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• Local model privacy
– Threats:

• Membership Inference attack (MIA) 

• Data property inference attack (DPIA)

• Aggregate integrity
– Threats:

• Global model degradation

• Aggregate forgery

• Robustness
– Threats:

• Data poisoning

• Model poisoning

• Non-IID settings
– Threats

• Inaccurate model

• Client dropouts
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Federated Learning (FL)

Robust Blockchain-based Federated learning     [ICISSP’25]

SAAFL: Secure Aggregation for Label-Aware Federated Learning [under submission]
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• Online clients encrypt nonzero value for the dropout and non-
selected clients. 

• FedAvg is not ideal for non-IID data.
• Zero-values for dropout clients (FedLA-FTSA) fail in FedLA.
• SAAFL achieves accuracy comparable to FedLA.
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