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Abstract—Body worn cameras (BWCs) have become increas-
ingly integrated into various professional contexts during the
last decade, especially in law enforcement. BWCs are useful
instruments for improving security, accountability, and trans-
parency by offering real-time, first-person perspective recordings
of conversations and events. They record enormous volumes of
video, which can provide important insights into how people
behave and act in various situations.

User identification through egocentric motion analysis offers
a novel perspective in biometrics, leveraging the unique motion
patterns captured by BWCs. In this study, we provide FALEBego,
a novel dataset using body worn camera consisting of egocentric
motion of different users. We also provide some preliminary tests
on the proposed dataset. This work includes two distinct insights:
(1) introduction of a dataset comprising egocentric motion of 23
subjects recorded with a chest-mounted BWC, capturing their
distinct walking patterns, and (2) the dataset is utilized to present
a comparative analysis of different deep learning architectures
for user identification based on egocentric motion data. This
study highlights the potential of egocentric motion as a biometric
modality and provides insights into the effectiveness of different
architectures in this emerging domain. The complete dataset is
available for research purposes and can be accessed by contacting
the authors directly.

Index Terms—Body Worn Camera, Egocentric motion, Law
enforcement, Surveillance

I. INTRODUCTION

The growth of Body Worn Cameras (BWCs) has revolution-
ized various domains, including law enforcement, healthcare,
and sports, by providing first-person perspectives on activities
and events. Beyond their use for video documentation and
evidence collection [15], they are an essential tool for law
enforcement to improve accountability [14] and transparency
[6]. BWCs have unlocked new possibilities for understanding
egocentric motion. Unlike third-person observational data,
egocentric motion captures an individual’s movements directly
from their point of view, encapsulating gait, posture, and
dynamic movement patterns. These features are inherently
distinct across individuals, making them a rich data source
for identity recognition tasks.

Identifying users through their egocentric motion is an
emerging research area that leverages the combination of com-
puter vision and human motion analysis. Traditional methods
for user recognition have predominantly focused on biometric
identifiers such as facial features, fingerprints, or iris patterns.

However, egocentric motion offers an alternative modality,
particularly useful in scenarios where conventional biometric
data may be unavailable or occluded, such as during active
movement, adverse lighting conditions, or while wearing per-
sonal protective equipment.

This work introduces FALEBego1, a novel dataset for user
identification by their egocentric motion using BWCs. This
study aims to explore the feasibility of identifying users based
on their egocentric motion using BWCs. By employing state-
of-the-art computer vision techniques, such as optical flow
and deep learning models, we analyze the motion patterns
to achieve robust user recognition. We compare various deep
learning architectures based on C3D [16], I3D [3], SlowFast
network [9], and TimeSformer [1], to evaluate the performance
of different models for this specific identification task.

The findings from this research have significant implica-
tions for security, authentication, and personalized technology
applications. For instance, user recognition through egocentric
motion can be utilized for access control in secure facilities,
hands-free authentication in augmented reality systems, or
personalized assistance in wearable technologies. By advanc-
ing the understanding of egocentric motion as a biometric
modality, this study opens new avenues for identity recognition
that extend beyond traditional biometrics and harness the full
potential of wearable camera systems.

The paper is organized as follows. In section II we survey
related work on egocentric activities and BWCs. In section
III, we introduce the steps followed in the data collection. We
report our experimental setup and implementation in section
IV. The experiments and the results are presented in section
V. Finally, the conclusions and future work follow in section
VI.

II. RELATED WORKS

User identification based on motion patterns has emerged
as a promising research area in biometric authentication.
Traditional approaches in gait recognition, which analyze
walking patterns, have been adapted for egocentric scenarios.
Methods leveraging wearable sensors or cameras have shown
that motion patterns can serve as unique biometric identifiers.

1To obtain the dataset, please visit https://faleb.eurecom.fr/



The ability to extract spatial and temporal information from
video data has been significantly enhanced by models like
Convolutional Neural Networks (CNNs) [16] and Recurrent
Neural Networks (RNNs). However, the application of multi-
modal approaches, combining RGB and optical flow, to user
identification from BWC data is still an emerging field.

Very limited work exists on image processing by BWCs.
Despite advancements, egocentric user identification presents
several challenges. Motion patterns captured from BWCs are
influenced by factors [7] such as camera placement, walking
speed, and environmental conditions. Additionally, the lack
of large-scale, publicly available datasets specific to egocen-
tric user identification has hindered progress in this domain.
Early works in this domain focused on action recognition,
where models leveraged the spatial and temporal information
in egocentric video data to identify activities. For instance,
datasets like EPIC-Kitchens [8] have been instrumental in
driving research on egocentric video analysis. These studies
emphasized the challenges associated with egocentric data,
which distinguish egocentric vision from traditional third-
person video analysis.

Reference [10] presented an approach to identifying photog-
raphers using egocentric video, leveraging camera motion as
a unique identifier. Their method capitalized on sparse optical
flow vectors to model body motion as a distinctive feature of
each photographer. They experimented with Linear Predictive
Coding with a kernel-based SVM, achieving 81% recognition
accuracy, and a CNN that improved accuracy to 90% on the
recognition task (6 people).

The study [12] provides a significant contribution to the field
of egocentric video analysis by exploring ego-motion classi-
fication for body-worn videos. The authors categorize ego-
motions based on similarity transformations between succes-
sive video frames. Their method extracts motion features such
as horizontal displacement, rotation, and zoom, along with
frequency analysis, to capture periodicity in motion. These
features are then classified using graph-based semi-supervised
and unsupervised learning algorithms, which achieve high
accuracy on choreographed videos and real-world data.

The study [5] focuses on first-party action recognition in
body-worn videos. They investigate the identification of ego-
activities in first-person video and suggest a system that
uses hand-crafted features and a graph-based semi-supervised
learning technique to classify ego-activities in body-worn
video footage. They achieve comparable performance to su-
pervised methods on public datasets, however the challenges
include insufficient training data and law-specific actions.

The research [17] introduced a study on egocentric hand
identification. The study utilized several modalities, including
RGB, depth, and hand segmentation masks, to investigate how
features such as hand shape, skin texture, and motion con-
tribute to person identification. They demonstrated that even
with constrained data like binary hand silhouettes, reasonable
identification accuracy could be achieved. However, their study
focused specifically on hand gestures and required the hands
to be visible in the egocentric view, limiting its generalizability

Fig. 1: Cammpro I826 Body Camera.

to scenarios involving broader motion patterns.
Reference [4] presents a multimodal dataset for human

action detection that makes use of wearable sensors and a
depth camera to identify actions more precisely. It has 880
sequences of 22 human acts carried out by 5 participants.
Based on depth images of various actions, the recognition rate
ranges from 58% to 97%. Although the number of participants
in this dataset is extremely small, it is nonetheless helpful as
a starting point.

In this paper, we present a comprehensive dataset compris-
ing egocentric motion recordings from 23 subjects, specifically
designed to evaluate user identification performance using
BWCs. To the best of our knowledge, this is the first publicly
available dataset leveraging egocentric motion captured by
BWCs, particularly suitable for user identification task just
by egocentric motion. No prior studies in the literature have
explored or published findings utilizing police BWCs for user
identification in such practical settings.

III. DATASET COLLECTION

For the data collection, students from UPNM volunteered.
The users recorded using Cammpro2 I826 Body camera (as
shown in Figure 1), which was securely mounted at the center
of the chest of the user [2]. The recordings were carried out
over multiple sessions spread across a week. All the recordings
were done with a video resolution of 2304 × 1296 pixels at
30 fps.

The activity was recorded in an outdoor setting. It was
divided into 2 scenarios. Two endpoints (A and B) were
designated at opposite ends of the campus, approximately an
8-minute walk apart. In the first scenario, the user walked
from point A to point B at a normal pace. For the second
scenario, they followed the same path back (B to A) in a slow
jogging pace. Before starting, all participants received clear
instructions on how to perform the tasks. A total of 23 subjects
participated in the activity, with each subject contributing
two egocentric videos: one approximately 8 minutes long,
capturing their walk from A to B, and another around 5
minutes long, documenting their slow jog from B to A.

2https://www.cammpro.com/



IV. SETUP

A. Preprocessing - RGB

To ensure a sufficient amount of training data, the videos
are divided into sequences of 4 seconds, which are adequate
to capture a few steps of the user’s motion. This accounts to
around 200 videos per user. In total, we have 4724 videos in
total for the 23 subjects. The videos are then converted into
frames and organized based on the two scenarios (walking and
slow jogging). At 30 fps, each 4-second sequence results in
120 frames.

As part of the preprocessing pipeline, the extracted frames
are resized to a standard resolution of 224 × 224 pixels to
ensure uniformity and compatibility with various model ar-
chitectures. During training, input clips are randomly cropped
into 16 × 112 × 112 patches, enabling both spatial and tem-
poral jittering to improve generalization. These augmentation
strategies help to mitigate overfitting and enhance the model’s
ability to identify users under varied conditions.

To further prepare the data for the task, normalization is
applied to the pixel values of the frames using the mean
and standard deviation of the ImageNet [13] dataset, for
standardizing pixel intensity values across all channels. The
data is then shuffled and split into training, validation, and
test sets in a 65:15:20 ratio. During this split, a subject can
appear in all the sets.

B. Preprocessing - Optical Flow

The same 4-second videos are used for computing optical
flow. We calculate optical flow using the Farneback method,
which estimates motion between two consecutive frames of
a video. The first frame is converted to grayscale, which
serves as the reference for calculating motion in the subse-
quent frame. The Farneback optical flow algorithm is used to
compute the dense motion field between the current and next
grayscale frames. The output is a flow field, a 2D vector for
each pixel showing motion in horizontal and vertical direction.

Figure 2 provides a visualization of sample frames obtained
after preprocessing. For visualization of optical flow, we
convert first into HSV image and then into RGB image. This
allows the optical flow to be visualized.

C. Implementation

For our experiments, we used C3D, I3D, SlowFast network,
and TimeSformer models. These models were chosen for their
respective strengths: C3D as a baseline model, I3D for its
popularity and proven performance, SlowFast Network for its
advancements in the field, and TimeSformer for its novelty.

• C3D: We implement a pretrained C3D model, trained
on the Sports-1M dataset [11], which comprises 1.1
million sports videos belonging to one of the 487 sports
categories. To evaluate the performance of the model and
gain some insights on the videos by BWCs, the model is
fine-tuned on our dataset. The SGD optimizer is used for
training. The learning rate is fixed as 0.001 after various
experiments. The initial layers of the model are frozen,

and we add fc8 layer to match the number of classes
in our dataset. This layer is trained from scratch using
random weights.

• I3D: We experiment with I3D architecture pretrained on
Kinetics-400 [3] dataset. This model is used to initialize
our network, where we replace the final projection layer
to match the number of classes in our dataset. The model
was trained using the CrossEntropy loss function, and
optimized using the Adam optimizer with a learning rate
of 0.001. During training, both training and validation
metrics, including loss, accuracy, precision, recall, and
F1-score, were monitored to evaluate the performance.
We also ensured that each input video was processed as
a stack of frames, allowing the I3D model to leverage its
3D convolutional layers to capture temporal dynamics.

• SlowFast Network: The SlowFast network operates
by processing video inputs through two pathways: the
slow pathway, which samples frames at a lower frame
rate to capture long-range temporal patterns, and the fast
pathway, which processes higher frame-rate sequences to
capture finer motion details. The SlowFast network is
pretrained on Kinetics-400 in our implementation. The
final fully connected layer of the network is replaced with
a new layer corresponding to the number of classes in
the dataset. To accommodate both fast and slow temporal
dynamics, the video frames are split into two pathways,
with the slow pathway subsampling every fourth frame,
while the fast pathway uses all the frames. The training
uses cross-entropy loss to minimize classification error,
with an Adam optimizer tuned on a learning rate of 0.001.

• TimeSformer: The TimeSformer is a deep learning
architecture designed specifically for video understand-
ing tasks like action recognition. It applies transformers
directly to the spatial and temporal dimensions of the
video. It processes video frames as a sequence of patches,
integrating attention mechanisms across both time and
space, allowing for more efficient and scalable learning
of video features. In our implementation, the model is
pretrained on Kinetics-400. We fine-tune the model by
modifying the classifier head and employing techniques
like mixed precision training to handle GPU memory
constraints. During training, the model’s performance
is evaluated on validation data after each epoch, and
its performance is seen on test data every 5 epochs
to monitor accuracy and loss, aiming to improve the
classification performance.

V. EXPERIMENTS

A. RGB user recognition

To evaluate the effectiveness of user identification based on
egocentric motion, we conducted a series of experiments using
each model on our custom egocentric dataset. The models
were trained for 20 epochs, and metrics of accuracy, precision,
recall, F1-score, and loss were tracked for training, validation,
and testing phases.



Fig. 2: Frames: For a particular subject, the rgb and optical flow frames. We show 10 consecutive frames. the rgb frames
show the walk and pattern for a particular time sequence. For optical flow, each frame represents motion information in terms
of direction (hue) and speed (intensity).

Among the models, I3D demonstrated the most consistent
performance, achieving a test accuracy of 89.9% and a bal-
anced F1-score of 0.90, showcasing its robust ability to capture
temporal dynamics in egocentric motion. The TimeSformer
model, with its transformer-based architecture, also achieved
competitive results, with a test accuracy of 89.23% and F1-
score of 0.89, demonstrating its capability to model long-range
temporal dependencies. While SlowFast exhibited slightly
lower performance with a test accuracy of 88%, it maintained a
precision and recall of 88%. C3D demonstrated the lowest test
accuracy at 85.36%, highlighting its limitations in capturing
the complexity of egocentric motion. Validation accuracy
remained consistent across the models, further emphasizing
the generalization ability of I3D, SlowFast, and TimeSformer.

These experiments highlight the strength of I3D and TimeS-
former in leveraging temporal motion patterns, while tradi-
tional 3D convolutional models like C3D lag in performance.

Table I shows the accuracy of different models across all
the phases as discussed above.

TABLE I: Models comparison.

Models Train Validation Test
C3D 92.7 86.05 85.36
I3D 98 90.33 89.9

SlowFast 96.5 90.38 88
TimeSformer 97.36 90.43 89.23

B. OPTICAL FLOW user recognition

The optical flow frames capture the motion between con-
secutive frames, revealing how the subject moves through
space. This dynamic information is crucial for identifying
users based on their movement patterns, such as walking,
running, or other locomotion behaviors. However, optical flow
alone lacks the rich spatial details of the subject’s appearance.
Once the optical flow frames were extracted, we experiment
with I3D model in order to verify the user, where we receive an
accuracy of 61.97% on the test set. Instead of using raw RGB
frames (which contain detailed visual information), the model

only had access to motion patterns. In situations where users
exhibit similar motion patterns, optical flow frames do not
provide enough discriminative information to reliably identify
individuals, which explains the lower accuracy observed when
using optical flow in isolation.

C. RGB + OPTICAL FLOW user recognition

To potentially improve the performance of user identifica-
tion in egocentric video data, we experiment with the combi-
nation of RGB and optical flow frames. We employed a two-
stream I3D architecture. The model processes both RGB and
optical flow frames in parallel, leveraging spatial and temporal
information to recognize actions more effectively. RGB frames
capture the appearance information, such as textures, colors,
and spatial structures, while optical flow frames focus on
motion patterns and temporal dynamics by encoding pixel-
level displacements between consecutive frames. During test-
ing, both models process their respective inputs independently,
and their outputs are averaged to produce a final prediction.

The two-stream I3D model was initialized with pretrained
weights from the Kinetics-400 dataset. Dropout regularization
with a probability of 0.5 was added to the fully connected
layers to mitigate overfitting. The model was fine-tuned on the
dataset using the Adam optimizer with a learning rate of 0.001
and weight decay of 1e-4 to incorporate L2 regularization.
Training was performed for 20 epochs, and the performance
was monitored using the cross-entropy loss function. The final
prediction was made by averaging the softmax outputs of the
RGB and optical flow streams.

The model achieved an accuracy of 91.19% on the test
set with a corresponding cross-entropy loss of 0.31, outper-
forming all single-stream architectures tested, including RGB-
based I3D, C3D, SlowFast, and TimeSformer. The observed
performance boost can be attributed to the complementary
nature of the features learned from both modalities. The
RGB frames help the model distinguish between users based
on their appearance-related features, while the motion-related
features from the optical flow provide additional context to
differentiate individuals based on their movement patterns. The



fusion of both types of information allows the model to learn
more robust, discriminative features, improving its ability to
identify users with greater accuracy. This result highlights the
advantage of integrating spatial and motion-based temporal
features in the two-stream setup.

D. DOMAIN SHIFT user recognition testing

In this experiment, we aim to evaluate the ability to identify
users based on egocentric motion patterns under domain shift
conditions. Specifically, we investigate whether training on
walking motion and testing on jogging can provide meaningful
identification results.

While the test accuracy (62.89%) and other metrics indicate
that the results are not entirely random, the observed perfor-
mance highlights the challenge of transferring motion-specific
features between distinct activities (walking to jogging). The
performance remains above random chance. This suggests
that user-specific motion patterns learned from walking retain
some discriminative power when applied to jogging. However,
the performance gap highlights the difficulty of transfer-
ring motion-specific features between distinct activities. This
demonstrates the potential for using egocentric motion as a
robust identifier even under changing activity conditions.

This experiment underscores the feasibility of user iden-
tification through egocentric motion, with implications for
applications where domain adaptation between activities is
required. Further exploration of domain generalization and
activity-invariant feature learning techniques could improve
performance in such scenarios.

VI. CONCLUSION

In this study, we introduce a novel dataset aimed at user
identification through egocentric motion analysis, captured us-
ing BWCs. The dataset comprises recordings from 23 distinct
subjects, with each video representing a unique individual’s
egocentric motion patterns. By providing synchronized RGB
and optical flow frames, this dataset enables researchers to
explore user identification tasks based on motion dynamics
and visual features. Our dataset is specifically tailored for user
identification by egocentric view, and represents a significant
step forward in the field of egocentric video analysis.

We evaluate the dataset using state-of-the-art models, in-
cluding single-stream and two-stream architectures, to estab-
lish robust benchmarks. The two-stream I3D model, leveraging
RGB and optical flow modalities, achieved the best perfor-
mance. This result highlights the advantage of combining
spatial and temporal information for user identification tasks.

Our dataset sets a new benchmark for research in egocentric
motion analysis and user identification. The strong perfor-
mance of the two-stream I3D model establishes a solid base-
line. This dataset provides a unique opportunity to develop and
refine algorithms for egocentric motion-based identification in
real-world scenarios. We believe this dataset will serve as a
valuable resource for advancing the development of biometric
systems and motion-centric video understanding in wearable
camera applications.

Future work will explore advanced fusion techniques, such
as attention mechanisms, to further enhance multi-stream
architectures. Additionally, as a part of our ongoing research
on BWCs, we aim to extend the dataset for other tasks, based
on face recognition and multi-action recognition in complex
environments, with actions that are uniquely relevant to law
enforcement scenarios.
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APPENDIX

We show the results of the best performing model, in the
case of single-stream networks (I3D) for our specific task of
user identification. Figure 3 shows the ROC curve for I3D
model. The results are based on Table I.

To further assess the biometric reliability of our egocentric
motion-based user identification system, we compute the False
Match Rate (FMR) and False Non-Match Rate (FNMR).

FMR: measures the probability that a different subject
(impostor) is mistakenly classified as the target subject. It is
the estimated error of a biometric authentication system in
which it incorrectly matches two entirely different individuals
and identifies them as the same person.

FMR =
FP

Imposter Attempts
• False Positives (FP): These are cases where the model

predicts a sample to belong to the wrong subject (i.e., the
predicted label is different from the true label).

• Impostor Attempts: This is the total number of attempts
where the true subject is not the same as the predicted
subject (i.e., the total number of predictions for other
subjects excluding the correct one).

FNMR: FNMR measures the probability that the model fails
to recognize a match when it should have.

FNMR =
FN

Genuine Attempts
• False Negatives (FN): These are cases where the model

incorrectly classifies a genuine match (same subject) as
a mismatch (different subject).

• Genuine Attempts: refer to the total number of classifi-
cation attempts where a subject is being compared against
their own identity.

FNMR was computed per subject and overall (by divid-
ing the total FN by the total genuine attempts across all
subjects). Similarly, overall FMR was calculated by dividing
the total FP by the total impostor attempts, considering only
the cases where a misclassification occurred. In addition to
reporting the overall performance, we also provided a per-
subject breakdown of FMR and FNMR to offer a deeper
insight into how well the system performs across different
individuals. In total, we get 89 FP and 86 FN for the test set
with 941 video samples. The overall FNMR of 0.0965 suggests
that 9.65% of genuine attempts were misclassified, while the
overall FMR of 0.0999 implies that approximately 10% of
impostor attempts were falsely accepted. The model seems
to perform relatively well overall, but there are significant
discrepancies between individual subjects. Some subjects are
identified correctly with minimal errors, while others have
higher rates of misclassification. Figure 4 shows the FMR and
FNMR per subject using the I3D model.

Fig. 3: The micro-average ROC curve. The AUC is measured
at 0.9837, indicating an excellent ability of the model to dis-
tinguish between classes. This curve aggregates all predictions
across all classes into a single evaluation, ensuring that each
instance contributes equally to the overall performance.

Fig. 4: The FMR variation across subjects highlights the
vulnerability of certain subjects to false matches, indicating
possible feature similarities among different identities. The
FNMR trend shows that some subjects experience significantly
higher false rejections, suggesting challenges in recognizing
genuine attempts, possibly due to intra-class variations.


