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Abstract

Accurate localization and environmental sensing capabilities are crucial for developing intelligent, au-
tonomous, and connected systems. Apart from offering high data rates and low latency communication,
next-generation cellular networks, such as 5G and beyond, are expected to provide precise localization
and environmental sensing capabilities. These capabilities rely on the accurate estimation of the channel
state information (CSI). However, in practice, the estimated CSI suffers from impairments such as clock
drift and timing correction loops. The clock drift occurs when the clocks on the base station (gNB) and
the user equipment (UE) run asynchronously, leading to drift over time. To mitigate this issue, timing
correction loops are incorporated into the cellular protocol stack to correct the clock drift periodically.
While cellular systems were traditionally designed for communication purposes, the effect of clock drift
and timing correction loops is negligible on the communication performance. In contrast, these factors
significantly affect the performance of the localization and sensing. Specifically, they introduce variability
in the delay estimates of the multipath components obtained from the CSI across different time slots. As a
result, even when the UE is static and the gNB has access to multiple channel measurements, the delay
estimates of the multipath components estimated from the CSI vary over time.

In this dissertation, we design a system and propose signaling schemes that allow us to obtain CSI
that is robust to clock drift and timing correction loops within a cellular system. Additionally, we propose
a system that leverages sensing information to improve the performance of the communication system.
Specifically, we introduce a system framework that facilitates the fusion of sensing information into the
communication system, thereby reducing the pilots in channel estimation. We also provide a framework
to evaluate the performance of our proposed localization algorithms in a digital twin using the Colosseum
platform. Furthermore, we demonstrate a drone-based localization and sensing application for search and
rescue missions, emphasizing the importance of backhaul connectivity to the cellular network in such
scenarios. Finally, we highlight that most of our work has been validated using OpenAirlnterface (OAI).



Résumé

La localisation précise et les capacités de sensing environnementale sont essentielles au développement de
systemes intelligents, autonomes et connectés. En plus d’offrir des débits élevés et une communication a
faible latence, les réseaux cellulaires de nouvelle génération, tels que la 5G et au-dela, devraient également
fournir des capacités de localisation et de sensing environnementale précises. Ces capacités reposent
sur une estimation précise de 1’état du canal, connue sous le nom d’informations d’état du canal (CSI —
Channel State Information). Cependant, dans la pratique, le CSI estimé est affecté par des perturbations
telles que la dérive d’horloge et les boucles de correction temporelle. La dérive d’horloge se produit lorsque
les horloges de la station de base (gNB) et de I’équipement utilisateur (UE) ne sont pas synchronisées,
entrafnant une dérive au fil du temps. Pour atténuer ce probléme, des boucles de correction temporelle sont
intégrées dans la pile protocolaire du réseau cellulaire afin de corriger périodiquement la dérive d’horloge.
Alors que les systemes cellulaires ont été congus a 1’origine pour des fins de communication, 1’effet de la
dérive d’horloge et des boucles de correction temporelle sur les performances de communication reste
négligeable. En revanche, ces facteurs ont un impact significatif sur les performances de localisation et de
sensing. Plus précisément, ils introduisent une variabilité dans les estimations de délai des composantes
de trajets multiples extraites du CSI a différents instants. En conséquence, méme lorsque I’UE est statique
et que la gNB dispose de multiples mesures de canal, les estimations de délai des composantes multipaths
dérivées du CSI varient dans le temps.

Dans cette dissertation, nous concevons un systeme et proposons des schémas de signalisation
permettant d’obtenir un CSI robuste face a la dérive d’horloge et aux boucles de correction temporelle
au sein d’un systeme cellulaire. Par ailleurs, nous proposons un systéme exploitant les informations
de sensing afin d’améliorer les performances du systéme de communication. Plus précisément, nous
introduisons un cadre systémique facilitant la fusion des informations de sensing dans le systeme de
communication, réduisant ainsi le besoin de pilotes pour I’estimation du canal. Nous présentons également
un cadre d’évaluation des performances de nos algorithmes de localisation proposés dans un jumeau
numérique, a I’aide de la plateforme Colosseum. De plus, nous démontrons une application de localisation
et de sensing basée sur drone pour des missions de recherche et de sauvetage, en soulignant I’importance
de la connectivité dorsale au réseau cellulaire dans ce type de scénarios. Enfin, nous soulignons que la
majorité de nos travaux a été validée en utilisant OpenAirInterface (OAI).
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Chapter 1

Introduction

Localization in cellular networks enables the base stations to determine a user’s location, while sensing
enables the network to sense the surrounding environment besides offering cellular connectivity. These
technologies have drawn significant attention in recent years as they enhance the global positioning system
(GPS) outdoors and act as a viable alternative in low-visibility, indoor, and GPS-denied environments.
Furthermore, they also act as a viable alternative to radar systems without the need for additional
infrastructure or frequency spectrum. This chapter is composed of three sections. The first section
motivates the need to study and develop cellular-based localization and sensing systems. Section 1.2
provides an overview of the localization and sensing frameworks in fifth-generation new radio (5G NR)
and beyond, as well as the state-of-the-art positioning and sensing techniques. The final section provides
an outline of the contributions of this dissertation.

1.1 Motivation

Precise localization and environment sensing capabilities play a crucial role in the development of
intelligent, autonomous, and connected systems [1, 2, 3, 4]. Beyond providing cellular connectivity,
next-generation cellular networks—such as 5G NR and beyond—leverage large bandwidths and massive
antenna arrays to enable highly accurate and reliable positioning and sensing capabilities [5, 6, 7].

1.1.1 Localization in Cellular Networks

Cellular-based localization serves as a complement to the GPS in outdoor scenarios and acts as a
viable alternative in low-visibility, indoor, and GPS-denied environments. These advanced localization
capabilities have led to numerous applications spanning both civilian and tactical scenarios.

In industrial environments, robots and automated manufacturing equipment rely on precise location
awareness for autonomous operation. Additionally, workers can monitor tools and assets using cellular-
based location tags, resulting in faster workflows and a more productive environment, as employees spend
less time searching for equipment.

Beyond civilian applications, localization plays a crucial role in emergency response and tactical
operations. Police and emergency services can use cellular-based localization to locate emergency calls
quickly, enhancing dispatch systems. For instance, search and rescue (SAR) missions can utilize drone-
based localization to locate individuals lost in remote areas, such as hikers in dense forests or skiers
trapped in avalanche-prone zones.
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1.1.2 Sensing in Cellular Networks

Cellular-based sensing serves as an alternative to radar systems for environmental sensing, eliminating the
need for additional infrastructure and frequency spectrum. These advanced sensing capabilities have led
to numerous applications spanning both civilian and tactical scenarios.

In futuristic smart homes, cellular networks can function as occupancy sensors, detecting human
presence to autonomously adjust temperature and lighting for improved energy efficiency. Moreover, with
the rise of artificial intelligence (Al), personalized Al assistants such as Siri (Apple), Alexa (Amazon),
and Google Home can leverage these capabilities to follow users from room to room to provide seamless
assistance. Furthermore, cellular-based sensing enhances workplace safety by establishing virtual bound-
aries in manufacturing plants, issuing alerts when employees enter hazardous zones. These capabilities
also extend to weather monitoring, including rainfall detection and flood risk assessment. Additionally,
these technologies enhance situational awareness in military scenarios by monitoring enemy movements
when handling hostage situations, tracking troop positions in GPS-denied environments, and detecting
rogue drones in restricted airspaces.

Apart from these applications, the situational awareness of the user devices in a cellular network
greatly enhances its connectivity [8, 9, 10]. Several applications of sensing-aided communication utilize
situational awareness of the user devices for channel estimation, beam prediction, and refinement.

1.2 State-of-the-Art and Literature Survey

In this section, we summarize the state-of-the-art localization and sensing frameworks in the 5G NR and
beyond cellular networks. We also provide the applications of sensing to aid cellular connectivity. Finally,
we highlight the impact of hardware impairments in the localization and sensing performance.

1.2.1 Cellular based Localization

The localization feature in cellular systems was initially developed to determine the location of users
making emergency calls, ensuring timely rescue operations. This capability was first introduced as
location-based services (LBS) in second-generation (2G) networks, including global system for mobile
communications (GSM), general packet radio service (GPRS), and enhanced data rates for GSM evolution
(EDGE). Collectively, these technologies formed the GSM EDGE radio access network (GERAN) [11].
LBS was also integrated into third-generation (3G) universal mobile telecommunications system (UTMS)
networks [12], and the accuracy requirements were further refined in fourth-generation (4G) long-term
evolution (LTE) networks [13]. In LTE, higher localization accuracy became essential due to the growing
demand for location-specific applications, such as vehicle-to-everything (V2X) communication and
cellular-assisted navigation [6, 14, 15, 16, 17]. These requirements have been further enhanced in 5G
NR to improve the localization of users making emergency calls, particularly from indoor environments,
where most emergency calls originate [18]. Starting from Release-16, the third generation partnership
project (3GPP) has begun defining the target positioning accuracy for various scenarios in 5G NR. New
positioning signals, measurement procedures, and architecture enhancements have been introduced in [19,
20, 21, 22, 23].

Localization techniques in cellular networks typically involve estimating parameters such as time,
angle, received signal strength (RSS) at the base-station (gNB), and user equipment (UE) from the
received reference signals, as shown in Figure 1.1. Timing-based methods estimate the time difference of
arrival (TDoA) and round-trip time (RTT). Angle-based techniques leverage multiple antennas to obtain
angular information, such as the angle of departure (AoD) and angle of arrival (AoA), as well as the angle
difference of departure (ADoD) and angle difference of arrival (ADoA). RSS-based techniques measure
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the power of received signals to estimate distance. Hybrid approaches combine multiple parameters—such
as time, angle, and RSS—to enhance localization accuracy.

RF Finger-
Printing

Angle-based RSS-based
Approach Approach

Cellular based
Localization

Time-based Hybrid
Approach Approaches

Figure 1.1: Characterization of various cellular based localization techniques.
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In 5G NR, the process of localizing a UE involves single/multiple gNBs and a component of the
5G core (5GC) network, known as the location management function (LMF). During this process, both
the gNBs and the UEs report measurements such as time, angle, and RSS via the NR positioning
protocol annex (NRPPa) and LTE positioning protocol (LPP), as illustrated in Figure 1.2. Note that the
measurements from the UE reported to the LMF using LPP are tunneled via gNB and access and mobility
management function (AMF). Similarly, the measurements from gNB reported to LMF using NRPPa
are tunneled via AMF. Once these measurements reach the LMF, a localization algorithm is applied to
determine the location of the UE.

LPP
LMF
NRPPa
NLs
LPP
UE «—NRUU 5 . ng  NGC ,  ayf

NRPPa

Figure 1.2: 5G Localization Architecture.

Focusing on timing-based localization techniques, two primary methods used in 5G NR are based on
TDoA and RTT.

1.2.1.1 Time Difference of Arrival

TDoA-based localization in 5G NR involves multiple gNBs that are tightly synchronized and utilized in
both downlink (DL) and uplink (UL) scenarios. In the downlink, TDoA is estimated using positioning
reference signal (PRS), while in the uplink, it is estimated using sounding reference signal (SRS).

For DL-TDoA, the relative time of arrival (RToA) measurements estimated at the UE using PRS
from multiple gNBs are reported to the LMF via LPP. The LMF then applies a localization algorithm
to determine the UE location. To demonstrate how a UE can be localized using TDoA in the downlink
with an example, we consider a scenario with four gNBs and a UE, as depicted in Figure 1.3. The three
dimensional (3D) locations of the four gNBs in cartesian form are known and are defined as follows:
[x1, Y1, 21], [X2, 2, 23], [X3, V3, 23], and [X4, ya, z4]. The estimated RToA from each of the four gNBs to the
UE is represented as 11, tp, t3, and 14, respectively. These RToA measurements are reported to the LMF
via LPP, where the LMF computes the TDoA by taking #; as a reference as follows,

=1t — 1,
hy=1t—13,
ya=1 —14.

The corresponding distances of these TDoA measurements 12, f13, t14 are denoted as dy2, d13, d14 respec-
tively. where, d12 = t12¢, d13 = ti13¢, d14 = t14¢ and c is the speed of light. Finally, the location of the UE,
represented as [x, y, z], can be estimated from the distances d2, d13, d14 and the known gNB locations
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[x1, y1, 211, [X2, V2, 23], [X3, ¥3, 23] and [x4, Y4, z4] using the following equations:

V=m0 + (= 2+ (2= 207 =/ (0= 12+ (= )2 + (2= 2202 = ds,

Vx4 (= y2+ (- 2)? =\ (=132 + (7= y3)? + (2~ 202 = dis, (1.1)

Vx4 =y + (- 2)? —\) (= 1) + (= ya)? + (2~ 2002 = dua.

These equations represent three hyperbolas, and by solving the equations in (1.1) for [x, y, z], we can
determine the location of the UE. Several works solving these non-linear equations can be found in [24].
Prior works in [25, 26, 27, 28, 29] have demonstrated the use of PRS in performing DL-TDoA.
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(@4, Ya, 24] é
[©3, Y3, 23]

Figure 1.3: Downlink Time Difference of Arrival Localization Scenario.

Similarly, for UL-TDoA, RToA measurements based on SRS, estimated at multiple gNBs, are
reported to the LMF via the NRPPa protocol, as shown in Figure 1.4. These RToA measurements from all
four gNBs can be used to compute TDoA at the LMF and form equations similar to (1.1), and solving
these equations allows us to determine the location of the UE. Prior works in [30, 31] have demonstrated
using SRS in performing UL-TDoA for localization.
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Figure 1.4: Uplink Time Difference of Arrival Localization Scenario.
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1.2.1.2 Round Trip Time

RTT-based localization in 5G NR can be categorized into coarse and precise methods. A coarse RTT
method referred to as enhanced cell ID (E-CID) is derived from the timing advance (TA) in the random
access channel (RACH) during random access (RA) procedures. However, the accuracy of this procedure
is limited due to the low bandwidth of the RACH, and RA is only performed during initial access or in the
event of uplink synchronization failure. A precise RTT can be estimated using wideband reference signals
like PRS and SRS. To compute RTT, both the UE and gNB measure the receive-transmit (Rx-Tx) time
difference, as shown in Figure 1.5. The RTT is calculated as,

RTT = UE Rx-Tx time difference + gNB Rx-Tx time difference.

U
Downlink é
UE Rx1ETx time
difference I
- > Downlink
Uplink D

U
Uplink é

G

gNB Rx-Tx time
difference

Figure 1.5: RTT estimation from Rx-Tx time difference in 5G.

This method is used in the multi-RTT scheme in 5G NR [32, 33]. Similar to TDoA-based localization,
Rx-Tx time difference measurements estimated at the gNB and UE are reported to the LMF via NRPPa
and LPP, where RTT is computed. Detailed reporting procedures for Rx-Tx time difference measurements
to the LMF are outlined in [34]. Note that the RTT method does not require multiple gNBs to be
synchronized.

Further, to demonstrate how a UE can be localized using RTT with an example, we consider a
scenario with three gNBs and a UE, as depicted in Figure 1.6. The 3D locations of the three gNBs in
cartesian form are known and are defined as follows: [x1, y1, 211, [X2, 2, 23], and [x3, y3, z3]. The estimated
RTT from each of the three gNBs to the UE is represented as #;, fz, and 3, respectively. The distances
computed from these RTT measurements, are denoted as dj, d», and djs, represent the distance between
the corresponding gNB and the UE. where, d; = %c, dy = %c, ds = %c and c is the speed of light. Finally,
the location of the UE, represented as [x, y, z], can be estimated from the distances d;, d», ds and the
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known gNB locations [x1, y1, 211, [X2, ¥2, 23], [X3, ¥3, 23] using the following equations:

(x—x1)%+(y—y1)* + (z—21)* = d?,

(= x2)* + (= y2)* + (- 2)* = df, (1.2)
(x=x3)" + (y = y3)* + (2 - 23)* = .

These equations represent three circles, and by solving the equations in (1.2) for [x, y, z], we can
determine the location of the UE. These non-linear equations in (1.2) can be further reduced to linear
equations and can be solved using least-squares and non-linear least-squares techniques as described in
[35]. Note that even when a single multi-antenna gNB is available, the distance between the gNB and
UE estimated from RTT can be combined with UL-A0A measurements to localize the UE. In contrast,
localization with a single gNB is not possible in the case of TDoA-based localization.
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Figure 1.6: Multiple Round Trip Time Localization Scenario.
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1.2.2 Cellular based Sensing

The sensing feature in cellular networks leverages existing infrastructure to enhance environmental
perception and situational awareness. While traditionally designed for communication, cellular networks
are now being explored for sensing applications, allowing for the detection of objects, tracking movements,
and analyzing environmental conditions without needing additional hardware and frequency spectrum.

Sensing applications rely on estimating parameters such as signal strength, delay, doppler shift,
and angle information, collectively known as sensing information from scattered and/or reflected radio
frequency signals that are transmitted and received by gNBs or UEs. Sensing information can be obtained
either from communication signals or from non-3GPP sensors like radar. Several works estimating the
sensing information from communication signals, such as orthogonal frequency division multiplexing
(OFDM) and orthogonal time frequency space (OTES) waveforms, are discussed in [36, 37, 38, 39, 40].
Starting with Release-19, 3GPP began considering sensing capabilities in 5G NR cellular networks. They
classified sensing systems into two types based on the relative positions of the transmitter and receiver.
The first type features a collocated transmitter and receiver, while the second type comprises a separated
transmitter and receiver [41].

Sensing systems can also be categorized based on the transmission source, whether the gNB or UE is
transmitting. These are classified as downlink sensing and uplink sensing. If the sensing information is
derived from the radio signals transmitted by the gNB, it is known as downlink sensing. Conversely, if the
sensing information is derived from the radio signals transmitted by the UE, it is called uplink sensing.
Depending on the number of gNBs involved, the transmission source (gNB or UE), and the location of the
transmitter and receiver, various sensing modes can emerge, including mono-static mode, bi-static mode,
and multi-static mode [42, 43], as shown in Figure 1.7.

In the mono-static mode, only downlink sensing is possible with a single gNB and a collocated
transmitter and receiver operating in full-duplex mode as illustrated in Figure 1.8. However, this mode
presents challenges, such as self-interference, that must be addressed. In contrast, both downlink and
uplink sensing is possible in bi-static and multi-static modes. In bi-static mode for downlink sensing, two
gNBs are required, where the transmitted signal from one gNB reaches the other gNB for sensing. In
contrast, bi-static uplink sensing requires a single gNB and a UE, where the signal transmitted by the UE
is received by the gNB for sensing. Illustrations of both bi-static downlink and uplink sensing scenarios
are provided in Figures 1.9a and 1.9b, respectively. For multi-static downlink sensing, multiple gNBs
are necessary, where a signal transmitted from one gNB is received by several other gNBs for sensing
purposes. Multi-static uplink sensing involves multiple gNBs and a UE, where the signal transmitted
by the UE is received by multiple gNBs to carry out sensing. These multi-static downlink and uplink
sensing scenarios are also illustrated in Figures 1.10a and 1.10b, respectively. In all modes, the sensing
information estimated at the gNBs is sent to the wireless sensing service as illustrated in Figures 1.8, 1.9
and 1.10, where object detection and tracking algorithms are applied to achieve environmental perception.

Furthermore, environmental perception and situational awareness achieved through sensing capabili-
ties in cellular networks can improve connectivity. Several applications of sensing-aided communication
utilize sensing information for channel estimation, beam prediction, and refinement. The works in [44, 45,
46, 47] use situational awareness for channel estimation, while the works in [48, 49, 50, 51, 52, 53, 54]
use situational awareness for beam prediction and refinement.

In the next section, we discuss the impact of hardware impairments on localization and sensing.
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Figure 1.7: Characterization of various cellular based sensing techniques and its applications.
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1.2.3 Localization and Sensing under Hardware Impairments

The localization and sensing performance of a cellular system relies on the accurate estimation of channel
state information (CSI). In most prior works, evaluating the performance of localization and sensing
algorithms was restricted to system-level simulations without hardware impairments. However, in practice,
hardware impairments can significantly impact overall system performance, affecting the estimation of
CSI. Common hardware impairments include clock drift, in-phase and quadrature-phase (IQ) imbalance,
phase noise, and antenna array calibration [55].

In this dissertation, we focus on the clock drift among the hardware impairments. The clock drift
occurs because the clocks on the gNB and UE run asynchronously, leading to drift over time. To address
this issue, timing correction loops are incorporated into the cellular protocol stack to correct clock drift
periodically. Since cellular systems were traditionally designed for communication purposes, the effect of
clock drift and timing control loops is negligible on communication performance. However, the effect
of clock drift and timing control loops are significant in the performance of the localization and sensing.
These factors create variability in the delay estimates of the multipath components obtained from the
CSI in different time slots. Therefore, even when the UE is static and the gNB has access to multiple
channel measurements, the delay estimates of the multipath components vary over time. For example, the
impact of clock drift and timing loops in 5G NR on the estimated distance by tracking the line-of-sight
(LoS) component obtained from the uplink CSI over time with a commercial UE (Quectel RM500-GL)
at a fixed location can be seen in Figure 1.11. Such variations of the delay estimates of the multipath
components obtained from the CSI over time with a fixed distance between the gNB and UE are unreliable
for localization and sensing purposes.

In this dissertation, we focus on designing a signaling mechanism in the 5G NR and beyond cellular
networks that is robust to the effects of clock drift on the estimated uplink CSI used for localization and
sensing purposes. Further, we discuss the outline of the dissertation.
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Figure 1.11: Effect of clock drift and timing loops on RTT in a commercial UE.
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1.3 Outline of the Dissertation

The primary focus of this dissertation is to design a system that enhances positioning and sensing
capabilities in 5G NR and beyond cellular networks. Precisely, we design a system and propose signaling
schemes that allow us to obtain channel state information that is robust against clock drift and timing
correction loops within a cellular system, which is essential for positioning and sensing. Furthermore, we
evaluate the performance of these proposed schemes in real-time using OpenAirlnterface. Additionally,
we propose a system that leverages sensing information to improve the performance of the communication
system. Specifically, we introduce a system framework that facilitates the fusion of sensing information
into the communication system, thereby reducing the pilots in channel estimation. We also demonstrate
the applications of the backhauls, including aerial integrated access and backhaul and a THz backhaul.

An outline of the dissertation along with a brief summary of the contributions of each chapter is
provided below.

Chapter 2 - 5G New Radio using OpenAirInterface: Tools and Methodologies for Position-
ing

In this chapter, we present the essential background, tools, and methodologies to implement positioning
schemes in 5G New Radio using OpenAirInterface.
The work in this chapter has resulted in the following publication:

* Rakesh Mundlamuri, Rajeev Gangula, Florian Kaltenberger and Raymond Knopp, "5SG NR
Positioning with OpenAirInterface: Tools and Methodologies", IEEE Wireless On-demand Network
systems and Services Conference (WONS), 2025.

Chapter 3 - Novel Round Trip Time Estimation in 5G NR and beyond

Most prior works assume that the CSI available in the uplink is robust to clock drift and the internal timing
correction loops of a cellular system. However, in practice, the CSI is always prone to impairments like
clock drift and internal timing loops, making most of the localization and sensing algorithms utilizing this
CSI unreliable. Therefore, a natural question to ask is

* How do we obtain an uplink CSI that is robust to these impairments?

In this chapter, we propose various signaling schemes in a cellular system that enable us to obtain an

uplink CSI robust to clock drift and internal timing correction loops. With this reliable uplink CSI,

we can accurately determine the distance between the gNB and a UE, further enabling uplink sensing.

Furthermore, we evaluate these schemes for distance estimation in real-time using OpenAirlnterface.
The work in this chapter has resulted in the following publications:

* Rakesh Mundlamuri, Rajeev Gangula, Omid Esrafilian, Florian Kaltenberger, Raymond Knopp,
David Gesbert, Sebastian Wagner, and Kien Le Trung, "System and a method for improved round
trip time estimation”, EUROPEAN PATENT 23306847.7, October, 2023.

* Rakesh Mundlamuri, Rajeev Gangula, Florian Kaltenberger and Raymond Knopp, "Novel Round
Trip Time Estimation in 5G NR", IEEE Global Communications Conference (GLOBECOM), 2024.

* Rakesh Mundlamuri, Rajeev Gangula, Florian Kaltenberger and Raymond Knopp, "Demo: Novel
Round Trip Time Estimation in 5G NR", IEEE International Conference on Advanced Networks
and Telecommunications Systems (ANTS), 2024.

* Rajeev Gangula, Tommaso Melodia, Rakesh Mundlamuri and Florian Kaltenberger, "Round Trip
Time Estimation Utilizing Cyclic Shift of Uplink Reference Signal", IEEE International Conference
on Communications (ICC), 2025.
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Chapter 4 - Sensing aided Channel Estimation in Wideband MIMO Systems

In this chapter, we propose a framework that leverages sensing information available at the base station as
side information to enhance the performance of the communication system in the uplink. Specifically, this
approach aims to reduce the number of pilots required for channel estimation in the uplink. The proposed
framework is robust to handle the errors present in the sensing information.

The work in this chapter has resulted in the following publication:

* Rakesh Mundlamuri, Rajeev Gangula, Christo Kurisummoottil Thomas, Florian Kaltenberger, and
Walid Saad, "Sensing aided Channel Estimation in Wideband Millimeter-Wave MIMO Systems",
IEEE International Conference on Communications Workshops (ICC Workshops), 2023.

* Rakesh Mundlamuri, Rajeev Gangula, Christo Kurisummoottil Thomas, Florian Kaltenberger,
and Walid Saad, "Emulating Sensing aided Channel Estimation in Wideband MIMO Systems using
OpenAirlnterface", to be submitted.

Chapter 5 - Localization in a Digital Twin

In this chapter, we evaluate the performance of a signaling mechanism introduced in Chapter 3 in a
digital twin platform known as the Colosseum. The goal is to demonstrate how the Colosseum can
be utilized as a digital twin platform to evaluate the performance of localization algorithms, thereby
eliminating the need to perform laborious outdoor measurement campaigns. We focus on addressing
the performance gap between the results of the proposed signaling scheme obtained from an outdoor
measurement campaign and those obtained from the digital twin representation of the same outdoor
environment using the Colosseum.
The work in this chapter has resulted in the following publication:

* Rakesh Mundlamuri, Rajeev Gangula, Florian Kaltenberger, Raymond Knopp and Tommaso
Melodia, "Colosseum as a Digital Twin platform for Round Trip Time Estimation in 5G NR and
beyond", fo be submitted.

Chapter 6 - Integrated Access and Backhaul

A wide range of localization and sensing applications arise from the mechanisms proposed in Chapter 3.
One notable application is drone-based localization and sensing for SAR operations, where gNBs are
installed on the drones. However, such applications require a backhaul connection to remain connected
with the cellular network and to operate autonomously. In this chapter, we present the integrated access and
backhaul systems in 5G NR and beyond that are crucial for enabling drone-based localization and sensing
in SAR missions. Specifically, we demonstrate an open radio access network (O-RAN) based aerial
integrated access and backhaul system and a terahertz (THz) backhaul system using OpenAirInterface.
The work in this chapter has resulted in the following publications:

* Rakesh Mundlamuri, Omid Esrafilian, Rajeev Gangula, Rohan Kharade, Cedric Roux, Florian
Kaltenberger, Raymond Knopp, and David Gesbert, "Integrated Access and Backhaul in 5G with
Aerial Distributed Unit using OpenAirInterface", demo, 17th ACM Workshop on Wireless Network
Testbeds, Experimental evaluation and Characterization (WINTECH), 2023.

¢ Rakesh Mundlamuri, Sherif Badran, Rajeev Gangula, Florian Kaltenberger, Josep M. Jornet
and Tommaso Melodia, "5G over Terahertz Using OpenAirlnterface", IEEE Wireless On-demand
Network systems and Services Conference (WONS), 2024.
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¢ Florian Kaltenberger, Rakesh Mundlamuri, Sherif Badran, Rajeev Gangula, Josep M. Jornet, and
Tommaso Melodia, "In-lab experimental evaluation of 6G THz intersatellite communications",
poster in, ETSI Conference on Non-Terrestrial Networks, a Native Component of 6G, 2024.

Chapter 7 - Conclusions

Finally, this chapter concludes the dissertation and discusses possible future research problems.

Other Research Contributions:

The other research contributions that I have made as a doctoral student but are not included in the
dissertation are as follows:

Publications:

* Omid Esrafilian, Rakesh Mundlamuri, Florian Kaltenberger, Raymond Knopp and David Gesbert,
"First Results on UAV-aided User Localization Using ToA and OpenAirInterface in 5G NR", IEEE
International Conference on Communications Workshops (ICC Workshops), 2025.

* José A. del Peral-Rosado, Ali Yildirim, Auryn Soderin, Rakesh Mundlamuri, Florian Kaltenberger,
et al, "Initial experimentation of a real-time 5SG mmWave downlink positioning testbed", European
Navigation Conference (ENC), 2024.

e José A. del Peral-Rosado, Ali Yildirim, Susanne Schlétzer, Patric Nolle, Sara M. Razavi, Sagar
Parsawar, Rakesh Mundlamuri, Florian Kaltenberger, et al, "First field trial results of hybrid posi-
tioning with dedicated 5G terrestrial and UAV-based non-terrestrial networks", 36th International
Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), 2023.

* José A. del Peral-Rosado, Ali Yildirim, Nils Klinger, Patric Nolle, Sara M. Razav, Sagar Parsawar,
Rakesh Mundlamuri, Florian Kaltenberger and et al, "Preliminary field results of a dedicated 5G
positioning network for enhanced hybrid positioning", European Navigation Conference (ENC),
2023.

e José A. del Peral-Rosado, Patric Nolle, Fabian Rothmaier, Sara M. Razavi, Gustav Lindmark,
Xiaolin Jiang, Deep Shrestha, Fredrik Gunnarsson, Sagar Parsawar, Rakesh Mundlamuri, Florian
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Chapter 2

5G New Radio using OpenAirInterface:
Tools and Methodologies for Positioning

This chapter describes the tools and methodologies to prototype 5SG NR positioning algorithms using
OpenAirlnterface (OAI).

2.1 Introduction

Despite the standardization of positioning methods in 5G NR, their performance evaluation is relatively
limited to system-level simulations or a few proprietary real-world experimental evaluations [56, 57]. On
the other hand, open-source 5G platforms such as OAI [58] and srsSRAN [59] are playing a crucial role in
experimental research. The ability to run the 5G protocol stack on general-purpose computing platforms
paired with software-defined radios (SDRs) makes them an attractive tool for researchers and prototype
developers.

Few works have demonstrated the timing-based positioning techniques in real-world experiments
using the OAI platform [25, 27, 26, 30, 60, 61, 62, 63]. For instance, the works [25, 27, 26] demonstrated
DL-TDOA-based positioning using PRS, and the works [30, 61] have demonstrated UL-TDoA-based
positioning using SRS. E-CID-based positioning using a random access channel has also been demon-
strated in [60]. Finally, a new RTT scheme has been proposed in [62, 63]. These methods are shown to be
robust to clock drift and has reduced latency in estimating the RTT compared to the existing schemes in
the standards.

All these works [25, 27, 26, 30, 60, 62, 63], however, lack a comprehensive documentation on
the implementation details of the positioning methods within the OAI framework. The authors in [61]
have attempted to address this issue by providing a detailed explanation of the positioning procedures
implemented at the protocol level in OAI and a tutorial for performing positioning within the framework.
However, detailed physical layer implementation aspects, such as fixed-point representation and device
calibration, which are crucial for prototyping positioning schemes, are missing. For a researcher trying to
develop positioning prototypes, navigating through a vast open-source codebase like OAI, understanding
the reference signal implementation, calculating metrics such as signal-to-noise ratio (SNR), and cali-
brating the hardware might be daunting. Furthermore, tools to extract required data from OAI without
affecting the system’s performance are crucial in prototype development.

In this chapter, we provide a comprehensive guide on the physical layer implementation aspects and
present the key functions related to the positioning in OAI. Specifically, our contributions in this chapter
are as follows:

* Introduce OAI components and its operating modes.
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* Present the essential functions specific to the reference signals relevant for positioning in OAL

* Describe the physical layer implementation aspects in OAL

* Present the T_tracer tool in OAI to extract the required data.

The rest of the chapter is organized as follows: Section 2.2 provides necessary background to OAI,
detailing its components and various operating modes. This section also reviews the reference signals and
concepts relevant to 5G positioning in OAI In Section 2.3, we describe the physical layer implementation

aspects in OAI Section 2.4 introduces a data extraction tool in OAI. Finally, Section 2.5 concludes the
chapter.

2.2 Background

This section provides an overview of the various components of OAI software, its operating modes,
reference signals that are relevant to 5G positioning and radio resource control (RRC) connectivity states
of a UE.

2.2.1 OpenAirlnterface SG NR Components

OpenAirlnterface (OAI) is an open-source initiative that provides a reference implementation of a 5G
gNB, user equipment (nrUE), and a 5GC network compliant with the 3GPP Release-15 and above. OAI
operates on standard x86 computing hardware and utilizes commercial off-the-shelf (COTS) SDR cards,
such as the universal software radio peripheral (USRP) and O-RAN radios. This setup allows the users
to establish a end-to-end 3GPP compliant 5G network and interoperate with the commercial equipment.
This strategy not only reduces implementation costs but also improves deployment flexibility. Detailed
functionalities of each of the components in the OAI 5G stack are described as follows,

2.2.1.1 5G Core Network

The 5G core (5GC) network performs several essential functions, including authentication, mobility
management, network slicing, and service orchestration. Each of these functions is managed by distinct
network functions. The network functions supported by OAI 5GC are:

* Access and mobility management function (AMF)
* User plane function (UPF)

* Network repository function (NRF)

* Session management function (SMF)

* Unified data management (UDM)

* Unified data repository (UDR)

¢ Authentication server function (AUSF)

* Network slice selection function (NSSF)

* Location management function (LMF)

Furthermore, OAI offers container-based deployments of these network functions [64]. The 5GC
component essential for positioning in 5G NR is the LMF. OAI supports the LMF with NRPPa support. A
detailed implementation of the LMF and its tutorial can be found in [65].
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2.2.1.2 5G NR Base-station

The 5G NR base-station (gNB) can be deployed in two ways: as a monolithic gNB or as a split architecture
consisting of a centralized unit (CU) and a distributed unit (DU) connected via the F1 interface. The CU
can be further divided into two components: CU control plane (CU-CP) and CU user plane (CU-UP)
connected over the E1 interface. The CU-CP includes RRC and control plane packet data convergence
protocol (PDCP-C), while CU-UP comprises service data adaption protocol (SDAP) and user plane packet
data convergence protocol (PDCP-U). The DU implements the radio link control (RLC), medium access
control (MAC), and physical (PHY) layers.

The PHY layer of the 5G NR utilizes OFDM waveform for transmission over the air, structured in
a frame format. This frame structure, as defined by 3GPP, is presented in both the time and frequency
domain as follows: A 5G NR frame in the time domain has a duration of 10 milliseconds (ms) and is
divided into 10 subframes, each lasting 1 ms. Furthermore, each subframe is divided into NSSl”OI;f rame
slots, depending on the subcarrier spacing (SCS) used. Each slot comprises of 14 OFDM symbols. The
number of slots per subframe Ny, "™, for different SCS is detailed in Table 2.1.

In the frequency domain, the 5G NR frame structure offers various bandwidth configurations based
on the SCS used. Each bandwidth configuration includes Ngp resource blocks (RBs), with each RB
consisting of Ngg = 12 subcarriers referred to as resource elements (REs). For a given frequency range
(FR) and a specific SCS in kilohertz (KHz), the number of RBs Ngp of a possible bandwidth configuration
from 5 MHz to 400 MHz is detailed in the Table 2.2. An illustration of time and frequency domain frame
structure can be seen in Figure 2.1.

Table 2.1: Number of slots per subframe for a given SCS

SCS Ny rame
15 KHz 1
30 KHz 2
60 KHz 4
120 KHz 8
240 KHz 16

Table 2.2: Number of resource blocks (INgg) for a bandwidth configuration in 5G NR

FR SCS 5 10 15 20 25 30 40 50 60 70 8 90 100 200 400
(KHz)

1 15 25 52 79 106 133 160 216 270

1 30 11 24 38 51 65 78 106 133 162 189 217 245 273

1 60 11 18 24 31 38 51 65 79 93 107 121 135

2 60 66 132 264

2 120 32 66 132 264

However, the support of SCS in OAI gNB is limited to 15 KHz, 30 KHz in FR1, and 120 KHz in
FR2. The supported bandwidths in FR1 are 10, 20, 40, 50, 60, 80, and 100 MHz, while the supported
bandwidths in FR2 are 50, 100 and 200 MHz. The OAI 5G NR PHY supports all physical channels and
signals according to the 3GPP Release-15. Specifically for positioning purposes, it supports channel state
information reference signal (CSI-RS), PRS in the downlink, and a SRS in the uplink.
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Figure 2.1: 5G OFDM resource grid.

Further, the fronthaul splits supported in OAI gNB are as follows: split 8 using COTS SDR cards,
such as the USRP, as well as O-RAN split 7.2, which has been tested with different O-RAN compatible
radio units (RUs). Moreover, OAI also supports the O-RAN E2 interface to the near real-time RAN
intelligent controller (RIC) and the O1 interface to the service management and orchestration (SMO)
framework. The interfaces supported by OAI 5G RAN are shown in Fig. 2.2.

2.2.1.3 User Equipment

The user equipment in OAI referred to as nrUE is a real-time experimentation platform that implements
the functionalities of a 3GPP-compliant UE as open-source software running on standard x86 general
computing hardware. It utilizes commercial software-defined radios, such as USRP, for transmission
and reception. OAI nrUE works with OAI gNB and OAI 5GC, offering end-to-end functionality from
the radio access network (RAN) to the Core. The availability of the source code enables developers and
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Figure 2.2: OAI 5G-NR Radio Access Network.

researchers to develop and verify various 5G NR features as well as non-compliant features in real time,
including novel positioning algorithms.

2.2.1.4 Operating Modes

To support the development, debugging and real-time experimentation process, OAI supports several
modes of operation. Specifically, the following two modes are widely used in over-the-air experiments
and are illustrated in Figure 2.3.

¢ The sa mode enables the establishment of an end-to-end 5G network in standalone mode. Either a
nrUE or a COTS UE can connect to the OAI 5G network.

* The phy—test mode, on the other hand, is designed specifically for testing the physical layer of
the gNB and nrUE by abstracting the higher layers.

Using the phy—-test, the developers and researchers can test and validate physical layer implemen-
tations and algorithms without worrying about the higher layer procedures. The upper layer abstraction is
achieved by sharing a configuration file containing higher layer parameters between the gNB and nrUE.
The instructions to setup these modes are described in [66].

Additionally, both the sa and phy-test modes can be run using r £ sim mode. In this mode, the
over-the-air transmission between the gNB and nrUE is simulated by sending the time-domain OFDM
waveform through a socket, which abstracts the hardware for end-to-end testing. The instructions to
operate in this modes is described in [67].

Further, the key reference signals utilized for positioning in 5G are discussed below.

2.2.2 Reference Signals

The widely used reference signals for positioning in 5G NR are as follows:
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Figure 2.3: OAI Components and Operating modes.

2.2.2.1 Zadoff-chu Sequence

Zadoff-chu (ZC) sequences are widely used as a base sequence for many reference signals in 5G NR due
to a number of desirable properties. A ZC sequence of length Nzc, which must be an odd number, and
root g €[1,2,..., Nzc — 1] is defined as

mgqnn+1)

xq[n]:exp(—] Ny ),OsnsNZC—l. 2.1)

Some key properties of the ZC sequences are given below.

All the elements in a ZC sequence have unit amplitude.

* Normalized cyclic auto-correlation: When the root g is relatively prime to Nzc,

where mod represent the modulo operation and §[v] represents the Kronecker delta function. There
are Nzc unique cyclic shifts of the sequence x,4[n].

* Normalized cyclic cross-correlation: when |q; — g»| and Nzc are relatively prime,

1 Nzc—1

NZC n=0

Xq, [n]x:h[(nwtv)moszc] = (2.3)

1
VNzc
* The discrete Fourier transform (DFT) (or its inverse) of a ZC sequence is also a ZC sequence.

2.2.2.2 Synchronization Signal Block

The synchronization signal block (SSB) is used for downlink time and frequency synchronization in a 5G
network. The gNB periodically broadcasts the SSB, and when a 5G UE is switched on, it searches for SSB
to synchronize its time and frequency in the downlink. The SSB consists of a primary synchronization
signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).

* The PSS helps the UE to identify the gNB.

* The SSS provides additional information that assists in precise timing and further gNB identification.

* The PBCH carries a master information block (MIB), which provides gNB information and is
needed to decode the system information block (SIB) to initiate uplink synchronization.
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The 5G SSB occupies in 4 OFDM symbols and 240 subcarriers. Multiple SSBs are transmitted
periodically in a process known as the SSB burst. The number of SSBs and the periodicity of the SSBs
in a SSB burst depend on specific options categorized as Case A, Case B, Case C, Case D, and Case E,
which are determined by the subcarrier spacing and operating frequency. OAI supports all these options.
Functions 1 and 2 in Table 2.3 provide implementation details related to SSB generation and reception.

2.2.2.3 Random Access Channel

The random access channel (RACH) is used for uplink synchronization. While the UE initiates the RA
procedure for initial access, the gNB can order the UE to initiate an RA procedure in the event of loss of
UL synchronization. By detecting the RACH preamble, the gNB can infer a coarse RTT between the gNB
and UE. The RACH signal is generated using the ZC base sequence. Depending on the sequence length
and repetitions, several formats are defined in 5G. The supported Formats in OAl are: 0, 1, 2, 3, A1, A2,
A3, B1, B2, B3. The functions 3-6 in Table 2.3 provide the implementation details in OAI

2.2.2.4 Positioning Reference Signal

3GPP has introduced the PRS specifically for localization purposes in the DL[68]. These reference signals
were introduced in 4G and extended to 5G with better resolution and accuracy. PRS is generated using
quadrature phase shift keying (QPSK) modulated 31-length gold sequence and can be flexibly arranged in
any number of physical resource blocks in the frequency domain. In the time domain, the PRS resources
can span {2,4,6,12} consecutive OFDM symbols. However, When it comes to OAI implementation, PRS
feature is currently limited to phy—-test mode usage as higher layer procedures supporting PRS are yet
to be implemented. Functions 7 and 8 in Table 2.3 provide implementation details of the PRS. Detailed
instructions for configuring and running the PRS can be found in [69].

2.2.2.5 Sounding Reference Signal

SRS is a wideband reference signal transmitted by the UE in the UL for channel estimation and positioning
purposes. SRS is generated using the ZC sequence and has good auto and cross-correlation properties.
Dedicated SRS for positioning is introduced in 3GPP Release-11. Although SRS for positioning and
communication have a lot of commonalities, they can be configured separately [5]. SRS can be flexibly
arranged in the frequency domain based on a few radio resource control parameters. In the time domain,
the SRS resources can span {1,2,4} consecutive OFDM symbols. SRS can be configured to transmit
periodically or aperiodically. Currently, OAI supports periodic SRS configuration and can be operated in
both sa and phy-test mode. Functions 9-12 in Table 2.3 implements the SRS procedures in OAI

2.2.3 5G Synchronization

Synchronization between gNB and UE is essential for reliable communication as well as positioning.
The 5G synchronization process consists of DL and UL synchronization. The UE can detect symbol and
frame boundary during the DL synchronization using SSB. Once DL is synchronized, the UE extracts
configuration parameters by decoding the MIB) from the PBCH and later the SIB from the physical
downlink shared channel (PDSCH). These parameters provide the necessary information to perform UL
synchronization.

The UL synchronization enables UE to determine the exact time to send the UL data. Since a gNB
serves multiple UEs located across the cell, the UL transmission times of the UEs need to be adjusted
such that their reception is aligned with the gNB’s UL reception. This is achieved with a RA procedure.
The UL synchronization is as follows:
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Table 2.3: Implementation details of the Reference signals in OAI

Function Description

1. nr_common_signal_procedures () SSB generation
2.nr_initial_sync() Initiates SSB RX procedures
3. nr_ue_prach_procedures () Initiates RACH TX procedures
4. generate_nr_prach () Generates the RACH sequence
5.L1_nr_prach_procedures () Initiates RACH RX procedures
6. rx_nr_prach () RACH preamble detection

7. nr_generate_prs () PRS sequence generation

8. nr_prs_channel_estimation () PRS channel, RToA estimation
9. ue_srs_procedures_nr () Initiates SRS TX procedures
10. generate_srs_nr () Generates SRS sequence

11. nr_srs_channel estimation () SRS channel, RToA estimation
12. configure_periodic_srs () Configure periodic SRS

* FEither the UE initiates (in the case of initial access), or the gNB orders the UE (in case of loss
of UL synchronization) to initiate the RA procedure through the physical random access channel
(PRACH). While it is contention based RA in the former scenario, in the latter, it can be contention
free, i.e., the gNB may configure the UE with a dedicated PRACH preamble.

* Based on the delay estimated from the PRACH, the gNB can measure a coarse/quantized RTT.
This coarse/quantized version of RTT coined as timing advance (TA), is then sent to the UE via the
random access response (RAR).

¢ Although the initial TA is sent via the RAR, gNB can periodically send updated UL timing
corrections to the UE via TA commands. Through these TA commands, gNB can maintain the UL
synchronization in case of UE mobility or clock drift.

The signaling procedure of RA and TA updates is depicted in Figures 2.4 and 2.5. An illustration of
the UE timing correction using TA can be seen in Figure 2.6.

gNBE UE
SSB 5 Downlink
slB Timing correction
>
Estimates | RACH
Timing Advance ;
9 RAR (Timing Advance) 'UE applies
» Timing Advance
after six slots

Figure 2.4: Synchronization procedure in 5G NR.

2.2.4 5G Radio Resource Control states

The RRC states represent the connectivity states of a UE. The three possible RRC states defined for a UE in
5G standalone mode are: NR_RRC_IDLE, NR_RRC_INACTIVE, and NR_RRC_CONNECTED. While
the NR_RRC_CONNECTED indicates an active data transmission/reception, the UE in NR_RRC_IDLE
and NR_RRC_INACTIVE stays asleep most of the time and periodically wakes up and looks for paging
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Figure 2.5: UE UL timing correction with Timing advance commands.
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Figure 2.6: Illustration of a UE UL timing correction in 5G NR.

messages to look for active data (e.g., incoming voice call or data) and switches to NR_RRC_CONNECTED
state. Contrary to the NR_RRC_IDLE mode, in NR_RRC_INACTIVE state, the gNB stores the UE

context (e.g., RRC configuration) for periodic transmissions. It is to be noted that until 3GPP Release-16,
majority of the current 5G positioning techniques that offer good accuracy work only when the UE is

NR_RRC_CONNECTED. 3GPP Release-17 introduces NR_RRC_INACTIVE based positioning for

low power high accuracy positioning (LPHAP) [70] for low power devices. The design requirements

for the LPHAP include low power consumption, low complexity, low signaling overhead, and timing

alignment to avoid interference with other UEs[71]. Further, in the next section, we describe the baseband

representation of the reference signals in OAL

2.3 OAI Physical Layer

Let us consider a scenario where a single antenna OAI transmitter (TX) communicating with a single
antenna receiver (RX) using 5G NR protocol stack as shown in Figure 2.7. This models both the UL and
DL communication scenarios. For example, when the TX is a gNB and the RX is a nrUE, it represents the
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DL scenario. The received signal y[k] at the RX on the k-th, k € [0, K — 1], RE is represented as,
ylk] = hlklx[k] + n[k], 2.4)

where, K is the total number of REs, h[k] represents the baseband propagation channel, x[k] denotes the
transmitted symbol and n[k] is additive white Gaussian noise. We now present the fixed-point format
used in OAI to represent these signals. This knowledge is crucial in OAl-based positioning experiments
and system design.

TX signa.\l RX signal
(Fixed-point) (Fixed-point)
TX signal TX signal TX power estimation RX power estimation RX signal
Floating-point rescale ing-poi
( El point) l P, dbm P, b l (Floating-point)

!

, v X RX
Py 1) Ty i
—
| | — IFFT RE RF FrT ———

| front-end front-end
txdataF rxdataF

OAI TX OAIRX

Figure 2.7: Transmission and Reception chain baseband representation in OAI

2.3.1 Baseband Signal Representation

The frequency domain IQ samples at the TX are stored in a contiguous memory buffer t xdataF as

txdataF = [oQoh Q... Ixk-1Qx-1], (2.5)

where I and Q. represent the in-phase and quadrature-phase components of the k-th RE, k€ [0, K —1].
Each I and Q. are stored in 16 bits using signed Q1.15 format or in short Q15 format. The generated
baseband signals are normalized such that their values lie between [-1,1) and then converted to fixed-point
using Q15 format. The relation between x[k] (floating-point) and x'[k] (fixed-point) is given by

x'[Kk]
215 ’

x'[k] = | x[k] x 21|, x[k] = (2.6)

where, |.] represent the floor operation and x'[k]’s are stored in 2’s complement form.

The signal x'[k] is then rescaled before sending it to the inverse fast Fourier transform (IFFT) block
to get the time-domain samples. The need for rescaling stems from two factors a) digital-to-analog
conversion (DAC)/analog-to-digital conversion (ADC) resolution of the radio frequency (RF) fronted
module b) the dynamic range of the IFFT block. Different RF front end modules such as USRP and
various ORAN 7.2 split RUs (VVDN, LiteON, Benetel) are supported by the OAI gNB. The fixed-point
baseband signal x'[k] is scaled as

—Axx,[k]J @)

J_C[k] = \\ 215

where, A is a design parameter based on decibels relative to full scale (dBFS).

2.3.2 Decibels relative to Full Scale

Decibels relative to full scale (dBFS) is a unit of measure for the amplitude levels in digital systems [72].
In a Q15 fixed-point format, the maximum represented level Ay« = 215 To convert a level A into dBFS
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scale, we use the following formula

). (2.8)

The choice of Aggrs depends on the device and signal characteristics and is configurable using the
parameter tx_amp_backoff_dB in the configuration file in OAI. The value of A and Ag4prs for a
USRP and an O-RAN 7.2 VVDN RU in OAI are mentioned in Table 2.4.

A
A4BFs = 2010g10 A

max

Table 2.4: Device specific 1Q bit representation in OAI

Device AJBFS A Bits
USRP B210 -36 519 9
O-RAN 7.2 split VVDN RU -12 8231 13

In the case of USRP B210, the choice of Agggs arises from two factors: 1. 12-bit ADC/DAC in
USRP and 2. Input to the IFFT block is scaled down by 3 bits to guard against possible signal saturation
during IFFT. On the other hand, the RU manufacturer mentions the Agggs in the device specifications.

We now shed light on estimating the transmit, receive powers per RE in digital and analog domains
using the fixed-point tools. This is essential in calculating the link-budget, signal strength and SNR in
OAlI-based positioning experiments.

2.3.3 Transmit and Receive Power

Let the reference signal transmitted be denoted by x'[k], k € S, where S is the set of REs where the signal
is mapped, and |S| = N. The average power per RE is calculated as
1
Pi==Y IX'[KI]% (2.9)
N jes

The power is then converted to dBm using
P dBm = 10log;,(P;) — 10log,((2°)?) + 30+ G, + G, (2.10)

where, the term (21°)2 arises from the conversion from Q15, 30 appears due to the conversion of dBw to
dBm, G; and G{ are the transmit gain and calibration offset of a device respectively.
The received power per RE in Q15 can be estimated from the received signal as

1
P, = N Z ly' (k112 (2.11)
keS

Further, P, in dBm at the receiver antenna port can be obtained by,
P 4Bm = 10log;,(P;) — 10log,,((2"°)?) + 30 — G, + G¢ (2.12)

where, G, is the receive gain and Gy is the calibration offset. Note that the calibration values GY, Gy are
obtained by varying the gains G, G, and measuring with a spectrum analyzer, and they vary from device
to device.
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2.3.4 SNR Estimation

In the computation of received SNR in an OFDM system, the received signal power P,, a combination of
both signal and noise power per RE is obtained from (2.11). The received SNR on a RE is obtained by,

Pr—Pp

P
SNR = 2.13)

n

The noise power P, is estimated similar to (2.11) from empty REs where no signal is present.

2.4 Data Extraction

This section presents the data collection procedure using the T_tracer tool in OAIL It provides an
example of extracting the SRS channel estimates using the tool, but the procedure is similar for any signal.
The SRS frequency domain channel estimates of length K, estimated using least squares are stored in
a variable named srs_estimated_channel_freqg[] [] [] in the function
nr_srs_channel_estimation (). The variable is a three dimensional array, with rx antenna index
as a first dimension, tx antenna index as a second dimension and subcarrier index in the third dimension.
Using the T_tracer tool, data from any variable can be stored over time in a file without effecting the
real-time performance of the OAI gNB and UE. The use of T_tracer for data collection is as follows,

* Define an ID in the T_messages. txt file, for example,
GNB_PHY_UL_FREQ_CHANNEL_ESTIMATE as shown in Listing 2.1.

* Use the ID in the code as T_ID and fill the function with appropriate variables as shown in
Listing 2.2.

* Compile the T_tracer and gNB as described in [73].
* Run gNB using an additional argument ——T_stdout 2.

* Parallel to running the gNB, in an another terminal, run record executable to record the data
using the ID as shown in Listing 2.3.

 After recording the data, the channel estimates from the file channel_frequency.raw can be
extracted using the variable chest_f as defined in Listing 2.1 and extract executable as as
shown in Listing 2.4.

ID

GNB_PHY_ UL_FREQ CHANNEL_ESTIMATE
DESC = gNodeB channel estimation in the frequency domain
GROUP = ALL:PHY:GRAPHIC:HEAVY :GNB
FORMAT = int,gNB_ID : int,rnti : int,frame : buffer,chest_f

Listing 2.1: Code snippet of a macro definition in T_messages.txt.

T (T_GNB_PHY UL_FREQ CHANNEL_ESTIMATE,
T_INT (srs_pdu->rnti),
T _INTframe_rx),
T_BUFFER (srs_estimated_channel_freq[0] [0], frame_parms->ofdm_symbol_size * sizeof (
int32_t)));

Listing 2.2: T tracer based data extraction code snippet of SRS frequency domain channel estimation.
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./record -d ../T_messages.txt -o channel_frequency.raw -on
GNB_PHY_UL_FREQ_ CHANNEL_ESTIMATE

Listing 2.3: Command to run T_tracer record.

./extract -d ../T_messages.txt channel_frequency.raw
GNB_PHY_UL_FREQ_CHANNEL_ESTIMATE chest_f -o srschF.raw

Listing 2.4: Command to run T_tracer extract.

Now, the frequency domain SRS channel estimates will be stored in a binary file: srschF . raw.
This binary file can be imported to MATLAB/OCTAVE for further offline analysis. The details of
compiling T_tracer are available in [74]. A sample MATLAB/OCTAVE script that reads the binary
file and plots the SRS channel estimates is provided in [75]. More details on the usage of T_tracer can
be found in [73].

2.5 Conclusions

In this chapter, we introduced OAl, including its components and operating modes that are beneficial to
developers and researchers in prototyping. We also delved into the essential functions of the reference
signals related to positioning in OAI. Further, we provided a comprehensive overview of the baseband
signal representation of these reference signals using fixed-point notation in OAI. Furthermore, we
discussed important physical layer metrics such as TX, RX power, and SNR estimation in OAI. Finally,
we presented the T_tracer tool, which facilitates data extraction within the OAI framework.
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Chapter 3

Novel Round Trip Time Estimation in 5G
NR and beyond

This chapter proposes two novel round-trip time estimation schemes at the cellular radio access network.
The proposed schemes utilize DCI-based signaling and enable us to combine multiple CSI coherently,
in contrast to traditional methods based on time-stamp. This coherent combination of multiple CSI
measurements improves the system’s performance, especially in low SNR scenarios.

3.1 Introduction

In 5G NR, there are mainly two approaches for obtaining RTT. Once the UE is synchronized in DL, the
RTT in the form of TA can be estimated from a received RACH preamble during the RA procedure. Even
though this appears to be a straightforward approach, it suffers from low accuracy due to the limited
bandwidth of the RACH. Moreover, the UE performs the RA procedure only during initial access or when
the UL synchronization is lost. In a more dedicated method, the PRS in the DL and SRS in the UL are
used to estimate the Rx-Tx timing difference at the UE and gNB as described in Section 1.2.1.2. Typically,
these measurements are based on a time-stamp and are then reported to the LMF located at the 5GC
network to compute the RTT. However, reporting these measurements to the LMF introduces latency, and
the accuracy of this method also depends on the bandwidth of the DL and UL resources and the SNR [5,
6].

Accurate RTT estimation is possible if the timing measurements from RACH can be augmented with
wideband UL CSI measurements, for example, from SRS. Few works have considered the problem of
estimating RTT based on UL CSI measurements at the gNB in real-world scenarios using open-source
4G/5G testbeds [76, 60]. The work in [76] is restricted to a scenario where there is no TA correction
sent to the UE by the gNB after the initial random access, i.e., the UE is very close to the gNB. An
improved scheme that overcomes this restriction has been proposed in [60]. However, both works ignore
the effect of clock drift in the system. Indeed, large fluctuations in RTT estimates caused by these factors
are reported in [60]. Moreover, RTT can only be obtained during initial access.

The inability to exploit multiple UL SRS measurements coherently in the RTT estimation stems
from a) inherent timing control loops in 5G NR and b) clock drift. The timing control loops in 5G NR
include UL and DL timing control. UL timing control is a continuous process in which gNB sends TA
commands to the UE to adjust its UL transmission timing. This procedure is crucial for maintaining
UL frame alignment with the gNB. On the other hand, in DL timing control, the UE experiences DL
reception timing drift due to clock drift, and it corrects this drift based on DL reference signals and is
implementation-specific. These timing control loops and the clock drift lead to the variability in delay
estimated from SRS measurements obtained in different time slots. Therefore, even in a scenario where
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the UE is static, and the gNB has access to multiple SRS measurements, they cannot be used jointly to
estimate the RTT. The impact of clock drift and timing loops on the estimated distance using RTT from
SRS measurements over time with a commercial UE (Quectel RM500-GL) at a fixed location is illustrated
in Figure 3.1. However, it is well known that coherently combining multiple measurements improve the
estimation performance in low SNR conditions.
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Figure 3.1: Effect of clock drift and timing loops on RTT in a commercial UE.

In this chapter, we propose a novel framework to estimate the RTT based on multiple coherent SRS
measurements in 5G NR. This approach tremendously improves the RTT estimation accuracy in the low
SNR regime. The main contributions of this chapter are:

* We propose two simple enhancements to the 5G NR signaling scheme capable of obtaining a
sequence of similar UL SRS measurements.

* A matched-filter solution is proposed to estimate the RTT jointly from the collected measurements.

* The proposed method can obtain the RTT even when the 5G UE is in a RRC inactive state.

* The complete solution is experimentally validated with a real-word 5G testbed based on the OAI

[58].

This chapter is organized as follows: Section 3.2 describe the proposed signaling enhancements
for 3GPP. Section 3.3 presents the procedure for SRS channel estimation. Section 3.4 details the RTT
estimation procedure and its associated algorithms. Section 3.5 outlines the experimental setup, while the
evaluation results are presented in Section 3.6. Section 3.7 discusses the datasets collected during this
experiment. Finally, Section 3.8 concludes this chapter.
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3.2 Proposed Signaling Enhancements

The proposed signaling schemes aims to obtain multiple wide-band UL SRS measurements along with
the RACH at the gNB. We leverage on the existing physical downlink control channel (PDCCH) order
signaling mechanism in 5G NR to obtain these measurements. When an RTT request is made, the
gNB sends an enhanced downlink control information (DCI) that includes information fields related to
positioning to the UE as a DCI Format via PDCCH. Moreover, the DCI Format should consider both the
NR_RRC_INACTIVE and NR_RRC_CONNECTED states of a UE.

It is possible to use an existing DCI Formats in the current 3GPP standard with minor mod-
ifications[77]. This can be achieved by adding an SRS request field to the DCI Format 1_0 for
RAN paging in the NR_RRC_INACTIVE state and the DCI Format 1_0 for PDCCH order in the
NR_RRC_CONNECTED state. However, the DCI Format 1_0 for RAN paging initiates a contention
based RACH procedure, resulting in signaling overhead.

Furthermore, DL timing correction is crucial for positioning when a DCI is received. This can be
observed from the behavior of a 3GPP Release-15 commercial UE (Quectel RM500-GL) as shown in
Figure 3.2. The plot in Figure 3.2 indicates the distance estimated from RTT over time by combining
TA from RACH and SRS measurements. An existing DCI (PDCCH order) is used to trigger the RACH,
and the SRS is scheduled so that the UE transmits the SRS after applying the TA received from RAR.
The sawtooth structure observed from the RTT measurements over time is shown in Figure 3.2. In this
sawtooth behavior,

* The rise in the RTT estimates stems from the clock drift between the gNB and the UE because the
UE does not correct its DL timing immediately after receiving the DCI.

* The fall occurs when the UE corrects its DL timing.

Currently, commercial UEs using 3GPP Release-15 have an implementation-specific timing correction
that corrects the DL timing only based on the conformance requirement [78] but not when the DCI is
received. Therefore, a new DCI Format is needed to reduce the signaling overhead, maintain DL and
UL timing, and use a common DCI for both RRC states. This motivates us to propose two signaling
mechanisms for positioning with a new DCI Format. The proposed signaling schemes are the SSB-SRS
and PRS-SRS signaling schemes, described in the section below.
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Figure 3.2: Effect of clock drift on RTT in a commercial UE using PDCCH order.
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3.2.1 SSB-SRS signaling scheme

The proposed 3GPP like signaling scheme is depicted in Figure 3.3. A new DCI Format, termed as DCI
Format X_Y, is used to signal the UE for positioning. Once the UE decodes the DCI Format X_Y, it
adjusts or updates its DL synchronization based on the SSB'. The UE then triggers a contention free
RACH using the dedicated preamble mentioned in the DCI Format X_Y. The gNB estimates the TA from
the RACH preamble and sends it to the UE via RAR. The UE applies the TA after six slots (from current
3GPP standards) and then transmits the SRS, as shown in Figure 3.3. RTT can be calculated based on the
TA and the SRS channel estimates as described in Section 3.4. This procedure is repeated several times to
obtain multiple measurements. Note that the UE aligns its UL timing when sending the SRS using the TA
value received in the RAR.

The DCI Format X_Y [77] includes the following fields: fulll-radio network temporary identifier
(RNTI) or shortI-RNTI, Random Access Preamble index, UL/supplementary uplink (SUL) indicator,
SS/PBCH index, PRACH Mask index, and SRS request as shown in Table. 3.1. In the proposed signaling
mechanism,

* when UE is NR_RRC_INACTIVE state, the DCI Format X_Y is scrambled using P-RNTI,

* in NR_RRC_CONNECTED state, the DCI Format X_Y is scrambled using C-RNTI. In this case,
the field fulll-RNTT or shortI-RNTI is set to 0.

Table 3.1: Contents of DCI Format X_Y : SSB-SRS signaling scheme

DCI Fields Number of bits
fulll-RNTT or shortI-RNTI 40 or 24
Random Access Preamble index 6
UL/SUL indicator 1
SS/PBCH index 6
PRACH Mask index 4
SRS request 2o0r3
gNB UE

DCl Format X_Y

b4

S5B o Downlink
| Timing correction
Estimates |, RACH
Timing Advance
E RAR (Timing Advance) .| UEapplies
7| Timing Advance
! after six slots
RTT SRS

FY

estimation

Figure 3.3: Proposed SSB-SRS signaling scheme for RTT estimation.

Note that UE can update its DL synchronization by other means too
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The description of the DCI fields are detailed as follows:

1. fulll-RNTI or shortlI-RNTTI : An identifier assigned to a UE in NR_RRC_INACTIVE state.

2. Random Access Preamble index : A dedicated random access preamble index to perform contention-
free RA procedure.

3. UL/SUL indicator : Parameter to check if the UE is configured with SUL or not.

4. SS/PBCH index : Indicates the SS/PBCH that shall be used to determine the RACH occasion for
the PRACH transmission.

5. SRS request : Parameter to check if the UE should send SRS or not.

3.2.2 PRS-SRS signaling scheme

The proposed PRS-SRS signaling scheme is similar to the proposed SSB-SRS signaling scheme, however
it emphasis on improving the downlink timing synchronization at the UE using PRS. The proposed
PRS-SRS signaling scheme is depicted in Figure 3.4.

Similar to SSB-SRS signaling scheme, a new DCI Format, termed as DCI Format X_Y, is introduced.
Once the UE decodes the DCI Format X_Y, it adjusts or updates its DL synchronization based on the
PRS. The UE then triggers a contention free RACH using the dedicated preamble mentioned in the DCI
Format X_Y. The gNB estimates the TA from the RACH preamble and sends it to the UE via RAR. The
UE applies the TA after six slots (from current 3GPP standards) and then transmits the SRS, as shown in
Figure 3.4.

The DCI Format X_Y for PRS-SRS signaling scheme includes the following fields: fulll-RNTI or
shortl-RNTI, Random Access Preamble index, UL/SUL indicator, SS/PBCH index, PRACH Mask index,
SRS request and PRS decode request as shown in Table. 3.2. In the proposed signaling mechanism,

* when UE is NR_RRC_INACTIVE state, the DCI Format X_Y is scrambled using P-RNTI,

¢ in NR_RRC_CONNECTED state, the DCI Format X_Y is scrambled using C-RNTI. In this case,
the field fulll-RNTI or shortI-RNTTI is set to O.

Table 3.2: Contents of DCI Format X_Y : PRS-SRS signaling scheme

DCI Fields Number of bits
fulll-RNTT or shortI-RNTI 40 or 24

Random Access Preamble index 6
UL/SUL indicator 1
SS/PBCH index 6
PRACH Mask index 4

SRS request 20r3

PRS decode request 2or3

3.2.2.1 Cyclic-shift based signaling scheme

A more efficient signaling scheme for RTT estimation in NR_RRC_CONNECTED state using PRS in
the DL and a new reference signal, namely uplink reference signal (URS), instead of SRS in the UL,
has been proposed in [63]. This URS utilizes the cyclic shift property of the Zadoff-chu sequence as
described in Section 2.2.2.1 to shift the signal by TA used by the UE and the downlink timing information
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Figure 3.4: Proposed PRS-SRS signaling scheme for RTT estimation.

from the estimated PRS peak p,; as shown in Figure 3.5. This mechanism further reduces the latency
by eliminating the need for RA procedure in the proposed SSB-SRS and PRS-SRS schemes, achieving
the same accuracy performance. However, in this dissertation, we restrict our analysis to SSB-SRS and
PRS-SRS signaling schemes.

gNB UE
DCI signaling
>
PRS
» Estimate PRS peak:Pd
estIiQn:;—tion < URS Apply the cyclic shift

TA+Pd

Figure 3.5: RTT estimation mechanism using Cyclic shift based URS.

Now, we describe the channel estimation procedure of the SRS obtained using both SSB-SRS and
PRS-SRS signaling schemes.

3.3 SRS channel estimation

We consider a 5G NR system with a single antenna UE and gNB in our experiments. The received SRS at
the gNB on the k-th, k € [0, K — 1], subcarrier

ylk]l = hlk]s[k] + n[k], 3.1

where, k € {0,1,...,K-1}, K is the fast Fourier transform (FFT) size, h[k] represents the baseband
propagation channel, s[k] represents the SRS pilot symbol and n[k] ~ N (0,0?) is additive white gaussian
noise. We consider a LoS channel with L multi-path components. The UL channel at the d-th tap is

modeled as,
-1

ha=) arpdTs—1/) (3.2)
=0
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where, ay = a’[e‘f 2nfete is the complex channel gain of the ¢-th path, a’[ and 1, are the path-loss and
delay of the ¢-th path, f; is the center frequency, T is the sampling period and p(.) is the pulse-shaping
filter. Further, the UL channel at a k-th subcarrier can be obtained by,

—j2nkd

N;—1
hlk]= ) hge % , (3.3)
d=0

where, N; is the number taps. Furthermore, a least-square estimate of the channel is given by
hik = s[k]* y[kl, (3.4)

where, (.)* denotes the conjugate operator, and s[k] is the known SRS symbol at the k-th subcarrier. The
channel estimate fz[k] is represented in the vector form as

i =[Ri0], Ail,..., RiK-1]" . (3.5)

We further describe the RTT estimation procedure using TA obtained from RACH and the SRS
channel estimates.

3.4 RTT Estimation

Based on the signal enhancements described in the previous section, the gNB can estimate a coarse RTT,
i.e., TA value estimated from the RACH, and refine it further using SRS measurements. The coarse RTT

7" can be obtained from the TA as
;

TA x 16 x 64
=—
where, p € {0,1,2,3,4,5} is the numerology related to the subcarrier spacing Af = 15.2# KHz, T, =
(Alemeax)’ A fax =480 KHz is the maximum possible SCS and Ky, 4, = 4096 is the maximum possible
FFT size in 5G NR [68].

By using the proposed signaling schemes in Section 3.2.1 and Section 3.2.2, we can obtain multiple
coarse RTT’s and SRS channel estimates. The m-th, m € [1, M] coarse RTT obtained from RACH
using (3.6) and the channel estimate is denoted by 77, and R, € CK*1 respectively. Each channel estimate
I, is shifted by the respective coarse RTT 7/, to maintain the coherency among the channel estimates. A
threshold based peak detector (PD) and threshold based matched filter (MF) estimate of the refined RTT 7
are discussed in the section below.

T, (3.6)

3.4.1 Threshold based Peak Detector

A refined RTT using a peak detector by detecting a first peak of the impulse response greater than a
threshold T}’f ? can be obtained by,
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h = IDFT{T(Tfn)izm} (3.7)
By = Ind (|l = ) /indices of T[> 77 (3.8)
m_ {ﬁ;”w), | (B2 O)| = [ (57 (1)) 39)
TR, R (BTO)| < R (BT '
1 M
?PD)= m; pr, (3.10)

where, ﬁm, m € [1,M] is the m-th SRS channel estimate measurement, f; is the sampling rate,
T(z},) = diag(1,e /2" T, ..., e /2"K-DAITw)  IDFT{} denotes the inverse discrete Fourier transform

and p”(0), pI7'(1) are the first, second indices of the | k| that are = T} 4,

3.4.2 Threshold based Matched Filter

A refined RTT using a matched filter by detecting the first local maximum of the matched filter output
greater than a threshold T P:" I can be obtained by,

1 MY -
Mpa) =~ 3 @) T hnl, i=11,...,G) (.11
m=1
Mf = [Mf(Tl))Mf(TZ)wH)Mf(TG)]’ (312)
_ My
M= _ (3.13)
max(My)
#(MP) = argmin (£ind_peaks (My, 7, (3.14)

where, v(1) = [1,e‘jz’mf’,...,e‘jZ”(K_DAfT]T, and find_peaks (Mf, T;lnf) outputs all the local

maxima in M ¢ that are > T;ln T The local maxima is a data value that is greater than its two neighboring
data values and G is the grid size of the MF.

Further, the distance estimate (d) between the gNB and the UE can be obtained from the estimated
RTT (7) as

d=

oY

, (3.15)

where, c is the speed of light.
The performance of the proposed algorithm is evaluated using the following experimental setup.

3.5 Experimental Setup

We consider a scenario with a single antenna gNB and a UE having LoS condition. We leverage on the
OAI 5G NR protocol stack [58] and USRP B210 SDR cards to build the gNB and UE. Additionally,
SC2430 NR signal conditioning module is used as an external RF front-end at the gNB [79]. The
measurements were taken in an anechoic chamber at the Northeastern University Burlington campus, as
shown in Figure 3.6.

Since the signaling using the DCI Format X_Y is not implemented yet, we simplify the proposed
SSB-SRS signaling scheme depicted in Figure 3.3 of Section 3.2.1 to the signaling scheme as shown in
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Figure 3.7. Similarly, we simplify the proposed PRS-SRS signaling scheme depicted in Figure 3.4 of
Section 3.2.2 to the signaling scheme as shown in Figure 3.8. Note that this simplification does not result
in any loss in terms of the functional behavior of the proposed RTT estimation algorithm for the following
reasons:

* The distance between the gNB and UE is always within the resolution of the RACH based TA
during the experiment. For the used 5G NR configuration, the RACH TA resolution is 39.0625
meters.

* The delay between receiving the DCI Format X_Y and sending the SRS in the proposed framework
(Figures 3.3 and 3.4) is emulated with a 20 slot offset between SSB/PRS reception and SRS
transmission at the UE as shown in Figure 3.7 and Figure 3.8 respectively.

* The hardware delays are calibrated and compensated by applying a fixed timing advance at the
UE throughout the experiment. For this, we have used the phy-test mode of the OAI [66] as
described in Section 2.2.1.4. This mode operates only at the physical layer and abstracts the higher
layers.

The 5G NR system parameters used in the experiment are listed in Table 3.3. Note that the proposed
schemes applies to all the 3GPP bandwidth and numerology configurations.

During the experiment, the gNB is static, and the UE is moved in an increment of 1 meter from
an initial gNB-UE distance of 7 to 11 meters, as shown in Figure 3.6. In all measurements, the LoS
is maintained between the gNB and UE. Variation in uplink SNR is achieved by changing the USRP
transmit (Tx) gain. Multiple SRS channel estimates were obtained at each distance, and the data was then
stored for further offline analysis. The performance of both the proposed schemes based on the collected
measurements are presented in the following section.

OAIl gNB

Figure 3.6: Experimental setup for evaluating the proposed schemes in an anechoic chamber.

3.6 Results

In this section, we will present the empirical results of both the proposed RTT estimation schemes at
low and high uplink SNR scenarios. Furthermore, the impact of the number of measurements on the two
algorithms, the PD and the MF is shown. The PD and the MF approaches are outlined in Section 3.4.
For both the schemes, in the high SNR scenario, we set the UE USRP Tx gain to 89.5 dB, resulting
in an estimated uplink SNR of 25 dB. In the low SNR scenario, we have reduced the UE Tx gain by 50
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Figure 3.7: RTT implementation in OAI phy-test mode using SSB-SRS signaling scheme.
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Figure 3.8: RTT implementation in OAI phy-test mode using PRS-SRS signaling scheme.

Table 3.3: System Parameters used for RTT estimation in OAI

Parameters Values
System bandwidth 38.16 MHz
Subcarrier Spacing (A f) 30 KHz
Centre frequency (f¢) 3.69 GHz
Sampling rate (f5) 46.08 MHz
Sampling Period (T5) 21.70 ns
FFT size (K) 1536
Cyclic prefix (Ncp) 132
SSB bandwidth 7.2 MHz
SRS bandwidth 37.44 MHz
SRS comb size (K;) 2
PRS bandwidth 37.44 MHz
PRS comb size 2

dB to 39.5 dB. Finally, we used the T_tracer tool as described in Section 2.4 to extract the required
data from OAL

We can see that large variations shown in Figure 3.1 can be mitigated using the proposed SSB-SRS
and PRS-SRS signaling schemes. As illustrated in Figures 3.9 and 3.10 at an actual gNB-UE distance of
11 m at high SNR using PD, the proposed signaling schemes mitigated the fluctuations in the estimated
distance compared to the fluctuations in Figure 3.1. Note that the fluctuation of around 6.5 m in Figure 3.9
and around 3.25 m in Figure 3.10 is due to the accuracy of the distance estimation from single measurement
depending on the bandwidth of the SSB and PRS respectively used for downlink correction.
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Figure 3.9: Estimated distance using proposed SSB-SRS signaling scheme over time.
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Figure 3.10: Estimated distance using proposed PRS-SRS signaling scheme over time.

Further, the RTT results in terms of distance/range estimation error for both the proposed schemes
are discussed below.
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3.6.1 SSB-SRS signaling scheme

The cumulative distribution Function (CDF) of the range estimation error for the MF and PD algorithms
using the proposed SSB-SRS signaling scheme is shown in Figures 3.11 and 3.12, again for both high
and low uplink SNRs. At each SNR, the empirical range CDF is obtained from a total of 25,000 SRS
measurements, collected based on the signaling procedure depicted in Figure 3.7. As described in
Section 3.5, these 25,000 measurements were obtained by fixing the gNB’s position and moving the UE
between 7 and 11 meters in 1-meter increments. At every SNR, 5,000 measurements were taken at each
distance between 7 and 11 meters.

While the MF and PD schemes have similar performance when the SNR is high, in low SNR scenarios,
the MF algorithm significantly outperforms the PD scheme. In a low SNR scenario, for M=20, the range
estimation error of MF is below 3.25 meters for 90% of the time. Furthermore, by increasing the number of
measurements from M=20 to M=60, we see an increase in the estimation performance for both methods.
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Figure 3.11: CDF of the range estimation error at High SNR using SSB-SRS signaling scheme.
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Figure 3.12: CDF of the range estimation error at Low SNR using SSB-SRS signaling scheme.
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3.6.2 PRS-SRS signaling scheme

The CDF of the range estimation error for the MF and PD algorithms using the proposed PRS-SRS
signaling scheme at both high and low uplink SNR is shown in Figures 3.13 and 3.14 respectively. At each
SNR, the empirical range CDF is obtained from a total of 15,000 SRS measurements. These measurements
are collected based on the signaling procedure depicted in Figure 3.8. As described in Section 3.5, these
15,000 measurements are obtained by keeping the gNB’s position fixed and moving the UE between 9 to
11 meters with a 1 meter increment. At every SNR, 5,000 measurements are collected at each distance
between 9 and 11 meters.

Similar to SSB-SRS signaling scheme, the MF and PD schemes perform comparably at high SNRs.
However, in low SNR scenarios, the MF algorithm outperforms the PD scheme significantly. For low
SNR and M=20, the range estimation error of the MF scheme is below 0.7 meters 90% of the time. Again,
increasing the number of measurements from M=20 to M=60 results in improved estimation performance
for both methods. Furthermore, using PRS for downlink correction in PRS-SRS signaling scheme results
in improved range estimation error in both high and low SNR scenarios compared to SSB in SSB-SRS
signaling scheme. This enhancement is due to the higher bandwidth of PRS compared to SSB. The
measurements obtained using the proposed schemes are publicly available and discussed in the section
below.
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Figure 3.13: CDF of the range estimation error at High SNR using PRS-SRS signaling scheme.
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Figure 3.14: CDF of the range estimation error at Low SNR using PRS-SRS signaling scheme.

3.7 Dataset

The dataset collected using the RTT prototype mentioned above in an anechoic chamber is made public
in [75]. The dataset includes multiple measurements at different distances varying from 7-11min 1 m
increments. At each distance, SNR is varied by changing the TX gain from 39.5 dB to 89.5 dB of the
USRP in steps of 10 dB. The SNR corresponds to 89.5 is 25 dB. In the published dataset [75], the folder
name contains the corresponding distance between gNB, UE, and the Tx gain used. The Tx gain can
be inferred from the folder name as follows: the sub-string ue_att_x should be interpreted as x dB
attenuation from the maximum gain of the USRP B210, which is 89.5 dB. For example, ue_att_0
corresponds to the Tx gain 89.5 dB, and ue_att_50 corresponds to the Tx gain 39.5 dB. Each folder
contains the following recorded data files in Q15 format,

* srs_chF.raw: Frequency domain least square channel estimates of the SRS in comb fashion.

* srs_chF_lin_interp.raw: Frequency domain least square channel estimates of the SRS in
comb fashion and the channel estimates of the subcarriers between the two SRS symbols in a comb
are linearly interpolated.

* srs_chT.raw: Impulse response of the SRS.

* noise.raw: Noise measured in an empty OFDM symbol.

To read and analyze these files, a sample MATLAB script is provided in [75]. For example, an impulse
response sample from the dataset at 10 m and a USRP Tx gain of 89.5 dB is shown in Figure 3.15. The
x-axis in Figure 3.15 represents the IFFT index in samples. The RTT in samples between the gNB and UE
can be estimated from the peak p of the impulse response. Finally, the range estimate d between the gNB

and UE from peak p is obtained by,
5 p X C
2fs’
where, c is the speed of light and f; is the sampling rate. Utilizing the system configuration mentioned
in Table 3.3, the estimated range is 13.02 m. Note that in this example, the estimated range is based on
the maximum peak of the channel impulse response (CIR) from a single measurement. However, better

accuracy in terms of range estimation error can be achieved by combining multiple measurements as
discussed in Section 3.6.

(3.16)
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Figure 3.15: A sample impulse response from the dataset.

3.8 Conclusions

In this chapter, we proposed two RTT estimation schemes using DCI Format X_Y as a signaling mech-
anism for positioning. The proposed schemes are designed to work in both NR_RRC_INACTIVE and
NR_RRC_CONNECTED states. It forces the UE to correct its timing after the reception of the DCI,
which is currently not possible, as shown in our experiments with the COTS UEs. Furthermore, our
framework enables the coherent combination of multiple uplink channel measurements and is robust to
the clock drift and the inherent timing loops in the 5G system. We have validated the functionality of our
proposed framework in real-time using OAI. Our results show that the proposed matched filter algorithm
can achieve meter-level accuracy for bandwidth as low as 40MHz, even in low SNR scenarios.

44



Chapter 4

Sensing aided Channel Estimation in
Wideband MIMO Systems

In this chapter, we present how to utilize the sensing information, such as the distance and angle
information of a scatterer/reflector gathered from the environment, to enhance uplink channel estimation.
We demonstrate that utilizing sensing information as side information can significantly reduce the number
of pilots required for the channel estimation.

4.1 Introduction

Millimeter wave (mmWave) and THz frequencies are considered to be a key component of 5G and beyond
cellular systems [80]. However, as the operating frequencies increase, path and absorption losses also
increase. Despite these disadvantages, this approach will allow packing more antennas in a small area and,
then, the network can leverage beamforming techniques to compensate for the losses operating in such
frequencies. However, the gains stemming from these multiple antenna techniques hinge on the ability to
accurately estimate the CSI.

Estimating channel coefficients over a wideband and across multiple antennas incurs significant
resource overhead in terms of resources occupied for sending pilot symbols. However, it has been observed
that the mmWave channel exhibits a sparse behavior with only a few resolvable multi-paths in angle and
delay domain [81] and [82]. By leveraging such sparsity, several works have come with compressed
sensing (CS) based approaches for channel estimation and precoder design in mmWave multi-input
multi-output (MIMO) systems [83, 84, 85, 86, 87, 88]. However, while used in wideband massive MIMO
systems, these approaches lead to higher complexity due to the requirement of inverting huge matrices
(for every subcarrier) across such antenna arrays.

Since the sparse wireless channel is described by a few geometric multi-path propagation parameters,
one might ask: Can the information on the physical propagation environment, for example, scatter or
reflector locations, be useful in channel estimation? Indeed, one of the earlier works in [89] has utilized
this key observation. The authors extract physical multi-path parameters from the CSI measurements in
one frequency band and then use them to construct the CSI in another frequency band. However, no extra
pilots are used in aiding the channel estimation, and they assume that the extracted multi-path parameters
are perfect.

On the other hand, advances in radar and joint communication sensing made it possible to have real-
time dynamic radio environment maps at the communicating devices providing situational awareness [10,
45, 46, 48, 49, 50, 51, 52]. The works in [45, 46, 48, 49, 50, 51] use such side information in multi-path
angular domain for the beam prediction and channel estimation. A recent work in [47] tried to address the
problem of channel estimation in massive MIMO systems by leveraging the sensing information obtained
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from a co-located radar at the gNB. Both delays and angles of multi-path parameters are extracted from
the radar information, and then used to initialize the dictionary in an orthogonal matching pursuit (OMP)
based channel estimation algorithm. However, the extracted multi-path parameters from the radar are
assumed to be error-free.

In practice, the presence of impairments such as clock drift and timing correction loops, as described
in Section 1.2.3, makes it impossible to integrate the sensing information as side information for CSI
estimation. This issue arises because such impairments in 5G NR introduce fluctuations in the estimated
CSI. These fluctuations are clearly illustrated in Figure 3.1, where the estimated distance obtained from the
RTT (LoS path) using SRS in a commercial UE. Despite the UE being static, the estimated distance shows
significant fluctuations, indicating instability in the estimated CSI. Therefore, even with the available
sensing information, we cannot use this sensing information as side information with such instabilities.
To address these issues, the signaling schemes proposed in Section 3.2 aim to mitigate such fluctuations in
the estimated CSI. Thus, such a system, as mentioned in Section 3.2, is necessary to provide CSI that is
robust to these impairments, thereby enabling the integration of sensing information as side information.
Furthermore, such signaling mechanisms not only provide CSI that is robust to impairments such as clock
drift and timing correction loops but also enable the sensing capability in the uplink, which acts as an
alternative to obtaining sensing information from radar.

In this chapter, we consider the problem of uplink channel estimation in a wideband MIMO system
using radar sensing information as side information as shown in Figure 4.1. Contrary to state-of-the-art,
we propose a sparse Bayesian learning (SBL) framework that efficiently incorporates erroneous delay
and angular sensing information and improves their resolution with limited pilot overhead. The main
contributions of the chapter are the following :

1. We present how the signaling schemes proposed in Section 3.2 can be utilized to obtain sensing
information from the environment.

2. Unlike [47], we assume that the sensing information can be erroneous. We also consider cases in
which scatterers detected in the sensing system might not be associated with the communication
channel.

3. To address these issues, a novel simultaneous weighting orthogonal matching pursuit (SWOMP)-
SBL based channel estimation is proposed that incorporates the imperfect sensing information.

4.2 Uplink Sensing

In this section, we discuss how environmental sensing information, such as the delay between the scatter-
er/reflector to the gNB in an environment, can be obtained in the uplink jointly from the communication
signal utilizing the proposed signaling schemes in Section 3.2. We explain how uplink sensing can be
enabled by the proposed signaling schemes by detailing the estimated uplink CIR within an example
propagation environment.

An example propagation environment in Figure 4.2 consists of a gNB, UE, and two scatterers/re-
flectors. The transmitted signal in this environment is subjected to multiple propagation paths due to the
scatterers/reflectors in the environment. Therefore, in the proposed signaling schemes, both the DL and
UL transmitted signals are subjected to multiple propagation paths, which can be visualized as follows:

4.2.1 Downlink Scenario

In the DL scenario, as shown in Figure 4.2a, the transmitted signal (SSB/PRS) from the gNB reaches the
UE via three different paths with delays denoted as 7y, T‘f, and Tg. Here, 7 represents the LoS path, and
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communication paths
—>

radar paths gNB + radar

Figure 4.1: Uplink multi-path scenario along with the co-located radar.

the corresponding CIR can be seen in Figure 4.2c. The UE estimates these delays and synchronizes its
timing with the LoS path (i.e., o).

4.2.2 Uplink Scenario

After the UE has corrected its timing using the LoS path in the DL (i.e., 79), RACH procedure is initiated,
where, RACH preamble is transmitted by the UE is received by the gNB to estimate TA (t"). After
estimating the TA, the gNB sends the TA to the UE via RAR. The UE then decodes the RAR and then
advances its UL timing by TA (77) and transmits the SRS in the UL.

As illustrated in Figure 4.2b, the transmitted SRS also traverses in three different paths with the delays
7o, 71, and 7. Since the UE transmits the SRS after aligning its DL timing with 7o and advancing it’s
UL timing with TA (z7), all the estimated delays from the SRS in the UL (79, 7}, and 7}) are effectively
shifted by 79— 7" as shown in Figure 4.2d. Further, by compensating the TA from the SRS, referred to as
TA compensated SRS (i.e., T(z" )h), all the estimated delays in the time domain, are effectively shifted by
7¢ as shown in Figure 4.3. Where, T(z") = diag(1, e J2nAfT e‘jZ”(K_l)AfT'), Af is the SCS, K is the
FFT size and f is the SRS channel frequency response (CFR).

Note that the LoS path 27 as shown in Figure 4.3 is the delay of the first path of the TA compen-
sated SRS, referred to as RTT. We estimate RTT by estimating the delay of the first path from the TA
compensated SRS (i.e., 27¢). Furthermore, in the time division duplex (TDD) systems, Tf =1{=1
and Tg =14 = T since the operating frequencies are the same. However, in frequency division duplex
(FDD) systems, Tf and Tg may not be equal to 7} and 75, respectively. Therefore, by estimating 7o and
subtracting it from the estimated delays of the TA compensated SRS, we can determine the delays 7 and
74 caused by the scatterers/reflectors present in the environment.

Furthermore, considering TDD and a multiple antenna system, the delays and AoAs estimated from
the TA compensated SRS as described above, can be used to determine the location of the scatterers/reflec-
tors present in the environment. For example, in the scenario shown in Figure 4.4, let 7,0y be the delay
and AoA of the LoS path and 7, =7}, + T;;“d, 0, be the delay and AoA estimated from the ¢-th scatterer.

The distance between the gNB and the ¢-th scatterer d ;“d = T;“dc can be estimated using the triangle
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laws of cosines as follows,

rad

(T)? =15+ (1,")? — 2707, cos(0, - o), 4.1)

where ¢ is the speed of light and solving for TZ“d by substituting 7/, =7, - T;ad in (4.1),

)
rad _ (Ti TO)

Y0 T 2, —toc0sO; - 00))’

4.2)

Thus, utilizing the known gNB location and the estimated delay (T;“d ) and AoA (8y) of the ¢-
th scatterer/reflector, the location of the £-th scatterer/reflector in an environment can be determined
using the proposed signaling schemes. Furthermore, the delay (¢ ;“d) and AoA (8;) information of the
scatterers/reflectors, referred to as sensing information estimated using the proposed signaling schemes,
can be further leveraged to enhance communication. This includes using the sensing information to aid in
channel estimation to reduce the number of pilots required for the channel estimation, as discussed below.

gNB gNB

E

UE UE
(a) Downlink Multipath Scenario (b) Uplink Multipath Scenario
A
70
3 d 0 o, 21—
= T2 "o ! }
= 9 ° To— T
& : E 5 T0— T+ Ty
&) ' p=1 ,2
S ; E
' =
delay (T ) delay (7) "
(c) Downlink Multipath Channel (d) Uplink Multipath Channel

Figure 4.2: Multipath Scenario of both Downlink and Uplink using Proposed Schemes.
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Figure 4.4: Estimation of the Scatterer Location using Uplink Sensing.

4.3 System Model

We consider a scenario where a UE communicates with gNB in an environment with the scatterers located
between them. The scatterers are represented by S;, and |S;| = L. Only a subset of these scatterers,
S <S8y, ISc| = L, are assumed to affect the UE-gNB communication channel. The set S, is unknown,
however, we assume that location estimates of scatterers in S, are provided by a sensing system. This
represents a scenario where the scatterers are present in the blind zone to UE but can be detected by a
sensing system co-located at the gNB as shown in the Figure 4.5.

4.3.1 Sensing Information

We assume that the gNB obtains sensing information through either a radar [90] co-located with the gNB
or a joint communication and sensing framework [Section 1.2.2, 4.2] , [40]. The sensing measurements
available at the gNB are given by,

1090 < N(T4,02), €={1,2,...,L;} (4.3)

0, ~Np,02), €={1,2,...,L} (4.4)

where T;“d and 6, represent the delay and angle of the path from ¢-th scatterer. They are assumed to be
Gaussian distributed with means 7, and 6, representing the true delay and angle of the ¢-th scatterer from

the gNB, respectively. The error in the radar spatial information can appear due to noise and the inability
of the radar to resolve delay and/or angles sufficiently.
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Figure 4.5: Uplink channel estimation in the presence of Scatterers along with the Sensing information.

4.3.2 Communication Model

We consider a mmWave OFDM) system with a single antenna UE and M antenna gNB. The gNB is
equipped with a uniform linear array with half-wavelength spacing between consecutive antennas.

The UE sends P <« K (narrowband) pilots, where K is the total number of subcarriers used for
communication. The pilot index p € P < {0,...,K—1} and |P| = P. The received complex baseband signal
at the p-th subcarrier after down-conversion, zero prefix removal, OFDM demodulation, and correlation
with the pilots is given by

ylpl = hipl +n(p], 4.5)

where h[p] € cMx1 represent the baseband channel, n[p] ~ CN 0,0%I,)) is a circularly symmetric

complex Gaussian distributed additive noise vector. We define the received SNR at subcarrier p as
IhIp] I2/02. Next, we describe the mmWave channel model generation that is a parametric function of
the multipath components.

4.3.3 Channel Model

A frequency-selective geometric channel model with N, delay taps and L. + 1 paths [86] is considered.
The channel consists of a LoS component, and L, (yet unknown) reflections resulting from the scatterers
as described earlier. The d-th delay tap is modeled as

L
ha=)_ arpdTs—10)a@)), (4.6)
/=0

where p(.) is the pulse-shaping filter, T is the sampling interval, ay, T, 0, represent the path gain, delay
and the AoA of the ¢-th path, respectively. The receiver array steering vector for the ¢-th path is denoted
by a(8,) € CM*1. The index £=0 is always associated with the LoS path. We can compactly represent the
channel as hy=AA4, where A=[a(0) a(0:) ... a@,)] € C¥*L*D contains the receiver side steering
vectors and

Ag=| aopdTe-1o),,ar,pdTs-11) ] 4.7
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We obtain the frequency domain channel representation by taking a K-point DFT of the delay-domain
channel, and the channel at subcarrier k € {0,..., K — 1} can be written as

Nez kd
hikl= Y hdexp( 12 )=AA[k1, 4.8)
d=0 K
N-1
and A[k] is given by A[k] = Z Ay exp( ) Further substituting for A; from (4.7), we obtain
d=
Alk] = [Bro@o, B1ar, ., Brr.ar,] (4.9)
where,
Nt j2mkd
Bre= ) P(de—Te)eXP(—] X ) (4.10)
da=0

Substituting A[k] in (4.8), a compact form of the frequency domain channel h[k] can be obtained as
= ABa, 4.11)

where,
/Bk:diag(ﬁk,O)n-»ﬁk,LC)» (412)

and a=lay,..., a LC]T. Further substituting (4.11) in (4.5), the received frequency domain signal y[p] of
the pilot index p can be written as

ylpl=¥Ypa+nipl, (4.13)

_ Mx(Lc+1)
where ¥, = A3, €C .

4.4 Sensing Aided Channel Estimation

In this section, we provide a channel estimation framework that incorporates the sensing information
available at the gNB. From (4.13), the received P pilots in vectorized form is given by

[yTI019 11 ... 4T P-11]", (4.14)

y=
y=[¥1¥] ¥} | a+n, (4.15)

a

where the matrix Q € CMP*(Le+D carries the delay-angle information of the multipath components and 7
is the vectorized noise n = [nT[0]nT[1]---nT[P-1]]T.

Moreover, the sensing information can be used as an initial estimate of the multipath delays and
angles. Let 0 =16,,6,,0,,.. .,éLr], where 6 is the angle associated with the LoS path and 0y, 0€[1,L,]
is the AoA of the Z-th path obtained from the sensing information. The propagation delay between the
gNB and the ¢-th, ¢ € [1, L,], scatterer is denoted by TZ“"’. Let us define 7 = [, T1,T2,..., T, |, Where 7g
is the delay between the UE and the gNB, and the delay of the /-th communication path can be estimated
using the radar delay 7/, ad g

to=1,"+1, (4.16)
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where T; is obtained using triangle laws of cosines as shown in Fig. 4.6,
T, = \/‘L'%-f— (T;ad)z—ZTo(Tzad)COS(é[—9()). (4.17)

Similar to the matrix € in (4.15), using the sensing information (7,0), we can construct a matrix
Q € CMP*Lr+1) that captures the delay-angle information of the L, +1 paths. As we described earlier, only
a subset of L, among the L, scatterers are included in the communication channel, and L. is unknown.
This can be mathematically represented as

Q=QB+E, (4.18)

where B € R +Dx(LetD) jg obtained by selecting L. + 1 columns of the identity matrix I, +;. The indices
of the columns that are included in B, correspond to the paths that are present both in the communication
channel and sensing information. The unknown error term is denoted by E.

communication associated

7 radar associated scatterers
radar path
gNB rad T
ru:i_ur T | e UE

O £0s Y

Figure 4.6: Communication delay estimation from the delay available in Sensing information.

4.4.1 Problem Formulation

Utilizing the received pilot signal (4.15) and the sensing information in the form of (4.18), the maximum
a posteriori (MAP) based channel estimation problem is formulated as:

(@, a"] = argmaxp(@,a | y), (4.19)

where p(.) represents the probability distribution and « is the channel gain vector.

The optimization problem at hand is difficult to solve in general as a) it is hard to obtain the
distribution p(€Q, « | y) b) the combinatorial nature of the path association matrix B and the unknown
error. A conventional approach to relax this problem and solve it using compressed sensing schemes, such
as SBL, by considering a joint dictionary matrix consisting of finely spaced angles and delays. However,
such a solution results in cubic complexity with respect to the dictionary dimensions, which has to be
finely spaced to alleviate the off-grid errors. Hence, a two-stage SWOMP-SBL algorithm is proposed to
overcome such high complexity.

4.5 SWOMP-SBL Algorithm

The proposed algorithm works in two stages. In the first stage, based on the sensing information, a
SWOMP algorithm is used to find the paths and their respective AoAs that are associated with the
communication. Based on these selected paths, a SBL inference algorithm is used in the latter stage to
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obtain a finer estimate of the delays and their corresponding channel gains &. A schematic describing this
two-stage algorithm is shown in Fig 4.7.

Y
SWOMP SBL
refine: 8,
— path association
o _ estimate: o, T
0,7, &

@ | channel estimate: | |,

og,0-,dg,d;  dictionary P
— h,=% &

ot formation: £2
—

Figure 4.7: SWOMP-SBL algorithm.

4.5.1 SWOMP Stage

The algorithm is initialized with assuming that all the L, + 1 paths from the sensing information are present
in the communication channel. The AoA’s @ are used to form the angle dictionary A’ as described in
steps 2 and 3 of the Algorithm 4.1. The SWOMP algorithm [91] outputs the maximum correlated paths
0 corresponding to the angle dictionary A’ with the received signal y as shown in Algorithm 4.2. The
noise variance o is utilized as a stopping condition in SWOMP, where all the refined angles associated
with the channel are estimated. The path index p € x of a corresponding refined angle 0, is estimated
using minimum absolute difference of , among the sensed angles 6. However, a dictionary matrix Q as
defined in the step 18 of Algorithm 4.1 is needed to refine the delays further and estimate the channel
gains. The path association matrix B can be obtained from the estimated )y, but it’s avoided since the path
indices are enough to create the dictionary matrix ©. € is constructed using the refined AoA 6 obtained
using SWOMP and a finely space dictionary matrix of the associated delays. The association of the path is
given by the path indices x and maps the refined angles to their corresponding delays. The details of our
algorithm are discussed in Algorithm 4.1. The refinement of the delays 7 and their corresponding channel
gains o are estimated using SBL with the obtained € in the next stage. The computational complexity of
SWOMP per iteration in the SWOMP stage is MP(dgL')?> + MPdyL, + MPdpL'.

4.5.2 SBL Stage

Recalling the measurement equation with the obtained Q, we write y = Qa +n. We formulate the
estimation method of (a, 7) using SBL as follows: SBL is a type-II maximum likelihood (MLH) estimation
procedure to obtain the channel estimate [92, 93, 94]. In this method, we consider & as a hidden variable,
and obtain its posterior statistics given the observations. We impose a parameterized complex Gaussian
prior on each column of the channel as CA (0,T), where I' = diag(+). Using a common hyper-parameter
~ across all the columns of « aids in promoting common row sparsity in the solution. Now, we need
to obtain the posterior distribution of c, and the hyper-parameter ~. Since the prior and the noise are
both Gaussian, obtaining the posterior statistics of a is straightforward. But, computing ~ requires
computing the marginal probability distribution p(y;7) and maximizing it w.r.t. ~, which is called
evidence maximization or type-II maximum likelihood estimation.

To solve this, we use the expectation maximization (EM) algorithm, which works by lower bounding
the logarithm of the evidence p(y;~), and maximizing it iteratively. We treat « as a hidden variable. In
the expectation (E) step, we compute the expectation of the log likelihood of (y, &) w.r.t. p(aly,~). In
the maximization (M) step, we compute the hyper-parameter v by maximizing the function obtained in
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Algorithm 4.1 SWOMP Stage

Require: y,0,%,dy,d;,09,0.,0% //dy,d; - angle, delay dictionary size
Initialize: x = {}
9? Zél —20¢: 46% :él +209 € R1xdo
A'=[a(6p) a(®)) --- a(®] )] € CM*dollrrD)
6 =SWOMP(y, A',0?) // SWOMP(.) defined in Algorithm 4.2
QR is{6,1¢=0,1,---,L' -1}
/ /Path association:
for¢=0:1L'-1
p= argmin{légl -0 // 11t
X =X U p /lp = path index
end
T(x) € RIL = T,(x)1€=0,1,---,L' — 1} //Delays of the corresponding path index obtained in step
9
Fr=To(x)—207: 4;; (To(x) + 20, € RI¥r

= [F F1 -+ Fpo] e RIGL

Compute 3y using 7 as defined in (4.10), (4.12) and is denoted as By € C4 L' xd:L’
Ag = [a(ég)a(ég) e d(ég)] € CM"dT//Repeat d,; times

A=[Ag A, - Ap_j)ecMdl
L 4
Q

Ensure: Q

the E step. More details of SBL and type-1I MLH estimation can be found in [92, 95]. Detailed steps of
multiple measurement vector SBL (MSBL) to compute the posterior mean and covariance of the channel
gains, and the hyper-parameters are shown in Algorithm 4.3. Specifically, in Algorithm 4.3, the E-step
of the EM algorithm corresponds to the computation of 2/, X’ and &, and the M-step corresponds to
the computation of I'. The SBL algorithm outputs the estimate of the channel gains ¢&. Using step 17 in
Algorithm 4.1, the channel estimate h at the k-th subcarrier can be obtained for all the K subcarriers by

hy=¥,a, (4.20)

The convergence properties of the SBL algorithm are well understood in the literature [92]. In short,
using similar arguments in [92], we can show that the proposed SBL converges to the sparsest solution
when the noise variance is zero and to a sparse local minimum, irrespective of the noise variance.

The computational complexity of each iteration of SBL is (MP)3 +2(MP)?d, L' +2(d,L')> MP +
2MPd, L' +2d,L'. Finally, the choice of the parameters 20, and 20 considered to refine both 7 and 0 in
the Algorithm 4.1 is from the knowledge of the error distribution that most of the error lies within two
standard deviations.

4.6 Simulation Results

In this section, we evaluate the performance of our proposed SWOMP-SBL algorithm in the uplink
channel estimation utilizing the sensing information available at the gNB. We present the numerical
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Algorithm 4.2 SWOMP

Require: y, A’,0?
Initialize: t =0, w={}.

repeat
g=Xr 1A ypll|
q = argmax(g)
w=wuqg
MSE =0
forp=0:P-1

x'[pl = (A )AL N AL ylpl /1AL, = A/, w)
y'lpl =ylpl - A, z'[p]
MSE = MSE + y/[p]Hy’[p]

end

until MSE < ¢*
Ensure: w //Indices of the angles in the dictionary A’

Algorithm 4.3 SBL Stage
Require: y, Q, py(y|Q,a),0>
Initialize: t =0, T = JdL>d:L
repeat
//Estimate o

2l =0T+ oro".

ot ~H(op -1 .

$'=r-ra"(z;) ar.

At #itﬁH’y.

/[Hyper-parameters Update

Yi=lal?+ 2, 1]

I =diag(y], 757 1)
until Convergence

results obtained using MATLAB, considering a single transmit antenna UE in two scenarios based on the
number of receive antennas at the gNB: one scenario with M = 32 receive antennas, and the other with
M =1 receive antenna. Additionally, we also present the numerical results obtained from the OAI using
rfsimulator denoted as OAI RFSIM, as described in Section 2.2.1.4, specifically for the single antenna
scenario, while considering the effects of fixed-point implementation.

Our simulation scenario involves a static gNB while the UE moves in 1 meter (m) increments,
starting from an initial distance of 1 m from the gNB and continuing up to 40 m in a straight line, as
illustrated in Figure 4.8. The multipath channel between the gNB and the UE, which includes multiple
scatterers/reflectors, is simulated using the MATLAB raytracer with the locations of the gNB and UE.
The locations of the gNB and UE are GPS coordinates derived from an OpenStreetMap, specifically
corresponding to a drone cage located at Northeastern University in Burlington. An example of the
multipath generated by the raytracer in the presence of multiple scatterers in a 3D scenario can be seen in
Figure 4.9.

The ideal sensing information at a fixed location of gNB and UE is the actual delay information
(7¢) between the gNB and the scatterers and the angle information (0,) is obtained from the MATLAB
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Figure 4.9: Matlab Raytracing multipath Scenario in 3D for Sensing aided channel estimation.

raytracer. In contrast, the sensing information with error incorporates an angular error with oy = 3°
and a timing error with o; = T to the sensing information from MATLAB. Additionally, we consider
that not all scatterers provided by the sensing information in S, are not necessarily associated with the
communication channel.

For each monte-carlo iteration, we randomly choose a UE position within a gNB-UE distance of 1
m to 40 m for the performance evaluation. Further, to simulate the scenario of unassociated scatterers,
we introduce a random number of additional scatterers drawn from a uniform distribution ¢/(1,4) into
the sensing information for each position of the UE. The delay and angle information of each additional
scatterer is drawn randomly from a uniform distribution M and U£(0, 180), respectively, where c is the
speed of light. In our simulations, SRS in the 5G standards [96] is utilized as the pilots in the uplink for
the channel estimation. The arrangement of these pilots in the OFDM grid follows a comb structure as
specified in the 3GPP standard [96]. Specifically, there is one pilot for every K, subcarriers, as illustrated
in Figure 4.10.
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Figure 4.10: Uplink SRS comb structure in an OFDM symbol.

To evaluate the performance of our proposed algorithm, we consider a wideband scenario where
the uplink channel is estimated using the classical algorithms with a standard number of pilots. We then
compare the normalized mean square error (NMSE) of the estimated channel in the wideband scenario
to the NMSE of the channel estimated using fewer pilots, known as a narrowband scenario. The NMSE
between a true channel h and the estimated channel b is defined as,

Ik~ hl?
NMSE RIE 4.21)

In the wideband scenario, we utilize classical algorithms like least squares (LS) and SWOMP
for uplink channel estimation, referred to as WB + LS and WB + SWOMP, respectively, with P =
624 pilots and a comb size KB, In the case of a narrowband scenario, the performance of our
proposed channel estimation procedure, which accounts for erroneous sensing information, is de-
noted as NB + SWOMP-SBL + Sensing Info Error in the plot. We compare this to channel estima-
tion performance using LS with ideal sensing information, where the channel gains & are estimated
using LS, assuming ideal sensing information is available at the gNB. This scenario is labeled as
NB + Ideal Sensing Info + LS in the plot using P = 16 pilots and a comb size of KN5. The system
parameters utilized in these simulations are detailed in Table 4.1. Further, the NMSE performance of the
uplink channel estimation for M =32 and M =1 receive antennas at the gNB is discussed in the section
below.

Table 4.1: System Parameters used for Sensing aided channel estimation

Parameters Values
System bandwidth 38.16 MHz
Subcarrier spacing 30 KHz
Sampling Period (T5) 21.70 ns
Centre frequency 3.69 GHz
Sampling rate 46.08 MHz
FFT size (K) 1536
Cyclic prefix (Ncp) 132
Wideband comb size (KCW B 2
Narrowband comb size (KN5) 78
Delay taps (IN¢) 132
(of) 3°
(o T,
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4.6.1 Multiple Receive Antennas

In the case of a narrowband scenario with M = 32 receive antennas, the erroneous AoA from the sensing
information is refined using SWOMP with a dictionary matrix considering dyp=>500 as described in the
Algorithm 4.1. Further, the channel gains & are estimated using SBL considering d;=50. The channel is
estimated using classical LS and SWOMP methods in a wideband scenario. Both algorithms utilize a
dictionary that is discretized in the angular domain ranging from 0° to 180°, with a dictionary size of 500.

From Fig. 4.11, we can see that with sensing information, SWOMP-SBL based channel estimation
algorithm has a significant gain in the NMSE compared to the wideband classical LS and greedy SWOMP
algorithm with fewer pilots and robust to the errors in the sensing information. Hence, we reduce the pilot
overhead from P = 624 to P =16 by 97.43%.

0 MATLAB: Channel estimation error
— T T
T —&— NB + Ideal Sensing info
T |——<—WB+LS
- NB + SWOMP-SBL + Sensing err info
—p— WB + SWOMP

-10

NMSE(dB)

-40 L L

SNR(dB)

Figure 4.11: SNR vs NMSE of the channel estimates for M = 32 antennas.

Algorithm 4.4 Simplified SWOMP Stage

Require: y,7,d;,0;,0>

ﬁ:fg—z@:%:fﬁza,euqa“dq ¢=0,1,---,L' -1}

7= [f 1 oo Pl € R
Compute 3y using 7 as defined in (4.10), (4.12) and is denoted as By € C4 L' xd:L
W, = diag(By) € C1* &L
O — wlwl . @l T _~PxdlL
Q=¥ ¥l .. W | Techd
Ensure: ©Q

4.6.2 Single Receive Antenna

In the case of a narrowband scenario with single receive antennas (i.e., M = 1), the SWOMP stage in
Algorithm 4.1 is simplified to the Algorithm 4.4, since the angle refinement is not necessary. Further, the
channel gains & are estimated using SBL considering d;=100. The classical LS method is utilized for
channel estimation in a wideband scenario.
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The numerical results from MATLAB are shown in Figure 4.12. These results indicate that, when uti-
lizing sensing information, the SWOMP-SBL-based channel estimation algorithm significantly improves
the NMSE compared to the classical wideband LS method, even when using fewer pilots. We successfully
reduce the pilot overhead from P =624 to P = 16, resulting in a pilot overhead reduction of 97.43%.

Furthermore, we also present the numerical results obtained using OAI in RFSIM mode alongside
MATLAB results for a single receive antenna case. In this mode, the multipath information for each UE
position, ranging from a gNB-UE distance of 1 m to 40 m, obtained from the MATLAB raytracer, is
provided as input to the OAI RFSIM. The OAI RFSIM then generates a channel based on this multipath
information and applies it to the transmitted SRS. The received SRS for each UE position is then stored for
offline channel estimation. In this case, the channel generated by the OAI RFSIM is considered a ground
truth. Note that this approach also considers the impairments caused by the fixed-point representation of a
real-time system.

The numerical results from OAI RFSIM are presented in Figure 4.13. Here, we observe that,
with the inclusion of sensing information, the SWOMP-SBL-based channel estimation algorithm again
demonstrates a significant gain in NMSE compared to the wideband classical LS method, even with
fewer pilots and robustness against errors in the sensing information. Moreover, we can observe that the
channel estimation performance in OAI RFSIM degrades for all algorithms compared to that in MATLAB
simulations. This degradation in the performance is caused by the fixed-point operations in OAI RFSIM.

MATLAB: Channel estimation error

—&— NB + Ideal Sensing info
2 r —>—WB+LS 1
NB + SWOMP-SBL + Sensing err info

10 F ]

NMSE(dB)

42 ]

44 ]

16 | ]

18 | ]

-20 ‘ : O

SNR(dB)

Figure 4.12: SNR vs NMSE of the channel estimates for M = 1 antenna.
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OAI RFSIM: Channel estimation error

—&— NB + Ideal Sensing info
2 —>—WB +LS 1
NB + SWOMP-SBL + Sensing err info

NMSE(dB)

SNR(dB)

Figure 4.13: SNR vs NMSE of the channel estimates for M = 1 antenna.

4.7 Conclusions

In this chapter, we have studied the uplink channel estimation aided by sensing information available at
the gNB. We proposed a framework utilizing the proposed signaling mechanisms in Chapter 3, making
it robust to impairments such as clock drift and timing correction loops for fusing sensing information.
We have also shown how the proposed signaling mechanisms in Chapter 3 enable uplink sensing. The
proposed SWOMP-SBL algorithm uses fewer uplink pilots than traditional methods by incorporating
sensing information. The proposed scheme is also robust to erroneous sensing information, including
additional paths available in the sensing information but not associated with the communication. We
presented the simulation results conducted in MATLAB for both multiple and single receive antennas
at the gNB. Additionally, we evaluated the simulation results from OAI RFSIM, which account for the
effects of fixed-point implementation in the case of a single receive antenna. Our simulation results have
validated the superior performance of the proposed SWOMP-SBL scheme using fewer pilots compared to
conventional state-of-the-art algorithms.
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Chapter 5

Localization in a Digital Twin

So far, in this dissertation, we have discussed several localization and sensing techniques considered for
5G and beyond systems. However, validating these techniques using experimental prototypes is crucial
for a successful real-world deployment. Conducting large-scale outdoor experiments can be challenging
due to the need to transport heavy testing equipment and the potential impact of weather conditions such
as rain and snow. To address these challenges, a digital twin platform that can emulate outdoor conditions
is invaluable. In this chapter, we consider validating our proposed signaling scheme for localization in a
digital twin platform called Colosseum.

5.1 Introduction

The Colosseum platform [97, 98, 99, 100, 101] at Northeastern University allows for the real-time
emulation of the outdoor environments acting as a digital twin. Several works [102, 103, 104, 105,
106] have utilized the Colosseum as a digital twin to test and validate their algorithms in real-time by
emulating an outdoor environment. The authors in [102] utilize the Colosseum as a digital twin to emulate
a real-world scenario of a ship moving across Waikiki Beach in Honolulu, Hawaii, to test their spectrum
sensing algorithm. In [103], the authors use Colosseum to create a digital twin that simulates a traffic
generation scenario, classifying various types of traffic in 5G, including enhanced mobile broadband
(eMBB), massive machine-type communications (MMTC), and ultra-reliable low-latency communications
(URLLC). Additionally, the authors in [104] utilize Colosseum to deploy various nodes of integrated access
and backhaul throughout different areas of Florence, Italy, emulating a real-world scenario. However,
all the works mentioned above rely on a static scenario, where a scenario recorded offline is replayed
using Colosseum. In contrast, the authors in [106] integrate the simulation of urban mobility (SUMO)
simulator with the Colosseum to generate a real-time dynamic scenario. In this approach, the scenario in
the Colosseum is updated dynamically using data obtained from the SUMO simulator in real-time.

Creating a real-world scenario in Colosseum begins with the development of a 3D model of the
environment using tools like OpenStreetMap [107] or Blender [108]. This 3D model is then used to
obtain multipath wireless propagation information such as number of paths, path loss, and path delays
through ray-tracing software such as MATLAB [109], Nvidia Sionna [110], or Wireless InSite [111],
based on the locations of the transmitter and receiver. With this multipath information from the raytracer,
a wireless channel is generated, approximated, and converted into a specific format suitable for use
with the Colosseum platform. It is important to note that the approximation of the wireless channel in
the Colosseum is necessary due to its limitation of supporting only four taps. Consequently, a channel
approximation mechanism that is close to reality, considering localization scenarios, is required. The
Colosseum platform applies the wireless channel to transmitted signals via SDRs.
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To address the challenge of channel approximation, the authors in [112] proposed using K-means
clustering to represent the channel. They divided the available multipath information into K clusters (with
K=4 for Colosseum) and calculated the centroids of these clusters. However, this approach is unrealistic
because it alters the existing multipath information by rounding the centroids to the nearest tap to meet the
requirements of the Colosseum. This rounding can introduce inaccuracies in distance estimation during
localization scenarios. For example, consider a LoS path with a delay that lies between two taps; rounding
it to the nearest tap would lead to errors in distance estimation. Therefore, we proposed a raised-cosine
based channel approximation mechanism that is close to real-world scenarios considering localization
scenarios. A realistic channel approximation utilizing sinc-based approximation and preserving the energy
is proposed in [113].

In this chapter, we propose using the Colosseum as a digital twin to emulate a wireless channel in a
real-world scenario for evaluating localization performance. Additionally, we will compare the localization
performance achieved in the Colosseum with the results obtained from an outdoor measurement campaign.
Specifically, our contributions are as follows:

* We conducted a measurement campaign to evaluate our proposed RTT estimation mechanism, as
described in Section 3.2, in an outdoor environment located at Northeastern University’s Burlington
campus.

* We developed a 3D model replicating the same outdoor environment at Northeastern University’s
Burlington campus using OpenStreetMap and generated multipath information with the raytracer
tool in MATLAB.

* We proposed a realistic channel approximation mechanism accounting for localization scenarios to
be utilized with the Colosseum platform.

* Finally, we evaluated our proposed RTT estimation mechanism on the Colosseum platform and
compared the results to the outdoor measurements.

5.2 Colosseum as a Digital Twin

In this section, we discuss using the Colosseum platform as a digital twin. We start by describing the
architecture of the Colosseum platform in the section below.

5.2.1 Colosseum Architecture

Colosseum is the world’s largest wireless network emulator with a hardware-in-the-loop platform that
is publicly available to the research community. Originally built by the defense Advanced research
projects agency (DARPA) and by the Johns Hopkins University Applied Physics Laboratory to support
the Spectrum Collaboration Challenge [114, 115, 116], Colosseum is being expanded and operated by
the Institute for the Wireless Internet of Things at Northeastern University through an national science
foundation (NSF) grant, which also made it publicly available to the research community [98, 99, 100,
101]. With its 256 SDRs and 128 remotely-accessible compute nodes and graphics processing units
(GPUs), Colosseum provides the capabilities to test full-protocol stack solutions at scale with real hardware
devices and in emulated—yet realistic—environments with complex channel interactions (e.g., path loss,
fading, multipath). The system comprises five primary components:

1. Standard Radio Nodes : The standard radio node (SRN) is a state-of-the-art server with 48-
core Intel Xeon E5-2650 CPUs and an NVIDIA Tesla K40m GPU and drives an NI/Ettus USRP
X310. Each X310 is equipped with two UBX-160 daughterboards that operate between 10 MHz
and 6 GHz. The Colosseum platform enables multiple users to deploy softwarized containers,
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implemented via linux containers (LXCs), on the bare-metal SRN. These containers can run a
variety of protocol stacks (such as 4G, 5G, and Wi-Fi) while allowing users to control various
parameters and configurations at different layers within those stacks.

2. Massive Channel Emulator : The massive channel emulator (MCHEM) performs the channel
emulation in the Colosseum. It consists of four interconnected quadrants, each equipped with four
NI ATCA 3671 field programmable gate array (FPGA) modules and 16 Virtex-7 690T FPGAs.
These components drive an array of 128 USRPs, which are connected one-to-one with the USRPs
of the SRNGs, as illustrated in Figure 5.2.

When an RF transmission occurs in the Colosseum, the signals generated by the USRPs at the
SRN side (such as signal s in Figure 5.2) are transmitted to the corresponding USRP X310 in
the MCHEM, which performs the RF to baseband and ADC conversions. The resulting digital
signals are then forwarded to the FPGAs within the MCHEM, where they are processed using finite
impulse response (FIR) filters. These FIR filters are composed of 512 precomputed complex-valued
taps that capture the characteristics of the channel in the time domain, i.e., the CIR, between any
pair of SRNs !

As shown in Figure 5.2, for a specific RF scenario involving N SRNs, the FIR filters in the MCHEM
load the precomputed 512-tap CIR vectors h;, j, which represent the channel response between node
i and node j, where i,j € {1,..., N}. These channel taps are then applied to the transmit signals
through a convolution operation. Thus, the signal received at the node j is obtained by,

N
y;j = hij*si 5.1
i=1

where, **’ denotes the convolution operation. In (5.1), all the transmit signals from N SRNs (i.e.,
s;, i €{1,...,N}) after applying their respective CIRs are aggregated to emulate the effects of real
wireless channels, including node interference and the superimposition of signals from multiple
nodes. Finally, this aggregated received signal is sent to SRN j.

The RF scenario server, depicted in Figure 5.1 and Figure 5.2, maintains a catalog of the Colosseum
RF scenarios and feeds their channel taps to the channel emulator at run time. The RF Scenarios
make it possible to emulate the effects of the wireless channel, including path loss and fading over
terrains of up to 1km? and within a bandwidth of up to 80 MHz. The modular architecture of
MCHEM with independent USRPs allows Colosseum to emulate different scenarios across various
experiments, enabling multiple users to operate the system simultaneously. Users can select the
specific scenario to run through a specialized control interface.

3. GPU Nodes : The platform offers high-performance NVIDIA GPU nodes that support compu-
tationally intensive applications such as Al and machine learning (ML)-based wireless network
optimizations.

4. Traffic Generator : The traffic generator (TGEN) is designed to emulate IP traffic flows between
the SRNs, similar to how MCHEM simulates RF scenarios. It is based on the U.S. Naval Research
Laboratory’s multi-generator (MGEN) [117] and can generate traffic flows that adhere to a defined
traffic scenario, which includes characteristics such as packet rate, size, and distribution. Once
a traffic scenario is initiated, packets are delivered to the SRNs, which handle them through the
user-defined protocol stack, such as by transmitting them through a cellular or Wi-Fi stack.

5. Management Infrastructure : The management infrastructure of the Colosseum includes a
range of auxiliary services such as (i) a website that allows users to reserve resources and initiate

IDuye to the high computational complexity required to generate scenarios and the large storage space needed, only four
channel taps contain non-zero values.
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experiments, (ii) a resource manager that allocates resources to users, (iii) gateways that provide
user and management access to Colosseum; (iv) a 900 TB network attached storage (NAS) system
for storing LXC images, experiment data, logs and (v) various network services, including those
that ensure time synchronization across the entire testbed.
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Figure 5.2: FPGA-based RF scenario emulation in Colosseum.

Thus, researchers can deploy, validate, and analyze full-protocol stack solutions across various
wireless channel conditions utilizing the SRNs and MCHEM in the Colosseum, as per the user-defined RF
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scenarios. This setup enables a hardware-in-the-loop digital twin for wireless networks. Also, it is crucial
to generate RF scenarios that closely mimic real-world conditions to achieve realistic system performance.
In the following sections, we will discuss the generation of RF scenarios in the Colosseum.

5.2.2 RF Scenario Generation Mechanism

The generation of RF scenarios in the Colosseum consists of 4 stages:

1. 3D Model Generation: A 3D digital model of the physical environment is created, closely
resembling the real world and accurately reflecting the material properties of various scatterers.
Typically, tools like Blender or OpenStreetMap can be used to generate a 3D digital model.

2. Raytracing: The generated 3D model is then used to perform raytracing between the selected
transmit location i and receive location j. This process yields multipath information, including the
number of multipaths, path loss, phase shifts, and delays associated with each multipath. Typically,
raytracing tools like MATLAB, NVIDIA Sionna, and Wireless Insite can be used to obtain this
information.

3. Channel Generation: Based on the multipath information obtained from the raytracer, the wireless
propagation channel at the d-th tap between the selected transmit location i and receive location j

is modeled as,
L-1

ha=) aepdTs—1y), (5.2)
=0

where, ay = ai,e‘j 2nfete is the complex channel gain of the /-th path, a’g and 71, are the path-loss
and delay of the ¢-th path, f. is the center frequency, T is the sampling period and p(.) is the
raised-cosine filter. Further, representing all the N, taps as a vector, the CIR h;,j € CNex1 between
the transmit location i and receive location j is given by,

hij=ho,hi, ... hy—1)" (5.3)

4. Channel Approximation: The generated channel h; j is approximated to contain non-zero values
in only four channel taps. This simplification is essential due to the high computational complexity
associated with FIR filter processing in the MCHEM of the Colosseum. The proposed channel
approximation algorithm, which considers the localization use case, is detailed in the Algorithm 5.1.
The four non-zero indices of the channel taps of a CIR h; j can be found in the set W.

Algorithm 5.1 Raised-Cosine Channel Approximation

Require: h; j, D
Initialize: W = {q1, 92, g3, G4}
_ | &P _[fL"D
q1 = [TJ’ G2 = [T]
43, q4 = argmax |h; j| //Indices of the highest two peaks other than g1, g2
#{q1,q2}
where, D is the distance between the nodes i and j, f;”* is the sampling rate of the MCHEM and c is
the speed of light.

Note that the channel generation and channel approximation proposed in this chapter considers
the localization use cases compared to the one proposed by the authors in [112] currently used
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in the Colosseum. The authors in [112] proposed utilizing K-means clustering to categorize the
available multipath information into K clusters (set at K=4 for Colosseum) based on the delays
associated with each multipath. They calculated the centroids of these clusters and rounded off
to the nearest taps. However, this method is unrealistic because it alters the existing multipath
information. Such rounding can introduce inaccuracies in distance estimation during localization
scenarios. For instance, consider a LoS path with a delay that falls between two taps; rounding
it to the nearest tap would result in errors in distance estimation, as illustrated in Figure 5.3a.
In contrast, we propose a raised-cosine based channel approximation mechanism, which more
accurately reflects real-world scenarios related to localization, as depicted in Figure 5.3b. Note that
the sampling rate used in this case is fJ" = 100 MHz (MCHEM sampling rate).
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Figure 5.3: Channel Approximation to fit in the MCHEM of the Colosseum.

Next, we describe the experimental scenarios to analyze the performance of the proposed PRS-SRS
signaling scheme in outdoors and the Colosseum.

5.3 Experimental Scenario

In this section, we outline the experimental scenarios conducted outdoors using our proposed PRS-SRS
signaling scheme, as discussed in Section 3.2.2. We also describe how we utilized OpenStreetMap to
generate a 3D model replicating the same outdoor environment. Additionally, we describe how this 3D
model is utilized in Colosseum to evaluate the localization performance of our PRS-SRS signaling scheme
within a digital twin.

5.3.1 Outdoor Scenario

In the outdoor measurement campaign, we evaluate our proposed PRS-SRS signaling scheme as described
in the Section 3.2.2. We consider a scenario with a single antenna gNB and a UE having LoS condition
in a drone cage located at the Northeastern University, Burlington campus. We leverage on the OAI 5G
NR protocol stack and USRP B210 SDRs to build the gNB and UE. Additionally, SC2430 NR signal
conditioning module is used as an external RF front-end at the gNB. Both the gNB and UE are equipped
with vertically polarized omni-directional antennas. The experimental setup outdoors using OAI gNB
and UE can be seen in Figure 5.4. During the experiment, the gNB remains stationary while the UE is
moved in 1 m increments, starting from an initial distance of 1 m and extending to 40 m, as shown in
Figure 5.5. Throughout the measurement campaign, the LoS between the gNB and UE was maintained,
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and the transmit and receive gains were kept constant. The estimated uplink SNR ranged from 25 dB to
30 dB. Multiple SRS channel estimates were collected at each distance, and the data was subsequently
stored for further offline analysis.

Next, we describe how we used OpenStreetMap to generate a 3D model replicating this outdoor
scenario.

| gNB Antenna

l., lt -

| onove
ce®)

Figure 5.4: Outdoor measurement scenario in a Drone cage at Northeastern University.
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~ Maxar, Microsoft, Nearmap

Figure 5.5: Various locations of gNB and UE in an outdoor measurement campaign scenario.
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5.3.2 3D Model Generation

The outdoor measurement scenario mentioned in the Section 5.3.1, is replicated as a 3D model as follows:

1. The underlying 3D environment of the drone cage at Northeastern University, Burlington campus,
is obtained from OpenStreetMap.

2. Additional scattering objects such as Container, Truck, and air-conditioner (AC) Container as shown
in Figure 5.6 were added to the map to create an accurate 3D representation of the real world.

3. The properties of these scattering objects (e.g., brick, metal, and glass) have been appropriately set
in MATLAB to ensure they closely match the actual materials.

Brick Building
AC Container

Truck

Glass Building

Container

Figure 5.6: Matlab Raytracing multipath Scenario in 3D.

The locations of the gNB and UE in the outdoor measurement scenario, as described in Section 5.3.1
and illustrated in Figure 5.6, are replicated in the generated digital 3D model. Further, we describe how
this 3D model is utilized in the Colosseum to emulate the wireless channel between the gNB and UE
location in an outdoor environment.
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5.3.3 Colosseum Scenario

The digital 3D model of an outdoor environment as described in Section 5.3.2 for a gNB, UE location is
utilized in the Colosseum as follows:

1. Raytracing information such as the number of multipath, path delays, path loss, and phase shifts is
obtained using the MATLAB raytracer for a transmit location i and receive location j.

2. The wireless channel h;,j between the transmit location i and receive location j is determined
using (5.2).

3. Due to limitations within the Colosseum, the wireless channel h;,j is approximated to four delay
taps, as described in Section 5.2.

4. The approximated wireless channel h;,j is then fed into the RF scenario server in Colosseum.

The Colosseum scenario consists of the wireless channel emulated between various gNB and UE
locations in the digital 3D model referred to as a digital twin, similar to the locations described in the
outdoor measurement scenario described in Section 5.3.1. Furthermore, in the next section, we analyze
the localization performance of the proposed PRS-SRS signaling scheme in the outdoors and compare it
with the performance using Colosseum.

The system parameters used for Outdoor measurements, MATLAB raytracing and Colosseum are
detailed in the Table 5.1.

Table 5.1: System Parameters used in Outdoor Measurements and Colosseum

Parameters Values
System bandwidth 38.16 MHz
Subcarrier spacing 30 KHz

Sampling Period (T5) 21.70 ns
Centre frequency 3.69 GHz
Sampling rate 46.08 MHz
MCHEM sampling rate (f;") 100 MHz
FFT size (K) 1536
Cyclic prefix (Ncp) 132
Delay taps (INV¢) 132
SRS bandwidth 37.44 MHz
SRS comb size 2
PRS bandwidth 37.44 MHz
PRS comb size 2

5.4 Experimental Results

In this section, we analyze the multipath component (MPC) profile of the wireless channel measured
outdoors using the proposed PRS-SRS signaling scheme and compare it with the wireless channel
simulated using a digital 3D model in MATLAB with raytracing. Further, we will evaluate the localization
performance of the PRS-SRS signaling scheme in the outdoors and a digital twin using the Colosseum.
We begin by comparing the CIR measured at a specific gNB-UE location during the outdoor measure-
ment” campaign using the PRS-SRS signaling scheme to the CIR generated at that exact location in the

2The CIR plots from outdoor measurements are averaged over 200 measurements.
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digital 3D model using the multipath information obtained from the MATLAB raytracer>. Specifically,
we discuss the MPC profile derived from the CIRs recorded at distances of 18 m, 26 m, 31 m to 35 m,
and 37 m between the gNB and UE, considering multipath effects from various scattering objects. It is
important to note that the CIR obtained from the SRS, utilizing the PRS-SRS signaling scheme, follows
the convention illustrated in Figure 4.3, where the actual uplink MPCs are shifted by the LoS delay.

Starting with a distance of 18 m between the gNB and UE, we observe three multipath components:
the LoS path, ground reflection, and reflection from the AC container, as depicted in Figure 5.7a. The
corresponding taps in the CIR from both MATLAB and outdoor measurements are shown in Figure 5.7b
and Figure 5.7c respectively. We can see that the LoS path and the ground reflection fall under the same
tap, while the reflection from the AC container is represented in a different tap. Additionally, we can
observe that the CIR from MATLAB and the outdoor measurements are comparable, with a shift in the
distance of approximately 6.5 m (i.e., 1 sample) in the outdoor measurements, which is consistent with
the performance of the proposed PRS-SRS signaling scheme as shown in Figure 3.10. Similarly, the
multipath scenario at a gNB-UE distance of 26 m, shown in Figure 5.8a, reveals additional paths due to
the Truck and the glass building. Here, the paths from the Truck and the AC container fall under a single
tap, whereas the path from the glass building is represented in a different tap, as illustrated in Figure 5.8b
and Figure 5.8c.

Further, an interesting observation arises at distances between 30 meters and 35 meters between
the gNB and the UE. Here, constructive and destructive interference occurs due to the combination of
the LoS and ground reflection. As seen in Figures 5.9, 5.10, and 5.11, both MATLAB and outdoor
measurements show that the taps corresponding to the LoS and ground reflection undergo destructive
interference. Consequently, the magnitude of the LoS and ground reflection tap is less than that of the
other multipath components, primarily from the AC container and the glass building. This behavior
aligns with the theoretical performance predicted by the two-ray interference model [118], as illustrated
in Figure 5.13. Note that the gNB-UE distances ranging from 1 m to 40 m are within the breaking point
(i.e., 193 m) of the two-ray interference model for the measurement scenario.

Furthermore, in the scenario at a distance of 37 meters, depicted in Figure 5.12a, an additional
multipath component due to the container is observed. The corresponding taps from both MATLAB and
outdoor measurements can be seen in Figures 5.12b and 5.12c, respectively. It is important to note that
across all the scenarios discussed, the CIR obtained from the outdoor measurement campaign is consistent
with the performance of the proposed PRS-SRS signaling scheme, staying within a 1 sample error margin.

3The path loss of the multipath components other than LoS and ground reflection obtained from the MATLAB raytracer is
adjusted by 10 dB to be comparable with the multipath components from the outdoor measurements.
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Figure 5.7: Uplink Multipath Scenario using proposed PRS-SRS signaling scheme at gNB-UE distance :
18 m.
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(a) gNB-UE distance: 26 m
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Figure 5.8: Uplink Multipath Scenario using proposed PRS-SRS signaling scheme at gNB-UE distance :
26 m.
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Figure 5.9: Uplink Multipath Scenario using proposed PRS-SRS signaling scheme at gNB-UE distance :

30mto 31 m.
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Figure 5.10: Uplink Multipath Scenario using proposed PRS-SRS signaling scheme at gNB-UE distance :
32 mto 33 m.
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Figure 5.11: Uplink Multipath Scenario using proposed PRS-SRS signaling scheme at gNB-UE distance :
34 m to 35 m.
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Figure 5.12: Uplink Multipath Scenario using Proposed Schemes at gNB-UE distance : 37 m.
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Finally, the localization performance of our proposed PRS-SRS signaling scheme is evaluated in an
outdoor measurement campaign and a digital twin using Colosseum, based on the scenarios outlined in
Section 5.3. To estimate the range between the gNB and the UE, we utilize a PD and a MF, as described
in Section 3.4.

The CDF plot of the range estimation error at a high SNR of 25 dB, with multiple measurements (M
= 00), is shown in Figure 5.14. At this high SNR with M=60, we can see that using the PD, the range
estimation error is below 4.2 m for 90% of the time in the outdoor measurement campaign, whereas it
is below 3.5 m for 90% of the time in the digital twin. Similarly, when using MF, the range estimation
error is below 2.6 m for 90% of the time in the outdoor measurement campaign, whereas it is below 2.4 m
for 90% of the time in the digital twin. The performance difference between the outdoor measurement
campaign and the digital twin is 0.7 m when using the PD and 0.2 m when using the MF.
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Figure 5.14: CDF of range estimation error in an Outdoor measurement campaign and the Colosseum.
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5.5 Positioning with Multiple gNBs in Colosseum

In this section, we evaluate the localization performance of the proposed PRS-SRS signaling scheme in
estimating the 2D position of the UE using multiple gNBs in a digital twin using the Colosseum. In this
scenario, four gNBs are positioned on top of four buildings in a digital 3D model of the Northeastern
University Burlington campus obtained from OpenStreetMap. Additionally, 48 UEs are randomly
distributed throughout the environment in 2 dimensions, as illustrated in Figure 5.15. The positions
of the four gNBs are known, and the height of the UEs is fixed. The range between each UE and its
corresponding gNB is determined using PD and ME, as described in Section 3.4. Furthermore, the position
of each UE is estimated using two methods: LS and non-least squares (NLS), as described in [35] utilizing
the range estimates from PD and MF.

The CDF of the range estimation error and position estimation error at a high SNR of 25 dB,
corresponding to M=60 measurements, is illustrated in Figure 5.16. At high SNR, both PD and MF
exhibit similar performance, with the range estimation error falling below 1.5 m for 90% of the time,
as shown in Figure 5.16a. Figure 5.16b presents the 2D positioning error for PD LS, MF LS, and MF
NLS. The results indicate that the 2D positioning estimates using PD and MF with LS have comparable
performance, maintaining an error below 2.6 m for 90% of the time. This consistency is attributed to the
similar range estimation error performance of both methods at high SNR. However, when NLS is utilized,
the positioning error improves by 1 m, achieving an error below 1.6 m for 90% of the time.

The CDF of the range estimation error and position estimation error at a low SNR of -25 dB,
corresponding to both M=20 and M=60 measurements, is illustrated in Figure 5.17. At low SNR, it
is evident that MF significantly outperforms PD, maintaining a range estimation error below 1.6 m for
90% of the time, as shown in Figure 5.17a. Additionally, as the number of measurements increases, the
performance improves by 0.1 m, keeping the range estimation error below 1.5 m for 90% of the time.
Figure 5.17b presents the 2D positioning error for PD LS, MF LS, and MF NLS with M=60 measurements.
The results demonstrate that 2D positioning estimates using MF significantly outperform PD with LS,
maintaining an error below 2.5 m for 90% of the time. This outcome aligns with the range estimation
error performance observed at low SNR. Similarly, when using NLS, the positioning error improves by
0.5 m, achieving an error below 2 m for 90% of the time.
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Figure 5.15: Northeastern university, Burlington campus with multiple gNBs scenario in Colosseum.
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5.6 Mono-static Downlink Sensing using Colosseum

In this section, we discuss preliminary results of mono-static downlink sensing in 5G NR using the
Colosseum as a digital twin.

Downlink sensing using full-duplex radios, as demonstrated in [119] to detect rogue drones in the
restricted airspaces, can also be performed in a digital twin using the Colosseum platform, thereby
eliminating the need for extensive outdoor measurement campaigns. Initial experiments on sensing
multiple targets in full-duplex mode in the downlink are carried out using OAI and Colosseum, as
illustrated in Figure 5.18. In this scenario, the PDSCH signal is transmitted from the gNB in the downlink
operating in TDD using OAI phy-test mode. The transmitted PDSCH signal is reflected from the
targets. The Colosseum can emulate this reflection from targets in full-duplex mode, emulating the channel
between the transmitter and receiver at the gNB. The reflected signal from the targets received at the gNB
in full-duplex mode is recorded in the same slot as the transmitted signal. Further, the received signal
is used for channel estimation. Furthermore, the estimated channel is analyzed for target detection. As
shown in Figure 5.19, we can successfully detect both targets from the estimated channel. The system
parameters used are detailed in Table 5.1. The PDSCH bandwidth used for this experiment is 38.16 MHz.
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I Dy
Target 2
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Figure 5.18: Full-Duplex Sensing Scenario in the Colosseum.
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Figure 5.19: Target detection using Full-Duplex sensing in the Colosseum.

5.7 Conclusions

In this chapter, we demonstrated how the Colosseum can serve as a digital twin platform for evaluating
the performance of localization algorithms, thus eliminating the need for laborious outdoor measurement
campaigns. We explained the process of creating a digital twin of the actual outdoor environment and
described how a wireless propagation channel is generated and approximated to fit within the Colosseum.
Additionally, we evaluated the performance of a signaling mechanism introduced in Chapter 3 using the
Colosseum platform as a digital twin. Specifically, we addressed the performance gap between the results
of the proposed signaling scheme obtained from an outdoor measurement campaign and those obtained
from the digital twin representation of the same outdoor environment using the Colosseum.
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Chapter 6

Integrated Access and Backhaul

A wide range of localization and sensing applications arise from the mechanisms proposed in Chapter 3.
One notable application is drone-based localization and sensing for SAR operations, where gNBs are
installed on the drones. However, such applications require a backhaul connection to remain connected
with the cellular network and to operate autonomously. In this chapter, we present the integrated access
and backhaul systems in 5G NR and beyond that are crucial for enabling drone-based localization and
sensing in SAR missions. Specifically, we demonstrate an O-RAN based aerial integrated access and
backhaul system in Section 6.1 and a THz backhaul system in Section 6.2 using OpenAirInterface.

6.1 Aerial Integrated Access and Backhaul

6.1.1 Introduction

Unmanned aerial vehicle (UAV) mounted gNBs and access points have recently attracted significant
attention [120]. Thanks to the 3D mobility offered by the UAV gNBs, they are instrumental in providing
ultra-flexible radio network deployments in use cases such as tactical networks, disaster recovery, search
and rescue scenarios.

Several prototypes of UAV gNBs and/or relays in 4G and 5G networks using open-source software
are reported in the literature [121, 122, 123, 124]. While the UAV relay in [122, 123] has an on-board
core network and relies on commercial backhaul links, authors in [121], demonstrated an UAV LTE relay
with integrated access and backhaul (IAB) capability. The work is later extended to 5G scenario [125].
However, in all these works entire eNB or gNB application is running on the UAV.

On the other hand, disaggregated RAN with open interfaces and end-to-end programmability has
become an essential element in 5G and beyond cellular networks. The traditional gNB unit in 5G can now
be split into various physical entities such as CU, DU and RU. The CU has upper layer RAN protocol
stack and can support multiple DUs running RLC layer and below network functionalities. With this
architecture, lightweight DUs and RUs can be instantiated and programmed according to the needs of the
network in a centralized manner [126].

In this chapter, we present a demonstration of a UAV with combined functionalities of DU and RU,
serving ground users. The UAV is connected with a terrestrial CU using IAB. The CU-DU interface fully
complies with the F1 application protocol (F1AP) protocol defined in 3GPP. The end-to-end network
solution is based on OAI software. To the best of our knowledge, an autonomous and programmable aerial
DU unit with IAB capabilities, built using open-source solutions, has never been demonstrated before.
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6.1.2 System Design

To support open and disaggregated RAN, 3GPP TS 38.401 outlines the functional split of the gNB into
CU, DU and RU. The CU comprises RRC and PDCP layer protocol stack in the control plane, and SDAP
and PDCP in the user plane. The DU comprises RLC, MAC, and/or PHY layers. RU consisting of
PHY layer is either a part of DU itself or can have separate interface with DU (for example, O-RAN 7.2
split). We consider the scenario where RU is a part of the DU. Each CU can be connected to one or more
DUs. Communication between the CU and DU is carried out as a tunnel using the F1AP as illustrated in
Figure 6.1. While the wired connection between CU and DU is straightforward, connecting the aerial DU
with a terrestrial CU wirelessly over existing SG RAN requires IAB.

An IAB system typically consists of an IAB Donor and IAB nodes [127]. The IAB donor, in our
case, is a terrestrial CU wired to the DU, referred to as the IAB Donor. The IAB node (which is mounted
on a drone) consists of an IAB-mobile terminal (MT), and a DU. The DU within the IAB node is called as
a DU node. The DU node can wirelessly connect to the CU in the IAB Donor via IAB-MT, as depicted in
Figure 6.2.

To achieve the over-the-air F1 interface, we implement F1 tunnel between the terrestrial CU and DU
node as illustrated in Figure 6.3. This is achieved by using the general packet radio service tunneling
protocol (GTP) via IAB-MT. The F1 tunnel is created within the PDU session of the IAB-MT. The F1
tunnel of the DU node starts via IAB-MT, passes over-the-air, tunnels through Donor DU, CU, and ends
at 5GC UPF. The packets are further rerouted from 5SGC UPF to the CU, completing the F1 tunnel for the
IAB node. However, the path to SGC UPF from CU and the rerouting from the SGC UPF to CU can be
bypassed by utilizing the backhaul adaptation protocol (BAP) in the IAB node tunnel as mentioned in
3GPP TS 38.340. Although the BAP protocol has not been implemented in the OAI, the functionality of
an IAB system can be demonstrated using the proposed solution. We plan to incorporate the BAP protocol
in future implementations, ultimately improving the overall functionality of the system.

ghNB
UP - User Plane — -
Central Urit (CU) Distributed Unit (DU)
CP - Control Plane
CU-upP CU-CP
NGAP RLC
5GC ‘ SDAP ‘ ‘ RRC ‘
/ F1AP MAC —

Figure 6.1: Illustration of the CU-DU split in 5G NR.
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Figure 6.2: Aerial Integrated Access and Backhaul Demo Scenario.
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6.1.3 Demo Description

We present an IAB scenario in 5G with an aerial DU node serving ground users. These aerial DUs can be
deployed on-the-fly while being organized in a centralized manner. Such dynamic deployment has use
cases in tactile networks and emergency scenarios. The proposed 5G IAB system comprises a Terrestrial
IAB Donor and an Aerial IAB node that operate in different frequency bands. The Terrestrial IAB Donor
is present on the ground and is made up of a CU and a Donor DU that are connected via Ethernet.

The Aerial IAB node which can be deployed as per the user demand is a custom-built box that
includes a commercial Quectel RM500Q-GL user equipment and a DU node mounted on a UAV. The DU
node uses USRP B200 mini as an RU and a custom-built power amplifier to improve its coverage. Entire
end-to-end 5G network solution is based on the OAI software. An illustration of the demo setup is shown
in Figure 6.4. The system parameters used are mentioned in Table 6.1.

In this demo [128], we have showcased a live video call between users UE; and UE,, where the user
locations are shown in Figure 6.4. The throughput results to the UEj, i.e., from 5SGC to UE; are shown in
Figure 6.5.

IAB Donor IAB node

Donor DU F1 Tunnel
PDU Session IAB-MT
DU node F1 Tunnel

DU node F1 Tunnel

. i 5
5GC — cu F1%P1 " ponor pu ;| IAB-MT | DU nade

Figure 6.3: F1 tunneling used in the aerial IAB.

Table 6.1: System Parameters used for Aerial IAB demonstration

DU Parameters Values
Terrestrial Bandwidth 20 MHz
Donor DU Subcarrier Spacing 30 KHz

Centre frequency 2.585 GHz (n41)
Aerial Bandwidth 30 MHz
DU node Subcarrier Spacing 30 KHz
Centre frequency 3.47 GHz (n78)

6.1.4 Conclusions

We have successfully described and demonstrated the 5G Aerial IAB scenario prototype using a complete
open-source solution OAI The throughput results demonstrate the potential of the Aerial IAB system in
extending coverage. Our prototype enables the researchers in the community to address a wide range of
research problems related to IAB and implement and verify them in real-time.
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Figure 6.4: Aerial Integrated Access and Backhaul Demo Scenario.
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Figure 6.5: Throughput results of UE;.
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6.2 Terahertz Backhaul

6.2.1 Introduction

To satisfy the high data rate and low latency demands arising from augment reality (AR)/virtual reality
(VR), digital twins and x-haul links in disaggregated O-RAN, it has become necessary to tap into the
huge bandwidths available in THz frequency bands (100 GHz-10 THz). With this in mind, the federal
communications commission (FCC) has created experimental licenses that span 21.2 GHz of spectrum in
frequencies between 95 GHz and 3 THz. Particularly, multiple bands in the 110-160 GHz and 200-260
GHz have been allocated to fixed/mobile usage [129].

While the initial days of THz communication research is limited to channel modeling and numerical
studies, recent advances in radio and photonic devices in THz frequencies have led to several experimental
platforms demonstrating gigabit wireless links operating in the sub-terahertz and terahertz bands [130,
131]. To further advance the THz communication research and standardization activities, there is an urgent
need to develop SDR based platforms and protocol stacks that can showcase real-time communication
technologies at THz frequencies.

The majority of the current experimental platforms operating over 100 GHz have been either channel
sounders or physical layer testbeds that rely on offline processing [131]. Recently the work in [132], has
demonstrated a real-time programmable SDR platform that can support OFDM based physical layer with
bandwidth on the order of several GHz, and operating at carrier frequencies 120-140 GHz. However, the
platform is limited to the link level and no communication protocol stack that includes higher layers runs
on the TX or the RX.

On the other hand, when it comes to 5G and beyond systems, open-source projects that implement
3GPP cellular standards on general-purpose computing hardware and COTS SDR cards are making a
huge contribution to the experimental research, standardization, and testing of multi-vendor networks in
O-RAN [133]. For example, the OAI [134] project is widely known for providing an end-to-end 3GPP
standard-compliant 5G NR protocol stack that can run on various SDR platforms. It is possible to quickly
build a 5G network using OAI with a combination of low cost with COTS SDRs and general-purpose x86
computers. Recently, it has been shown that OAI can operate in mmWave FR2 bands [135].

In this chapter, to facilitate the 6G communication system architecture and reproducible experimental
research, we demonstrate an OAl-based real-time end-to-end 5G communication at THz frequencies. To
the best of the our knowledge, no such platform exists as of today.

6.2.2 System Design and Implementation

We leverage on the OAI 5G NR protocol stack [134], USRP SDR cards, and TeraNova testbed [136]
to build the OAI-THz platform. This platform is capable of delivering end-to-end real-time 5G over
THz. The system architecture is depicted in Fig 6.6. The OAI stack, along with the USRP, is used at
the gNB to generate the 5G NR signals at an intermediate frequency (IF) of 3.39 GHz, while a Quectel
module (commercial 5G module) serves as a UE operating at the same intermediate frequency. Further,
THz frontend modules from TeraNova testbed [136] are utilized to upconvert the IF signals into THz
frequencies and downconvert the THz signals to IF frequencies.

As shown in Fig. 6.7, the gNB antenna ports from the USRP and the antenna ports of the UE are
connected to the THz frontend modules that upconvert IF to THz frequencies and downconvert back to IF.
Circulators, isolators, and attenuators are added, ensuring that the operating power levels do not exceed
the damage limits of the transmitter IF port and prevent the reverse power/leakage into the receiver IF
port.

We will first describe the OAI 5G architecture, and the description of THz frontend modules follows
in Section 6.2.3.
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Figure 6.7: A picture of the OAI-THz experimental setup in the lab.

5G Base-station: In this work, we use a simple deployment as a monolithic gNB using the USRP as
a radio frontend as described in Section. 2.2.1 and further connected to THz frontends. The transmit and
receive paths of this system are detailed as follows: In the transmit path, the baseband signal generated
by OAI gNB goes through a DAC, followed by up-conversion and amplification, and is transmitted at
an IF. This IF signal is further up-converted to THz frequencies for over-the-air transmission using the
THz radio frontends. In the receive path, the received signal at the THz frequencies by the THz frontend
is down-converted to IF. At the IF stage, the signal is filtered, down-converted again, and sampled by
an ADC, resulting in a baseband signal. The system parameters of the OAI-THz system are shown in
Table 6.2.

User Equipment: In the OAI-THz setup, the Quectel RM500Q-GL module is used as UE, a
commercial 5G modem with a Qualcomm chipset that supports 5G SA mode in real-time. The module
has four antenna ports operating at 3.39 GHz frequency. Two of these ports are transmit/receive (TRX)
antenna ports, while the other two are diversity receive antennas (DRXs). ANTO and ANT3 correspond
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to TRX1 and TRXO antennas on the module, respectively, and ANT1 and ANT2 correspond to DRX0
and DRX1 antennas. The TRXO0 antenna port is used as a transmitter, which is connected to the THz
transmitter frontend, and DRXO as a receiver connected to the frontend of the THz receiver. OAI nrUE,
which can emulate the behavior of a real-time 5G UE using a programmable radio like USRP, has also
been validated in the platform. However, only the results of the Quectel module are presented in this
chapter.

Table 6.2: System Parameters used for OAI THz demonstration

Parameters Values
Bandwidth 80 MHz
Subcarrier Spacing 30 KHz
Intermediate Frequency (IF) 3.39 GHz
Centre Frequency 130 GHz
Sampling Rate 92.16 MHz
FFT Size 3072

6.2.3 Terahertz Communication

The THz frontend modules used in the OAI-THz platform are a part of TeraNova testbed [137]. The
TeraNova transmitter consists of an analog programmable signal generator (PSG) from Keysight Tech-
nologies and up-converter frontends, along with directional high-gain antennas encompassing frequency
ranges in the terahertz band (0.095-1.05 THz) [138]. The PSG is used to generate the local oscillator
(LO) signal and is capable of producing frequencies up to 50 GHz. The up-converter takes an IF signal,
mixes it with the LO signal, and up-converts it to a higher RF signal. The up-converters manufactured by
virginia diodes, Inc. (VDI) operate in the frequency range of 120-140 GHz. They consist of a frequency
multiplier chain of x4, a frequency mixer with a double sideband (DSB) conversion loss of about 7 dB,
and an RF power amplifier (PA) with a gain of 20 dB. The transmit power before feeding the antenna is
about 13 dBm (20 mW).

The TeraNova receiver consists of a PSG of the same model as the transmitter, and down-converter
frontends, along with similar high-gain antennas as the up-converters. The receiver PSG is used to generate
the LO signal at the receiver side. The VDI down-converter frontends operate in the same frequency range
of 120-140 GHz and have the same architecture as the up-converter frontends, but instead of an RF PA,
an IF low-noise amplifier (LNA) is used to provide the required amplification. Fig. 6.6 depicts how the
different transmitter and receiver components of the TeraNova testbed are interconnected. A 10 MHz
reference cable is used to synchronize the transmitter and receiver PSGs and compensate for the carrier
frequency and phase offsets. The testbed has multiple sets of broadband antennas with directivity gains
ranging from 21 dBi to up to 40 dBi at the aforementioned frequencies.

6.2.4 Experimental Results

This section analyzes the CSI and throughput results at THz frequencies and compares them with those at
the IF. The CSI, depicted in Fig. 6.8 and Fig. 6.9, is obtained in the uplink using wideband pilots known
as SRS. The CFR in the wideband (80 MHz) is obtained using the least square estimates of the SRS, as
shown in Fig. 6.8. Moreover, the CIR is obtained by taking the IFFT of the channel frequency response,
as shown in Fig. 6.9.

From Fig. 6.8 and Fig. 6.9, we can infer that the CFR at THz frequencies is almost flat, whereas, at
IF, it is frequency-selective and has a multi-path channel, as seen in Fig. 6.8. The peak at the center of
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the CFR at IF frequency is due to the direct current (DC) leakage of the TX path into the RX path in the
un-calibrated USRP X310 due to the usage of two individual dipole antennas for TX and RX (this could
be avoided by using an external switch or circulator). This leakage is not present in the THz link is due to
separation of UL and DL paths and the use of highly directive antennas. This DC leakage in the frequency
domain is also the reason for the higher floor in the CIR of the IF link in Fig. 6.9.

The throughput results, as depicted in Fig. 6.10, are obtained using a speed test web application by
OOKLA[139] on the laptop connected to the internet via the Quectel module. The throughput results
obtained at the THz frequencies are comparable to those obtained at the IF.

6.2.5 Conclusions

In this work, we have successfully demonstrated a first-of-a-kind real-time end-to-end 5G connectivity over
THz frequencies using commercial user equipment with throughput results comparable to the throughput
results of a 5G base-station operating at 3.39 GHz. The use of open-source software for the 5G stack and
a THz platform allows researchers in academia and industry to facilitate the development of IAB solutions
using THz links for 5G NR and beyond networks.
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Figure 6.10: Speed test results at IF and THz frequencies.
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Chapter 7

Conclusions and Future Perspectives

7.1 Conclusions

The focus of this dissertation was to design a system that enhances localization and sensing capabilities
in 5G NR and beyond cellular networks. Localization and sensing capabilities of a system depend
on the accurate estimation of the CSI. However, in practice, the CSI estimation is affected by the
impairments such as clock drift caused by the asynchronous clocks between the gNB and the UE,
making the estimated CSI unreliable for localization and sensing purposes. While cellular systems were
traditionally designed to improve communication performance, they have introduced timing correction
loops that periodically correct the clock drift. Although the influence of clock drift and timing correction
loops on communication performance is minimal, their impact on localization and sensing performance
is significant. The measurements obtained from a COTS UE in Section 1.2.3 have clearly demonstrated
these detrimental effects.

In this dissertation, we designed a system and proposed signaling schemes that allow us to obtain CSI
that is robust to clock drift and timing correction loops within a cellular system. Additionally, we proposed
a system framework that overcomes the impairments caused by the clock drift and timing correction loops
and leverages sensing information to improve the performance of the communication system. In specific,
we reduced the pilots needed for channel estimation by utilizing sensing information available at the
gNB. We also provided a framework to evaluate the performance of localization algorithms in a digital
twin using the Colosseum platform. Furthermore, we highlighted a drone-based localization and sensing
application for search and rescue missions, emphasizing the importance of backhaul connectivity to the
cellular network in such scenarios. Finally, we prototyped and demonstrated most of our work using
OpenAirInterface.

A summary of the contributions in each chapter is as follows:

* In Chapter 2, we introduced OALI, including its components and operating modes that are beneficial
to developers and researchers in prototyping. We also delved into the essential functions of the
reference signals related to positioning in OAI. Further, we provided a comprehensive overview
of the baseband signal representation of these reference signals using fixed-point notation in OAI.
Furthermore, we discussed important physical layer metrics such as TX, RX power, and SNR
estimation in OAI. Finally, we presented the T_t racer tool, which facilitates data extraction
within the OAI framework.

* In Chapter 3, we proposed two RTT estimation schemes using DCI Format X_Y as a signaling mech-
anism for positioning. The proposed schemes are designed to work in both NR_RRC_INACTIVE
and NR_RRC_CONNECTED states. It forces the UE to correct its timing after the reception of the
DCI, which is currently not possible, as shown in our experiments with the COTS UEs. Furthermore,
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our framework enables the coherent combination of multiple uplink channel measurements and
is robust to the clock drift and the inherent timing loops in the 5G system. We have validated the
functionality of our proposed framework in real-time using OAI Our results show that the proposed
matched filter algorithm can achieve meter-level accuracy for bandwidth as low as 40 MHz, even in
low SNR scenarios.

In Chapter 4, we have studied the uplink channel estimation aided by sensing information available
at the gNB. We proposed a framework utilizing the proposed signaling mechanisms in Chapter 3,
making it robust to impairments such as clock drift and timing correction loops for fusing sensing
information. We have also shown how the proposed signaling mechanisms in Chapter 3 enable
uplink sensing. The proposed SWOMP-SBL algorithm uses fewer uplink pilots than traditional
methods by incorporating sensing information. The proposed scheme is also robust to erroneous
sensing information, including additional paths available in the sensing information but not asso-
ciated with the communication. We presented the simulation results conducted in MATLAB for
both multiple and single receive antennas at the gNB. Additionally, we evaluated the simulation
results from OAI RFSIM, which account for the effects of fixed-point implementation in the case
of a single receive antenna. Our simulation results have validated the superior performance of
the proposed SWOMP-SBL scheme using fewer pilots compared to conventional state-of-the-art
algorithms.

In Chapter 5, we demonstrated how the Colosseum can serve as a digital twin platform for evalu-
ating the performance of localization algorithms, thus eliminating the need for laborious outdoor
measurement campaigns. We explained the process of creating a digital twin of the actual outdoor
environment and described how a wireless propagation channel is generated and approximated to
fit within the Colosseum. Additionally, we evaluated the performance of a signaling mechanism
introduced in Chapter 3 using the Colosseum platform as a digital twin. Specifically, we addressed
the performance gap between the results of the proposed signaling scheme obtained from an outdoor
measurement campaign and those obtained from the digital twin representation of the same outdoor
environment using the Colosseum.

In Chapter 6, we have successfully described and demonstrated the 5G Aerial IAB scenario
prototype using a complete open-source solution with OAI The throughput results demonstrate the
potential of the Aerial IAB system in maintaining backhaul connection and extending coverage. We
have also successfully demonstrated a first-of-a-kind real-time end-to-end 5G connectivity over THz
frequencies using commercial user equipment with throughput results comparable to the throughput
results of a 5G base-station operating at 3.39 GHz. The use of open-source software for the 5G
stack and a THz platform in our prototype enables the researchers in the community to address a
wide range of research problems related to IAB and THz technologies. This allows the researchers
to implement and verify these technologies in real-time for 5G NR and beyond networks.
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7.2 Future Perspectives

The future prospects of our work in localization and sensing are as follows:

7.2.1 Localization

A wide range of localization applications arise from the mechanisms proposed in Chapter 3. One notable
application is drone-based localization and sensing for search and rescue operations, where gNBs are
installed on the drones to be used for locating individuals lost in remote areas, such as hikers in dense
forests or skiers trapped in avalanche-prone zones. A preliminary demonstration of such a drone-based
localization has been done in [140, 141] using a COTS UE (Quectel module) with the existing DCI as
described in Section 3.2. However, due to the drawbacks of using the existing DCI, there is a variation
in distance estimation even when the gNB and UE are static as shown in Figure 3.2. Consequently, the
localization accuracy of the drone-based localization was limited to approximately 8 m. The localization
performance can be improved using the signaling mechanisms proposed in Chapter 3. However, protocol
changes in the UE need to be made, which leads to the use of UE restricted to OAI nrUE. In the future,
our OAI UE can be used to demonstrate precise drone-based localization.

Furthermore, the signaling mechanisms proposed in Chapter 3 are currently being discussed to present
in the sixth-generation (6G) cellular network standardization meetings by our team at EURECOM.

7.2.2 Sensing

The work on downlink sensing using full-duplex radios to detect rogue drones, as mentioned in Section 5.6,
can be extended to perform in real-time using OAI Moreover, as an alternative to using full-duplex radios
at the gNB for downlink sensing, uplink sensing, enabled by the mechanisms proposed in Chapter 3, can
achieve similar sensing performance while reducing the hardware complexity associated with full-duplex
radios.

Additionally, the primary objective of sensing is to accurately identify the target, such as determining
whether the detected object is a car, drone, human, etc. However, current research on inferring targets from
channel state information is still in its early stages. This process of target inference can be significantly
improved by integrating AI/ML algorithms.

Furthermore, the current validation of sensing-aided channel estimation has been carried out through
simulations utilizing both floating-point and fixed-point representations, using MATLAB and OAI RFSIM,
respectively. In the future, more practical validation can be achieved through real-time testing with
over-the-air transmissions using OAI. Additionally, further analysis can be conducted to evaluate the
impact of the number of pilots and errors present in the sensing information.
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