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This paper proposes and experimentally evaluates digital twin techniques incorporating multi-step looka-
head and dynamic step-size adjustments for per-channel power equalization in optical networks. Digital
twins, which are software replicas of physical systems, are utilized to monitor, analyze, and predict network
behavior, thereby enhancing decision-making processes before implementing any physical adjustments.
The study focuses on optimizing the signal-to-noise ratio (SNR) through per-channel launch power equal-
ization, addressing challenges such as nonlinear inter-channel interference and power transfers across
multiple optical multiplex sections. The proposed methodology leverages a digital twin to simulate and
predict SNR variations using multi-step lookahead, ensuring monotonous SNR improvement without ser-
vice disruptions. Additionally, parallel adjustment and dynamic step-size methods significantly enhance
efficiency. Experimental validation on a C-band meshed optical network testbed demonstrates substantial
reductions in power errors, improved SNR performance, and decreased commissioning time, highlight-
ing the practical feasibility and efficiency of the approach. The findings underscore the transformative
potential of digital twins in advancing autonomous optical network management.
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1. INTRODUCTION

Digital twins (DT), are software replica of real physical systems,
which can directly interact with the underlying physical system,
have been proposed and used in optical networks for automa-
tion and management [1–4]. By monitoring its twin physical
system, a digital twin can analyze the behavior of the underlying
physical system using physical or machine learning models (or a
combination of the two [5]). Then, the digital twin can be used as
a sandbox to predict the impact of changes to the system through
emulation within the digital twin, thereby improving decisions
before implementing any operation in the physical world. A
typical workflow using a digital twin is shown in Fig. 1.

Methods to optimize optical networks through per-channel
launch power setting (also known as power equalization) based
on physical models [6, 7] or machine learning models [8, 9] have
been proposed and widely applied. Signal-to-noise ratio (SNR),
as a significant criterion to assess the quality of transmission
(QoT) of a communication system, can be improved thanks to
power equalization. However, when networks are operating for
a long time, e.g., in “set and forget” mode or after unforeseen
events that change the underlying physical layer (e.g., span loss
increase after repairing a fiber cut), power settings hence SNR
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Fig. 1. Digital twin enabled closed-loop control.

may become suboptimal [10]. For this reason, it is important to
periodically re-optimize the network.

Power equalization practically consists of adjusting the
power of one or several channels of one or more optical multi-
plex sections (OMSs) through wavelength selective switch (WSS)
per-channel attenuation change. Changing several channels’
power on a single WSS is possible; however, simultaneously
changing the settings of WSS on several OMSs, or even on the
same OMS, is virtually impossible, such that WSS attenuation
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profile change can only be considered as sequential rather than
parallel operations, and the impact of the change of one WSS
attenuation profile, on OMSs downstream of said WSS, always
needs to be considered when optimizing powers.

Specifically, when optimizing the power of a multi-OMS ser-
vice, it is possible that the SNR of this service actually decreases
during the equalization process, before increasing again and
reaching the desired value. This may be caused by nonlinear
inter-channel noise or power transfers phenomena across the
channels when power changes on one OMS propagates to fur-
ther OMSs [11, 12]. Commercial optical amplifiers can be set
in either gain-lock or power-lock mode. While the power-lock
could prevent undesired power propagation on downstream
links, it also hinders fast rerouting after a failure; indeed, if
services are rerouted on an OMS set to power-lock mode, the
total OMS launch power will increase leading to a per-service
power decrease and hence to suboptimal power allocation not
only for the rerouted services, but also for the existing services.
Operating amplifiers in gain-lock mode avoids this problem.

Hence, network-wide re-optimization and autonomous op-
tical networking require the ability to search for a sequence of
power adjustments whereby existing channels’ SNRs do not
degrade [13–15]. We propose to use an optical network digital
twin as a sandbox to search for such a sequence. The digital
twin implements real-time performance monitoring and SNR
estimation/prediction.

In addition, an accurate SNR estimator requires accurate
knowledge of the physical parameters. In real networks, the
values of those parameters may be unknown, incorrect, or out-
dated, for instance when powers are changed during the re-
optimization process. Online monitoring and updating of the
physical parameters to close the monitoring–decide–act control
loop is needed for accurate SNR prediction [13, 14].

This paper is an extended version of our conference paper at
the European Conference on Optical Communication (ECOC)
in 2024 [16]. By leveraging a digital twin, we are able to predict
the SNR variation of all services in the network before carrying
out any power adjustment operation. Using a specific search
technique called multi-step lookahead, we find a sequence of
power equalization steps that ensures monotonous SNR im-
provement for all services and avoid transient states whereby
the SNR of some services is degraded during the network-wide
power equalization process. Simultaneously changing the set-
tings of multiple WSSes across several OMS sections, or even the
two WSSes starting and terminating each OMS, is operationally
infeasible. The paper introduces "WSS-parallel" adjustments to
allow near-simultaneous operations, coordinated to minimize
service disruption. This concept will be further elaborated in
Section 2-B.3.

Compared with [16], in this paper we a) introduce and evalu-
ate dynamic step-sizes instead of fixed power adjustment steps
in the power equalization routine; b) evaluate the discrepancies
between the current and target power profiles across various test
configurations to assess optimization effectiveness. As in [16],
this work is performed with a meshed optical network experi-
mental testbed based on C-band commercial products.

This paper consists of five sections. In section 2, we introduce
the principle of power equalization and present the proposed
methodology. In section 3, we describe our experimental testbed
and introduce four distinct experimental configurations to eval-
uate the proposed methodologies. In section 4, we present the
impact of power propagation, show the power and SNR evo-
lution of the four aforementioned scenarios, and analyze the
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Fig. 2. Optical multiplexing section.

digital twin time consumption. In section 5, we draw the conclu-
sions and future directions.

2. PRINCIPLE

A. Power Equalization
A.1. End-to-End SNR Optimization Method

A wavelength division multiplexing (WDM) based optical trans-
port network consists of multiple OMSs. As shown in Fig. 2,
each OMS has a pair of WSSes for routing/adding/dropping
optical channels, N fiber spans and N+1 optical amplifiers (OAs),
typically, erbium-doped fiber amplifier (EDFA). We refer to the
first OA of each OMS as the booster, the other OAs after fiber
spans are called inline amplifiers, and the last OA is also called
pre-amplifier. We assume that the power spectra at the output
of the booster and pre-amplifier, but not the online amplifiers,
can be monitored. The launch power profile of the booster in
an OMS can be tuned by adjusting the WSS attenuation profile,
so that power equalization can be implemented to optimize the
performance of services.

Before we discuss the end-to-end SNR of services, we first
introduce the generalized SNR (GSNR). Unlike SNR, which ac-
counts for end-to-end system effects including filtering penalties
and transponder noise, GSNR excludes such factors and only
includes amplified spontaneous emission (ASE) and non-linear
(NL) noise contributions, such that GSNR is not only defined
end-to-end, but also per-OMS. This differentiation is crucial for
isolating the impact of power adjustments in optical networks.

Based on the Gaussian Noise (GN) model [6], the GSNR of a
channel λ in an OMS is [17]:

GSNROMS(λ) =
Pch(λ)

PASE(λ) + PNL(λ)
=

Pch(λ)

PASE(λ) + η(λ)P3
ch(λ)

(1)
where Pch is the channel power, PASE is the ASE noise power,
PNL is the NL noise power, which is proportional to P3

ch with a
ratio η.

GSNR varies with channel power, as shown in Fig. 3. By calcu-
lating the derivative of Eq. (1), GSNR maximization is achieved
by balancing the ASE-to-NL noise ratio to 3dB [6], therefore, the
optimal launch power of the channel in this OMS is:

Popt
ch,OMS(λ) =

3

√
PASE(λ)

2η
. (2)

Power optimization has garnered much attention recently,
especially in the context of multi-band networks, but also for
single-band networks [18–20]. We emphasize that the novel
framework proposed here is orthogonal to the underlying power
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Fig. 3. GSNR and optimal launch power at PASE/PNL = 3dB.

optimization —- should another equalization method be used,
our framework applies identically.

For a service s carried by wavelength λ through route
OMS1 −OMS2 − . . .−OMSN , the end-to-end (e2e) GSNR is [7]:

GSNRe2e(s) = GNSR−1
e2e(s) =

(
N

∑
n=1

GNSROMSn (λ)

)−1

, (3)

where GNSR is the generalized noise-to-signal ratio, that is the
inverse of GSNR.

Adding WSS distortion and transponder noises [21, 22], the
e2e SNR can be written as:

SNR = NSR−1 = ( fWSS,TRX(GNSR) + NSRTRX)
−1, (4)

where fWSS,TRX represents the filtering penalty from WSSes and
noise scaling in transceiver (TRX), NSRTRX represents the noise
introduced by TRX, which can be calibrated in back-to-back
(B2B) performance measurements.

SNRs estimated or measured throughout this paper are in-
herently end-to-end, capturing the cumulative impact of all the
optical network elements on signal quality.

Booster launch power adjustment at an OMS yields power
profile modification on the (downstream) OMSs by power prop-
agation. Hence, the SNR of each service in the network may be
impacted when adjusting the launch power spectrum on only
one OMS. In the worst case, this possibly leads to disruption of
existing services. We presented such a SNR degradation with
large power adjustment step during the equalization [12].

A.2. Quantitative Metrics for Performance Evaluation

For such a network-wide power equalization, three metrics are
evaluated.

First, we define the power error between the current channel
power Pch,n(λ) and the target optimized power Popt

ch,n(λ) of the

nth OMS:

Err(Pch,n(λ)) = Popt
ch,n(λ)− Pch,n(λ). (5)

Second, we define the network-wide SNR margin as:

SNRmargin = min
s
(SNR(s)− SNRFEC(s)), (6)

where SNR(s), s = 1, ..., Nsvc is the SNR of services s, and
SNRFEC(s) is the SNR at the limit of forward error correction
(FEC) for service s. The SNR margin represents the performance
of bit-error-rate (BER) [21, 23]. If SNR(s) < SNRFEC(s), then un-
corrected blocks will appear. Therefore, the SNR margin should
always be positive during any optical network operation. The
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Fig. 4. Digital twin enabled power equalization.

higher SNR margin, the lower pre-FEC BER, which can then
be leveraged to carry additional traffic / increase the network
capacity.

The third metric is the total network (Shannon) capacity C:

C = 2
Nsvc

∑
s=1

log2(1 + SNR(s)). (7)

The average absolute power error Avg(|Err(Pch,n)|) shows
how far the current state is from the optimized (target) state. We
use this metric as the most important convergence criterion for
the optimization algorithm presented later. The SNR margin
quantifies the performance of the worst service in the network,
and should remain (as much) positive (as possible). The capac-
ity C quantifies the global performance of all services in the
network.

B. Digital Twin Enabled Power Equalization
Beyond balancing the ASE/NL ratio, other power equalization
methods are possible. The methodology we propose here is
generic and independent of the specific power equalization strat-
egy used in the network, see Fig. 4: We build the digital twin and
periodically update it based on physical parameters monitored
in the network.

f (θ) : Net → N̂et, (8)

where θ represents the physical parameters from the real world,
including power spectra, gain/tilt of OAs, fiber parameters in
the OMSs, topology and services information of network, etc.
Later, we use hat to represent the processes in the digital world.

Then, we find the order of the operations along with the
power variation step-size, and assess the impact of those changes
on the QoT of all services using a QoT estimator, before imple-
menting the operations in the network to prevent potential QoT
degradations.

B.1. Multi-Step Lookahead Prediction with Fixed Step-Size

Multi-step lookahead in chess is the ability to anticipate and
evaluate potential move sequences several turns ahead, con-
sidering both the player’s and the opponent’s responses. This
strategic foresight enables players to plan, exploit opportunities,
and avoid risks effectively.

In the power equalization problem, the multi-step lookahead
method can avoid local optimum step-searching thereby reduc-
ing the total time consumption.

Algorithm 1 presents the workflow of multi-step lookahead
prediction and configuration of an optical network with fixed
step-size.

First, data collection is needed for building/updating digital
twin (line 2). However, it is not necessary to update the digital
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Algorithm 1. Multi-step lookahead prediction for power equal-
ization

1: while NOT optimized for all ÔMS (Condition-1/2/3) do
2: Update digital twin
3: Find the optimal launch power per ÔMS by Eq.(2)
4: for k = 1, ..., Kupdate do
5: for m = 1, ..., Km do
6: for n = 1, ..., NOMS do
7: for λ = 1, ..., NCH(n) do

8: Adjust booster P̂n(λ) by Eq.(9)
9: Power propagation in digital twin

10: ŜNR prediction in digital twin
11: Find the Km-step order of operations which yields the

highest ŜNRmargin by Eq.(11)

12: Configure the WSS

twin after each step. Instead, we update our digital twin every
Kupdate-steps (line 4).

Second, assuming there are NOMS non-optimized ÔMS, the
optimal launch power profiles of these ÔMSs are found by digi-

tal twin based on Eq. (2) P̂opt
ch,n(λ) (line 3) .

Third, for Km-step lookahead (lines 5-11), the digital twin em-
ulates the power adjustment impact on different ÔMSs (line 6).
The fixed step adjustment (line 8) of launch power P̂ch,n(λ) of

each channel of nth ÔMS given by:

∆P̂n(λ) =

 P̂opt
ch,n(λ)− P̂ch,n(λ), i f |Err(P̂ch,n(λ))| < δ

δ · sign(Err(P̂ch,n(λ))), otherwise
(9)

where δ is a fixed, predefined power adjustment step-size. Then,
the digital twin predicts the ŜNR (line 10) after the power prop-
agation (line 9).

For Km-step lookahead within a NOMS-OMS network, there
are up to NKm

OMS possible sequences (this is an upper bound
because if an operations decrease the margin at some step, then
the algorithm will not pursue the branch):

seq{ki} = (ÔMSk1
, . . . , ÔMSki

, . . . , ÔMSkKm
), (10)

where i ∈ {1, 2, ..., Km}, and ki ∈ {1, 2, ..., NOMS}.
For each sequence, line 10 yields an ŜNR variation after

power propagation ∆ŜNRseq{ki}. Therefore, the digital twin

picks up the order of operations (on which ÔMS) yields the
highest ŜNRmargin (line 11):

max
seq{ki}

∆ŜNRseq{ki},

∆ŜNRki
> ϵSNR,

(11)

where ϵSNR is the tolerance of ŜNR drop during the multi-step
operations. To avoid oscillations/local optima, the multi-step
lookahead algorithm allows small ŜNR drops at intermediate
steps ki in case this yields a higher ŜNR after all Km steps.

Then, the digital twin will configure the WSS (line 13) follow-
ing the order from line 11, until all ÔMSs are optimized (line 1).

Algorithm 2. Multi-step lookahead prediction for power equal-
ization with dynamic step-size

1: while NOT optimized for all ÔMS (Condition-1/2/3) do
2: Update digital twin
3: Find the optimal launch power per ÔMS by Eq.(2)
4: for k = 1, ..., Kupdate do
5: for m = 1, ..., Km do
6: for n = 1, ..., NOMS do
7: for δ = δmax, ..., δmin do
8: for λ = 1, ..., NCH(n) do

9: Adjust booster P̂n(λ) by Eq.(9), Eq.(15)
10: Power propagation in digital twin
11: ŜNR prediction in digital twin
12: Find the Km-step order of operations which yields the

highest ŜNRmargin or maximizes power error reduction, in a
safe way (Eq. 16)

13: Configure the WSS

The convergence of the algorithm, or the stop-while condition,
could be defined by using the metrics in Eq. (5-7):

Condition-1: average power error tolerance εPerr.

Avg(|Err(P̂ch,n)|) ≤ εPerr. (12)

Condition-2: max SNR margin error from ideal value εmargin.

Defining maxth(ŜNRmargin) the max theoretical SNR margin
achievable in digital twin.

|ŜNRmargin − maxth(ŜNRmargin)| ≤ εmargin. (13)

Condition-3: capacity (overall SNR) error from ideal value
εC. Defining maxth(Ĉ) the max theoretical capacity achievable
in digital twin.

|Ĉ − maxth(Ĉ)| ≤ εC. (14)

These conditions can be used alone or in combination.

B.2. Dynamic Step-Size for Power Adjustment

As we presented in [16], when the optical network was close to
the optimized state, the measured SNRmargin was higher and
increased slowly or even oscillated. To speed up convergence,
a larger step-size could be considered and SNRmargin might no
longer be the best metric when operations are selected in the
digital twin. Then, we propose the Algorithm 2.

There are two differences compared with the Alg. 1.
1) Given a max step-size δmax, a min step-size δmin and in-

terval ∆δ, the step-size is dynamically adjusted (line 7 in Algo-
rithm 2) within the range:

δ = δmin, δmin + ∆δ, ..., δmax − ∆δ, δmax. (15)

The loop starting line 7 predicts the ŜNR after changing the
launch power by a step-size in the above range. A larger step-
size yields more power fluctuation and has higher probability
to decrease the ŜNRmargin. Hence, the algorithm dynamically
adjusts the step-size, starting from a large value, to find the
max step-size δ ensuring safety yet minimizing the number of
operations. For each step in line 9, we apply the above δ into
Eq. (9).

2) The difference between line 11 in Alg. 1 and line 12 in
Alg. 2 lies in the action search order; once the ŜNRmargin is
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higher enough, digital twin will try to search the step orders
which improves the ŜNRmargin and reduces more power error

∆Avg(|Err(P̂ch,n)|)seq{ki} between current state profile and tar-

get state, instead of focusing on ŜNRmargin only.
∆ŜNRseq{ki} > 0,

max
seq{ki}

∆Avg(|Err(P̂ch,n)|)seq{ki}.
(16)

B.3. Parallel Configuration

Without prediction of ŜNR, the parallel configuration is risky for
the optical network since the commands cannot be guaranteed
to arrive at all network elements synchronously; intermediate
states may interrupt services.

Instead, based on the multi-step lookahead, we can send
the commands for Km operations at the same time even if the
WSS adjustments will not be strictly simultaneous, since prior
emulation within the digital twin ensures no ŜNR degradation
for any service, whatever the order in which the commands are
actually received by the physical layer from the digital twin, and
executed within the physical layer.

C. Time Consumption of Digital Twin Enabled Auto-Adjustment
of Power

In the control loop shown in Fig. 1. We can write the total
commissioning time Ttot as:

Ttot = Tupdate + Tsim + Top, (17)

where Tupdate is the total time consumption for updating the
digital twin, Tsim is the total simulation time in the QoT tool in-
cluding optimization and ŜNR prediction, Top is total operation
time for WSS setting. Specifically:

Tupdate = (⌈Nop/Kupdate⌉+ 1) · tupdate, (18)

where Nop is the total number of power adjustment steps, ⌈⌉ is
the ceiling function, and the digital twin is updated (through
monitoring) every Kupdate power adjustment steps. Including
the initialization, there are ⌈Nop/Kupdate⌉+ 1 updates. tupdate
is the time to collect data from the physical layer to update the
entire digital twin.

Tsim = (Nop + 1) · tsim, (19)

where tsim is the time to run the ŜNR prediction tool and run
the proposed algorithm in the digital twin; there are Nop + 1
simulations needed for each operation and the initialization.

Top = Nop · tWSS, (20)

tWSS is the time needed to configure the attenuation profile of
WSS, thereby adjusting the launch power.

The time complexity of Alg. 1 to generate the next step is
O( 1

Km
NKm

OMS). Hence, the trade-off between Km and computation
power also needs to be considered during commissioning. For a
network with NOMS where OMSn has Nspan(n) spans, the upper
bound for simulation time tsim in Eq. (19) is:

tsim ≤ 1
Km

(
NOMS

∑
n

Nspan(n))Km · tsim,span, (21)

where tsim,span is average simulation time per span. If any of

the Km steps results in a significant degradation of the ŜNR, no

further simulation of this step will be performed, hence Eq. (21)
is indeed an upper bound.

Without considering any parallel data collection for updating
the digital twin, the update time tupdate in Eq. (18) can be written
as:

tupdate =
NOMS

∑
n

tupdate(n) =
NOMS

∑
n

2tmon + (Nspan(n) + 1)tOA,

(22)
where tmon is the time to get a power profile by the monitor, and
tOA is the time to collect data (gain, total in/output power) from
an OA. The parameters refinement technique from [24] can be
used to estimate the OA gain profile and lumped losses so that
power monitoring is only needed for the first and last optical
amplifiers of each OMS.

If monitoring data for all OMSs is collected in parallel, Eq. (22)
becomes:

tupdate = maxn(tupdate(n) + tdelay(n)), (23)

where tdelay is the communication time between the controller
and equipment on OMSn.

Normally, tupdate(n) is in the order of seconds while tsim,span
is in the order of ms, then tupdate ≫ tsim for Km = 1 and any
NOMS. However, it may not be true in some scenarios if Km ≥ 2
with a large NOMS.

For instance, consider a homogeneous network in which each
OMS has the same number of spans Nspan. Then, for an upper
bound on tsim:

tsim = NKm−1
OMS NKm

span · tsim,span, (24)

tupdate = NOMS(2tmon + (Nspan + 1)tOA), (25)

The ratio tsim/tupdate is then:

tsim
tupdate

=
1

Km
NKm−1

OMS NKm
span · rt, (26)

where rt =
tsim,span

2tmon+(Nspan+1)tOA
. Depending on the data collection

time and computing resource for the digital twin, ratio rt is
typically smaller than 1/100. The time consumption could be
very large when the network scales or we look a larger Km ahead.
When Km = 2, the factor 1

Km
NKm−1

OMS NKm
span = 1

2 NOMS N2
span is

still linear with NOMS. However, if Km > 2, then the factor
1

Km
NKm−1

OMS NKm
span is no longer linear (quadratic, ...) with NOMS.

In this paper, we only consider the scenarios with Km ≤
2 , our proposed methods focus on reducing the number of
operations Nop, thereby decreasing the total time consumption
Ttot.

3. EXPERIMENTAL SETUP

A. Network Topology
The commercial products-based testbed has a meshed network
topology, as shown in Fig. 5.

The OMSs are heterogeneous, containing heterogeneous fiber
spans and different types of amplifiers. The fiber types include
G.652.D standard single model fiber (SMF), G.654.E pure-silica-
core fiber (PSCF), G.655.D large effective area fiber (LEAF) and
G.655.D true-wave fiber (TW). The system operates in the C-
band, and EDFA is the only type of optical amplifier used in
the network, the gain and tilt of EDFAs were pre-configured
and not adjusted during the experiments. The EDFAs shown in
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Fig. 5. Experimental setup.

Fig. 5 have various tunable gain range, EDFA21 has a range of
16-21dB, EDFA25 has a range of 19-25dB, EDFA32 has a range of
23-32dB. The WSS grid is set to 100 GHz channel spacing within
the 6 THz C-band.

B. Service Loading and Monitoring

We emulated 95 services using ASE loading in the network and
emulated set-and-forget loading (i.e., the power of a service may
drift as further services are established,) such that channels are
not well equalized.

We emulated launch power in this experiment following [10]
as a Gaussian distribution with 0dB mean and 1dB standard
deviation.

A real-time 400 Gb/s (PDM-PCS16QAM) transponder is used
to replace the ASE loading during the SNR measurements. For
experimental assessment of the SNR margin of the network, we
use this transponder to measure the pre-FEC BER of the 5 worst
services as reported by the digital twin and convert into SNR.
All services have the same FEC limit SNRFEC, therefore, the
network-wide SNR margin simplifies to minsSNR(s)− SNRFEC
(from Eq. 6).

The testbed is automated with our software-defined net-
working (SDN) framework named AI-Light [25]. The SDN
controller collects the data from the physical layer and imple-
ments/updates the digital twin to perform the proposed algo-
rithm.

The digital twin needs periodic updates due to the OA gain
profile variation caused by the launch power profile variation.
We do not collect the gain profiles directly since most operators
deploy per-channel power monitoring only at the output of
booster and pre-amplifier. We apply the parameters refinement
technique to refine the OA gain profile (as well as connector
losses, which also cannot be directly measured) as in [24].

During each update cycle, the DT collects real-time data from
the physical network, including power spectra at the output
of boosters and pre-amplifiers, total input/output power of all
OAs, as well as the configured values for gain and tilt of all OAs.

The power spectra is monitored by optical spectrum analyzer in
the testbed.

C. Algorithm Configurations and Example

In this work, we carry out the experiments for 4 different cases:
Case-1: 1-step lookahead with fixed 1dB step-size (Km =

1, δ = 1dB);
Case-2: 2-step lookahead with fixed 1dB step-size (Km =

2, δ = 1dB);
Case-3: 1-step lookahead with dynamic step-size (Km =

1, δmin = 1dB, δmax = 3dB, ∆δ = 0.5dB); to compare with Case-1,
we do not use 2-step lookahead for this case and keep the same
Km as in Case-1;

Case-4: 2-step lookahead with fixed 1dB step-size and parallel
setting (Km = 2, δ = 1dB).

(Kupdate = 2 and ϵSNR = −0.5dB for all the cases.)
Sample algorithms execution:
Initialization and data collection: The algorithm begins by

initializing the digital twin with the current state of the physi-
cal network. The digital twin collects real-time data, including
power spectra at the output of boosters and pre-amplifiers, con-
figured gain/tilt of OAs, total in/output power of OAs.

Iterations:
- Digital twin update: The digital twin is updated with new real-
time data to reflect the changes made in the previous iteration.
- Optimal launch power calculation: The digital twin computes
the optimal launch power profile for each ÔMS based on the
updated network state.
- Power adjustment simulation: The digital twin simulates the
impact of adjusting the power settings using either a fixed step-
size or dynamic step-size. The digital twin predicts the resulting
ŜNR for each service after power propagation.
- Operation selection: The algorithm selects the sequence of
operations that yields the highest ŜNRmargin without degrad-

ing any service’s ŜNR. For instance, for a 5-OMS network,
if Km = 2 (prediction are 2 changes ahead), possible oper-
ation sequences are (ÔMSi, ÔMSj) i.e. optimize ÔMSi then

ÔMSj, which improves the ŜNR by ∆ŜNRi,j, and the sequence

(ÔMSk, ÔMSl) = argmax
i,j∈{1,2,3,4,5}

∆ŜNRi,j is selected.

- WSS configuration: The digital twin controller configures the
WSSes in the physical network according to the selected se-
quence of operations.

Convergence: The algorithm repeats the above steps until
the convergence criteria are met. The convergence criterion is
defined as an average power error of less than 0.5dB such that the
algorithm converges to a state where ŜNRmargin is maximized,

and the power settings are balanced across all ÔMSs. We cap
the number of iterations in case convergence is not achieved.

4. RESULTS

A. Power Propagation and SNR Degradation

We already presented that open-loop and sequential setting with
one-shot (∆Pn(λ) = Popt

ch,n(λ)− Pch,n(λ)) could significantly de-
grade some services’ SNR in point-to-point [11] and ring [12]
networks. In this work, we also observe such an SNR degrada-
tion in the meshed network due to the power propagation in
Fig. 6.
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Fig. 6. SNR degradation with open-loop. Top: Simulation
results of SNR degradation value with 120 different orders.
Bottom: SNR margin variation with different operation orders.

For a 5-OMS network, there are 5! = 120 possible one-shot
OMS adjustment sequences. From the simulation results shown
in Fig. 6(top), we observe that regardless of the adjustment se-
quence, the SNR deteriorates compared to the initial value dur-
ing the process. Fig. 6(bottom) illustrates two of these cases. In
addition to the SNR degradation, it is noteworthy that nearly
10 one-shot adjustments are required to achieve the target, op-
timized state in the 5-OMS network. This is primarily due to
power propagation: although the power of one OMS is equal-
ized in a single step, adjustments to the power of other OMSs
cause power propagation, leading to deviations from the opti-
mized state in previously equalized OMSs, which then need to
be re-equalized.

B. Power Error

In the subsequent experimental results, we demonstrate that
even with a smaller fixed step-size, it is possible to complete
global power equalization efficiently.

We use Condition 1 (Eq. (12)) with εPerr = 0.5dB as the con-
vergence criterion. Fig. 7 shows the variation of average power
error with respect to the number of operational steps for the four
cases defined above. For Case-1, it is evident that local rather
than global optimization is achieved: OMS5 struggles to con-
verge, resulting in a total of 31 steps. In Case-2, with multi-step
prediction, the process escapes the local optimization trap and
satisfies the convergence criterion for average power error in
18 steps. Compared to Case-1, Case-3 employs dynamic step-
size adjustment and dynamic metric selection, achieving power
equalization in just 14 steps. Although Case-4 still uses a small
fixed step-size adjustment, parallel adjustment allows for faster
overall power equalization, converging in only 13 steps.

From Fig. 7, we can summarize the distinctive characteristics
of average power error reduction across the four cases: Case-1
exhibits symptoms of local optimization; Case-2 overcomes this
limitation; Case-3 shows a significantly steeper error reduction
slope; and Case-4 motivates parallel equalization.
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Fig. 7. Average error of between current channel power and
target channel power with steps. Case-1: 1-step lookahead
with 1dB step-size; Case-2: 2-step lookahead with 1dB step-
size; Case-3: 1-step lookahead with dynamic step-size; Case-4:
2-step lookahead with 1dB step-size and parallel setting.

C. SNR Margin and Overall Evolution
As shown in Fig. 8, SNRmargin is improved by ∼1.5dB through
power optimization. The plots include digital twin-predicted
values (using monitoring data from before an operation; empty
circle), the measured value after an operation (plain circle), and
also the digital twin-estimated value (using monitoring data from
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Fig. 8. SNR margin with different scenarios. Case-1: 1-step
lookahead with 1dB step-size; Case-2: 2-step lookahead with
1dB step-size; Case-3: 1-step lookahead with dynamic step-
size; Case-4: 2-step lookahead with 1dB step-size and parallel
setting.

after operation; cross). It shows good alignment between results
from the digital twin (both a-priori prediction and a-posteriori
estimate) and measurements.

The SNRmargin converges in only 10 steps for all strategies
(Fig. 8), however, total capacity converges more slowly (Fig. 9),
which consistent with the average power error evolution (Fig. 7).

D. Time Consumption Analysis
Then, we compute the total commissioning time by applying
Eq. (17)-(22). Data collection is not parallel in our testbed. The
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Fig. 9. System capacity, or overall SNR. Case-1: 1-step looka-
head with 1dB step-size; Case-2: 2-step lookahead with 1dB
step-size; Case-3: 1-step lookahead with dynamic step-size;
Case-4: 2-step lookahead with 1dB step-size and parallel set-
ting.

Fig. 10. Time consumption analysis. Case-1: 1-step lookahead
with 1dB step-size; Case-2: 2-step lookahead with 1dB step-
size; Case-3: 1-step lookahead with dynamic step-size; Case-4:
2-step lookahead with 1dB step-size and parallel setting.

results are shown in Fig. 10, normalized to Case-1 (as baseline)
commissioning time (set to 100 for convenience).

Compared with Case-1, the proposed algorithm can save
40%(Case-2)/53%(Case-3)/53%(Case-4) of Ttot. The pie chart
reveals that the major cost of Ttot is spent on updating the digital
twin, indicating that increasing Kupdate to reduce update times
could further save time.

The quantitative comparison is shown in Tab. 1 and we sum-
marize the advantages and disadvantages of different cases in
Tab. 2.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we demonstrated the significant potential of dig-
ital twins to enable automated and optimized power equaliza-
tion in optical networks. By integrating multi-step lookahead
prediction and dynamic step-size adjustments, our proposed
methodology ensures consistent improvements in SNR margins
and efficient convergence to optimal power states without ser-
vice disruptions. Experimental validation on a meshed optical
network testbed confirmed substantial reductions in power er-
rors, enhanced SNR performance, and a marked decrease in
commissioning time, highlighting the practical feasibility of
our approach. These findings emphasize the transformative
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Table 1. Quantitative Metrics Comparison

Case 1 2 3 4

Km 1 2 1 2

Step-size [dB] 1 1 dynamic 1

Parallel No No No Yes

Number of steps to
convergence

31 18 14 13

Total commissioning
time [normalized]

100 60 47 47

Final SNR margin
improvement [dB]

1.6 1.5 1.6 1.5

Final capacity
improvement [%]

5.2 4.9 5.1 4.9

Table 2. Qualitative Evaluation

Case Conclusion

1 (baseline)

2 Avoids local optima and oscillations.

3 Faster (with larger steps) but more prone to
temporarily low SNR margin.

4 Even faster during operation (parallel operation)
but need to check all possible WSS change orderings

in the digital twin.

role of digital twins in advancing autonomous optical network
management by enabling precise, non-disruptive, and efficient
network-wide optimizations.

While this work focused on reducing the total number of
WSS attenuation adjustment operations and analyzing the time
consumption across different components of the workflow, fu-
ture research could extend these methodologies to include gain
and tilt adjustments for OAs. Additionally, optimizing the time
consumption of individual components within the workflow
could further enhance real-time applicability, broadening the
scope of digital twin applications in optical network automation.
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