EURECOM Sophia Antipolis

Privacy-Preserving Federated Learning

Aftab Akram, Clementine Gritti, Melek Önen

Federated Learning (FL)

Overview

Model Aggregation $\boldsymbol{\theta} = Aggr(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_n)$ $\boldsymbol{\theta}_{n}$ $\boldsymbol{\theta}_2$ θ_1 A

Privacy & Security Requirements

• Local model privacy

- Threats:

- Membership Inference attack (MIA)
- Data property inference attack (DPIA)

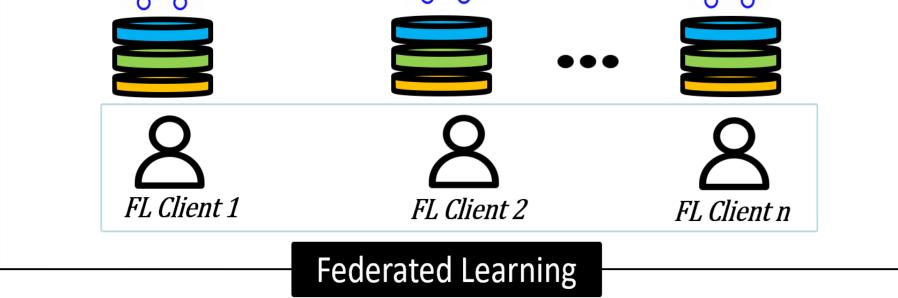
Aggregate integrity

- Threats:
 - Global model degradation
 - Aggregate forgery
- Robustness
 - Threats:

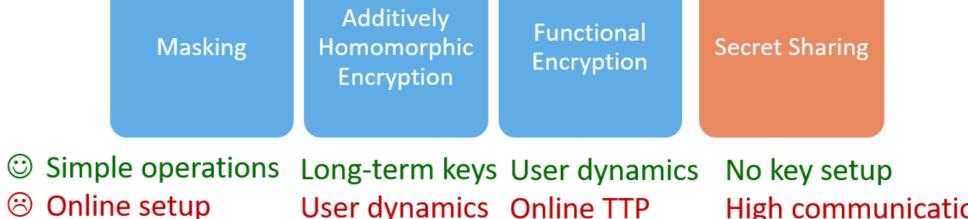
Secure Aggregation for Model privacy

Secure Aggregation

Encryption-Based



- Data poisoning Model poisoning
- Non-IID settings
 - Threats
 - Inaccurate model • Client dropouts



User dynamics Online TTP High communication overhead

[ICISSP'25]

Our solution

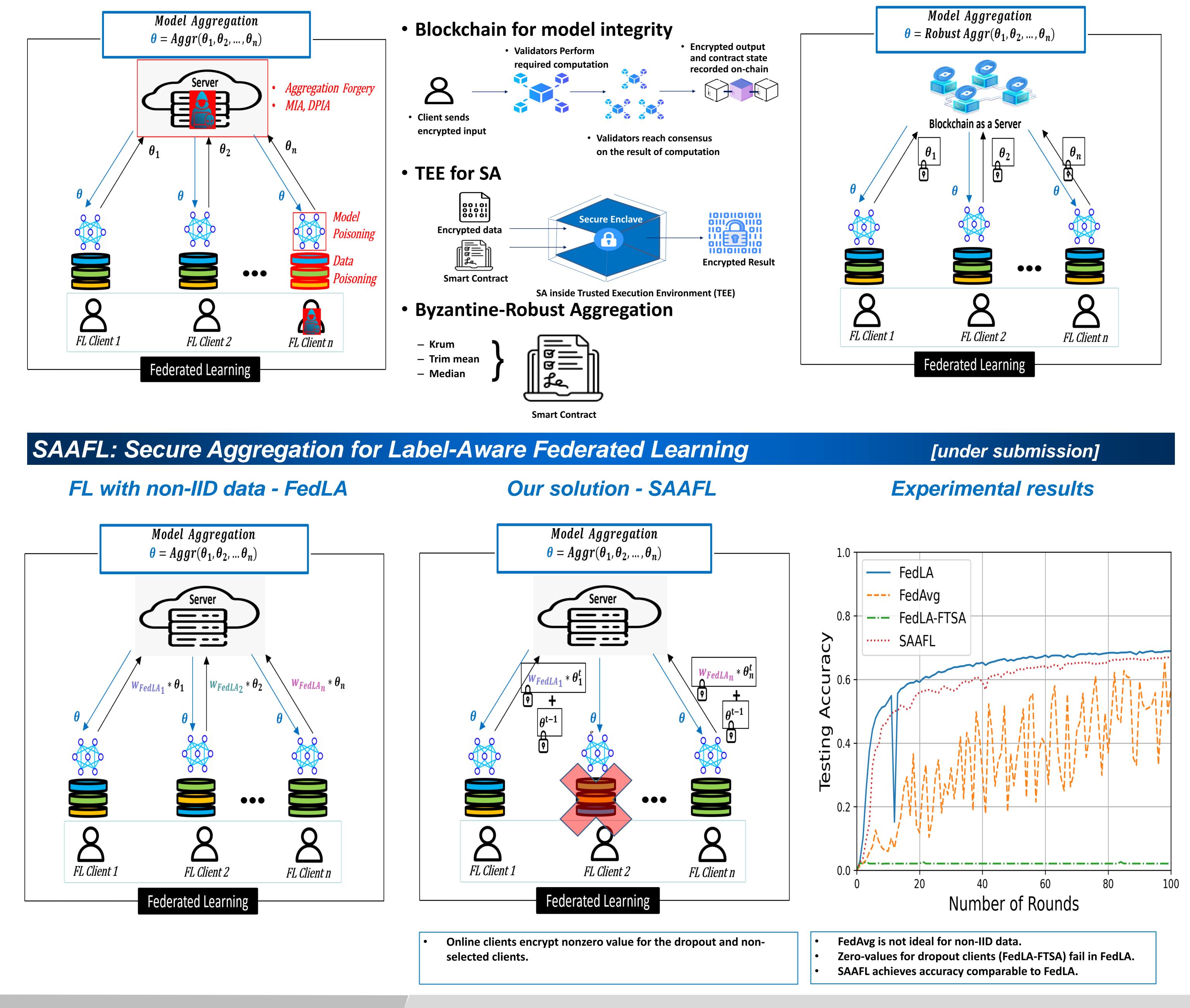
MPC-

Based

Robust Blockchain-based Federated learning

Privacy, Integrity and Byzantine Attacks

Building Blocks



EURECOM www.eurecom.fr

These works are partially funded by TRAIN (ANR-22-FAI1-0003) and The 3IA Côte d'Azur programme (ANR-19-P3IA-0002).

Contact: {aftab.akram, melek.onen}@eurecom.fr