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Interacting with Large Language Models (LLMs) via declarative queries is increasingly popular for tasks like
question answering and data extraction, thanks to their ability to process vast unstructured data. However,
LLMs often struggle with answering complex factual questions, exhibiting low precision and recall in the
returned data.

This challenge highlights that executing queries on LLMs remains a largely unexplored domain, where
traditional data processing assumptions often fall short. Conventional query optimization, typically cost-
driven, overlooks LLM-specific quality challenges such as contextual understanding. Just as new physical
operators are designed to address the unique characteristics of LLMs, optimization must consider these quality
challenges. Our results highlight that adhering strictly to conventional query optimization principles fails to
generate the best plans in terms of result quality.

To tackle this challenge, we present a novel approach to enhance SQL results by applying query optimization
techniques specifically adapted for LLMs. We introduce a database system, Galois, that sits between the
query and the LLM, effectively using the latter as a storage layer. We design alternative physical operators
tailored for LLM-based query execution and adapt traditional optimization strategies to this novel context.
For example, while pushing down operators in the query plan reduces execution cost (fewer calls to the
model), it might complicate the call to the LLM and deteriorate result quality. Additionally, these models lack
a traditional catalog for optimization, leading us to develop methods to dynamically gather such metadata
during query execution.

Our solution is compatible with any LLM and balances the trade-off between query result quality and
execution cost. Experiments show up to 144% quality improvement over questions in Natural Language and
29% over direct SQL execution, highlighting the advantages of integrating database solutions with LLMs.
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1 Introduction

Motivation. In the rapidly evolving landscape of data management, the interaction with Large
Language Models (LLMs) through declarative queries has marked a significant stride forward [3,
36, 37, 53, 60]. Leveraging LLMs, like GPT-4 and LLaMA 3, has become increasingly popular for
applications in direct question answering and data extraction tasks, due to their remarkable ability
to process and interpret vast amounts of unstructured text [7]. These models offer a sophisticated
alternative to traditional extraction methods, which either require data annotation efforts [15] or
manually crafted extraction pipelines [69]. These solutions are typically static and can only extract
fixed sets of attributes, leaving unsolved the automatic extraction of relational data [1].
By directly querying the internal representations within LLMs, users can extract meaningful

data without the need for complex, manual parsing processes [3]. This has opened avenues where
developers issue natural language (NL) or SQL-like queries, thus integrating LLMs into mainstream
data retrieval processes [30, 58]. We distinguish two use cases for querying LLMs.

The first use case focuses on the ability to obtain structured data from the parametric knowledge in
the LLMs [53]. One application is to obtain structured data from the LLM for auditing its biases [5],
e.g., a query that extracts a table with the “best” city and “most important” person in all countries
can be used for analysis of the LLM cultural bias [42]. Precisely measuring query results over
known facts also enables systematic benchmarking of new LLMs for their factuality [12]. Finally,
queries can populate questionnaires to reflect the human behavior as modeled by the LLM from
input documents [47].

The second use case focuses on structured data extraction from text documents fed in the LLM
input, the in-context learning setting [36]. For example, tables are derived from the financial reports
or health records that are passed as input in the LLM’s context entirely [37], or in smaller chunks,
as in a RAG setting [32].
In both scenarios, LLMs are becoming indispensable tools in tasks where interpreting and

extracting data from extensive text corpora are essential, streamlining access to information
captured within the neural fabric of these models [60, 70].
The Problem with Data Outputs. While NL question answering can gather the knowledge
embedded within pre-trained language models or in documents provided at runtime, complex NL
questions that aim at obtaining data outputs often challenge these models, leading to inaccuracies
and missing data in the response [50].

For instance, consider a scenario with a question for which we do not have a database to answer
it. We can then ask the NL question to a LLM: "What are size and population of European cities
with more than 1M people and more than fifteen private hospitals?". The model gives an answer,
but with errors and missing data, as depicted in the top part of Figure 1. Recent advancements allow
LLMs to process SQL queries directly from prompts, obtaining more precise answers compared to
the corresponding questions in NL. We therefore translate the question into SQL:
Q1: SELECT name, size, population

FROM EU_Cities
WHERE population>1M AND num_private_hospitals>15

The query output from the LLM is improved w.r.t. the NL equivalent question, but it still reports
incorrect data, as shown in Figure 1. The qualitative results for 𝑄1 reflects our experiments on 92
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What are name, size and population of European cities with
more than 1M people and more than fifteen private hospitals?

Natural Language QuestionNL

SELECT name, size, population
FROM EUCities
WHERE population>1M,
              num_private_hospitals>15

SQL QuerySQL LLM
Text to SQL

GALOIS

Prompt

Prompt

Worst results
Most errors

More results
Some errors

Most results
Least errors

Prompt

Fig. 1. Comparison of query methods for obtaining data on European cites with specific criteria from the

information embedded in the LLM. Galois executes SQL queries over LLMs with logical and physical

optimizations, achieving superior accuracy and completeness over direct natural language and SQL prompts.

The approach is effective also when executing queries over documents included in the LLM’s context.

queries over several topics, both over the LLM internal knowledge and over documents passed in
the prompt (in-context setting). Direct NL prompting yields the least accurate results. Since NL
questions can be translated into SQL queries, either manually or with the assistance of text-to-SQL
techniques [30], we assume SQL queries as input in the following. However, while direct SQL query
prompting improves the quality, it still falls short of the desired precision and recall.
These limitations underscore the inherent design constraints of LLMs. When queries require

intricate reasoning, such as with selection conditions and aggregates, they push beyond the natural
reasoning limits of these models. At the same time, albeit it is clear that LLMs indeed house, or can
extract, vast amounts of data, accessing it effectively solely through NL prompts or SQL scripts
often proves suboptimal. Therefore, we argue that for complex queries we should use a database
management system to handle query execution, while using the LLM as a storage layer, to get
better results, as in the bottom part of Figure 1. This integration leverages established database
technologies but also necessitates adapting them to accommodate the distinct characteristics of
LLMs, differentiating them from traditional data storage.
Challenges. A significant challenge in querying LLMs with SQL lies in balancing the trade-off
between query accuracy and execution cost. Direct execution of SQL queries within LLMs comprises
the most cost-effective approach. However, decomposing these queries into a sequence of operator
executions, akin to the plans in a DBMS, yields superior result quality. While pushing down
selections reduces the number of interactions with the LLM, crafting simpler requests within the
LLM prompt enhances the response quality. The traditional optimization principles, primarily
focused on cost, are only partially applicable here. Once a logical plan is derived from the SQL
script, optimizing it to achieve both cost efficiency and result quality remains a complex task.
Additionally, unlike conventional DBMS options, LLMs do not provide direct access to crucial

metadata such as schema details, column statistics, or histograms, significantly complicating
query optimization efforts. The absence of this metadata requires developing novel methods
to dynamically collect such information during runtime. This gap calls for solutions to ensure
effective and efficient query execution over LLMs, pushing the boundaries of conventional database
techniques to accommodate the unique nature of these model architectures.
Contributions. In response to the challenges of optimizing SQL queries for LLMs, we present
Galois1, a framework designed to enhance query execution processes. First, we propose a novel
physical "Scan" operator crafted for interfacing with LLMs, which balances the efficiency and
1Évariste Galois (rhymes with French word voilà) was a 19𝑡ℎ century mathematician.
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accuracy of data retrieval. Second, we introduce dynamic methods for acquiring essential metadata
during query execution, focusing on estimating the confidence of LLM output to bridge the gap
typically filled by catalog information. Third, we develop a cost/quality model and accompanying
optimization techniques that balance execution cost with query accuracy, thus enhancing the
overall retrieval quality. Lastly, our experimental evaluations show the effectiveness of our approach,
reporting improvements in result quality, while maintaining a competitive edge in terms of resource
efficiency and execution speed2. Our approach achieves up to 144% quality improvement over
NL questions and 29% over direct SQL, while the more competitive baselines are 11 times more
expensive in terms of tokens consumed, both in querying the LLM’s parametric knowledge and in
the in-context learning setting. Results also show that the quality of the answers is bounded by
the limitations of the underlying LLM, i.e., its ability in understanding complex input text. Given
the evolving capabilities of LLMs, we believe our findings underscore the potential of integrating
database management solutions with LLM technology, paving the way for sophisticated and efficient
data querying practices.

2 Problem Formulation and Challenges
The core problem involves executing SQL queries that cannot be answered on the existing databases
at hand. The goal is to feed the queries to an LLM, thus obtaining structured data as output from
its internal knowledge, obtained from the pre-training process over a large corpus, or from the
documents passed as input in the prompt, as in a RAG setting. This new setting includes both the
challenges in a traditional DBMS (efficiency, here in terms of consumed tokens) and those that are
specific to LLMs (quality of the generated output).

In query processing, traditional optimizations aim at reducing computational costs and execution
time fall short of ensuring high-quality results. Moreover, a critical limitation is the absence of a
catalog. Traditional metadata, such as column statistics, and new, LLM-specific metadata are not
readily available in a language model, but both are mandatory to enable query optimization. Finally,
the solution must enable both querying the parametric information in the LLM and the dynamic
extraction of data from textual documents fed to the model’s context at runtime.
Logical Level. At the logical level, traditional DBMSs focus on cost-effectiveness by minimizing
resources such as CPU time and memory usage. However, when dealing with LLMs, quality also
becomes a key metric. Consider the running example for query Q1 in the top part of Figure 2. In
the simplest logical plan, the data is gathered from the LLM with a single prompt that collects all
the tuples (operator n1), followed by a filtering step that does not involve the LLM (operator n2).
Notice that in the example the precision is high, but the recall is low as only one tuple is returned.

A crucial logical optimization operation is the condition pushdown. While pushing down condi-
tions reduces the number of interactions with the LLM, leading to lower execution costs, it often
results in complex queries that are difficult for LLMs to process, thus degrading the quality of the
outcomes. For example, in Figure 2, pushing both the population and hospital conditions (operator
p1) simplifies execution from a cost perspective with fewer tokens, but fails to consider the LLM’s
ability to handle multi-faceted queries. Other pushing decisions also affect the results. Pushing the
most selective condition (operator s1) might lead to errors, preventing the identification of relevant
data and ultimately producing an empty result. Balancing cost and quality necessitates evaluating
each query’s elements and their influence on LLM performance, rather than just attempting to
reduce computational cost. In the last example in Figure 2, pushing the condition for which the
model is most confident leads to the best results (operator c1).

2Code and data available at https://github.com/dbunibas/galois
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Fig. 2. Different logical plans for querying LLMs. Varying the conditions pushed down in the scan operator

impacts the precision and recall of the results.
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Fig. 3. Two alternative physical operators for implementing logical operator c1 in Figure 2. Table-scan (c1’)
gets entire tuples, while Key-Scan (c1”) gets key values first.

Physical Level. The next challenge is to adapt query execution to treat LLMs as the data storage
layer. In the physical plan, new operators are required, as data access is conducted through NL
prompts to the LLM. A critical aspect is the generation of such prompts, which must be optimized
to manage the variability of data retrieval quality and cost. Unlike traditional database systems,
where a single command retrieves a dataset from a flat file or relational storage, LLMs require a
more flexible approach.
For instance, a straightforward scanning technique retrieves the entire tuple set directly with

a prompt, as in the Table-Scan physical operator c1’ in Figure 3. Table-Scan minimizes LLM
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interactions, but can produce low-quality results for some queries. An alternative physical scan
operator first identifies values for key attributes and then iteratively requests additional data, as
with Key-Scan for operator c1” in Figure 3. This operator uses focused prompts that lead to better
result quality. However, this comes with the cost of executing more calls to the LLM, as collecting
the tuples in c1” requires a prompt execution for each key value. This example underscores the
complexity of designing prompt-based operators striking an optimal balance between cost efficiency
and output quality.

Moreover, LLMs have two limits that make difficult the extraction of their knowledge. First, they
are trained to suggest the most likely next word based on the previously generated ones, thus their
responses contain the most frequent values in the training corpus, while getting uncommon data
in the training set may require to keep interacting with the LLM. Second, LLMs are limited in the
generation of the size output response, thus we cannot expect that a single interaction produces all
the correct data in general.

These challenges highlight the need for new operators and optimization techniques tailored for
LLM environments. While traditional solutions offer a foundational understanding, they require
augmentation to accommodate LLM-based data processing. Dynamically generating metadata is
also a critical task, considering how it affects both logical and physical query plans.

3 Methodology
In a classical DBMS, executing a query involves two steps. First, the DBMS generates the logical
plan, which specifies the steps needed to produce the results. Then, the DBMS derives the physical
plan, which defines how the query will be executed. When it comes to querying LLMs, a distinct set
of strategies is required compared to traditional DBMS to effectively manage logical and physical
optimization. This section describes these strategies.
Preliminaries.We focus on queries with the following structure:

SELECT ((attr | agg(attr))+)
FROM ST+
[WHERE predicate+]
[GROUP BY (attr+)]
[HAVING (attr+)]
[ORDER BY (attr+)]
[LIMIT X]

Where attr is an attribute, agg is an aggregative function (min, max, avg, sum, count), ST refers
to one or more tables that could be joined, predicate is a conjunction or disjunction of atoms
with comparators =, >(=), <(=). Our system does not use fixed templates and it does not make
assumptions on the number of attributes in the Select and Where clauses. While the system can be
extended to support more operators, we believe the current subset suffices to show the potential of
the approach.

3.1 Logical Plan
Starting from user-provided query 𝑞 and schema 𝑠 , we decompose 𝑞 into the corresponding logical
plan without any optimization. Galois supports the relational algebra operators in Table 1. All
operators are executed in memory. The only operators interacting with the LLM are the LLMScan
operator, and its variant Filter-LLMScan. Once the data for a relation is retrieved with a Scan
operator, the other operators are optimized and executed without involving the LLM.

Traditional database systems rely on the Scan operator to transform stored tables, stored as files
and pages, into a sequential flow of rows. In contrast, our LLMScan operator fetches data on the fly
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Table 1. Logical Operators Supported by Galois

Operator Symbol Description

LLMScan S(LLM) Fetch data from LLM
Filter-LLMScan S𝑐𝑜𝑛𝑑 (LLM) Fetch data from LLM w.r.t. cond

Selection 𝜎𝑐𝑜𝑛𝑑 Select tuples w.r.t. cond
Projection 𝜋𝑎𝑡𝑡𝑟𝑠 Extract attrs from tuples

Join Z𝑐𝑜𝑛𝑑 Join two table given cond
Distinct 𝛿 Removes duplicate tuples
Grouping 𝛾𝑓 Groups tuples on common values

and compute 𝑓 over groups

⨝
t1.name

state t1

t2.state

𝜎

t1.area > 300K
and t1.cont='EU'
and t2.pop > 1M

𝝅
t2.city, t2.pop, t1.capital

⨝
t1.name t2.state

𝜎
t1.cont='EU'

and
t2.pop > 1M

𝝅
t2.city, t2.pop, t1.capital

cities t2
cities t2

⨝
t1.name t2.state

𝝅

t2.city,
t2.pop,

t1.capital

...

...

Q2i Q2ii Q2viii

Q2: SELECT t2.city, t2.pop, t1.capital
       FROM state as t1 join cities as t2 on t1.name=t2.state
       WHERE t1.area > 300K and t1.cont='EU' and t2.pop > 1M

GALOIS operator

LLM Based op.

S S
Scond S

Scond Scond

LLM LLMLLM LLM LLM LLM

cities t2
where

pop > 1M

state t1
where

area > 300k
and

cont='EU'
state t1
where

area > 300k

Fig. 4. Different Logical Plans for query 𝑄2. The first plan does not use any pushdown of the conditions

in S(LLM). The second and the third plans uses S𝑐𝑜𝑛𝑑 (LLM) with a single condition, while the last uses

S𝑐𝑜𝑛𝑑 (LLM) with both conditions.

by prompting an LLM. This dynamic data retrieval implies that LLMScan does not have complete
data readily available, precluding the direct application of many traditional database optimizations.

Based on the previous observations, the initially generated logical plan could not be suitable for
execution over an LLM. To address this issue, Galois generates multiple query plans using the
pushdown of the selection conditions directly into a different scan operator, i.e., the Filter-LLMScan
operator. Galois supports three variants of the pushdown: 1) no-pushdown, where the LLMScan
retrieves all the tuples as in the original query plan; 2) all conditions pushdown, where the Filter-
LLMScan retrieves the tuples that meet all the given conditions; 3) single pushdown of a condition,
where the Filter-LLMScan retrieves the tuples that match a single condition.

Consider for example query 𝑄2:
Q2: SELECT t2.city, t2.pop, t1.capital

FROM state as t1 join cities as t2 on t1.name=t2.state
WHERE t1.area > 300k and t1.cont='EU' and t2.pop > 1M

𝑄2 produces 8 different logical plans. Figure 4 presents three of the possible different logical
plans. For example, the logical plan 𝑄2𝑖 represents the no-pushdown strategy for both the tables
involved, while the logical plan 𝑄2𝑖𝑖 represents a mix of pushdowns strategies for the different

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 181. Publication date: June 2025.



181:8 Dario Satriani, Enzo Veltri, Donatello Santoro, Sara Rosato, Simone Varriale, and Paolo Papotti

tables. For table 𝑠𝑡𝑎𝑡𝑒𝑠 it consists of a single pushdown of the condition 𝑎𝑟𝑒𝑎 > 300𝑘 , while for
𝑐𝑖𝑡𝑖𝑒𝑠 it uses the no-pushdown strategy. Finally, plan 𝑄2𝑣𝑖𝑖𝑖 represents the all conditions pushdown
for both tables.

Despite the inherent limitations in the considered pushdown strategies, the number of possible
logical plans for a given query can still be substantial. Indeed given a query 𝑞 the number of possible
logical plans can be calculated as follows:

𝑝𝑢𝑠ℎ(𝑡) =

1 if 𝑐𝑜𝑛𝑑 (𝑡)=0
2 if 𝑐𝑜𝑛𝑑 (𝑡)=1
𝑐𝑜𝑛𝑑 (𝑡) + 2 otherwise

(1)

𝑝𝑙𝑎𝑛𝑠 (𝑞) =
𝑡 ∈𝑞∏
𝑡

𝑝𝑢𝑠ℎ(𝑡) (2)

Where 𝑐𝑜𝑛𝑑 (𝑡) represents the number of conditions in 𝑞 over the table 𝑡 . Therefore, the number
of possible plans, denoted as 𝑝𝑙𝑎𝑛𝑠 (𝑞), for a given query 𝑞 is calculated as the product of the possible
pushdown combinations across all tables 𝑡 ∈ 𝑞.
Before getting into the optimization strategies to select the most efficient query plan, we first

elaborate on the implementation of the scan operators.

3.2 Physical Plan
The goal of LLMScan and Filter-LLMScan is to gather structured data from the LLM parameters,
such data is then further processed in the generated logical plan. Galois generates prompts in
natural language to obtain the structured data from the LLM.
The most natural way to implement the scan is to prompt the LLM model to extract the tuples

involved in the given query 𝑞; we call this strategy Table-Scan.
Table-Scan. Given a logical plan 𝑝 and the relational database schema 𝑠 , we employ an iterative
prompting strategy for each LLMScan operator 𝑝 . In the initial interaction, we prompt the LLM
with a request that involves all the attributes of the table at hand. To facilitate structured data
extraction, the prompt instructs the LLM to return the response in JSON format conforming to a
schema derived from 𝑠 . In case of an incomplete JSON response (i.e., missing closing parenthesis),
we use a best-effort approach to repair the JSON structure and parse it; otherwise, we use LLM
prompts to improve model responses using feedback [49]. We skip further invalid JSON responses.
The template prompt for this task is presented in Figure 5. This enforces a structured response that
the system can readily parse and store as tuples for the LLMScan operation. Prompt with feedback
is not reported due to space limit.

Since the initial iteration typically does not retrieve all relevant data, in the following iterations
we report the previous interactions in the context of the LLM (with the generated questions and
responses). We then prompt the LLM to provide additional data, if any exists, using the iterative
prompt in Figure 5. Any non-empty JSON response is parsed, and the extracted tuples are appended
to the existing result set. This iterative process terminates when the LLM returns an empty response
or when an iteration yields no new tuples. Ultimately, the LLMScan operator accumulates the
union of all extracted tuples, which are used in subsequent operations within the algebra tree.
Algorithm 1 reports the pseudocode for the Table-Scan approach for a given table. 𝑔𝑒𝑛𝐹𝑖𝑟𝑠𝑡𝑃𝑟𝑜𝑚𝑝𝑡
and 𝑔𝑒𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑚𝑝𝑡 are auxiliary functions that implement the prompt generation illustrated
in Figure 5 and enables the condition pushdown strategies. 𝑝𝑎𝑟𝑠𝑒 is an auxiliary function that,
according to the table schema 𝑡𝑛𝑎𝑚𝑒 , parses the produced response and returns a set of tuples that
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Algorithm 1: Table-Scan
Input: SQL query 𝑞, table 𝑡𝑛𝑎𝑚𝑒 , db schema 𝑠 , max iter.𝑚𝑎𝑥𝐼𝑡𝑒𝑟 , language model 𝐿𝐿𝑀
Output: tuple set 𝑡

1 𝑖 = 0; 𝑝𝑟𝑜𝑚𝑝𝑡 = ""; 𝑐𝑜𝑛𝑡𝑒𝑥𝑡=[]; 𝑡 = { };
2 while 𝑖 < 𝑚𝑎𝑥𝐼𝑇𝑒𝑟 do
3 if 𝑖 == 0 then
4 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑔𝑒𝑛𝐹𝑖𝑟𝑠𝑡𝑃𝑟𝑜𝑚𝑝𝑡 (𝑡𝑛𝑎𝑚𝑒 , 𝑠 , 𝑞);
5 else
6 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑔𝑒𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑚𝑝𝑡 ();
7 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐿𝐿𝑀.𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝑝𝑟𝑜𝑚𝑝𝑡 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 );
8 𝑝𝑎𝑟𝑠𝑒𝑑𝑇𝑢𝑝𝑙𝑒𝑠 = 𝑝𝑎𝑟𝑠𝑒 ( 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , 𝑡𝑛𝑎𝑚𝑒 , 𝑠);
9 if 𝑛𝑜𝑁𝑒𝑤𝑇𝑢𝑝𝑙𝑒𝑠 (𝑝𝑎𝑟𝑠𝑒𝑑𝑇𝑢𝑝𝑙𝑒𝑠, 𝑡) then
10 break;
11 else
12 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .𝑎𝑑𝑑(𝑝𝑟𝑜𝑚𝑝𝑡 );
13 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .𝑎𝑑𝑑( 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒);
14 𝑡 .𝑎𝑑𝑑𝐴𝑙𝑙 (𝑝𝑎𝑟𝑠𝑒𝑑𝑇𝑢𝑝𝑙𝑒𝑠);
15 𝑖++;
16 return 𝑡 ;

First Prompt: Given the following query, populate the table with actual values. query: select
attributes from table (where condition). Respond with JSON only. Don’t add any comment. Use
the following JSON schema: jsonSchema.

attributes: is the set of attribute names of the table table
table: is the table name
condition: the condition if passed
jsonSchema: is the schema of the table translated in JSON schema

Iterative Prompt: List more values if there are more, otherwise return an empty JSON.
Respond with JSON only.

Fig. 5. Table Prompt Syntax. Text in italic is injected from the given SQL query. Values between parenthesis

are populated only if the condition(s) is given.

are valid against the JSON schema of 𝑡𝑛𝑎𝑚𝑒 . 𝑛𝑜𝑁𝑒𝑤𝑇𝑢𝑝𝑙𝑒𝑠 checks if the current iteration returns
no new tuples. Notice that at each iteration multiple tuples could be extracted.

This strategy addresses both the challenges of retrieving less common values and accommodating
the LLM’s token limitations. However, while intuitive and efficient, retrieving all data within a
single prompt may not yield the most accurate results.

It is well known that LLMs benefit from techniques like Chain-of-Thought (CoT) prompting [63]
to improve reasoning and output quality. Based on this observation, we introduce an alternative
approach for scan, Key-Scan, designed to enhance the accuracy of data extraction from LLMs. In
essence, CoT prompting leverages the power of step-by-step reasoning to improve the results of
LLMs.
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Algorithm 2: Key-Scan
Input: SQL query 𝑞, table 𝑡𝑛𝑎𝑚𝑒 , db schema 𝑠 , max iter.𝑚𝑎𝑥𝐼𝑡𝑒𝑟 , language model 𝐿𝐿𝑀
Output: tuple set 𝑡

1 𝑖 = 0; 𝑝𝑟𝑜𝑚𝑝𝑡 = ""; 𝑎𝑡𝑡𝑟𝐾𝑒𝑦𝑠=𝑡𝑛𝑎𝑚𝑒 .𝑘𝑒𝑦𝑠 ;
2 𝑐𝑜𝑛𝑡𝑒𝑥𝑡=[]; 𝑘𝑒𝑦𝑠= { }; 𝑡 = { };
3 while 𝑖 < 𝑚𝑎𝑥𝐼𝑇𝑒𝑟 do
4 if 𝑖 == 0 then
5 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑔𝑒𝑛𝐹𝑖𝑟𝑠𝑡𝑃𝑟𝑜𝑚𝑝𝑡𝐾𝑒𝑦(𝑡𝑛𝑎𝑚𝑒 ,𝑠 ,𝑎𝑡𝑡𝑟𝐾𝑒𝑦𝑠 ,𝑞);
6 else
7 𝑝𝑟𝑜𝑚𝑝𝑡 = 𝑔𝑒𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑃𝑟𝑜𝑚𝑝𝑡𝐾𝑒𝑦();
8 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐿𝐿𝑀.𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝑝𝑟𝑜𝑚𝑝𝑡 , 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 );
9 𝑝𝑎𝑟𝑠𝑒𝑑𝐾𝑒𝑦𝑠 = 𝑝𝑎𝑟𝑠𝑒𝐾𝑒𝑦𝑠 ( 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , 𝑡𝑛𝑎𝑚𝑒 , 𝑠);

10 if 𝑛𝑜𝑁𝑒𝑤𝐾𝑒𝑦𝑠 (𝑝𝑎𝑟𝑠𝑒𝑑𝐾𝑒𝑦𝑠, 𝑘𝑒𝑦𝑠) then
11 break;
12 else
13 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .𝑎𝑑𝑑(𝑝𝑟𝑜𝑚𝑝𝑡 );
14 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .𝑎𝑑𝑑( 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒);
15 𝑘𝑒𝑦𝑠 .𝑎𝑑𝑑𝐴𝑙𝑙 (𝑝𝑎𝑟𝑠𝑒𝑑𝐾𝑒𝑦𝑠);
16 𝑖++;
17 𝑛𝑜𝐾𝑒𝑦𝑠𝐴𝑡𝑡𝑟𝑠 = 𝑡𝑛𝑎𝑚𝑒 .𝑎𝑡𝑡𝑟𝑠 - 𝑡𝑛𝑎𝑚𝑒 .𝑘𝑒𝑦𝑠 ;
18 for 𝑘𝑉𝑎𝑙 ∈ 𝑘𝑒𝑦𝑠 do
19 𝑝𝑟𝑜𝑚𝑝𝑡𝑇 = 𝑔𝑒𝑛𝑇𝑢𝑝𝑙𝑒𝑃𝑟𝑜𝑚𝑝𝑡 (𝑛𝑜𝐾𝑒𝑦𝑠𝐴𝑡𝑡𝑟𝑠 , 𝑘𝑉𝑎𝑙 , 𝑠);
20 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐿𝐿𝑀.𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝑝𝑟𝑜𝑚𝑝𝑡𝑇 );
21 𝑝𝑎𝑟𝑠𝑒𝑑𝑇𝑢𝑝𝑙𝑒 = 𝑝𝑎𝑟𝑠𝑒 ( 𝑗𝑠𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , 𝑡𝑛𝑎𝑚𝑒 , 𝑠);
22 𝑡 .𝑎𝑑𝑑(𝑝𝑎𝑟𝑠𝑒𝑑𝑇𝑢𝑝𝑙𝑒);
23 return 𝑡 ;

Key-Scan. This operators splits the data collection process into two steps. In the first step, Galois
retrieves all the key values for the table involved in each LLMScan. In the second step, for each key
value retrieved, Galois obtains the values for the other attributes. For some queries, this two-step
approach improves the quality of the result by asking simpler and more specific prompts to LLM.
Algorithm 2 describes the Key-Scan operator. The keys are obtained with an iterative approach like
the one discussed above. All prompts are reported in Figure 6. We use the same JSON response
management as Table-Scan. When all the keys are collected, i.e. the LLM returns no new keys or
Galois reaches the maximum number of iterations, then for each key-value Galois asks the LLM
to populate the remaining attribute values for the tuple. The function 𝑔𝑒𝑛𝑇𝑢𝑝𝑙𝑒𝑃𝑟𝑜𝑚𝑝𝑡 uses the
template prompt (Tuple Prompt by Key) reported in Figure 6 to query the LLM and get the other
attributes for the tuple with the given key value. Notice how, in this second iteration step, Galois
does not use any context to query the LLM; thus, the operations in the second loop (lines 18-22)
are parallelized.

Key-Scan may be seen as an approximation of an index scan in traditional databases. However,
there are several differences. First, the LLM-based Key-Scan does not rely on predefined index
structures, but it dynamically retrieves key and tuples at inference time based only on the contextual
understanding of the LLM. Second, given the LLM context, Key-Scan does not provide the guarantees
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First Prompt Key: List the key of table (where the following condition holds: condition).
Respond with JSON only. Use the following JSON schema: jsonSchema.

key: is the set of attributes that are keys for table table
table: is the table name
condition: the condition if passed
jsonSchema: is the schema of the table translated in JSON schema

Iterative Prompt Key: List more unique values if there are more, otherwise return an
empty response. Don’t repeat the previous values.

Tuple Prompt by Key: List the attributes of the table for keyValue. Respond with JSON only.
Use the following JSON schema: jsonSchema

attributes: is the set of attributes of table table except the key attributes
keyValue: is the value for the attributes key for which we want to populate attributes
jsonSchema: is the schema of table translated in JSON schema.

Fig. 6. Key-Scan Prompt Syntax. Text in italic is injected from the given SQL query. Values between parenthesis

are populated only if the condition(s) is given.

offered by deterministic index scans. Finally, rather than improving efficiency, the Key-Scan aims
at improving results quality.

In the experiments, we limit the number of iterations over the LLMs in both algorithms to reduce
the costs in practice. However, both algorithms can iterate until no more new values are produced.
For Table-Scan, it suffices to check if the tuple set 𝑡 already contains all the new 𝑝𝑎𝑟𝑠𝑒𝑑𝑇𝑢𝑝𝑙𝑒𝑠 ,
while for Key-Scan it suffices to check if all 𝑝𝑎𝑟𝑠𝑒𝑑𝐾𝑒𝑦𝑠 are included in the keys set 𝑘𝑒𝑦𝑠 .

4 Logical and Physical Plan Optimizations
Given a SQL query 𝑞 and schema 𝑠 ,Galois produces multiple plans considering both the application
of condition pushdown and the choice between Table-Scan and Key-Scan. Traditional DBMSs select
the optimal query execution plan by using metadata, such as value frequencies, to minimize I/O
costs and query latency – factors that must be considered also when integrating LLMs in the query
process [37]. However, when querying an LLM we focus our attention mainly on two aspects: 𝑖)
the query results should be complete and accurate, avoiding hallucinations and returning factual
data; and 𝑖𝑖) reducing the I/O costs measured in the total tokens produced during the request and
response iterations. Both those aspects depend on Logical and Physical optimizations.
Logical Optimizations. The first optimization involves the selection of the conditions that should
be pushed down into the LLMScan. A key distinction from traditional DBMS lies in the absence of
indexes and histograms, which typically guide the selection of optimal filter conditions to minimize
data retrieval and processing costs. In our LLM-driven context, this translates to a lack of guidance
in determining the most effective conditions to include in Filter-LLMScan operator for minimizing
token usage. One natural strategy for minimizing token consumption is to push down all filter
conditions into the LLMScan operator. While this approach effectively reduces the required tokens,
it does not always produce the most accurate results. In certain cases, pushing down only a subset
of conditions improves data quality. This is due to the tendency of LLMs to hallucinate when
answering elaborate questions that demand complex reasoning. Conversely, simpler tasks, such as
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filtering on a single condition, reduce processing complexity for the LLM and generally lead to
more reliable results.

Unlike traditional optimization techniques, we leverage the LLM itself as a source of information
for estimating the most efficient logical plan: given the schema tables 𝑠 and the query 𝑞, we use the
LLM in a classification task [25]. We prompt the LLM to return two confidence levels (“high” or
“low") for each of the atoms present in the WHERE clause. All the atoms with confidence equal to
high are pushed down into the LLMScan. To manage the potentially exponential growth in the
number of generated plans, which scales with the number of predicates in the WHERE clause,
our implementation considers only pushing down single predicates into the LLMScan operator. In
particular, if the LLM returns “high” only on a single atom, Galois produces a single condition
pushdown. If the LLM returns “high” for more conditions, we push down all the conditions in the
WHERE of 𝑞. Otherwise, Galois produces a logical plan without any pushdown. The same process
leads to LLM-driven estimates of the traditional selectivity for a condition; however, we show in the
experiments that decisions driven by confidence lead to better results in terms of output quality.
With open LLMs, an alternative approach to optimize logical plans involves post-execution

analysis that estimates the confidence of the model from its final layer [61]. This method entails
executing all potential plans to analyze the outputs and determine the best pushdown. While
post-execution may give better confidence estimates, it is not reasonable in terms of cost to execute
every possible plan. Consequently, we prioritize pre-execution confidence estimation over attributes
during catalog construction. This approach allows us to preemptively select the most promising
logical plans based on the LLM’s confidence feedback, thus achieving an effective balance between
cost and result quality.
Physical Optimizations. For a SQL query 𝑞, the next main step in Galois is the choice of the
Scan strategy to execute. As we discussed in Section 3.2, we can execute Table-Scan or Key-Scan.
Since Key-Scan uses the chain of thoughts, it is supposed to be the more accurate way to execute
the Scan operation. However, in certain cases, providing the LLM with additional context regarding
the table’s structure and content, as in Table-Scan, enhances the quality of the retrieved data. By
choosing the right physical scan operator is therefore possible to improve the result data quality.
For this goal we rely again on metadata generated by the LLM itself.
Given a query 𝑞 we again estimate the confidence of the model in returning factual data in the

Scan operation. To do so we prompt the LLM to gather a confidence value between 0 and 1.
LLMs have been recognized for overestimating their confidence in returning their knowledge [66].

To overcome this internal bias, we use the following approach: firstly, we ask the LLM to return
its confidence 𝐿𝐿𝑀𝑐𝑜𝑛𝑓 (𝑘𝑒𝑦𝑠 |𝑐𝑜𝑛𝑑𝑠) in retrieving all the key values, by providing as context the
query 𝑞, the schema 𝑠 , and the set of conditions 𝑐𝑜𝑛𝑑𝑠 for the pushdown. Then we compute how this
confidence is propagated to the involved attributes in the SELECT of 𝑞. We compute this confidence,
𝑐𝑜𝑛𝑓 (𝑞) as:

𝑐𝑜𝑛𝑓 (𝑞) = 𝐿𝐿𝑀𝑐𝑜𝑛𝑓 (𝑘𝑒𝑦𝑠 |𝑐𝑜𝑛𝑑𝑠)𝑛 (3)

where 𝑛 is equal to the number of attributes in the SELECT of 𝑞.
This metric aims to assess how errors, caused by the model’s lack of confidence in retrieving key

values, propagate through the final attributes involved in the query 𝑞.
To leverage the strengths of both Key-Scan and Table-Scan, we introduce a confidence threshold,

𝜏 . If the LLM’s confidence score, 𝑐𝑜𝑛𝑓 (𝑞), for a given query 𝑞 exceeds 𝜏 , we opt for the Key-Scan
approach. Conversely, if 𝑐𝑜𝑛𝑓 (𝑞) falls below 𝜏 , we employ the Table-Scan operator. The rationale
is that when the model’s confidence is low, the accuracy of key retrieval in Key-Scan may be
compromised. In such scenarios, Table-Scan provides a more reliable alternative by incorporating
additional context from other attributes, potentially improving the quality of data extraction. The
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drawback of this approach is that it requires an extra interaction with the LLM, increasing the total
costs measured in the number of tokens.
Cost Optimizations. To further optimize token usage and enhance the efficiency of LLM inter-
actions, we introduce a mechanism for selective attribute retrieval. This optimization stems from
the observation that many queries only require a subset of the available attributes in a table. By
analyzing the query structure and identifying the specific attributes needed, we can restrict the
LLM’s response to include only the relevant attributes, while retaining the schema 𝑠 within the
prompts to provide comprehensive context to the LLM. However, we explicitly request to output
data only for the relevant attributes, ensuring focused and efficient retrieval. This strategy directly
reduces the number of tokens generated by the LLM in its response, minimizing computational
overhead and response time. The optimization is particularly valuable when dealing with wide
tables containing numerous attributes, where the cost for irrelevant data retrieval is higher.

5 Experiments
We organize our evaluation around five main questions.
(1) Does Galois generate higher quality results when processing SQL queries compared to directly

prompting the LLM with a natural language question or simply executing the SQL query?
(2) Are the proposed optimizations effective with respect to both the quality of the results and the

associated costs?
(3) What affects the quality of the results? The size of the LLM parameters? The topic of the query?

Or is it the complexity in terms of SQL constructs?
(4) What are the costs associated with using Galois, and what latency can be expected when

employing our proposed approach?
(5) Can the proposed framework be effectively combined with in-context learning techniques, such

as those employed in RAG, to enhance performance?
Before answering such questions, we present the experimental setup and the proposed baselines.

Experimental Setup. Galois is implemented in Java and uses as underlying LLM two different
families: GPT [44] and LLaMa3 [18]. In particular, for the former, we used the GPT 4o-mini
model, and for the latter Llama-3.1-8B and Llama-3.1-70B, hosted on the Together AI platform
(https://together.ai). We set the temperature parameter of the LLMs to zero for deterministic results.

Table 2. Statistics for the datasets in the experiments. IK stands for querying the Internal parametric Knowledge
and MC for querying the documents passed in theModel Context.

Dataset Dataset # of Avg. expected Type
name source queries cells

Flight Spider [68] 6 267.5 IK
Geo Spider [68] 32 22.8 IK

World Spider [68] 4 33.2 IK
Movies IMDB 9 54.7 IK

Presidents Wiki 26 42.2 IK
Premier BBC 5 57.8 MC
Fortune Kaggle 10 7.9 MC

Geo-Test Spider [68] 10 24.1 IK
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For our evaluation, we use seven datasets, varying in the number of attributes, tables, and
cardinality. Table 2 provides an overview of these datasets, including the number of queries in each
and the expected average number of output cells per query.

We divide the datasets into those that query the internal parametric knowledge (IK) in the model
and those that are crafted to contain information that cannot be in the LLM and therefore the
relevant documents are passed as prompt in the model’s input context (MC).

For the first group, the IK scenario, we selected five datasets containing factual information, with
pre-existing ground truth. Three come from the Spider [68] corpus. Each example consists of an NL
question, the expected SQL query, and the tables with data. We exclude from our evaluation queries
related to data contained only in Spider.Movies is extracted from IMDB for which we manually
write nine NL questions and SQL queries. Presidents is a web-scraped dataset from Wikipedia
about government presidents, for which we manually write NL questions and SQL queries.
In the second group (MC), there are two datasets that we feed to the models in their context at

query execution time. We crafted Premier and Fortune to be certain that their information cannot
be stored in the LLMs at the time we run the experiments, since all events in these datasets occurred
in 2024 and the LLMs used in our evaluation were trained up to December 2023. Premier contains
data from the first six match-days of the 2024-2025 Premier League season, scraped from BBC News.
Fortune, downloaded from Kaggle, includes information about the 2024 Fortune 500 companies.
These datasets serve in evaluating Galois’s performance within the context of applications such as
RAG, where information external to the LLM’s knowledge is retrieved.
Finally, Geo-Test is a dataset that we use for calibrating threshold 𝜏 for physical optimization

(Section 4).
Metrics. Each experiment comprises a query 𝑞 and a database 𝑑 . We can compute the expected
tuple set by executing 𝑞 over 𝑑 . Our goal is to compare the expected tuple set (𝑡𝑒𝑥𝑝 = 𝑞(𝑑)) with
the tuple set produced executing the same query 𝑞 on Galois (𝑡𝑎𝑐𝑡 ).
As quality metrics to compare those two sets of tuples, we adopt metrics used to benchmark

SQL queries on LLMs [6, 46]:
• F1-Cell: we compute the F1 score among the set of cells in 𝑡𝑎𝑐𝑡 w.r.t the set of the cells in 𝑡𝑒𝑥𝑝 .
The rationale of this metric is to evaluate the results considering only the cell values.

• Cardinality: we compute the ratio between the size of 𝑡𝑎𝑐𝑡 w.r.t the size of 𝑡𝑒𝑥𝑝 . The rationale
of this metric is to evaluate the capability of Galois in returning the right cardinality of the
results. In particular, to report a value between 0 and 1, the cardinality quality measure is
measured as:𝑚𝑖𝑛(𝑠𝑖𝑧𝑒 (𝑡𝑒𝑥𝑝 ), 𝑠𝑖𝑧𝑒 (𝑡𝑎𝑐𝑡 ))/𝑚𝑎𝑥 (𝑠𝑖𝑧𝑒 (𝑡𝑒𝑥𝑝 ), 𝑠𝑖𝑧𝑒 (𝑡𝑎𝑐𝑡 )).

• Tuple Constraint: we measure the fraction of the tuples in 𝑡𝑒𝑥𝑝 that is present in 𝑡𝑎𝑐𝑡 , where
the tuple comparison is a tuple level. Tuple Constraint is equal to 1.0 if 𝑡𝑒𝑥𝑝 and 𝑡𝑎𝑐𝑡 have
the same schema, the same cardinality, and the same values in the cells. This metric is stricter
than F1-Cell, as it requires not only that the same values appear but also within the same
corresponding tuples.

• AVG-Score: the F1-Cell and Cardinality are soft metrics, that do not consider the tuple
schema at all, while Tuple Constraint is a hard metric that considers only the tuples with
the exact schema. To combine these aspects in a single metric, which is easier to compare, we
introduce the AVG-Score that is the avg. of the previous three metrics and can be used as a
proxy to summarize all the other metrics in a single number.

As F1-Cell and Tuple Constraint rely on exact equality comparisons, we normalize cell values
in both 𝑡𝑎𝑐𝑡 and 𝑡𝑒𝑥𝑝 before evaluation. This normalization step helps prevent false negatives that
might arise from variations in data representation, such as “1K” versus “1000”. In addition, as the
LLM could generate values that are similar to the expected but not the same even though they
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represent the same real entity, we use similarity for comparisons. This allows us to match cells like
“Bill Clinton” with “Bill J. Clinton”. For the string similarity, we use the Edit Distance [43] using a
threshold of the 10% w.r.t. the expected cell value. For short strings, we are restrictive, allowing
only a few characters of difference, while for long strings we are more permissive in the number of
different characters. We use simple and efficient comparisons, a more sophisticated implementation
for matching tuples could resort to Entity Resolution methods [9, 45, 55] or tuples matching [24].
For the actual numerical values, we allow a 10% difference w.r.t. the expected numerical value.

As cost metrics we use:
• # TOKENS: the total number of tokens used to prompt the LLM and generated by the LLM for
a query 𝑞.

• TIME: the total time in seconds spent from sending the query 𝑞 to Galois and getting the result.
Both values are part of Galois’s output for every executed query.
Baselines. We consider four baselines :
• NL. Directly prompting the LLM with a natural language question and getting structured data
as a response.

• SQL. Directly prompting the LLM using a SQL query and getting structured data as a response.
• Galois𝑊𝑂 [53] (Without Optimizations). Querying LLMs with a reasoning multi-step approach
with a traditional DBMS and specialized LLM operators. Galois𝑊𝑂 first retrieves all the keys
(without any push-down optimization) and then it populates the tuple cell by cell.

• Palimpzest (PZ) [37] is a declarative system designed to execute AI workloads; it is used for
experiments involving in-context querying.

After obtaining the initial response from each baseline model, we prompt it to generate additional
values, iterating until no new tuples are produced. To ensure a fair comparison with our system,
we use the same prompt structure, providing the natural language sentence or SQL query and
requesting a JSON formatted response adhering to the generated JSON schema. These baselines,
employed to address our first research question, aim to demonstrate the limitations of existing
approaches when handling complex queries.
To demonstrate the effectiveness of decomposing queries operator and the impact of the opti-

mizations detailed in Section 4, we introduce three variants of our system:
• Galois 𝑆 simulates a database optimizations that pushes down the most Selective condition
and employs a Table-Scan strategy. To pick the condition, we prompt the LLM to assess the
selectivity of the conditions based on its internal knowledge, returning a value of "lower" or
"higher". If only one condition is classified as "higher", we push it down; if more than one
conditions are classified as "higher", we push down all the conditions; otherwise we do not
push any condition.

• Galois 𝐴 simulates a database optimization that pushes down All attributes and employs a
Table-Scan strategy.

• Galois 𝐹 represents the Full system with all the presented optimizations in Section 4, with both
logical and physical optimizations based on the LLM confidence.

5.1 Quality of the Results

Exp-1. Overall Evaluation. In this experiment, we obtain structured data from the internal
parametric knowledge of the LLM. We evaluate the performance of the variants of Galois against
the NL, SQL, and Galois baselines, using LLaMa 3.1 70B. All systems are tested on the datasets
described in Table 2, excluding Premier and Fortune, which are analyzed separately in Section
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5.3. A threshold 𝜏 = 0.6 is used for Physical Plan selection, with the calibration process detailed in a
dedicated experiment.

Table 3. Results for Galois variants and the three baselines. In bold (italic) the best (2
𝑛𝑑
) result for each

metric.

Metric NL SQL Galois𝑊𝑂 Galois 𝑆 Galois 𝐴 Galois 𝐹

F1-Cell 0.237 0.431 0.518 0.480 0.543 0.563
Cardinality 0.462 0.659 0.691 0.655 0.799 0.835
Tuple Constr. 0.065 0.351 0.389 0.365 0.448 0.464
AVG-Score 0.254 0.481 0.531 0.500 0.592 0.622
#Tokens (M) 0.83 0.33 19.71 0.96 0.95 1.72
Avg Time 120 61.4 1460 130 120.5 47.4

In the results for the quality metrics shown in Table 3, NL exhibits lower performance due
to the inherent ambiguity of natural language, which can lead to misinterpretation by the LLM.
This is evidenced by the higher rate of hallucinations and data repetitions observed in the NL
approach, as reflected in the low Cardinality. Even when the LLM gets the query’s intent, with
the NL approach it struggles to express the extracted information in a structured format, leading to
incomplete or poorly structured tuples, as indicated by the low Tuple Constraints.
SQL’s declarative nature removes such ambiguities, but the approach fails with more complex

queries, for example, aggregate queries, where the reasoning becomes more complex. Splitting the
reasoning using logical operators with Galois𝑊𝑂 , Galois 𝑆 and Galois 𝐴 improves the quality
w.r.t. NL and SQL. However, traditional DBMS optimizations (represented by Galois 𝑆 and Galois
𝐴) do not lead to the best quality results. i.e., pushing down the most selective attribute (Galois 𝑆 )
leads to suboptimal performance. By prioritizing the most selective attribute, the LLM may operate
on less reliable information. This can result in the omission of crucial data, as evidenced by the
lower Cardinality metric achieved by Galois 𝑆 . Galois 𝐹 reports the highest performance, with
up to 144%, 29%, and 17% AVG-Score improvement w.r.t. NL, SQL, and Galois𝑊𝑂 , respectively.
From the point of view of the total costs expressed in # TOKENS, Galois𝑊𝑂 has the highest

cost due to the retrieval of the values for the tuples that requires an LLM request for every cell. The
cheapest solution in terms of produced tokens is SQL, while our system requires more tokens in the
multiple steps to execute its plans. Overall Galois presents a good trade-off between the quality of
the produced results and the costs of retrieving the data. Indeed, the cheapest solution with high
quality is Galois 𝐴 (always second in quality metrics), while Galois 𝐹 obtains the highest quality.

Finally, despite its high cost in terms of tokens, Galois 𝐹 demonstrates the fastest result retrieval,
primarily due to the use of the Key-Scan operator. When Galois employs Key-Scan, retrieving the
keys requires less time than fetching an entire tuple. Additionally, once the keys are obtained, the
remaining values of the tuples can be retrieved in parallel.
In the remaining, we do not report results for Galois 𝑆 since it shows lower quality than the

other variants.
Takeaway for question (1): Galois increases the accuracy and completeness of SQL query results
compared to natural language and SQL baselines with 144% and 29% improvement, respectively.

Exp-2. Effectiveness of the Optimizations. We adopt a controlled approach to analyze the
effectiveness of the proposed optimizations. We fix one optimization choice and investigate the
impact of varying the others. This allows us to isolate the effects of individual optimizations and
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understand their contributions to the overall performance. We use the GEO dataset as it has the
most queries. We use LLaMa 3.1 70B as LLM to query.
Physical Optimization.We start fixing the pushdown and, for each query 𝑞 in GEO, we execute

it with both physical operators, i.e., Table-Scan and Key-Scan. We then measure how many times
Galois 𝐹 returns the optimal physical plan, i.e. the one with the highest AVG-Score between the
two Scan strategies. The estimation of the correct physical plan is correct in 75% of the cases.
Logical Optimization. Since the number of combinations with all the possible pushdowns can

be large, to save costs in querying the LLMs, we fix the physical plan by choosing to run only
the Table-Scan, also as it is cheaper in terms of tokens. Then, for each query 𝑞 with at least two
conditions in theWHERE clause, we execute three different strategies involving the pushdown:
1) NO-PUSH, i.e. we execute the query without pushdown of any conditions into the LLMScan
operator. This strategy represents the strategy with the highest cost since it continues to query the
LLM until no new tuples are generated; 2) Galois 𝐴, i.e., we push down all the conditions in 𝑞 into
the LLMScan. This strategy represents the strategy with the lowest cost since it should reduce the
number of produced results and represents a classical DBMS strategy; and 3) Galois 𝐹 , that uses
the Logical Optimization presented in Section 4.

Table 4. Impact of the Logical Optimization. In bold the best result per metric.

Metric NO-PUSH Galois 𝐴 Galois 𝐹

AVG-Score 0.637 0.598 0.708
# TOKENS in M 0.175 0.097 0.092

Results with the AVG-Score and number of tokens are reported in Table 4. Without any logical
optimization is possible to reach a good level of quality, but it costs in terms of tokens, NO-PUSH
is the one with the highest costs. Galois 𝐴 reduces the number of generated tokens, but it shows
an impact in terms of quality since some tuples that should be in the expected output are filtered
out directly by the LLM due to complex reasoning. Finally, Galois 𝐹 represents the good trade-off
between the obtained quality and the number of generated tokens.
Takeaway for question (2): Galois’s optimizer selects the best physical plan in 75% of cases and
logical optimization identifies the plan with best quality results and lowest token cost.

5.2 Ablation Study

Exp-3. Impact of LLMs parameters. We execute Galois on different LLMs. We use GPT-4o Mini
and LlaMa 3.1 with 8B and 70B parameters. We execute Galois over the same datasets used for
Exp-1. To compare the different models we use the AVG-Score.

Table 5. AVG-Score of different LLMs. In bold the best results.

LLM NL SQL Galois𝑊𝑂 Galois 𝐴 Galois 𝐹

GPT-4o mini 0.258 0.240 0.456 0.457 0.468
LLaMa 3.1 8B 0.230 0.372 0.375 0.520 0.528
LLaMa 3.1 70B 0.254 0.481 0.531 0.592 0.622

Results in Table 5 show that GPT-4o Mini and LlaMa 3.1 8B have comparable results. Increasing
the size of the parameters to 70B improves the overall quality for two reasons. The first is that
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Fig. 7. Precision and Recall for Galois when filtering out results varying the threshold on the LLM output

logprob.

models with fewer parameters store less factual data than larger models. The second is related
to the complexity of the prompt, when Galois variants push down multiple conditions, smaller
models may fail in retrieving the data. Variants of Galois show close results with smaller models,
while the differences in terms of quality between the two variants increases with the bigger LLM.
As LLaMa 3.1 70B returns the best results, we use it in the following experiments.

Open LLMs also enable the analysis of the output of the model to estimate its confidence over
the results. A possible approach is to exploit the log probabilities (logprobs) returned by the LLM
for each generated token, i.e., the natural logarithm of the softmax output of the model’s final
layer [61]. For each tuple, we compute the mean of the probability of the tokens associated with
each cell [21]. We then set a threshold 𝑝 to filter out the tuples with mean logprob below it. Figure 7
reports the average Precision and Recall metrics (as in the F1-Cell) for the datasets from Exp-1.
As expected, increasing 𝑝 improves the precision while the recall decreases.
Exp-4. Impact of retrieved values. While in a DBMS the quality does not depend on the queries,
the values involved in the queries play a role with LLMs. We show the impact of the values over
the same queries, i.e., same logical plan except for the values in the conditions. Table Presidents
contains data about world presidents. We collect 13 queries about USA’s presidents and the same 13
queries about Venezuela’s presidents, i.e., we change the country from “United States” to “Venezuela”.
Moreover, queries involve the temporal aspects, with some queries asking about historical data
and other involving more recent information. Data about Venezuela cover the years from 1830 till
today, while for USA goes from 1789 till today. We split the queries into three categories: All-Time
covering all dates, Recent for queries that cover data from late 1900 to today, and Past for queries
for data till the late 1900.

Table 6. Quality Results of in terms of AVG-Score in comparing the rarity of the values. In bold the best

results.

Dataset NL SQL Galois𝑊𝑂 Galois 𝐴 Galois 𝐹

Presidents-Usa 0.263 0.546 0.733 0.782 0.862
Presidents-Venezuela 0.203 0.285 0.411 0.425 0.482

Table 6 reports the quality in terms of AVG-Score. Presidents-Usa contains the queries for
the “United States” and Presidents-Venezuela the queries for the “Venezuela”. All approaches
suffer from the “popularity” of the data in the training set. It is more likely to obtain high-quality
results when asking for more popular data, i.e., data that probably has been seen many times in the
LLM’s training. However, even for non-popular information, Galois significantly outperforms the
baselines.
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Table 7. Quality Results in terms of AVG-Score in comparing the temporal values. In bold best results.

Dataset NL SQL Galois𝑊𝑂 Galois 𝐴 Galois 𝐹

Recent 0.209 0.398 0.531 0.584 0.623
Past 0.171 0.305 0.469 0.518 0.548

All-Time 0.325 0.562 0.703 0.722 0.857
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Fig. 8. Result quality w.r.t query complexity.
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Fig. 9. Costs w.r.t query complexity. Galois𝑊𝑂 (not

reported) consumes 8.5M to 19.7M tokens.

Finally, Table 7 presents the quality results of the split datasets over time. We see how query-
ing values about recent data impacts the quality of the results. This is because the LLMs have
been trained on much more data about recent events w.r.t past events. Also in this case, Galois
outperforms the baseline in all cases.
Exp-5. Impact of Complexity in the Query. We categorize the queries executed in Exp-1 into
six categories with incremental complexity. SP2 denotes queries with Selection and Projection with
at most two conditions, SP2> those with more than two conditions, Dist queries with DISTINCT,
Aggr queries with aggregate functions, G/O queries with group by or order by, and Join queries
with joins. Figure 8 reports how AVG-Score is impacted by the complexity of the queries for all
systems. Increasing the complexity of the queries decreases the quality. With aggregate functions,
group/order by and joins, the LLMScan must retrieve all the relevant data to get the correct results.
This classes of queries are harder because even a single incorrect or missing value leads to a
mismatch with the ground truth.

Table 8. Quality results in terms of AVG-Score with different selection conditions in theWHERE clause. In

bold (italic) the best (2
𝑛𝑑

best) result for each scenario.

Condition(s) NL SQL Galois𝑊𝑂 Galois 𝐴 Galois 𝐹

1 textual 0.319 0.600 0.566 0.674 0.699
>1 textual 0.283 0.565 0.577 0.647 0.695
>1 text., 1 numer. 0.264 0.527 0.528 0.619 0.633
>1 text., >1 numer. 0.222 0.384 0.479 0.530 0.539
1 numerical 0.260 0.545 0.486 0.500 0.517
>1 numerical 0.223 0.455 0.532 0.459 0.512

Results in Fig. 8 show that Galois is very robust w.r.t. the complexity of the queries. This is
expected as its output quality depends only on the retrieved values in the LLMScan. To surface what

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 181. Publication date: June 2025.



181:20 Dario Satriani, Enzo Veltri, Donatello Santoro, Sara Rosato, Simone Varriale, and Paolo Papotti

00.10.20.30.40.50.60.70.80.91
0.3

0.4

0.5

0.6

Table-Scan < 𝜏 < Key-Scan

AV
G
-S
co

re

GPT-4o Mini LlaMa 8B LlaMa 70B

×

××

Fig. 10. 𝜏 selection, × marks the optimal 𝜏 for each LLM.

affects the quality of the scan operator, we focus on the impact of the conditions in theWHERE
clause. We categorize the queries by the type (textual vs numerical) and number of conditions.
Results in Table 8 show that textual conditions are easier for all approaches. Galois variants
outperform all baselines when a textual condition is present and Galois 𝐹 has the second highest
quality in cases with numerical conditions only.

Takeaways for question (3): Galois on LLaMa 3.1 70B scores higher than on smaller models for
its ability to store more factual data and execute complex pushdown operations. This suggests
Galois’s potential to further improve outcomes alongside the ongoing release of new LLMs. The
quality of results is impacted by both the popularity and the temporal relevance of query values,
while results are stable w.r.t. the complexity of SQL scripts.

Galois’s top performance in terms of quality come with a cost in terms of tokens consumed by
the LLM. Results in Figure 9 show that Galois collects more data from the LLM to get an answer
compared to NL and SQL. However, we do not report Galois consumption in the figure, as it
consumes ≈11x the amount of tokens of Galois.
Takeaways for question (4): Galois has higher token costs due to its multi-step execution plans
compared to the straightforward SQL approach, while is cheaper w.r.t. the multi-step baseline
Galois. While Galois 𝐹 provides the highest quality results and the fastest retrieval time, it results
in increased token usage. Galois 𝐴 offers a better trade-off between cost and quality.

Exp-6. Evolution of Prompt Size. The goal of this experiment is to measure the impact of the
increasing size of the prompt across iterations in Galois. Our iterative Scan operator incrementally
increases the prompt passed in the LLM context during execution, as at each iteration we pass the
tuples (ids) previously retrieved. To measure the benefit of our proposal, we include a Galois’s
unoptimized variant, Galois ∅ , which uses Table-Scan without push-down optimizations. As
metrics, we measure the average total number of input tokens for all iterations per query, the
average number of iteration per query, and the number of queries that go over 10 iterations to
collect the data.

Table 9. Prompt size without push-down (Galois ∅ ) and with Galois’s optimizations.

Galois ∅ Galois 𝐴 Galois 𝐹

Avg # Input Tokens All Iters 63405 5137 2930
Avg # Iters per qery 6.82 4.22 3.92
#Queries with 10+ Iters 37 1 4
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Fig. 11. AVG-Score Comparison for Galois 𝐴 and Galois 𝐹 against the optimal plans across all datasets.

Table 9 report the results for all queries from Exp-1 with the three Galois variants. Results show
that push-downs significantly reduce the size of the prompt across iterations. Both Galois 𝐴 and
Galois 𝐹 require a much smaller context compared to Galois ∅ . Notably, optimized version of
Galois reach the number of iterations set by the𝑚𝑎𝑥𝐼𝑡𝑒𝑟 parameter (10 in prior experiments) for
only five queries, in contrast with the 37 ones of Galois ∅ . For these five queries, we experimentally
evaluate higher𝑚𝑎𝑥𝐼𝑡𝑒𝑟 values and observe diminishing returns, with an improvement in AVG-
Score of 0.06% at𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 20 and an increment of consumed #TOKENS of 24%.
Exp-7. Threshold Setup. To calibrate the threshold 𝜏 for the Plan Selection, i.e. to choose when
using Table-Scan or Key-Scan, we start with the highest value for 𝜏 , i.e. we execute always Table-Scan.
Then we lower the values for 𝜏 . We stop when the AVG-Score does not increase anymore. The
rationale of this approach is to find the best 𝜏 that helps in using the Key-Scan only when we can
improve the quality, otherwise, use Table-Scan to reduce the costs. The calibration procedure is
executed for each LLM. We use a golden dataset to calibrate the threshold 𝜏 , where we know the
expected query results. To not bias the chosen 𝜏 , we use GEO-Test that contains queries over
different topics (mountains and states) and different typologies of queries - it does not contain any
query in the test datasets. Figure 10 reports how the AVG-Score changes with different thresholds.
For LlaMa 3.1 70B, the best 𝜏 is 0.6, and this is the value used for it on the experimental evaluation.
We got 0.4 and 0.8 for Llama 3.1 8B and GPT-4o mini, respectively. Such thresholds depend only
on the LLM and are consistent across various tables, datasets, and submitted queries.
Exp-8. Errors w.r.t. the optimal plan. For each dataset and for each query, we generate all the
possible logical and execution plans to identify the Optimal plan, i.e., the one with the highest
AVG-Score. Results in Figure 11 report the AVG-Score on All the queries in the dataset, and
we also break the AVG-Score for each dataset. We observe how Galois 𝐹 overall is the closest
to the Optimal if we consider All datasets. Only for Flight, Galois 𝐹 has a lower AVG-Score
w.r.t Galois 𝐴. Analyzing the errors of Galois, we discover that are essentially due to the error in
estimating the right Physical Plan; indeed in Exp-2 we report an accuracy of 75%. For theWorld
dataset, Galois produced the optimal plan for all its queries.

5.3 In-ContextQuerying
In the previous experiments, we used the LLM to answer queries based on its inherent internal
knowledge. However, our system extends beyond this. It can be seamlessly integrated with other
frameworks, such as Retrieval Augmented Generation (RAG), which combines the strengths of
traditional information retrieval systems with the generative capabilities of LLMs. This experiment
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aims to demonstrate that Galois’s optimizations significantly improve the accuracy and efficiency
of LLM-driven data retrieval also in the setting of in-context learning.
To evaluate our framework’s effectiveness in handling novel information, we use the Premier

and Fortune datasets, comprising 60 and 500 textual documents respectively, specifically designed
to contain information unseen by the LLM models. These datasets are processed using a RAG
engine implemented with LangChain4j.

Each document is divided into text segments with a size of 128 tokens for Premier and 400 tokens
for Fortune. Segments are encoded using the “WhereIsAI/UAE-Large-V1” model [34] and stored in
a vector database. The prompt is then fed at runtime with the query schema and the 50 most relevant
segments retrieved from the vector store based on embedding distance. All models are fed with the
same chunks from the retriever. As LLM we use LlaMa 3.1 70B. We compare Galois with the other
baselines and we measure the AVG-Score for the quality and the # Tokens for the costs. For these
experiments, we compare our system also against Palimpzest [37], which shares our data extraction
use case, but it differs significantly in design and execution. While our system uses a declarative
SQL-based interface to define operations, Palimpzest adopts an ETL-like, procedural approach,
requiring users to explicitly define data transformations and model invocations as a sequence of
function calls in Python. This distinction has practical implications. Palimpzest provides granular
control over individual processing steps, which can be advantageous in specialized use cases but
comes at the cost of increased user effort and complexity. In addition, it also offers advanced
features such as support for extracting and processing diverse documents. For the purpose of this
comparison, all queries in our experiments have been rewritten using Palimpzest’s API, using
functions such as filter, convert, and execute, to implement the SQL execution; we use its optimization
policy MaxQualityAtFixedCost, as suggested by the authors.

Table 10. Quality Results and Costs for RAG application over Premier and Fortune datasets. In bold the best

results.

Metric NL SQL Galois 𝐴 Galois 𝐹 PZ

AVG-Score 0.389 0.520 0.628 0.711 0.720
# TOKENS in M 1.448 1.625 1.478 1.598 13.818

Results are presented in Table 10. NL and SQL exhibit again the lowest performance due to the
inherent challenges posed by complex queries. The unstructured nature of natural language in NL
and the rigid structure of SQL restrict the LLM’s ability to interpret and respond to intricate queries
accurately. Both versions of Galois perform better than NL and SQL, with Galois 𝐹 achieving
higher quality scores. Palimpzest achieves the highest quality performance, although very close to
Galois 𝐹 , but with a cost that is approximately 11 times higher.
Analyzing the token count reveals that Palimpzest exhibits the highest costs because each

document is processed through multiple steps, requiring repeated interactions with LLMs. In
contrast, in Galois only the scan operator processes text (once per query execution) and scan
is the only operator that interacts with the LLM - this design significantly reduces the overall
computational cost.

Takeaways for question (5): Galois integrates effectively with in-context learning like RAG, deliver-
ing comparable quality performance to the best baseline while achieving significant token savings.
Moreover, Galois only requires users to write SQL scripts.
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6 Related Work

From NL Questions to SQL Scripts. NL questions are popular as users seek intuitive ways to
interact with systems [33, 51]. With the rapid advancements in text-to-SQL technologies, these
NL queries can be transformed into SQL scripts [6, 30, 62]. Despite these advancements, Galois
assumes SQL scripts as input, recognizing their superior expressiveness and precision in specifying
user needs.
StructuredData Extraction.A common approach tomanage unstructured data involves extracting
it into tabular form for subsequent querying. This method is employed by IE extractors [15, 69]
and text-to-table systems [65]. However, using an LLM to create complete tables upfront can be
costly and prone to errors, especially with large and complex datasets. Some works assume a set of
documents, passed in the model’s context, and extract a table where each document corresponds
to a single row [3]. Other systems derive extraction scripts to enable effective and efficient table
population [36]. Our proposal can be adopted in these solutions.
Unlike IE methods, LLMs can synthesize information not explicitly covered in the input docu-

ments [8]. For example, an LLM might deduce that A is the grandchild of C from texts outlining
parent relationships between (A, B) and (B, C). However, this ability also brings a risk of inaccuracies
as LLMs do not have a mechanism for recognizing when they lack the necessary information [5].
LLMs and RAG. LLMs are gaining significant attention for their use in data querying and retrieval
tasks [27]. RAG techniques enhance LLM capabilities by integrating retrieval mechanisms to
pinpoint relevant data segments, better accommodating them within LLM constraints in terms of
context windows [19, 32]. In our setting, a notable advantage of passing documents in the LLM
input context is the ability to query them, even if they were not part of the LLM’s pre-training data,
allowing to query up-to-date or proprietary content. Our method enhances the LLM’s results even
when querying new and previously unseen documents.
Databases and LLMs.While significant work explores the integration of LLMs into various aspects
of data management, such as query rewriting, data cleaning and database tuning [13, 17, 31, 38, 59,
71], our focus diverges. We are not concerned with using LLMs for such tasks, instead, Galois is
designed to optimize the execution of SQL scripts over LLMs.
The evolution of DBMSs to support multiple modalities –such as text, images, and videos– is

leading to the development of SQL-like interfaces across diverse data types [14, 29, 40, 53, 58, 60, 70].
As these systems use declarative querying primitives to process data with LLMs, our contributions
are orthogonal to these solutions. The optimization techniques in Galois can be integrated with
such frameworks, providing improved efficiency in query execution.

Other recent declarative systems optimize AI-powered analytical queries by balancing runtime,
cost, and data quality [37, 48, 54]. While they optimizes a range of tasks involving unstructured
and structured data, most of them take an ETL-like approach, therefore our work can integrate
into such frameworks to enhance their efficiency, e.g., by dynamically acquiring metadata during
query execution for cost-effective query optimization.
Factual Knowledge in LLMs. While LLMs encapsulate extensive information, their accuracy,
particularly concerning less predominant facts, is inconsistent [57]. Additionally, LLMs can present
overconfident responses even when uncertain, a challenge partly addressed through recalibrating
confidence scores [10]. Question answering over the LLM pre-training information encounters
the same challenges and it also benefits from advancements in confidence alignment and model
factuality.
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Query Optimization. Our approach can be extended to adopt techniques in optimizing plans in
the presence of opaque user-defined function predicates (UDFs), e.g., when a predicate cardinality
is unknown [26]. More ideas can be taken from the optimization of complex dataflows with
UDFs [2, 52]. In the lens of optimizing filters over sampling operators, LLM inference can be
seen as sampling from an infinite database, with parallels in sampling-based query optimization
techniques [64]. These connections present an opportunity to refine our operators and optimization
strategies further, ensuring more robust and efficient query processing.
Crowdsourcing. In querying LLMs, there are analogies with DBMS extensions involving crowd
workers to answer open world questions [22]. Techniques proposed for crowd databases, such as
redundancy and validation questions, are also studied to improve the quality of LLM’s responses
and could be adopted in our setting [35].

7 Conclusion
In this work, we study the problem of querying LLMs through SQL queries. Our system, Galois,
acts as an intermediary between the user and the LLM, extending traditional query optimization
techniques to improve the precision and recall of query results from LLMs.

Galois adopts a DB-first architecture, integrating the LLM directly within the database operators.
This direction opens several problems, such as the design of mechanisms to simulate index-like
efficiency using LLMs, e.g., through caching techniques based on prior interactions [67]. Alterna-
tively, an LLM-first architecture poses intriguing possibilities with new challenges. One question is
whether LLMs can replace DBMSs by ingesting structured data during training or in-context. While
research in tabular language models indicates that such a scenario is not yet feasible, primarily
due to context size limitations [4] and its issues with long inputs [39], recent advancements are
overcoming this constraint [16, 28, 41].

Another promising research direction involves support for queries spanning multiple modalities,
such as text, image, and structured data [60]. This integration could enable users to extract insights
from diverse data formats in a unified querying framework [37].

Beyond iterative refinement, another open challenge arises from the inherent biases within LLMs.
These models may not return rare values unless explicitly prompted. For example, when asking for
“private hospitals”, the LLM may return the list of US hospitals first. Instead, if we are interested in
querying EU hospitals, our approach relies on the users specifying precisely their intent, which
may not always be the case in practice [20]. This issue also suggests that extracting structured
data from LLMs offers promising applications, such as auditing biases and benchmarking factual
accuracy, by enabling systematic analysis of cultural perspectives and factual consistency.

Our work also shows the increasing need to refine LLM confidence estimation mechanisms [11,
23]. Enhanced confidence assessments can lead to more reliable outputs, informing users of the
certainty associated with query responses by investigating how to incorporate the estimated
confidence from open LLMs. Finally, allowing LLMs to dynamically allocate test-time compute
could significantly enhance their performance on challenging prompts [56].
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