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ABSTRACT

The exponential increase in storage demand and low lifespan
of data storage devices has resulted in long-term archival and
preservation emerging as a critical bottlenecks in data storage.
In order to meet this demand, researchers are now investigat-
ing novel forms of data storage media. The high density, long
lifespan and low energy needs of synthetic DNA make it a
promising candidate for long-term data archival. However,
current DNA data storage technologies are facing challenges
with respect to cost (writing data to DNA is expensive) and re-
liability (reading and writing data is error prone). Thus, data
compression and error correction are crucial to scale DNA
storage. Additionally, the DNA molecules encoding several
files are very often stored in the same place, called an oligo
pool. For this reason, without random access solutions, it is
relatively impractical to decode a specific file from the pool,
because all the oligos from all the files need to first be se-
quenced, which greatly deteriorates the read cost.

This paper introduces PIC-DNA–a novel JPEG2000-
based progressive image coder adapted to DNA data storage.
This coder directly includes a random access process in its
coding system, allowing for the retrieval of a specific image
from a pool of oligos encoding several images. The progres-
sive decoder can dynamically adapt the read cost according to
the user’s cost and quality constraints at decoding time. Both
the random access and progressive decoding greatly improve
on the read-cost of image coders adapted to DNA.

Index Terms— DNA data storage, JPEG 2000, progres-
sive, random access, JPEG DNA VM

1. INTRODUCTION

The ever-increasing demand for data storage poses unprece-
dented challenges for data storage providers, as they have to
store increasingly large-amounts of data over very long peri-
ods of time while maintaining retrieval guaranties. Conven-
tional storage devices, have fundamental durability and den-
sity limitations that make long-term data storage infeasible.
As a result, novel data storage solutions, such as synthetic
DNA molecules, have emerged as an alternative for overcom-
ing these challenges [1], mainly due to their long lifespan,
high density and low energy needs.
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A classic solution for storing data onto DNA molecules is
composed of both biochemical and computational processes.
The two main biochemical processes are synthesis, to create
DNA molecules with the desired sequences of nucleotides,
and sequencing, to retrieve the sequence of nucleotides that
it contains. The main computational process is the DNA-
adapted codec, that transforms data into quaternary sequences
for synthesis, and back during sequencing. The codec also
compresses the data to reduce synthesis and sequencing cost.

Modern data storage systems that are used for housing
large image collections also support efficient random access
that enables retrieval of a subset of images. Such random
access is used extensively by modern-day web applications
to support novel features like adaptive selection of image
resolution based on the client (desktop or mobile) used to
view the image. Unfortunately, DNA does not directly sup-
port such random access mechanisms. Prior work on DNA
data storage has demonstrated the use of Polymerase Chain
Reaction (PCR) for enabling random access. PCR requires
the use of primers, short sequences of nucleotides attached to
DNA strands, that can be used to biochemically select, copy
and sequence only the oligos that include this specific primer
pair. By attaching different primers with different oligos,
prior work has demonstrated the ability to achieve random
access on DNA[?]. However, such random access has been
applied to arbitrary binary files and has not been used into the
context of image storage for features like adaptive selection
of resolution based on progressive image coding.

In this paper, we present Progressive Image Compression
for DNA storage (PIC-DNA)–a novel codec that integrates
random access at the image coding level, to enable new ac-
cess paths over image collections stored in DNA and reduce
the reading cost. Our solution is based on the JPEG 2000 [2]
progressive coder, but can easily be adapted to any progres-
sive coder that separates the encoded bitstream into resolution
or quality layers. PIC-DNA encodes and stores each quality
layer separately, using primers to enable selective amplifica-
tion of specific layers. By doing so, PIC-DNA enables several
access modalities. First, it enables the use of thumbnails en-
coded in DNA as an interface between the user and the oligo
memory; through the visual selection of the thumbnail, the
user can select the image to be decoded, and with the help
of the oligos encoding the selected thumbnail, the rest of the



image data can be retrieved. Second, it enables each image
retrieval from DNA storage to be customized based on the
desired resolution. For instance, applications that need only a
low quality version of the image can use primers tagged for
lower resolution to selectively amplify only a few layers. This
results in a lower cost of sequencing, as fewer oligos need to
be sequenced, and lower computational complexity of decod-
ing, as fewer reads need to be processed. To our knowledge,
the solution presented in this paper is the first DNA image
coder that directly includes a random access mechanism.

2. CONTEXT

2.1. DNA-adapted coding
The field of DNA data storage has emerged as a very active
research field over the past decade. In this section, we pro-
vide an overview of a few pioneering approaches and refer the
reader to a recent survey [3] for a detailed comparison of var-
ious approaches that focus on storing generic, binary data us-
ing DNA. In 2012, Church et al. [1], introduced an approach
to enable large-scale encoding and decoding of data into syn-
thetic DNA molecules. This work also identified some of
the constraints that need to be respected when coding data
for synthesized DNA molecules. Later, in 2013, Goldman et
al.[4] provided one of the first encoders capable of respecting
some of these constraints. The contribution of that work, an
entropy coder, allowed for the encoding of any file into DNA-
like data. In 2015, Grass et al.[5] introduced the the first error
correction codes into a DNA data storage solution. This er-
ror correction mechanism makes the whole storage process
robust against the different biochemical operations that often
introduce errors (substitutions, insertions, deletions) in the en-
coded DNA-like data. Following this, other works introduced
other error correction solutions [6, 7, 8, 9, 10, 11, 12] with the
focus of adding redundancy to binary data to detect and cor-
rect errors. Finally, random access solutions aiming to enable
selective access to binary data stored in DNA and improve
read cost have also been investigated [13, 14].

2.2. DNA-adapted image coding
While the solutions described above focused on generic bi-
nary data storage, several solutions have also emerged to cus-
tomize the encoding and storage of images specifically on
DNA. For instance, Dimopoulou et al.[15] developed a JPEG-
based image coder adapted to DNA data storage that uses the
Goldman encoder to encode runcat values into DNA. Simi-
larly, in [16], the authors introduce a DNA-adapted coding
scheme based on JPEG. Pic el al. used an improved DNA-
adapted entropy coder[17] to increase the performance of this
JPEG-based DNA-adapted image coder. Lazzarotto et al.[18]
developed the JPEG DNA VM software that encodes data
with a system based on Raptor codes[19]. It was output by
the JPEG DNA ad-hoc group as a verification model for later
developments. Learning-based image compression methods
have also been studied [20, 21], where the authors use a vari-
ational autoencoder to compress the image into a latent space

that is later encoded into DNA. In [22], the authors leverage
pixel domain representation to reconstruct the images with
better compression performance.

3. PROPOSED METHOD

In this section, we introduce the PIC-DNA codec which
adapts progressive image compression to DNA data storage.

3.1. Coding solution and oligo organization
Data compression. The general encoding process (Fig.
2a) relies on the binary progressive encoding process of
JPEG2000. The image is encoded, with a fixed number of
resolution layers Nlevels. The layer with the smallest rate is
used as thumbnail. The bitstream is cut into binary files, one
for each resolution layer. Each layer file is encoded into DNA
with a DNA coder, in our case, the JPEG DNA VM coder.
Random access: When data is stored into DNA, several files
are stored in the same pool. Reading all the files is very costly,
so directly accessing the oligos specific to the desired file is
crucial. Further, in order to enable progressive decoding, it
is also necessary to be able to access each layer separately.
For this, PIC-DNA uses two pairs of primers, concatenated
at each end of each oligo (Fig. 1). The first pair of primers
(image primers) (PI,i,l, PI,i,r), i ∈ J0, Nimages−1K are used
to identify each image uniquely. The second pair of primers
(layer primers) (PL,k,l, PL,k,r), k ∈ J0, Nlevels − 1K is used
to identify each layer uniquely.

Further, in order enable the thumbnail-based image search
functionality, PIC-DNA encodes the thumbnails of all images
in a separate collection. These thumbnail oligos follow a sim-
ilar structure to other data oligos (Fig. 1). However, PIC-
DNA uses a specific pair of primers (PL,0,l, PL,0,r) in place
of layer primers to identify the oligos as thumbnail oligos.
Additionally, PIC-DNA uses the same image primer pair for
image oligos and thumbnail oligos corresponding to the same
image. Thus, in the image primer positions (PI,i,l, PI,i,r), i ∈
J0, Nimages−1K of the thumbnail oligos, PIC-DNA stores the
primers corresponding to the thumbnail’s parent image.

3.2. Decoding process
The introduced decoding process can be decomposed into
three separate subprocesses: (i) thumbnail extraction, (ii)
secondary primer identification, and (iii) decoding.
1. Thumbnails extraction (Fig. 2b): With the help of

the pair of primers, (PL,0,l, PL,0,r) associated to all the
thumbnails, the oligos related to all the thumbnails in the
pool are selected. They are then classified image by im-
age, with the help of the secondary image primers, used
here as an offset code. The DNA decoder then decodes all
the thumbnail oligos into compressed binary files, that are
then decoded with the image codec.

2. Secondary primers identification (Fig. 2c): A visual in-
spection of all the thumbnails allows for the selection of
the desired image. Once this image has been identified, the
related thumbnail oligos are inspected, and the secondary



Fig. 1. Organization of an oligo in our solution : the pair of primers (PL,k,l, PL,k,r) describes the resolution level to which the
oligo belongs, and the pair of primers (PI,i,l, PI,i,r) describes the image the oligo is related to.

(a) Progressive Decoding (b) Thumbnails extraction (c) Image primer identification (d) Decoding process

Fig. 2. Different components of the general Progressive encoding and decoding workflow

image primers (PI,i,l, PI,i,r) related to the image (Fig. 1)
can be extracted.

3. Image decoding (Fig. 2d): To decode an image at a
certain quality or resolution, the user has to decode all
the layers until the chosen resolution layer is reached.
With PIC-DNA, this has to be done in several stages.
First, the user has to run a PCR round to select and aug-
ment oligos related to the desired image. Then multi-
ple rounds of PCR can be performed using this ampli-
fied pool to isolate further and augment the oligos of
each layer until the target resolution is reached. More
specifically, once the primers corresponding to the im-
age have been identified from the previous stage, with
the help of these primers (PI,i,l, PI,i,r) and the pairs
of primers related to the different levels to be decoded
{(PL,k,l, PL,k,r), k ∈ J0,Klevels to decode − 1K}, the nec-
essary oligos for decoding the image can now be retrieved.
It is important to note that this decoding process, like what
is being done in classic binary progressive decoders, can
be done iteratively, until a satisfactory version of the image
is retrieved. The progressive decoder provides to the end
user a trade off between the read-cost (closely linked to
the sequencing price and duration), and the reconstruction
quality. Once the image is decoded, this trade-off can even
be re-evaluated, to decode additional resolution layers.

3.3. Read Cost
Under these conditions, the general reading cost necessary to
retrieve a specific image I until the resolution level K can be
evaluated in three ways, without random access or progressive
decoding (Eq. 1), with just progressive decoding (Eq. 2), with
both progressive decoding and random access (Eq. 3):

Rc(I,K) =

∑Nimages

i=0

∑Nlevels

k=0 nucs(i, k)

input image pixels
(1)

Rc pd(I,K) =

∑Nimages

i=0

∑K
k=0 nucs(i, k)

input image pixels
(2)

Rc ra(I,K) =

∑Nimages

i=0 nucs(i, 0) +
∑K

k=1 nucs(I, k)

input image pixels
(3)

The nucs(i, k) value represents the number of nucleotides to
sequence to be able to decode a layer:

nucs(i, k) = coverage(i, k)× number oligos(i, k) (4)

With this, we can define a read-cost gain as in two different
ways, depending on whether or not Random Access is en-
abled (in both cases, Progressive decoding is used) as:

Gpd(I,K) =
Rc(I,K)

Rc pd(I,K)
(5)

Gra(I,K) =
Rc(I,K)

Rc ra(I,K)
(6)

4. EXPERIMENTAL RESULTS
4.1. Software implementation details
Our PIC-DNA implementation is currently utilizing the
OpenJPEG implementation of the JPEG2000 codec, in its
progressive coding configuration. In the version 1.5 of the
OpenJPEG software, the image to j2k executable can
output a .Idx file, that gives all the information necessary to
localize the resolution layers in the general output bitstream.
The bitstream is cut at the beginning of every new layer.
4.2. Performance evaluation
The performance of any DNA encoding method can be eval-
uated with respect to a series of metrics such as RD-curves,
reading cost and writing cost. As our work primarily focuses
on progressive compression and random access, the main
metric we focus on in our study is the reading cost. We es-
pecially study the evolution of the reading cost for a given
encoded image, as we read through each resolution layer.
The image is encoded into a series of resolutions layers, the
smallest one being the thumbnail. The resolution layers each
divide the size of the image by a factor of 2 in each dimen-
sion (4 in total). The results presented here were obtained by
encoding the images of the kodak1 dataset, with 5 resolution
levels. The oligos had data blocks of length 200 to which
the primers were added. A theoretical read-cost gain was ob-
served (lines 3 and 7 of Table 1), for a given layer, setting the
coverage to 1 in the gain metrics previously defined. A noise
simulator was used to introduce substitutions, deletions and
insertions. Erroneous data was then passed through a cluster-
ing and consensus process to estimate a minimal coverage for
decodability. Table 1 depicts the read cost gains obtained by
enabling progressive decoding and random access.

The top part of Table 1 represents the gains obtained when
only progressive decoding is enabled. In this situation, we

1https://r0k.us/graphics/kodak/
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decode all images until a certain resolution level, without any
random access. In these conditions, the progressive decoder
provides gains of up to 60×, when only the initial layer is tar-
geted. This gain quickly decreases if more layers are targeted,
and if all the layers are targeted, no gain can be leveraged
from progressive decoding, because all oligos need to be se-
quenced. The gains, though, depend on the dimensions of the
chosen resolution layers: smaller thumbnails or layers will
leverage better gains, at the cost of more distorted images.
The bottom part of Table 1 represents the gains obtained when
both progressive decoding and random access are enabled. In
these gains, the cost necessary to retrieve the thumbnail is
included, as described in the second member of the sum in
Equation (3). The random access process further improves
the read cost, especially in layers with better resolution where
the gain is multiple times larger than the one measured with-
out random access. This gain highly depends on the number
of images encoded in the pool of DNA molecules, and on the
size of the different resolution layers.

Additionally, Figures 3a and 3b depict the evolution of the
reconstruction quality (PSNR here) of the image, as a func-
tion of the read cost (which depends on the resolution layers
that are selected). With the reduction factors that we used
in the progressive coding parameters, it is possible to decode
a degraded version of the image for a fraction of the read-
cost necessary to decode the whole picture. For instance, the
thumbnail shown in Figure 4a has a PSNR of 18.3dB2(to com-
pute the PSNR, the reduced image was resized to the orig-
inal image’s dimensions with a bi-cubic interpolation). The
last resolution level (Fig. 4b), in contrast, shows a PSNR of
52dB. Further, the thumbnail is of good enough quality to be
used as a visual reference in the random access process (Fig.
2c). Moreover, the gains we obtain here are orthogonal to
the improvements in coding performance and read cost of the
different resolution layers that can be achieved by tweaking
the encoding options of JPEG2000 (specifically the targeted
quality) to further degrade the image. Finally, the JPEG DNA
VM software parameters can be adjusted differently for each
resolution layer, especially the redundancy, so that lower res-
olution layers are better protected against errors.

5. CONCLUSION AND PERSPECTIVES
In this paper, we introduced PIC-DNA–a novel image com-
pression process adapted to DNA data storage that enable new
access paths and reduction in read costs. More specifically,
PIC-DNA provides a random access solution based on thumb-
nails that are encoded in specific oligos of the whole oligo
pool where data is stored. It additionally provides a trade-off
between read-cost and reconstruction quality, by utilizing the
progressive functionality of the JPEG2000 image coder. This
last functionality can be implemented in DNA storage with
any image coders that includes a progressive decoder.

2Additional data can be found here:
https://gitlab.eurecom.fr/pic/jp2dnaprogressiveres
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Table 1. Theoretical and observed average read-cost gains
Gpd and Gra for each target resolution level, averaged over
all the images of the kodak dataset. The level L0 refers to the
thumbnail while the level L4 refers to the full image.

(a) Progressive Decoding (b) Random Access
Fig. 3. Evolution of the distortion in function of the read-cost
through the different resolution layers of the encoded image,
with and without Random Access enabled.

There are several avenues of future work that can build
on our work. First, PIC-DNA could be used to experiment
with other progressive decoders such as JPEG XL. AI-based
image coders that include a hierarchical representation of the
data [23] could be considered as solutions to separate the data
into sets of oligos of different layers. Second, this work can
be extended to include progressive storage of other unstruc-
tured data like video or audio. Third, in this work we focused
primarily on the rate gains for each resolution layer while ig-
noring the coding rate of the codec. The JPEG DNA VM was
made to be very redundant to simplify clustering and consen-
sus algorithms. Further work could try to tackle this issue and
make the codec more competitive in terms of coding rate as
well. Fourth, progressive decoding performed by PIC-DNA
is well-aligned with some new APIs provided by modern se-
quencers. For instance, Nanopore devices offer a ReadUn-
til API that can be used to selectively sequence only specific
DNA strands that match a template. By using layer primers as
templates, PIC-DNA can be extended to perform even PCR-
free, on-the-fly, adaptive selection of resolution.

(a) kodim23 Level 0 (b) kodim23 Level 4
Fig. 4. Reconstruction of 2 different resolution levels of the
kodim23 image.
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