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Abstract—Task-oriented semantic communication (ToSC)
emerges as an innovative approach in the 6G landscape, char-
acterized by the transmission of only vital information that
is directly pertinent to a specific task. While ToSC offers an
efficient mode of communication, it concurrently raises concerns
regarding privacy, as sophisticated adversaries might possess the
capability to reconstruct the original data from the transmitted
features. This paper provides an in-depth analysis of privacy-
preserving strategies specifically designed for ToSC relying on
deep neural network-based joint source and channel coding
(DeepJSCC). Our study encompasses a detailed comparative
assessment of trustworthy feature perturbation methods such
as differential privacy (DP) and encryption, alongside intrinsic
security incorporation approaches like adversarial learning to
train the JSCC and learning-based vector quantization (LBVQ).
Our comparative analysis underscores the integration of ad-
vanced explainable learning algorithms into communication sys-
tems, positing a new benchmark for privacy standards in the
forthcoming 6G era.

I. INTRODUCTION

The integration of artificial intelligence (AI) in 6G networks
is anticipated to revolutionize industries by enabling new
business models and services [1]. The network’s reliability,
trustworthiness and timeliness will be critical in the scenario
of massive mobile users with real-time response requirements
[2]. Despite the promising prospects, the practical implementa-
tion continues to encounter numerous unprecedented hurdles,
particularly for burst communications. Task-oriented semantic
communication (ToSC), emerging as a promising paradigm,
is primarily characterized by its selective transmission of
information [3]. The fundamental concept of ToSC is to
enhance communication efficiency and task performance by
transmitting task-relevant semantic information, rather than
raw data. This approach has garnered considerable attention,
chiefly due to its proficiency in enhancing efficiency and re-
ducing latency through the minimization of data transmission
volume. For instance, a semantic communication approach
with limited knowledge representation is proposed in [4],
while a multimodal framework driven by AI models is in-
troduced in [5] to achieve low-latency. Furthermore, ToSC
exhibits the capacity to offer a more customized and efficient
user experience. The targeted and efficient nature of ToSC,
therefore, not only aligns with the technological advancements
envisaged in 6G communications but also caters to the nuanced
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demands of modern digital applications, ensuring a seamless
and user-oriented interaction.

To alleviate the misunderstandings and incorrect interpre-
tations, ToSC can increase information clarity, relevance,
transparency, credibility, and verifiability by concentrating on
task-relevant information, implementing well-designed mech-
anisms of channel coding and feedback. Although this strategy
inherently provides a certain level of privacy since selective
data transmission eliminates the unnecessary data sharing,
the information conveyed may still be vulnerable [6]. If
intercepted, even these task-relevant data bits could reveal
personal or sensitive information [7]. This privacy-leakage risk
is heightened by the advanced capabilities in machine learning
(ML) and data analysis, which might enable adversaries to
extract significant insights from minimal data. Compared to
a generic ToSC framework [3] for various tasks with diverse
data types, this paper has refined it for privacy and security
applications. First, we discuss ongoing research aimed at
developing privacy-preserving methods specifically for ToSC
relying on deep neural network-based joint source and channel
coding (DeepJSCC). Second, we aim to devise techniques that
can be seamlessly incorporated into ToSC without significantly
compromising their efficacy and efficiency, or in other words,
strike a balance between utility, efficiency, and privacy. At last,
we evaluate and contrast feature perturbation methodologies,
such as differential privacy (DP) and encryption techniques,
with intrinsic security incorporation approaches like adversar-
ial learning and learning-based vector quantization (LBVQ).
Our analysis highlights the potential for integrating sophisti-
cated learning algorithms into contemporary communication
systems.

II. SHIFT FROM TASK-AGNOSTIC COMMUNICATIONS TO
TOSC AND PRIVACY CHALLENGES

Within the traditional framework of source-channel sepa-
ration, the identification, representation, and transmission of
information are rigorously addressed by rate-distortion the-
ory and channel coding theory, respectively. This paradigm,
which prioritizes reconstruction-oriented compression and
task-agnostic communication, has underpinned several itera-
tions of digital communication systems. However, the advent
of machine-to-machine communications and human-machine
interactions necessitates a reassessment of this paradigm, con-
sidering that exact reconstructions are often of secondary im-
portance from a machine’s perspective. Notably, task-specific
descriptors, derived via ML algorithms from latent feature
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Fig. 1. Traditional transceivers versus ToSC transceivers.

spaces, are substantially more concise than their counterparts
used for reconstruction purposes. Furthermore, communication
systems trained end-to-end can significantly surpass those
designed based on source-channel separation, across various
performance metrics.

In ToSC systems, data transmission is meticulously tailored
to align with the receiver’s requirements. As shown in Fig.
1, different from traditional transceivers, the ToSC system
comprises two main components: the “DeepJSCC” and the
“Task inference module”. The DeepJSCC contains a JSCC
encoder responsible for task-related information extraction,
compression, and protection (against both channel noise and
adverseries’ attacks). The output passes through a channel
to the task inference module, which can handle tasks such
as classification, object detection, information retrieval, and
content generation. Inside, it displays a multi-layered network
topology that indicates intricate processing is occurring to
perform the given tasks.

Despite these advantages, ToSC introduces significant pri-
vacy concerns. The main issue stems from the nature of the in-
formation being transmitted. Although ToSC systems transmit
only task-specific information, this data can be sensitive and
vulnerable to privacy infringements. Given the unpredictability
of adversaries’ objectives, it is imperative to devise a compre-
hensive and efficacious strategy for safeguarding a spectrum
of private data. For instance, in the transmission of facial
images, adversaries may undertake diverse strategies to extract
personal attributes such as gender or skin tone, or alternatively,
engage in face recognition. In our research, we postulate the
quality of image reconstruction—evaluated by metrics such
as mutual information (MI) leakage—as a quantifiable metric
for privacy preservation. Our approach assumes that ampli-
fying distortions in data reconstructed by potential intruders
indirectly shields various aspects of personal information.
This approach resonates with the principles of perturbative
privacy preservation, notably exemplified by DP paradigms.
By escalating the degree of distortion, we can significantly di-
minish the likelihood or amplify the challenge for adversaries
in gleaning sensitive information, thereby strengthening the
robustness of privacy protection.

III. PRIVACY PRESERVATION METHODS FOR TOSC

Most ToSC systems are based on DeepJSCC architec-
tures and employ an end-to-end training methodology to

extract high-dimensional task-related channel-robust features
for transmission. This approach ensures a coherent and au-
tomatically optimized process from data input to the final
task output. Many traditional privacy protection techniques,
such as k-anonymity, l-diversity, and t-closeness, are often
designed to protect user privacy by modifying data and are not
suitable for working with complex or high-dimensional data
[7], as the process of making records indistinguishable can
lead to significant data loss or impracticality in datasets with
numerous attributes. A thorough analysis of privacy-preserving
strategies specifically designed for ToSC is provided, along
with a comparative assessment of feature perturbation methods
and intrinsic security incorporation approaches.

A. Feature Perturbation Methods

Conventional approaches concentrate on the safeguarding
of original data, typically through direct pre-processing under
the assumption that the entire AI model is in the posses-
sion of a potentially untrustworthy third party. However, in
DeepJSCC-based ToSC, the encoder belongs to the transmitter,
which plays the role of task-related information extraction,
compression, and protection. The employment of DeepJSCC
makes conventional techniques applied in-between source
and channel coding difficult in DeepJSCC. Applying these
techniques will prevent the DeepJSCC to extract the task-
related and channel-robust features, thus the only feasible is
to process the output of DeepJSCC. Therefore, traditional data
perturbations should be replaced by the feature perturbations
on the DeepJSCC output. Next, we discuss two typical feature
perturbation methods for privacy preservation.

• DP provides a mathematical framework to quantify pri-
vacy loss and offers strong guarantees by adding noise
to DeepJSCC outputs. Its robustness and theoretical as-
surances make it widely adopted. However, the noise
added to protect individual data points can reduce data
utility, particularly in scenarios requiring precise semantic
information for task inference. While excessive noise
enhances privacy, it inherently degrades task inference
performance, impacting the utility of transmitted data.

• Encryption serves as a fundamental method for securing
DeepJSCC outputs by making them unintelligible without
a decryption key. However, it can slow down training
and inference. Without channel coding, encryption is
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Fig. 2. Transceiver structure of four privacy protection methods: differential privacy, encryption, adversarial learning, and vector quantization.

also vulnerable, potentially compromising decryption in-
tegrity. To address these issues, simple or error-robust
encryption methods, like key-guided feature shuffling [8],
are recommended for ToSC. Additionally, encryption-
based methods face key-sharing burdens and the key
leakage.

B. Intrinsic Security Incorporation Strategies

Another approach involves designing DeepJSCC with in-
trinsic security. Two typical strategies are as follows.

• Adversarial learning trains models in a competitive setup
involving a generator and a discriminator. The generator
creates data indistinguishable from real data, while the
discriminator aims to differentiate between fake and real
data, enhancing both models’ performance. This tech-
nique is vital for ToSC privacy protection. It generates
feature representations useful for tasks yet hard for ad-
versaries to exploit, crucial in protecting sensitive data.
The adversarial process preserves data’s essential charac-
teristics while minimizing an adversary’s ability to extract
sensitive information, balancing utility and privacy. No-
tably, the transmitter is unaware of the adversary’s neural
network architecture, which is impractical to obtain. A
simulated adversary can be constructed and used in
adversarial learning to assist ToSC training [9], defending
against model inversion attacks (MIAs). MIAs, a common
privacy threat to ML models, involve adversaries using
access to trained models to reconstruct sensitive training
data. Even without knowing the adversary’s inversion
network architecture, this approach effectively protects
privacy through a simulated adversary.

• LBVQ uses discrete latent representations which are more
robust against inversion. This means that it’s harder to
reconstruct the original input data accurately from the
latent representations. The quantization step in LBVQ,
which converts continuous latent variables into discrete
ones, acts as a bottleneck, reducing the amount of detailed
information that can be decoded from the latent space.
This inherent characteristic of LBVQ makes it a suitable
choice for tasks where preserving privacy is crucial. The

integration of LBVQ within ToSC systems presents an
additional benefit regarding compatibility with existing
digital communication frameworks. In current ToSC mod-
els, features extracted by neural networks are typically
continuous, aligning well with analog communications
but not with prevalent digital communication systems.
Fortunately, LBVQ produces discrete representations that
can be directly mapped to digital modulation symbols.
This compatibility is instrumental in facilitating a seam-
less transition from well-established digital communica-
tion systems to the emerging ToSC paradigms.

C. Transceiver Structure Comparison

Comparing feature perturbation methods and encryption
with intrinsic security incorporation strategies reveals distinct
strengths and weaknesses, as demonstrated in Fig. 2. Feature
perturbation methods like DP and encryption offer robust
theoretical guarantees for privacy. DP provides a quantifiable
measure of privacy by adding noise to the features. Encryption
provides strong security for DeepJSCC output in transit but
does not address the unique challenges of vulnerability to
channel errors and real-time processing. While adversarial
learning offers an intrinsic security incorporation approach in
ToSC. By introducing the adversary loss in the training phase
of DeepJSCC, attacking-robust communication models can be
obtained. Adversarial learning maintains strong performance
even in the face of unknown or intentional attacks. However,
the complexity and computational demands of adversarial
models are notable challenges in the training phase. Addi-
tionally, continuous updates and model improvements may be
needed to cope with new attack methods. LBVQ offers an
effective approach for safeguarding feature privacy through
the map of features into smaller vector spaces. This method
significantly reduces feature dimensions while upholding the
integrity of information. Nevertheless, the process of dimen-
sion reduction might result in potential information loss. And
another challenge is the need for appropriate vector quantiza-
tion based on the specific tasks and data types involved.



TABLE I
COMPUTATION COMPLEXITY, MODEL TRAINING COST AND LEARNING LATENCY OF 4 PRIVACY-PRESERVING MECHANISMS OVER CIFAR-10 DATASET.

DeepJSCC DeepJSCC-DP DeepJSCC-Encryption IBAL DeepJSCC-LBVQ

FLOPs 0.085 G 0.085 G 0.085 G 0.382 G 0.477 G

Params 3.19 M 3.19 M 3.19 M 10.91 M 12.61 M

Train Time for 1 Epoch 8.23 s 8.93 s 8.79 s 32.5 s 37.30 s

Test Time for 1 Instance 0.002 s 0.002 s 0.002 s 0.002 s 0.004 s

D. Cost and Delay Comparison

Table I shows the computational cost, complexity, and
communication latency of four privacy schemes running on
an 11th Gen Intel(R) processor at 2.50 GHz and a single
3060 CPU core, including the specific number of floating-
point operations (FLOPs) in the whole training process, the
number of parameters in all the neural network model, the
time for a single training epoch (batch-size: 512) and the
task-inference time for a single image. The results indicate
that DeepJSCC, DeepJSCC-DP, and DeepJSCC-Encryption
demonstrate similar computational requirements and maintain
a lower complexity profile, as evidenced by their FLOPs
and parameter counts. In contrast, IBAL and DeepJSCC-
LBVQ necessitate substantially greater resources, manifesting
in increased FLOPs, a higher number of parameters, and
extended training durations. Despite this, the inference times
for all configurations, with the exception of DeepJSCC-LBVQ,
remain comparably low. This suggests that all configurations,
barring the LBVQ variant, achieve high efficiency during the
inference phase. The LBVQ variant, however, incurs additional
delays due to its discrete codebook mapping and remapping
processes. Importantly, when compared to the baseline Deep-
JSCC model without privacy enhancements, the DeepJSCC-
DP, DeepJSCC-Encryption, and IBAL models exhibit negli-
gible increases in task-inference time, rendering them par-
ticularly suitable for applications requiring low-latency and
privacy-sensitive remote inference.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experimental Settings

1) Dataset and Attack Setups: CIFAR-10 dataset and
CelebA dataset are adopted for image classification task and
face recognition task, respectively. The former comprises
60, 000 color images and categorized into 10 distinct classes.
The latter contains over 200,000 celebrity images with 40
attribute annotations per image, whose images cover a rich
range of human pose variations and diverse background in-
formation. All networks are configured to produce outputs
of identical dimensions. Furthermore, we incorporate a hypo-
thetical scenario involving an adversarial attack network. This
network is designed to execute model inversion via a black-
box attack approach. It is posited to have continuous access
to the network model on the target device, thereby enabling
it to attempt image reconstruction. This scenario is pivotal in
assessing the robustness of our framework against potential
security breaches.

2) Performance Metrics: For image classification task, clas-
sification accuracy and MI leakage are employed. The former
serves as an indicator of inference performance, with higher
classification accuracy signifying more effective inference
capabilities. The latter, is utilized to gauge the level of privacy
protection. A lower MI leakage value in the reconstructed
images indicates that its attacker steals the transmitted data,
having less privacy leakage of the reconstructed image, which
also reflects the stronger privacy preservation, as it indicates
that the reconstructed image has a reduced sensitive data
details, which prevents unauthorised interpretation. For face
recognition task, the top-1 accuracy and the reconstructed
image of the attacker are used. The former is a metric
of recognition performance and is used to judge the task
performance. The latter is used to measure the level of privacy
protection.

3) Approaches for Evaluation: To make a comprehensive
comparison, we select four state-of-the-art ToSC schemes,
including:

• DeepJSCC-DP: DeepJSCC, originally designed for data-
oriented communication systems, utilizes deep neural
network-based encoders to map data directly to channel
input symbols. Through the injection of Laplacian noise
into the transmission characteristics [10], DP mechanism
allows for precise control over the level of privacy by
adjusting the privacy budget, which is set at 0.05, 0.1, and
0.9 for our experiments. A pivotal aspect to note is that a
smaller privacy budget correlates with a higher volume of
noise injected into the transmitted features. This increased
noise level consequently leads to stronger privacy pro-
tection, as it more effectively obscures the original data
features, thereby enhancing the security against potential
data breaches or unauthorized data reconstruction efforts.

• DeepJSCC-Encryption: In DeepJSCC-Encryption, the
encoder not only processes the data to extract features for
the JSCC, but also integrates an encryption operation into
its output [8]. This dual-functionality approach effectively
combines feature extraction and encoding with a layer of
cryptographic security. At the receiver, the process is re-
versed. The encoded and encrypted features are subjected
to a decryption operation, a critical step for regaining
the original data characteristics. Post-decryption, these
features are then utilized for the intended classification
and reconstruction tasks. This mechanism ensures that the
data remains secure during transmission, only becoming
accessible and usable upon successful decryption at the
intended destination.



• IBAL: IBAL [9] represents a novel scheme by leverag-
ing the principles of adversarial learning. This method
uniquely trains the encoder to effectively deceive the
potential adversaries. It does so by optimizing the encoder
to maximize the distortion in the data reconstruction pro-
cess. Such a strategy is designed to thwart unauthorized
attempts at data reconstruction, thereby enhancing the
privacy and security of the transmitted information. More-
over, variational feature encoding (VFE) [11] belongs to
the theory based on information bottleneck (IB), which is
similar to IBAL. The scheme incorporates its IB theory
and we comparatively test the performance of strategies
with IB and without adversarial learning in terms of
utility as well as privacy preservation.

• DeepJSCC-LBVQ: DeepJSCC-LBVQ [12] represents
a sophisticated ToSC scheme that incorporates digital
modulation. Its essence is the implementation of a robust
encoder, which is underpinned by a learned codebook. Its
primary objective is to enhance communication robust-
ness in response to channel variations. The essence of
DeepJSCC-LBVQ lies in its ability to effectively balance
the trade-off between informativeness and robustness. By
employing a learned codebook, the scheme adapts to
varying channel conditions, ensuring that the integrity
and reliability of the transmitted data are maintained,
even in challenging communication environments. This
adaptability makes it a significant contender in scenarios
where channel variability is a critical factor. In addition,
utility-informativeness-security-based ToSC (UIS-ToSC)
[6] employs a strategy that combines adversarial learning
as well as VQ and can be attributed to the LBVQ group.
This scheme efficiently solves the utility-informativeness-
security trade-off issue inherent in ToSC systems.

The inference performance and the quality of image recon-
struction are critically influenced by the dimensionality of the
encoded representation. To facilitate fair comparisons, we have
standardized the dimensionality of the representations encoded
by all methods. For the continuous representation methods
such as DeepJSCC-DP, DeepJSCC-Encryption, and IBAL, we
employ a full-resolution constellation modulation technique.
This approach is instrumental in maintaining the integrity and
resolution of the encoded data during the modulation process.
In contrast, for DeepJSCC-LBVQ, which is a discrete method,
we utilize the M -ary quadrature amplitude modulation (QAM)
scheme. This choice is tailored to suit the discrete nature of
the representations encoded by DeepJSCC-LBVQ, ensuring
that the modulation process is compatible with the encoding
method. Additionally, to further ensure the impartiality of
our evaluation, we have standardized the settings across all
adversary attack networks. This uniformity is vital for ensuring
that each method is subjected to non-discriminatory attacks,
thereby providing a fair assessment of private level.

B. Information Leakage Under Adversarial Attack

Regarding the adversarial’s description, we assume ToSC
system is under black-box MIAs [13], where the adversaries
reconstruct the received features as raw input using DNNs,
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Fig. 3. Task-accomplishment Performance (i.e., image classification) versus
Privacy-preserving Performance (i.e., MI Leakage) on the CIFAR-10 dataset.

and obtain users’ privacy. Specifically, the adversary network
is a DNN designed by the adversary and deployed on the
adversary’s device. And the transmitter’s coded features are il-
legally accessed by the adversary. The adversary then attempts
to generate an approximate reconstruction of the user’s data
based on the stolen transmission data. To improve the system’s
capability to combat attacks, we make a weak assumption
that attacker knows the codebook and can continuously access
the trained encoder. As the intentions of attacker are not
known, we consider a universal loss function for training the
attacker neural network, which is to minimize the distortion
of reconstructed data. For image transmission task, the loss
function for training attacker can be expressed as the sum of
the average MSE loss and the average perception loss across
all sampling images.

C. Experimental Results – Image Classification

Each scheme undergoes training at a specific signal-to-noise
ratio (SNR), denoted as SNRtrain, which is set at 12 dB.
The testing phase involves varying SNR levels, specifically
at SNRtest values of 4 dB, 8 dB, 12 dB, 16 dB, and 20 dB. To
maintain fairness, both discrete and continuous, the dimension
of the encoded representation is uniformly set to 128, which
ensures that any observed differences in performance are
attributable to the scheme’s inherent characteristics rather
than discrepancies in encoded representation size. Specifically,
for DeepJSCC-LBVQ method, which employs a discrete ap-
proach, we use a codebook of size 16. This size is selected as
it offers a balance between complexity and performance.

The analysis of Figs. 3(a) and 3(b) reveals the significant
insights into the image classification performance of various
privacy-preserving schemes under an additive white Gassian
noise (AWGN) channel using the CIFAR-10 dataset. First,
the classification accuracies of IB group (IBAL and VFE)
and VQ group (DeepJSCC-LBVQ and UIS-ToSC) are signif-
icantly higher under regular channel conditions (i.e. SNR ≥
8dB) compared to DeepJSCC-DP and DeepJSCC-Encryption.
Moreover, two type of schemes (VQ scheme and IB-based
IBAL) also exhibit superior privacy protection capabilities than
DeepJSCC-DP method. However, although the classification
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accuracy of VFE is excellent, the privacy preservation is
slightly worse than our proposed scheme (MI > 1.55). Under
low SNR regimes (i.e. SNR < 8dB), DeepJSCC-DP and
DeepJSCC-Encryption show better robustness in terms of clas-
sification accuracy. At this point, the VQ group (DeepJSCC-
LBVQ and UIS-ToSC) classification accuracy decays, due to
the wide deflection of discrete features caused by the codebook
indexing of the channel transmission, but still maintains good
privacy preserving ability. And IBAL shows the best privacy-
preserving capability, as it focuses on trade-off between both
privacy and task, with a slight bias at low SNR.

Notably, DeepJSCC-DP, with its increased Laplacian noise
injection, offers improved privacy protection at the cost of
task performance. For instance, DeepJSCC-DP with a privacy
budget of 0.05 achieves similar privacy protection levels as
DeepJSCC-LBVQ, but its classification accuracy falls behind
by approximately 3 to 4 when SNR is greater than 8dB.
DeepJSCC-Encryption presents the best privacy protection
among the compared methods. However, this comes at the
expense of task performance, failing to strike an optimal
balance between privacy and utility. This contrast highlights
the superiority of the intrinsic security incorporation schemes
(IBAL and DeepJSCC-LBVQ) over feature perturbation meth-
ods in achieving a well-balanced effect in both task perfor-
mance and privacy preservation. The advanced IBAL scheme
particularly stands out for its capability to improve privacy
protection without significantly compromising task inference
performance, achieving an optimal privacy-utility trade-off
compared to the baseline methods. A key factor contributing
to DeepJSCC-LBVQ’s superior task performance is that its
discrete representation, enhanced by the learned codebook,
contains more informative messages, thereby leading to better
performance. This underscores the effectiveness of discrete
representation in ToSC systems.

D. Experimental Results – Face Recognition

Regarding the face recognition task, we consider a few
single attributes as the target of the retrieval, e.g., smiling,

TABLE II
THE TOP-1 ACCURACY OF FACE RECOGNITION IN THE CELEBA DATASET.

Mustache Smiling Wavy Hair

DP-0.05 75.0%± 0.01% 66.7%± 0.01% 72.9%± 0.01%

DP-0.1 76.3%± 0.01% 68.4%± 0.01% 73.6%± 0.00%

DP-0.9 76.5%± 0.01% 67.2%± 0.01% 72.3%± 0.00%

Encryption 77.6%± 0.00% 67.2%± 0.00% 74.5%± 0.00%

IBAL 77.3%± 0.00% 69.6%± 0.01% 71.8%± 0.01%

LBVQ 85.3%± 0.00% 79.9%± 0.01% 79.3%± 0.00%

moustache, wavy hair. Furthermore, the network requires
significantly less information to predict a single characteristic
than it does for 40 attributes recognition, which should make it
simpler to create privacy-protected features. To ensure fairness,
each experiment was conducted five times. Table II presents
the mean and standard deviation of Top-1 accuracy for face
recognition under different strategies. As shown in Table II,
DeepJSCC-LBVQ scheme achieves better task performance
when performing face recognition with arbitrarily selected dif-
ferent attributes. This scheme, despite the fact that it undergoes
dimensionality reduction and may lead to potential loss of
information, adequately extracts the features needed for the
face, maintains the integrity of the information and therefore
ensures higher task performance. While IBAL, as a pre-trained
model with adversarial learning, is also better able to extract
the required features for face recognition task. Its performance
under all three attributes is better than the DeepJSCC-DP
scheme, but under some attributes (e.g., mustache, wavy
hair) the performance is similar to the DeepJSCC-Encryption
scheme. The reason is that IBAL considers the overall trade-
off between performance and privacy, and outperforms both
schemes in terms of privacy preservation, shown in Fig. 4.
Longitudinally, the common DeepJSCC-DP and DeepJSCC-



Encryption schemes have a greater loss (about 5%-15% drop)
in performance compared to the above DeepJSCC-LBVQ
scheme. Moreover, the experimental results indicate that the
standard deviation is remarkably small (less than 0.01%),
suggesting a stable training process and well-converged model.
The minimal variance in loss and final outcomes across mul-
tiple training runs implies high consistency. Furthermore, this
stability suggests that the model exhibits strong adaptability
to the given task.

Next, we investigate the images of the CelebA dataset
obtained after reconstructing the transmitted signals of these
schemes using MIAs. As shown in Fig. 4, the attacker recon-
structs the image worse with IBAL and DeepJSCC-LBVQ.
IBAL even affects the attacker’s judgment on the gender recon-
struction of men and women, which brings great protection.
Combined with the above analysis of performance, it can
be seen that IBAL and DeepJSCC-LBVQ improve privacy
protection while ensuring better task inference performance.
As Laplacian noise increases, DeepJSCC-DP scheme improve
their privacy protection, i.e., the attacker reconstructs a blurrier
image. Additionally, the DeepJSCC-encryption scheme also
provides good privacy protection because it completely dis-
rupts the order of features in the image transmission, while
the attacker only steals the image data and cannot carry out
the complete reconstruction process later. Thus, IABL and
DeepJSCC-LBVQ schemes achieve a better privacy-utility
trade-off compared to other schemes.

E. Scalability Issue
The scalability of algorithms in large-scale networks is in-

fluenced by the number of devices, affecting design and perfor-
mance. For DeepJSCC+DP, while more devices improve data
utility, they also increase computational and communication
costs. Dynamic privacy budget allocation and adaptive noise
strategies are essential to address these challenges. Distributed
differential privacy (DP) and privacy amplification techniques
help optimize performance, reduce heterogeneity, and mini-
mize leakage risks. For DeepJSCC+Encryption, device count
impacts complexity and overhead, requiring distributed archi-
tectures, hardware acceleration, and efficient key management.
The IBAL algorithm faces scalability issues, with higher com-
putational complexity and training demands, where adversarial
training mitigates reconstruction risks. For DeepJSCC+LBVQ,
the number of devices affects codebook size and complexity,
necessitating efficient management. Moreover, the dynamic of-
floading framework plays a crucial role in large-scale privacy-
preserving ToSC networks by effectively addressing dynamic
traffic demands, optimizing resource utilization, and ensuring
quality of service, thereby demonstrating significant applica-
tion potential. For instance, the integration of traffic-aware
network slicing and adaptive computation offloading strate-
gies [14] facilitates precise traffic prediction and optimized
resource allocation, thereby providing enhanced flexibility and
adaptability in dynamic network environments [15].

F. Potential Applications
These methods can optimize the transmission of seman-

tically rich, compressed data while ensuring privacy in AR

applications, especially in high-throughput, low-latency im-
mersive environments. However, real-world AR deployment
must tackle large-scale data, device heterogeneity, and dy-
namic content challenges. Privacy is also crucial in remote
medical diagnostics with sensitive patient data. Evaluating
system effectiveness using public datasets is a start, with future
work focusing on low-latency, secure medical communication.
For autonomous vehicles, real-time, reliable data exchange is
vital. The proposed approaches can prioritize important data
while preserving privacy, but network congestion and scalabil-
ity issues need further study. Adapting to strict performance
criteria and integrating with vehicle protocols like V2X is
essential for this application.

V. FUTURE RESEARCH DIRECTIONS

Regarding securing privacy in ToSC, several research direc-
tions merit further exploration.

A. Balancing Utility, Efficiency, and Privacy

In ToSC systems, balancing utility, efficiency, and privacy
presents a complex challenge. Utility denotes the system’s
effectiveness and efficiency in executing downstream tasks,
ensuring tasks are completed accurately and promptly, thereby
enhancing overall performance. Informativeness pertains to the
volume of data transmitted, impacting transmission speed and
bandwidth use. Security focuses on the system’s ability to
safeguard user privacy during data transmission and process-
ing. While utility is paramount for transmitting semantically
relevant data, its pursuit can inadvertently compromise privacy
by exposing sensitive information. Efficiency is critical in 6G
networks’ high-volume, high-speed context, where conserving
bandwidth and reducing latency are key to performance.
Privacy, however, is the most difficult to balance. Although
encryption offers robust security, it doesn’t meet the demands
of real-time, semantically-rich communication. More advanced
strategies, despite their adaptability, introduce risks like the
inexplicability of black-box deep learning. Achieving this
balance typically requires a multi-layered approach [6], com-
bining feature perturbation with intrinsic security techniques,
and adapting to network and data dynamics. Regular audits and
updates to privacy protocols are also vital to address emerging
threats and technologies.

B. Exploring Generative AI for Privacy Preserving

Generative AI presents a novel approach to preserving
privacy in ToSC. It focuses on creating data that is se-
mantically similar to, but distinct from, the original dataset,
thereby enabling the use of valuable data without exposing
sensitive information. In ToSC, where the goal is to transmit
semantically relevant information, generative AI can be used
to produce high-quality synthetic data that maintains the
statistical properties of the original dataset. This ensures that
the utility of the data is not compromised, which is crucial
for the effective functioning of ToSC systems. Additionally,
since the synthetic data does not directly correspond to real
user data, the risk of privacy breaches is significantly reduced.



However, the use of generative AI in privacy preservation
also poses challenges. One key issue is ensuring that the
synthetic data does not retain any indirect identifiers that could
lead to privacy breaches. This requires careful design and
continuous evaluation of the generative models. Moreover, the
computational complexity of training generative models can
be a limiting factor.

C. Transfer Learning for Task, Data and Channel Adaption

In JSCC-based ToSC, the system needs to be retrained as
either the task, data or channel varies. Transfer learning can be
instrumental for task/data/channel adaptation, allowing com-
munication systems to efficiently adapt to new domains using
pre-existing knowledge. Task adaptation focuses on applying
learned models to new but related tasks. Transfer learning
enables ToSC systems to quickly adjust to new tasks without
the need for extensive retraining, thereby saving time and
computational resources. Data adaptation is essential due to the
variability of data types and sources. Transfer learning allows
for the utilization of pre-trained models on one type of data
(like text) and adapts them for different types (such as images
or sensors data). This flexibility is particularly beneficial in
multi-modal communication scenarios where different types
of data need to be processed and transmitted seamlessly.
Transfer learning can be also employed to adapt ToSC systems
to varying channel conditions such as interference, signal
attenuation, and mobility. By learning from data transmitted
under different channel conditions, a ToSC system can predict
and adjust its parameters for optimal performance, even in
less-than-ideal transmission environments [14].

VI. CONCLUSION

This paper highlights the significance of transmitting task-
specific essential information efficiently while addressing the
privacy preservation issue. It includes a comprehensive anal-
ysis of privacy-preserving strategies for ToSC, comparing
feature perturbation methods like DP and encryption with
intrinsic security incorporation approaches such as adversarial
learning and LBVQ. Our research also explores experimental
evaluations of these methods, assessing their performance and
privacy protection capabilities. Finally, potential avenues for
future study are provided.
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