qu’un proveur malhonnête ne peut pas convaincre le vérificateur d’une fausse affirmation à
moins qu’il ne rompe une (presque toujours) hypothèse cryptographique difficile. Pour cette
raison, les arguments sont parfois appelés preuves computationnellement robustes.

L’exemple simplifié du vérificateur daltonien mentionné ci-dessus est en réalité une preuve.
Dans ce manuscrit, nous donnons une définition formelle des systèmes de preuves (cf. Defi-
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nition 7.4.1). Cependant, la plupart du temps, nous nous concentrons sur les arguments non
interactifs.

zkSNARKs

Un cas particulier d’intérêt est la classe des arguments de connaissance succincts et non interac-
tifs à connaissance nulle (Zero-Knowledge Non-Interactive Arguments of Knowledge en anglais),
ou simplement zkSNARKs. La raison pour laquelle les zkSNARKs sont si pertinents tant du
point de vue pratique que théorique est qu’ils combinent les avantages des arguments de con-
naissance avec leur efficacité, c’est-à-dire les ressources nécessaires pour générer et vérifier la
preuve, mais aussi leur taille. Un domaine de recherche actif sur les zkSNARKs a connu des pro-
grès rapides dans plusieurs aspects, tels que l’efficacité [BCG+13, GGPR13, Gro10a, Gro16],
la sécurité et la polyvalence de leurs configurations [BBHR19, GKM+18], et la composition
des preuves [BDFG21, BCMS20]. Nous différons la définition formelle des zkSNARKs à Sec-
tion 2.4.3.2.
Compilation des zkSNARKs. Une approche courante pour construire des zkSNARKs con-
siste d’abord à construire un protocole d’information théorique interactif à pièce publique, tel
qu’une Preuve Oracle Interactive Polynomiale (Polynomial Interactive Oracle Proof ou PIOP
en anglais), qui réalise la fonctionnalité souhaitée dans un modèle idéalisé, puis à supprimer
la composante idéalisée en la compilant en un zkSNARK grâce à l’utilisation d’un primaire
computationnellement sécurisé, tel qu’un engagement polynomiale, et en appliquant la trans-
formation de Fiat-Shamir pour rendre la preuve non interactive. Nous développons davantage
ce sujet dans Section 2.4.3.3.

zkVMs

Une approche populaire des SNARKs est celle des SNARKs pour Machines Virtuelles (ou
SNARK VMs) qui, au cœur, consistent à prouver l’exécution d’un programme informatique,
exprimé dans un jeu d’instructions prédéterminé, sur une abstraction de CPU. Cette conception
présente plusieurs caractéristiques attrayantes : elle met à disposition tous les compilateurs
d’optimisation existants pour des jeux d’instructions préexistants ; elle offre une excellente
expérience pour les développeurs, rendant les SNARKs utilisables par toute personne capa-
ble d’écrire un programme informatique [AST24, Tha24b]. De nombreux SNARKs qui sont
actuellement déployés en pratique suivent ce modèle de conception. Parmi les exemples, on
trouve le Cairo-VM [GPR21], le projet RISC Zero [Zer], le Ceno de Scroll [LZZ+24], Polygon
Miden [Lab] et bien d’autres. Parmi ces constructions, un exemple notable est Jolt [AST24],
un SNARK pour VM basé sur l’approche lookup-singularity [Whi22], qui consiste à réduire
l’exécution des opcodes dans une VM à une série de recherches dans des tables. Cette approche
a un énorme potentiel d’adoption, étant à la fois simple, facile à étendre et à auditer. Elle
permet également d’obtenir des proveurs extrêmement rapides (jusqu’à 2x plus rapides que
l’état de l’art actuel [Tha24a]).

Questions de recherche
Dans ce manuscrit, nous explorons un certain nombre de questions de recherche qui sont per-
tinentes pour la malléabilité et la non-malléabilité des primitives et schémas cryptographiques
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importants, et nous visons à fournir un récit cohérent qui intègre certains développements
récents publiés simultanément ou après une partie du travail de ce manuscrit.

Nous analysons certaines des bases théoriques qui sous-tendent la malléabilité et ses impli-
cations pour la sécurité cryptographique : en cours de route, nous proposons soit de nouveaux
schémas, soit nous revisitions l’analyse de sécurité de constructions existantes, et nous exam-
inons les mécanismes qui peuvent transformer des schémas malléables en leurs homologues non
malléables. En examinant les frontières et les connexions entre malléabilité et non-malléabilité,
nous visons à fournir une compréhension plus profonde de la manière dont ces deux concepts
peuvent coexister dans des protocoles cryptographiques robustes et efficaces.

Liste des publications. Les résultats présentés tout au long de ce manuscrit ont été publiés
dans [FR22] (coécrit avec Antonio Faonio), [FHR23] (coécrit avec Antonio Faonio and Dennis
Hofheinz), [FFK+23] (coécrit avec Antonio Faonio, Dario Fiore, Markus Kohlweiss and Michal
Zajac) [FFR24] (coécrit avec Antonio Faonio and Dario Fiore), [CFR25] (coécrit avec Matteo
Campanelli and Antonio Faonio).

Un résultat récent [BCC+24] (coécrit avec with Christian Badertscher, Matteo Campanelli,
Michele Ciampi and Luisa Siniscalchi) sur la non-malléabilité des SNARKs n’a pas été inclus
dans cette thèse.

Note à l’attention du lecteur. Dans les pages suivantes, nous développons les principales
questions de recherche et les contributions qui sont présentées dans cette thèse. En particulier,
lorsque nous examinerons l’état de l’art, la discussion deviendra plus technique. Ce change-
ment est destiné aux lecteurs déjà familiers avec le domaine, car il repose sur des concepts et
des méthodologies établis. Pour ceux qui pourraient avoir besoin de se familiariser avec cer-
tains aspects techniques, nous recommandons de consulter Chapter 2, qui fournit un aperçu
fondamental des théories et terminologies pertinentes.

zkSNARKs simulables-extractibles
La plupart des zkSNARKs dans la littérature sont uniquement prouvés comme étant solidement
basés sur la connaissance. Dans certains cas, cela est dû au fait que leurs preuves peuvent
effectivement être malléables, par exemple dans [Gro16]. Dans d’autres cas, l’absence de preuve
est due à la difficulté de la tâche, qui ne découle pas d’une simple extension de la preuve de
solidité basée sur la connaissance, et nécessite donc une approche différente.

L’état des zkSNARKs simulables-extractibles. Jens Groth et Mary Maller proposent un
zkSNARK simulable-extractible qui consiste en seulement 3 éléments de groupe [GM17], mais
leur construction n’est ni universelle ni actualisable.

Le travail de Ganesh, Orlandi, Pancholi, Takahashi et Tschudi [GOP+22] montre que les
Bulletproofs [BBB+18] sont non-malléables dans le Modèle de Groupe Algébrique (Algebraic
Group Model ou AGM en anglais, voir Section 2.2.3.4). Quang Dao et Paul Grubbs montrent
que Spartan [Set20] et Bulletproofs sont non-malléables même sans le AGM [DG23]. Ces deux
travaux étendent le cadre introduit par Faust, Kohlweiss, Marson et Venturi dans [FKMV12]
à la transformation de Fiat-Shamir appliquée aux arguments interactifs à plusieurs tours. Sur
une voie similaire, le travail de Ganesh, Khoshakhlagh, Kohlweiss, Nitulescu et Zajac [GKK+22]
montre la non-malléabilité pour Plonk [GWC19], Sonic [MBKM19] et Marlin [CHM+20]. Les
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travaux [GKK+22, GOP+22] montrent que les arguments interactifs peuvent être simulables-
extractibles après application de la transformation de Fiat-Shamir. En particulier, leur ap-
proche consiste à définir de nouvelles propriétés : connaissance nulle sans porte dérobée (trapdoor-
less zero-knowledge en anglais), c’est-à-dire une connaissance nulle où le simulateur ne repose
pas sur la porte dérobée du SRS mais sur la programmabilité de l’oracle aléatoire, et réponse
unique, c’est-à-dire qu’à un moment donné du protocole, le prouveur devient un algorithme
déterministe. Il est crucial que ces propriétés doivent être prouvées au cas par cas ; autrement
dit, pour chaque candidat SNARK (même s’il résulte d’un compilateur générique), des efforts
supplémentaires sont nécessaires pour montrer qu’il est simulable-extractible.

Un cadre général pour les zkSNARKs simulables-extractibles

Pouvons-nous trouver des conditions simples qui garantissent la non-malléabilité des
zkSNARKs ?

Au départ, on peut se demander si la compilation naturelle des PIOPs vers les zkSNARKs
conduit à des zkSNARKs simulables-extractibles si l’engagement polynomiale est simulable-
extractible. Bien que cela soit possible, ce résultat ne couvrirait pas les zkSNARKs existants (ou
instanciations), car l’engagement polynomiale KZG populaire [KZG10], qui conduit à certaines
des instanciations les plus efficaces, est homomorphe. Pour y remédier, nous examinons plus en
détail la malléabilité de l’engagement polynomiale KZG. Nous montrons ensuite que la compila-
tion naturelle des PIOPs vers les zkSNARKs conduit à des zkSNARKs simulables-extractibles
tant que l’engagement polynomiale possède une forme spéciale de simulabilité-extractibilité
(ou de malléabilité contrôlée), ce que nous démontrerons pour l’engagement polynomiale KZG
[KZG10], et que le PIOP satisfait à certaines conditions simples, respectées par des schémas
populaires tels que Plonk [GWC19] et Marlin [CHM+20]. Nos résultats sur le compilateur
ne reposent pas directement sur le AGM, ne nécessitent pas que le protocole soit sans porte
dérobée et à connaissance nulle, ou ait la propriété de réponse unique, et utilisent une notion
de robustesse plus standard, c’est-à-dire la robustesse de restauration de l’état des PIOPs.

Un autre cadre. Dans un travail concurrent, Kohlweiss, Pancholi et Takahashi [KPT23] ont
également répondu à cette question et montré comment compiler des Preuves Holographiques
Algébriques (Algebraic Holographic Proofs ou AHP en anglais) en zkSNARKs non malléables.
Leur approche peut être considérée comme une extension des techniques de [GKO+23] et hérite
de la nécessité d’une propriété de connaissance nulle sans porte dérobée. En même temps,
les AHPs sont un cas particulier des PIOPs, et ainsi la classe de schémas que nous pouvons
capturer est plus large.

zkSNARKs du monde réel

Notre résultat dans Chapter 3 fournit un cadre pour l’étude de la compilation naturelle des
PIOPs vers les zkSNARKs. Cependant, les schémas qui offrent les meilleures performances et
qui sont finalement implémentés dans les bibliothèques logicielles diffèrent de ceux obtenus par
ce processus de compilation. En particulier, les versions réelles de schémas tels que Marlin
ou Plonk utilisent une optimisation, le truc de linéarisation (également connu sous le nom
d’optimisation de Mary Maller)[GWC19, OL], qui exploite les propriétés homomorphiques de
l’engagement polynomiale KZG pour réduire le nombre d’éléments de champ dans la preuve.
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Cette optimisation modifie toutefois l’algorithme de vérification des zkSNARKs d’une manière
qui échappe à l’analyse de sécurité de Chapter 3 ; une limitation similaire s’applique au travail
de Kohlweiss, Pancholi et Takahashi[KPT23], qui ne parvient pas à atteindre l’extractibilité
simulable des versions “réelles” de Marlin et Plonk.

Que pouvons-nous dire sur la non-malléabilité des zkSNARKs optimisés ?

Dans Chapter 4, nous montrons comment résoudre les limitations ci-dessus et nous donnons
la première preuve d’extractibilité simulable des versions “réelles” optimisées des zkSNARKs,
qui incluent Plonk [GWC19], Marlin [CHM+20], Lunar [CFF+21] et Basilisk [RZ21].

En chemin, nous donnons la première analyse formelle du truc de linéarisation, en particulier
de sa robustesse et de son extractibilité simulable dans le AGM (cf. Section 2.2.3.4).

SNARKs pour Machines Virtuelles

Aucun des résultats précédents sur l’extractibilité simulable des zkSNARKs ne couvre le cas
des zkVMs. Une façon d’obtenir l’extractibilité simulable pour un zkVM est de le composer
avec un autre zkSNARK, c’est-à-dire que nous pourrions utiliser un zkSNARK pour prouver la
connaissance d’une preuve valide de zkVM (par exemple, le travail récent Testudo [CGG+23]
compose Spartan avec Groth16 [Gro16], et certains schémas basés sur des repliements tels que
Nova [KST22] suivent cette approche). Bien sûr, si ce zkSNARK est également simulable-
extractible, alors il semble que nous obtenions le résultat maximal avec un effort minimal.

Bien que viable, cette approche de “ajout” de ZK par composition présente certains incon-
vénients théoriques et pratiques. En particulier, elle nécessiterait de représenter le vérificateur
du zkVM dans un format comme R1CS ou Plonkish, ce qui pourrait être contraignant et limiter
partiellement les avantages de l’auditabilité améliorée des zkVMs comme Jolt. De plus, cette
procédure d’arithmétisation entraîne une instantiation directe de l’oracle aléatoire qui devient
donc publique pour l’adversaire, ce qui pourrait mener à des schémas non sécurisés [CGH98].

Puisque les zkVMs sont au cœur de la conception de systèmes déployés avec des exigences
de non-malléabilité

Que pouvons-nous dire sur la non-malléabilité des zkVMs ?

Dans Chapter 5, nous abordons ce problème en montrant qu’un zkVM modulaire inspiré de
Jolt atteint l’extractibilité simulable sous des hypothèses minimales. Nous allons encore plus
loin en explorant le cadre plus général de la composition de zkSNARKs (engagement-et-preuve).

PKE re-randomisable
Une classe intéressante de schémas de chiffrement à clé publique malléables est celle des sché-
mas dits re-randomisables. Par re-randomisable, nous entendons que le texte chiffré c d’un
message msg peut être transformé en un nouveau texte chiffré c′, qui ressemble à un texte
chiffré neuf, mais qui se déchiffre pour donner le même message. Cette fonctionnalité est utile
pour implémenter des schémas de réencryption par un proxy et est présente dans des schémas
PKE populaires, tels que le PKE ElGamal [ElG84].

La re-randomisation est en fait une forme simple de malléabilité. En général, nous souhaitons
offrir une sécurité contre les attaques de malléabilité sur le message chiffré : un espion ne de-
vrait pas être capable de transformer un texte chiffré d’un message msg en un texte chiffré
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d’un autre message msg′. Idéalement, nous aimerions disposer d’un schéma pouvant être re-
randomisé, afin que nous puissions utiliser sa re-randomisation pour implémenter des protocoles
comme la réencryption par un proxy, mais en même temps, nous souhaiterions prévenir toutes
les autres attaques de malléabilité.

PKE Rand-RCCA. Jens Groth [Gro04] a introduit la notion de sécurité Re-randomisable
Replayable CCA (Rand-RCCA) pour combler ce vide. Des travaux ultérieurs ont montré
comment obtenir des schémas Rand-RCCA sous des hypothèses minimales [PR07], améliorer
l’efficacité [FF20] ou renforcer les garanties de confidentialité [WCY+21].

Applications

Nous avons étudié les applications potentielles des schémas PKE Rand-RCCA. Le travail de Fao-
nio et al. [FFHR19] a proposé un protocole de mix-net qui utilise les schémas PKE Rand-RCCA
comme élément de base. Un Mix-net est un protocole qui permet à un ensemble d’expéditeurs
d’envoyer des messages de manière anonyme, et trouve des applications dans différents do-
maines, notamment les e-mails anonymes, les paiements anonymes et le vote électronique, pour
n’en citer que quelques-uns.

Pouvons-nous améliorer l’efficacité des protocoles qui reposent sur les schémas PKE
Rand-RCCA ?

Dans Chapter 6, nous répondons affirmativement. Nous revisitons la conception du mix-net de
[FFHR19] et proposons une instanciation plus efficace pour le protocole de mix-net basé sur
leur schéma Rand-RCCA non publiquement vérifiable.

Sécurité concrète

George Orwell, dans son livre La Ferme des animaux, a écrit : “Tous les animaux sont égaux,
mais certains sont plus égaux que d’autres.”

D’une certaine manière, on pourrait aussi dire que tous les schémas PKE sont sécurisés, mais
certains sont plus sécurisés que d’autres. En effet, bien qu’il soit souvent clair qu’un schéma
PKE est sécurisé, il est souvent peu clair à quel point il offre une sécurité concrète (tight en
anglais) lorsqu’il est utilisé dans le monde réel. Bellare, Boldyreva et Micali, dans leur travail
fondamental [BBM00], ont étudié à quel point la sécurité d’un schéma de chiffrement se traduit
par la confiance que nous avons vis-à-vis de l’hypothèse cryptographique sur laquelle il repose.

Plus précisément, une réduction de sécurité concrète garantit que pour toute attaque sur le
schéma PKE, il existe une attaque sur l’hypothèse similaire à la fois en termes de complexité
(c’est-à-dire le temps d’exécution, l’espace requis, etc.) et de probabilité de succès.

Ainsi, dans le cadre des réductions de sécurité concrètes, le nombre de textes chiffrés pris
en compte par la définition de sécurité est important. À ce jour, de nombreux schémas PKE
sécurisés contre les attaques CCA (cf. Section 1.2.1) ont été prouvés offrir une sécurité concrète
dans les contextes multi-textes chiffrés et multi-utilisateurs : quelques exemples notables sont
les travaux de [GHKW16, GHK17, HLLG19, Hof17, LJYP14, LPJY15]. Cependant, la sécurité
concrète dans le contexte de la sécurité Rand-RCCA n’a pas été étudiée, bien que, en particulier,
les cas d’utilisation Rand-RCCA ci-dessus comportent un grand nombre de textes chiffrés ou
d’utilisateurs.
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Existe-t-il un schéma PKE Rand-RCCA avec sécurité concrète ?

Dans Chapter 7, nous introduisons la notion de PKE Rand-RCCA multi-utilisateurs et
multi-textes chiffrés et proposons la première construction d’un tel schéma PKE avec une
réduction de sécurité concrète à une hypothèse computationnelle standard.
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