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Abstract
This research tackles the scientific challenge of accurately extracting and modelling event

flows from textual data, a capability essential for informed decision-making, historical recon-

struction, and predictive analysis. We introduce FARO, an ontology that structures 25 refined

relationships between events, harmonizing existent events data models, including refined

causal types such as direct causality, enablement, prevention, and intention. This formalization

supports richer semantic interpretations of textual narratives.

To enable robust extraction of such relations, we construct a large-scale annotated dataset

of over 500,000 sentences, generated using Large Language Models (LLMs), commonsense

knowledge from the ATOMIC knowledge graph, and generative-ai techniques. Leveraging this

resource, we develop and evaluate an extraction framework capable of identifying fine-grained

event relations, leveraging structured knowledge and contextual cues to capture complex

event dynamics.

We validate the practical impact of our approach through two applications: (1) enhanced

narrative generation via structured, semantically rich knowledge graphs, and (2) explainable

fact-checking supported by causal reasoning. Our contributions provide both foundational

resources and methodological advances for event-centric natural language understanding.
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Abrégé
Cette recherche aborde le défi scientifique de l’extraction et de la modélisation précises des

enchaînements d’événements à partir de données textuelles, une capacité essentielle pour la

prise de décision éclairée, la reconstruction historique et l’analyse prédictive. Nous présentons

FARO, une ontologie qui structure 25 relations affinées entre événements, en harmonisant les

modèles de données événementielles existants, y compris des types causaux raffinés tels que

la causalité directe, l’activation, la prévention et l’intention. Cette formalisation permet des

interprétations sémantiques plus riches des récits textuels.

Pour permettre une extraction robuste de ces relations, nous construisons un jeu de données

annoté à grande échelle de plus de 500 000 phrases, généré à l’aide de LLMs, de connaissances

de sens commun issues du graphe de connaissances ATOMIC, ainsi que de techniques d’intel-

ligence artificielle générative. En exploitant cette ressource, nous développons et évaluons

un cadre d’extraction capable d’identifier des relations événementielles fines, en s’appuyant

sur des connaissances structurées et des indices contextuels pour capturer la dynamique

complexe des événements.

Nous validons l’impact pratique de notre approche à travers deux applications : (1) la géné-

ration de récits enrichis à l’aide de graphes de connaissances structurés et sémantiquement

riches, et (2) la vérification automatique d’informations explicable, appuyée par un raison-

nement causal. Nos contributions fournissent à la fois des ressources fondamentales et des

avancées méthodologiques pour la compréhension du langage naturel centrée sur les événe-

ments.
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Chapter 1

Introduction

1.1 Motivation

Events play a fundamental role in shaping our lives, encompassing history, knowledge, im-

pacts, and future developments, either through their individual existence or their relationships

with one another. Our experience of the world is characterized by a continuous sequence of

events, where newly observed events can be linked to one or more prior or future occurrences.

These connections give rise to various types of relationships, such as cause-effect, relatedness,

and co-occurrence in time or space.

Effectively capturing the chain of interconnected events surrounding specific phenomena

can be highly complex yet essential for diverse applications, spanning from general public

interest to specialized professional needs. Consider the economic implications of the United

Kingdom’s decision to leave the European Union, commonly known as Brexit. For instance,

one may come across an article discussing Brexit, providing basic context or even linking to its

definition. While this helps clarify the term itself, the broader implications and connections

with other events might still be unclear. On one news page, Brexit could be presented as

causing trade disruptions with the European Union. Elsewhere, another article might discuss

how these trade disruptions subsequently led to inflationary pressures in the UK, explicitly

highlighting significant rises in prices—such as housing increasing by 19.4%, transportation

costs by 13%, and food prices by 8.6% as illustrated in Figure 1.1.

Thus, the ability to efficiently represent, retrieve, interpret, and analyze these event relation-

ships is crucial, underscoring the importance of developing advanced methods and tools that

support users in navigating complex informational landscapes.

1



Chapter 1. Introduction

Figure 1.1: Brexit impact on the UK economy.
Image source: https://shorturl.at/lxiV3

Existing data models, such as EventKG [34], offer large-scale integration of events with tem-

poral and spatial annotations, organizing them through hierarchical structures like sub and

superevents and the 4W framework (Who, What, When, Where). However, despite capturing

the mentioned relations, they often fall short of expressing how events influence one another.

For instance, while it could record that Brexit happened in 2016 and another that inflation

rose in the UK, these facts remain loosely connected unless explicitly linked through refined

causal chains—such as Brexit prevented trades, which in turn caused economic repercussions.

Without such semantically rich and fine-grained relationships, the full flow of events remains

inaccessible to both humans and machines.

This highlights the need for a more expressive and harmonized model to represent event

relationships, one that can bridge isolated data points into coherent narratives to navigate

event flows with semantic precision.

This level of details is particularly valuable in contexts where the coherence, completeness,

and interpretability of event flows are critical. For instance, in applications like narrative

generation and fact-checking. In narratives generation tasks, existing models are limiting our

ability to reconstruct meaningful narratives. Refined causal links may enrich the structure

and meaning of the story, allowing for deeper insights into how and why events unfold. In

fact-checking, the refined representations of causality potentially offer a more principled way

to detect inconsistencies between claims and supporting evidence, going beyond surface-level

textual similarity.
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1.2 Problem Statement and Research Questions

In the context of the kFLOW 1 project we had the chance to model, extract, and exploit fine-

grained relationships between events in order to build semantically rich knowledge graphs

that enable deeper understanding, reasoning, and explanation over evolving information.

1.2 Problem Statement and Research Questions

In the literature, various studies have explored event relationships, with temporality being

the most commonly represented type [34, 79]. Other works have focused on the interaction

between super-events and sub-events [63], as well as comparative relations [44]. While there

has been increasing attention toward causality [130], there is currently no ontology that

consolidates and systematically integrates the diverse event relationships described in existing

research. Furthermore, their description of causality is either vague or, in cases where it is

more refined, some relations are missing or lack proper definitions.

This rises our first research Question, RQ1: How can existing event relation data models be

harmonized into a unified ontology while ensuring maximal completeness, and semantic

depth for causal relations?

To build systems capable of reasoning about event dynamics such as understanding, predict-

ing, or explaining event flows, it is essential to have high quality datasets that capture inter

event relations with semantic precision. Without such data, it becomes difficult to train or

evaluate models, especially for relations like refined causality that is missing in the literature.

While the Semantic Web provides methods and tools for representing facts in Knowledge

Graphs (KGs), typically expressed in RDF, most existing KGs focus on isolated events. Some

are tailored to event-centric knowledge [36], and Temporal Knowledge Graphs (TKGs) enrich

these structures by associating each triple with temporal information. This enables the

representation of event occurrences over time and supports tasks such as edge inference [50,

116]. However, despite their temporal expressiveness, TKGs are not well-suited for representing

inter-event relationships, which limits their ability to capture the flow and interaction of

events.

Existing datasets such as TimeBank [121], or EventStoryLine [16] offer a foundation for model-

ing event occurrences. Yet, they often lack fine-grained, semantically rich relations between

events. Where such relations are included, they tend to be sparse, vaguely defined, or incom-

plete.

This reveals a key gap and leads us to our second research question: RQ2: How can data

be constructed, reannotated, reused, or improved to build a refined causality knowledge

graph?

1https://anr-kflow.github.io/
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Chapter 1. Introduction

The extraction of these events, along with the relationships between them, has been a long-

standing focus of interest within the research community under the task named Event Relation

Extraction (ERE). Various scientific challenges have been proposed including the Event Nugget

Detection task at TAC [78] and the Causality Identification task at CASE [113]. The existing

literature has primarily studied temporal and sub-event relationships between events – such

as in the TempEval initiative [118] – with recent attention turning towards causality [131].

However, the precise relations found limited space in research. This can be attributed to two

factors: the lack of datasets representing these refined event relations, and the complexity

of understanding these relations from text. RQ3: Which approach should be use to extract

refined causal relations from text?

When considering the downstream applications of this research, examining the role of gener-

ated narratives can be particularly helpful. The generation and comprehension of narratives

are increasingly shaped by advancements in Artificial Intelligence (AI). Language Models (LMs),

such as BERT [26], GPT-3 [15], and the more recent ChatGPT (GPT-3.5)2, have demonstrated

remarkable capabilities in text generation and conversational tasks. However, these models,

trained on vast and diverse datasets from undisclosed sources, exhibit inherent limitations,

including knowledge gaps, inaccuracies, and societal biases [15, 27].

To address these challenges, KGs provide a structured and machine-readable representation of

human knowledge, ensuring adaptability and reliability. The integration of KGs with AI-driven

text generation has been widely explored in the literature [49], demonstrating their potential

to enhance narrative construction through a more structured and knowledge-aware approach.

However, while existing KGs are effective, they often represent only a limited set of relations,

such as temporal dependencies, vague causality, or sub-super event relations. As a result,

generated narratives from these KGs may lack semantic depth.

On the other hand, and despite recent advances in automated fact-checking, many existing

systems struggle to provide transparent and interpretable explanations that align with human

reasoning. A key challenge lies in the limited use of semantically precise event relations—such

as cause, prevent, intend, and enable—which are crucial for understanding the consistency

between claims and supporting evidence. Current explainability methods often overlook these

nuanced relationships, leading to explanations that are either overly generic or fail to capture

the underlying logic of the claim.

These two potential applications of our ERE system rises the following research questions,

RQ:4 Is the representation of fine-grained event relations beneficial for downstream tasks

such as narrative generation and fact-checking?

2https://openai.com/blog/chatgpt/
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1.3 Contributions

1.3 Contributions

This thesis presents the following key contributions:

• As an outcome of the literature review, we introduce Facts and Events Relationship

Ontology (FARO), to harmonize existing data models when it comes to event relations

and be the most complete ontology.

• We provide a dataset of over 500,000 sentences annotated with five event relation types.

• We propose a model capable of accurately extracting fine-grained causality event rela-

tions from text, including direct causality, enabling, prevention, intention.

• The demonstration the effectiveness of our event relation extraction system in two

downstream applications: enhancing the semantic understanding of generative AI and

improving explainability in fact-checking

This manuscript is organized into three main parts.

Part I addresses our first research question. We begin by introducing and discussing our

event-centric data model in Chapter 2. We then explore the role of Large Language Models

(LLMs) in data engineering, in Chapter 3.

Part II focuses on the Natural Language Processing (NLP) aspects of our work. In Chapter 4,

we present various strategies for constructing datasets enriched with refined event relations.

Chapter 5 details our event relation extraction system, including the models and evaluation

techniques used.

Part III showcases the downstream applications of our ERE system. In Chapter 6, we explore

its use in enhancing narrative generation, and in Chapter 7, we demonstrate its contribution

to explainable fact-checking through structured causal reasoning.

Finally we conclude and we provide future work research directions in Chapter 8.
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Knowledge Engineering
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Chapter 2

Representing Event Relations in

Knowledge Graphs

Dynamic environments can be modeled as a series of events and facts that interact with

each other, these interactions being characterised by different relations including temporal

and causal ones. These have largely been studied in knowledge management, information

retrieval or NLP, leading to several strategies aiming at extracting these relationships in textual

documents. However, more relation types exist between events, which are insufficiently

covered by existing data models and datasets if one needs to train a model to recognise

them. In this chapter, we use semantic web technologies to design FARO, an ontology for

representing event and fact relations. FARO allows representing up to 25 distinct relationships

(including logical constraints), making it a possible bridge between (otherwise incompatible)

datasets. We describe the modeling approach of this ontology resource.

2.1 Data Models: Ontologies and Datasets for Events and Relations

In the literature, several works have studied event relationships, the most common type of

relationships being temporality. Fan et al. [29] identified 13 temporal relations – to be used

in the context of 3D simulation –, including simultaneity (equal) and 6 other asymmetric

(directed) properties, with their respective inverse – e.g. before / after. Equivalent relations are

included in [44], with the addition of Vagueness. Mereology in the context of events – i.e. the

interaction between sub-events and super-events – is also often represented [34,44,63,101,119].

Finally, the literature mentions other kinds of relation that we can group under the name of

contingency. Wolf distinguishes the causality relations in four different concepts [130]:

• CAUSE: event A that leads to an event B;

• ENABLE: condition C to make an event B possible;

• PREVENT: event A that avoids an event B;

9



Chapter 2. Representing Event Relations in Knowledge Graphs

• DESPITE: event A did not succeed in avoiding an event B.

Hong et al. [44] designed one of the most complete event-event relationship classification,

including 5 types (Inheritance, Expansion, Contingency, Comparison, Temporality) and 21

sub-types, with possible overlaps between classes. To the best of our knowledge, this is the

only work including comparative relations which cover three kinds of relation types, such as

Opposition, when two events are improbable to be both true (par ole → sentenced), Negation,

when two events can be both true in different time slots, but not simultaneously (A is behind

bars →A left). However, several relations between events are not accompanied by proper

definitions, while still some relation types are missing.

Several ontologies have been published using semantic web technologies. While some of them

do not include relations between events (e.g. LODE [106]), most of them include at least the

concept of sub-events, such as in the Event Pattern [63], the Event Ontology1, and the Simple

Event Model (SEM).

Event Model F is an ontology created to support the response in emergency events [101]. It

includes three kind of event relationships: mereological, causal and correlation. Its Justifica-

tion class enables to support the relationship with provenance – e.g. opinion, scientific law,

etc. However, this is modeled by including classes – e.g. EventCompositionSituation and

EventCompositionDescription – with the only purposes of connecting events and defining

their roles. As a consequence, there are no direct links between the composite super-event

and its components sub-events (same for cause-effect). Furthermore, only 1-1 relations are

foreseen, so additional instances must be created for aggregating causes/effects. All this led to

a complex model, hard to understand and to adopt.

One of the most popular models among libraries and cultural institutions is CIDOC CRM [28].

It is an event-centric model, in which everything is represented though the interlinking of

events of creation, production, movement, destruction, etc. Among its properties, there

are some which intend or allow to interlink events, instantiating temporal relations (e.g.

P176 starts before the start of), mereological relations (P9 consists of), causal

relations (P17 was motivated by), and even include intentionality (P20 had specific
purpose).

It is evident from the literature the necessity to represent, next to proper events, also some state

or condition, lasting in time. This concept has been modeled as a sub-class of event [52] or as a

completely separate class [31]. Several datasets for the detection of events and event relations

are available, focusing mostly on temporal relations or on pure causality. Temporal relations

have been largely investigated since 2009 in the TempEval shared task [118], which used the

standard TimeML format and the TimeBank corpus [87]. The latter has been extended in

1http://motools.sourceforge.net/event
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2.2 FARO: Facts and Event Relations Ontology

CausalTimeBank [76] that follows the {CAUSE, ENABLE, PREVENT} model. In addition, events

are marked as factual (happened), counterfactual (not happened) or non-factual (possibilities),

while their relation can be certain or uncertain. On top of TimeML, the EventStoryLine dataset

is proposed in [16], and includes the representation of causes and consequences in the context

of PLOT LINKs, for tagging events that are relevant in a plot.

EventKG is a KG of harmonised and interlinked events extracted from several resources,

such as Wikidata and YAGO [43]. It includes over 1,3 million events, linked to their spatial

and temporal coordinates. Only the connection between sub-events and super-events is

represented in this dataset. For instance, it includes events such as “Covid-19 lockdowns" and

“Covid-19 pandemic in UK", with no direct relation between2. In the medical field, the datasets

CSci [134] and EurekAlert [135] have been annotated according to four levels of causal relation:

no relationship (c0), causal (c1), conditional causal (c2), and correlational (c3).

Table 7.4 summarises these models and datasets, showing which kind of relations are included

in each of them. In addition to those, it is important to mention CausalNet, a common sense

graph of actions, with weights between them indicating the likelihood that they are in a cause-

effect relation [74]. Finally, it is worth to cite CausalBank – including 314 million sentence-level

cause-effect pairs – from which it has been generated the Cause Effect Graph, in which links

between events are weighted based on their co-occurrence in the text [68].

The table shows clearly that none of the existing resources is able to represent the entirety of

the possible relations, calling for a more complete data model that harmonizes all of them.

Relata

Condition Event

Status

happened
not happened
planned
potential

is related to

status

rdf:Statement
results in

Figure 2.1: Core elements of the FARO ontology
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Temporal relations

Before (after) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Immediately Before / After ✓ ✓ ✓ ✓
Equal / Simultaneous ✓ ✓ ✓ ✓ ✓ ✓ ✓
Meets (is met by) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Overlaps / During ✓ ✓ ✓ ✓ ✓ ✓ ✓
Contains (is cont. by) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Starts / Begins ✓ ✓ ✓ ✓ ✓ ✓ ✓
Finishes / Ends ✓ ✓ ✓ ✓ ✓ ✓ ✓
Vague ✓

Mereological relations

Sub-event (super-Event) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Re-emergence ✓ ✓
Coreference ✓ ✓
Variation ✓ ✓
Confirmation / Ev. type ✓ ✓

Contingent relations

Cause ✓ ✓ ✓ ✓ ✓ ✓* ✓+ ✓+ ✓
Enable / Condition ✓ ✓ ✓- ✓
Prevent ✓ ✓- ✓
Despite / Concession ✓ ✓ ✓
Correlation ✓ ✓ ✓ ✓ ✓
Intention / Purpose ✓ ✓
Not cause ✓ ✓ ✓

Comparative relations

Comparison ✓ ✓
Conjunction / Similarity ✓ ✓
Disjunction / Dissimilarity ✓ ✓
Opposite ✓ ✓
Negation / Alternative ✓ ✓
Competition / Contrasting ✓ ✓

Table 2.1: Event relation types supported by schemas/ontologies or present in datasets. In
EventStoryLine (✓*), causal interpretation is possible through plot structure. CSci and Eu-
rekAlert (✓+) support conditional causation. Causal TimeBank has partial support (✓-).
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2.2 FARO: Facts and Event Relations Ontology

FARO includes two different classes, Condition – transcendent, possibly can result in a RDF

statement – and Event – immanent, following the categorisation in [100] – that are direct

children of the more general class Relata, as in Figure 2.1. The latter is not intended to be

directly use for instantiate entities, but is rather an abstraction layer for the other two main

classes, allowing to define relations which connects indiscriminately any combination of

them.

We found interesting to allow to define the Status of a Relata entity, to be chosen between four

different options:

1. happened for sure at some moment in the past;

2. not happened for sure, we can exclude any happening of it in the future;

3. potential, meaning it is still uncertain if it will happen or not;

4. planned, sort of stronger potentiality, due to a will to this to happen.

This Status is intended to see an evolution in time, until it reaches either the happened or not

happened status. We decided to leave possible to even define unforeseen statuses, apart to the

four ones defined by the ontology.

Two Relata instances can be connected with a is related to property, which suggests general

relatedness without further specification. The is related to property is further extended by

25 more specific properties, organised around four direct sub-classes of is related to. 2.2

illustrates the different classes for FARO:

Differently from other works, we decided to structure these properties hierarchically, in

order to enable reasoning. This hierarchy has been realised following the definition of

the individual relations. For the same purpose, we included logic constraints – such as

owl:cardinality and owl:propertyDisjointWith – and further define property charac-

teristics – using owl:SymmetricProperty and owl:Transitive Property. Please note

that FARO is only intended to be used for representing the relationships between events,

leaving the event description to be represented using other vocabularies or ontologies.

Looking a second time at Table 7.4, it is possible to appreciate that FARO is covering most

of the listed relations, proposing itself as central ontology for the harmonisation of different

data models. We decided to not include in our ontology the Vague temporal relation: even

if valuable from the point of view of information extraction, these kind of properties are not

2We can logically imagine here that the spread the pandemic caused the lockdown, which is in its turn a measure
for preventing the worsening of pandemic.
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Figure 2.2: FARO Ontology Hierarchy

common in semantic web environments, where a more generic super-property can be used –

in this case, temporally related to. Similarly, FARO is not including any Confirmation / Event

Type property, because it can be expressed directly with an rdf:type statement. Alternatively,

it is possible to use FARO in combination with other data models for event description – such

as SEM [119], which allows typing events.

Not all event relationships involve just events. For instance, one may want to describe that

being tall is helping a player to score in a basketball game. The player’s height is of course not

an event, but rather a condition which supported the happening of an event.

Relation between these events can go beyond vague causality to include more refined causal

relations, we can categorize these relations under the super type contingently related to as

described in 2.2. Although FARO covers 25 event relation types, harmonizing existing event-

relation data models, we particularly focus here on relations beyond causality, as these are

underrepresented in the literature. Such relations are essential for deeply understanding the

semantics of event flows, which typically are only depicted with generalized or vague causality.

In the following chapter, we will begin constructing datasets specifically designed around

these underexplored relations.

Example direct-cause. “Ocean Drilling amp Exploration Co. will sell its contract-drilling

business, and took a $50.9 million loss from discontinued operations in the third quarter

because of the planned sale."

pl anned
causes−−−−→ sel l , pl anned

causes−−−−→ took , pl anned
causes−−−−→ loss
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2.2 FARO: Facts and Event Relations Ontology

Example intention. “Courtaulds PLC announced plans to spin off its textiles operations to

existing shareholders in a restructuring to boost shareholder value."

spi n
Intends to−−−−−−−→ boost

Example prevention. “In addition to the estimated 45,000 Marines to ultimately be part of

Operation Desert Shield, Stealth fighter planes and the aircraft carrier John F. Kennedy are also

headed to Saudi Arabia to protect it from Iraqi expansionism."

headed
Prevents−−−−−−→ expansi oni sm

Example enabling. “In addition, Courtaulds said the moves are logical because they will

allow the textile businesses to focus more closely on core activities."

moves
Enables−−−−−→ f ocus

Example does-not-cause. “He also rejected reports that his departure stemmed from disappoint-

ment the general manager’s post had not also led to a board directorship at the London-based

news organization."

di sappoi ntment
NOT cause−−−−−−−→ depar tur e, post

NOT cause−−−−−−−→ di r ector shi p

Example does-not-prevent. “Despite the heavy rain, the outdoor concert went ahead as

scheduled."

r ai n
NOT prevent−−−−−−−−→ concer t

Example correlates-with. “The increase in ice cream sales closely matched the rise in temperatures

throughout the summer months."

i ce-cr eam sales
correlates-with←−−−−−−−−−→ temper atur es

The importance of these relations goes beyond a deeper understanding of event flows; it

also enables the inference of further implicit relations. Figure 2.3 demonstrates a scenario

where two relations co-occur within a single sentence. Specifically, it highlights how a single

event can simultaneously fulfill two distinct roles—causing one event and preventing another.
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causes

prevents

Monetary 
program

Temporary 
downturn

Monetary 
meltdown

status
Happened

status Not 
happened

alternative 
to

Figure 2.3: A relata causing an event and preventing another one, represented using FARO.

Consequently, we can infer that the two affected events represent alternative outcomes: one

occurred, while the other did not, i.e., they can not happen at the same time.

example:

“A tight monetary program caused a temporary downturn but prevented a monetary meltdown".

Figure 2.3 3.

2.3 Conclusion

We introduce the Facts and Events Relationship Ontology (FARO), a data model for representing

events relationships in Knowledge Graphs. FARO has been implemented in OWL and publicly

documented at https://purl.org/\gls{faro}/. In particular, we designed a structure which

make possible to navigate through semantic links between events, exploring the flow of

events backwards (searching for the causes or conditions of an event), forward (looking at

consequences) or passing through other kind of connections. In other words, we want to

make possible the creation of interconnected timelines of events, in which the connections

between two consecutive points have explicit semantics. A such created graph would serve to

improve the performance of downstream task (namely link prediction) and the explainability

in decision making systems.

However two problems are left unsolved:

• We would to know what kind of questions is this model able to answer, which will be

addressed in Chapter 3;

• The realisation of a graph using the FARO ontology needs a proper automation, that we

will cover in Chapter 4 and Chapter 5.

3The text sample has been taken from
https://economynext.com/sri-lanka-will-repay-bonds-holders-should-appreciate-efforts-made-cabraal-83785/.
Last visited: 10/06/2022
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Chapter 3

LLMs and Knowledge Engineering

Despite the growing adoption of ontologies in knowledge representation tasks, many widely

used ontologies still lack formally defined Competency Questions (CQs). This is notably the

case for the FARO ontology.

During the course of this thesis, LLMs have gained significant traction, drawing the attention

of numerous researchers. Unlike the work presented in the previous chapter, we now shift our

focus to the role of LLMs in knowledge engineering tasks—specifically, ontology modeling

through CQ generation. Our objective is to assess whether LLMs are suitable for automatically

generating meaningful and useful CQs that can guide ontology evaluation and use.

Through simple experiments, accessible to anyone via ChatGPT or similar tools, we observed

that it is indeed possible to generate a basic OWL/RDF ontology structure using a prompt that

briefly describes the targeted concepts. However, the reliability and scalability of this approach

remain unexplored. This raises a critical question: To what extent can LLMs contribute to the

knowledge engineering process alongside traditional methodologies such as CQ?

3.1 Related Work

The recent surge in generative AI and the widespread adoption of LLMs in industrial and con-

sumer applications—particularly in tasks like generating code from natural language—suggests

that abstracting a domain into a formal representation from textual corpora is an achievable

goal that could assist knowledge engineers. The knowledge engineering and semantic web

communities are increasingly exploring LLMs for ontology and KG construction, tackling tasks

such as creating views on heterogeneous data lakes [9], RDF triple and SPARQL query genera-

tion [30], named entity recognition and relation extraction [125], RML mapping creation [42],

and schema or ontology matching [3, 33, 41]. Consequently, various stages of the knowledge

engineering process are being revisited in the era of LLMs (e.g., LOT [86]). However, the
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Figure 3.1: Workflow of the platform

systematic use of LLMs in these tasks requires further assessment, as results vary significantly

depending on the underlying model and other influencing factors. Different works have so

far investigated the performance of LLMs in classic tasks in the KG domain [4]. SPIRES [17]

is a method that utilizes GPT-3 to produce structured data from an input text and schema.

In [105], the authors use the Overall Execution Accuracy (OEA) to assess the performance

of a LLM in converting questions to queries (SQL or SPARQL). The OEA is computed on an

ad-hoc benchmark, where an execution is considered accurate if the query result matches the

corresponding answer.

Several works address the usage and production of CQs. The study of patterns in competency

questions [128] has inspired the realization of AgOCQs [8] in which CQs are automatically

generated. The evaluation has been performed with an expert group, which highlighted

the validity of the method. The patterns can be filled by Glossary of terms – which can be

automatically extracted such as in ReqTagger [129] – or used to automatically generate SPARQL

queries from CQs [12, 127].

3.2 Methodology

In this section, we provide details of our approach by focusing on the LLM-based data pro-

cessing pipeline (Section 3.2.1) and on the prompt details (Section 3.2.2).

3.2.1 Implementation

To standardize and automate experiments, we developed a platform in Python, whose work-

flow is depicted in Figure 3.1. The platform relies on the LangChain framework1 [19] to interact

with various LLMs. Specifically, we integrated models from LangChain providers for Ollama,

HuggingFace, and OpenAI into our workflow, allowing for querying within the same pipeline.

We make use of a prompt configuration in the form of a YAML file, including:

• the description of the task T D (for documentation purposes);

1https://python.langchain.com/
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• the list of required input fields;

• the prompt template, in which placeholders are marked by curly brackets as in the

documentation of LangChain, e.g. {name}, {classes}.

Additionally, each process can be further customized by specifying the LLM to use, the path of

the input ontology, whether to include the ontology description in the prompt or not, and the

number of required output results.

In order to avoid to ingest the full RDF representation in the prompt2, we parse the ontology

using RDFlib [62] and extract either:

• the list of class labels C ;

• the list of property labels P ;

• a summary schema of the interconnection of classes and properties S.

This schema S is represented as triples in the format (Cx , py ,Cz ), where Cx ,Cz ∈C are class

labels, and py ∈ P is the label of an object property which has Cx as domain and Cz as range.

An example taken from the FOAF ontology is (foaf:Group, foaf:member, foaf:Agent).

Please note that Cx and Cz are not necessarily two different classes, because the domain and

range can coincide, e.g. in

(foaf:Person, foaf:knows, foaf:Person). In the case of a data property pd ∈ P , we in-

clude the triple (Cx , pd ,“l i ter al "), e.g. in (foaf:Person, foaf:lastName, "literal").

When the dimension of the ontology is large, it is processed in batches of 20 classes. In such a

case, in each iteration, C is composed of a maximum of 20 classes, P includes all properties

which have C as domain or range, and S encompasses all interconnections involving C and P .

3.2.2 Prompting

We primarily utilized three templates for our work. The first template outlines the classes

within the ontology, the second includes both classes and properties, and the final template

integrates the ontology’s schema. Each of these templates encompasses:

• Task Description (T D): ‘Generate a set of competency questions (CQ)

which are relevant for the ontology called {name of ontology}’.

2During some preliminary experiments, we realised that including the full ontology in Turtle format was
producing a long prompt, which has shown to confuse the LLMs and produce hallucination.
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• Ontology Description (OD): provides a general overview of the ontology and specifies

the domain it belongs to, e.g., ‘Odeuropa ontology represents’

odours and their experiences from Cultural Heritage perspective.

• Examples (E X P ): examples of competency questions of the desired ontology, e.g.,

‘Which scents were linked to the idea of heaven in X period?’.

• Notes(N ): guidelines provided to the model for brevity and clarity, e.g.,

‘Do not include any text except the competency question’.

Based on the prompt configuration technique described in Section 3.2.1, we propose to

generate prompts for a given ontology with various features (Table 3.1) depending on the

overall experiment goals and following best practice in prompt structuring.

Table 3.1: Prompt features as a function of the evaluation goal.
For the classes feature, the “The {name} ontology has the following set of classes:” is used in the prompt. For the “Properties”
feature, it is the “and the following set of properties:” sentence. For “Schema” it is the “The {name} ontology has the following
schema” sentence. “opt.” stands for optional (i.e. w. and w.o definition).

Evaluation goal Definition Classes Properties Schema Examples Constraints

All classes opt. ✓ n ✓
All classes + properties opt. ✓ ✓ n ✓
Logic opt. ✓ n ✓

3.3 Experiments

In this section, we present the experiments conducted based on the method described in

Section 3.2.

We first provide details of the dataset used in Section 3.5.1, then on the LLMs used in Section

3.3.2, and finally report on the evaluation results in Section 3.3.3.

3.3.1 Investigated Ontologies

For our experiments, we selected a subset of five ontologies (Table 3.2) with a publicly avail-

able implementation based on the following two criteria: 1) these ontologies were modeled

following explicitly the CQs methodology [95]; 2) these ontologies have well-phrased CQs with

associated Authoring Tests (ATs) in the form of SPARQL queries.

Candidate ontologies. The following ontologies fulfill the selection criteria discussed above:
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• DOREMUS [2]: related to music and cultural heritage domains, the ontology comes

with a documentation, competency questions, SPARQL queries and APIs and a large

knowledge graph.

• Polifonia [25]: related to music and cultural heritage, the ontology enables to capture

musical and historical knowledge. In addition to CQs and a comprehensive documenta-

tion, the authors provides a set of queries that we can leverage as ground truth and a

knowledge graph.

• DemCare [59]: related to the medical domain, specifically tailored for dementia care

and monitoring. Provided with CQs, a dataset, and well-structured documentation.

• Odeuropa [70]: related to sensory experiences and cultural heritage, focusing on

olfactory experiences in historical contexts. Provided with CQs, documentation, queries

and a dataset.

• NORIA-O [111]: related to the IT domain, and designed for network monitoring and

performing anomaly detection. Provided with CQs, a documentation, queries, and a

knowledge graph.

Once the subset was established, we created a dataset by recording a versioned copy of the

ontologies’ implementation, as well as their companion set of CQs and ATs. To generalize

the approach described in Section 3.2 to all the ontologies of the subset, we normalized the

representation of the CQs by storing them in a YAML data structure including – if relevant

– the reference to the corresponding ATs. The dataset is publicly available in our repository,

with annotation on the origin for each component of it and explanations on the normalization

process.

Table 3.2: Subset of ontologies for the LLM4KE experiments.
Ontologies in our dataset, along with additional details such as the number of classes (#Classes) and properties (#Props),
associated competency questions (CQ count), associated authoring tests (AT count), and a coverage measure (AT/CQ coverage)
indicating the extent to which ATs are effectively defined and implemented for each CQ. For Polifonia, we count CQs from their
“default group” and indicate “?” for the AT count as no obvious set of ATs was found. For Demcare, the CQ2SPARQLOWL [85]
dataset served as a reference for building our dataset. For the remaining ontologies, the dataset was directly constructed from
each project’s repository.

Data-model Ref. Full ontology name or topic #Classes #Props CQ AT AT/CQ
count count coverage

DemCare [59] Dementia Ambient Care Ontology. 290 115 107 60 56%
DOREMUS [2] Music catalogues on the web of data. 218 705 58 30 52%
NORIA-O [111] IT networks and operations for anomaly detec-

tion and IT service management.
55 135 26 25 88%

Odeuropa [70] Odours and their experiences from a Cultural
Heritage perspective.

13 10 74 74 100%

Polifonia [25] Polifonia Ontology Network (PON) for queries
in the music domain.

247 299 194 ? 0%
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3.3.2 Investigated LLMs

We explored various LLMs options, including both open-source and proprietary models.

For open-source models, we considered their performances according to the Hugging Face

leaderboard,3 in particular across three specific datasets, which we consider relevant for this

research:

• ARC2018 [23] (AI2 Reasoning Challenge), a question-answering dataset;

• HellaSwag [136], created to challenge model common sense reasoning abilities;

• Winogrande [98], a dataset designed to evaluate commonsense reasoning capabilities in

AI systems.

We selected these models based on their architectures, aiming to choose one from each archi-

tectural category. Each model was chosen for its superior performance within its respective

architecture, as indicated by their positions on the leaderboard at the time of selection. Due to

resource limitations, we have opted to confine our selection of open-source LLMs to those

with a parameter count equal to or less than 13 billion. Table 3.3 summarises the used LLMs.

Table 3.3: Used LLMs for Experiments.
B refers to billion parameters.

Model Architecture Size (B) Access Paradigm

DPO4 MixtralForCausalLM 12.9 Open-source
Solar6 LlamaForCausalLM 10.7 Open-source
UNA8 MistralForCausalLM 7 Open-source
Zephyrβ 10 MistralForCausalLM 7 Open-source
GPT 3.5 Transformer Decoder 175 proprietary
GPT-4-0125-preview Transformer Decoder 1500 proprietary

We have used Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B4 (we refer to it as DPO),

which is an instance of FusionNet_7Bx2_MoE_14B fine-tuned on the Truthy-DPO dataset5.

Additionally, we leveraged SOLAR-10B-OrcaDPO-Jawade, which we shortcut to Solar, a fine-

tuned version of SOLAR-10.7B-Instruct-v1.06 [57], finetuned on the dpo pairs dataset.7

Furthermore, we have used UNA-TheBeagle-7b-v18, that we call simply UNA, a 7B LLM

trained on The Bagel dataset.9 On the other hand, we opted for zephyrβ10 [117], because of its

performance that surpassed Llama2 70B [115] on different benchmarks.

3https://huggingface.co/spaces/HuggingFaceH4/open_\gls{llm}_leaderboard
4https://huggingface.co/yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
5https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1
6https://huggingface.co/bhavinjawade/SOLAR/-10B/-OrcaDPO/-Jawade
7https://huggingface.co/datasets/Intel/orca_dpo_pairs
8https://huggingface.co/fblgit/UNA-TheBeagle/-7b/-v1
9https://huggingface.co/datasets/jondurbin/bagel-v0.3

10https://huggingface.co/HuggingFaceH4/zephyr/-7b/-beta
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Moreover, we included in our study API-only access models, and in particular the GPT series

from OpenAI11. We used both GPT3.512 and GPT4 [81].

3.3.3 Results

To perform the evaluation of our approach, we utilize the dataset presented in Section 3.5.1

and consider the CQs provided by the authors of each ontology as the ground truth. We

compare the output CQs from the LLMs (CQo) to each CQ in the ground-truth (CQg t ) and

consider a CQo as valid if it is sufficiently similar to at least one CQg t . For the similarity

score, we use cosine similarity between the embeddings of CQo and CQg t computed using

SentenceBERT [94]. We define a threshold θ above which we consider a CQo valid (Eq. 3.1):

x ∈CQval i d
o ⇔ x ∈CQo ∧∃{y ∈CQg t : cosine similarity(y, x) > θ} (3.1)

with CQval i d
o ⊂CQo . We then compute the precision P = number of CQval i d

o
number of CQo

of each experiment.

The results of the experiments are reported in Table 3.4, using a threshold of θ = 0.6, chosen

empirically for better showing the differences between the models. As a first outlook, we

observe that the precision scores are generally low. From the perspective of the LLMs, Zephyr

consistently shows the best scores across a majority of ontologies with at least two different

modalities, with the exception of some experiments on Odeuropa (in particular with only

classes) and NORIA-O (classes and properties) where UNA performs better. For Odeuropa,

this can be due to the fact that the dimension of Odeuropa is lower that the used batch size,

and it is consequently included entirely in the prompt; reducing the batch size to 5, improves

the results of Zephyr for Odeuropa to 0.90 (C), 0.91 (P) and 0.70 (S). Future work will investigate

the effect of the batch size on the different LLMs and ontologies.

From the perspective of prompt features, we observe that providing examples (few-shot)

generally leads to better precision (compared to zero-shot), although not always.

Even though the absolute scores are generally quite low, it should not be concluded that

the generated CQs are irrelevant. In fact, the generation process may have resulted in new

competency questions that can be a valuable addition to the ground truth dataset. To properly

evaluate the relevance of these competency questions, an expert panel should be involved,

which will be the focus of future work. Due to variations in the number of classes among

the ontologies in our dataset (Table 3.2), it is important to note that the LLMs used in the

experiments may have been queried more frequently for certain ontologies and less frequently

for others, because of the subdivision in batches.

11https://openai.com/
12https://platform.openai.com/docs/models/gpt-3-5-turbo
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Table 3.4: The precision scores for the experiments, reporting the LLM name, the number of
included exemplary CQs and, for each ontology, the modality {C = all classes, P = classes and
properties, S = summary schema}

Ontology → DOREMUS DemCare Odeuropa Polifonia NORIA-O
LLM Ex C P S C P S C P S C P S C P S
GPT3 0 0.02 0.01 0.01 0.15 0.14 0.00 0.00 0.00 0.10 0.08 0.08 0.20 0.00 0.00 0.03

3 0.04 0.01 0.04 0.17 0.13 0.00 0.90 0.30 0.00 0.20 0.30 0.32 0.00 0.03 0.03
GPT4 0 0.00 0.00 0.02 0.14 0.23 0.01 0.20 0.50 0.30 0.21 0.24 0.30 0.00 0.03 0.00

3 0.10 0.11 0.11 0.21 0.17 0.01 0.40 0.90 0.90 0.32 0.32 0.32 0.03 0.03 0.00
dpo 0 0.00 0.00 0.00 0.04 0.08 0.00 0.70 0.30 0.00 0.05 0.09 0.11 0.00 0.00 0.00

3 0.03 0.04 0.01 0.15 0.13 0.04 0.75 0.82 1.00 0.22 0.22 0.22 0.04 0.06 0.00
solar 0 0.00 0.00 0.00 0.08 0.06 0.00 0.20 0.00 0.20 0.07 0.04 0.12 0.00 0.03 0.00

3 0.00 0.12 0.07 0.11 0.17 0.00 0.30 0.30 0.30 0.20 0.22 0.24 0.04 0.00 0.03
una 0 0.00 0.03 0.05 0.10 0.10 0.00 0.50 0.00 0.64 0.08 0.05 0.10 0.03 0.00 0.00

3 0.09 0.15 0.12 0.20 0.24 0.27 1.00 0.70 1.00 0.34 0.38 0.33 0.31 0.07 0.00
zephyr 0 0.01 0.01 0.00 0.05 0.09 0.00 0.90 1.00 0.00 0.16 0.08 0.15 0.00 0.00 0.00

3 0.03 0.58 0.56 0.21 0.33 0.00 0.40 0.00 1.00 0.36 0.38 0.34 0.00 0.00 0.20

A first qualitative assessment let us notice that the configurations obtaining the lower scores

have some common characteristics: the strict reuse of class and property labels instead of

periphrasis, the inclusion of the ontology name in the output CQ, the presence of generic

connections between concepts (“involve”, “influence”, “associate”, “relate”) instead of semanti-

cally meaningful ones. Future work will investigate possible patterns with the help of domain

experts.

3.4 Application of LLMs to generate CQs for FARO ontology

Having demonstrated that LLMs, despite certain limitations, can achieve good precision

in generating CQs, particularly in few-shot settings. we decided to explore their ability to

generate CQs for the FARO ontology.

Our evaluation began with a zero-shot setup, followed by a few-shot scenario in which we

provided the model with three example CQs specifically tailored to FARO. These examples aim

to reflect the types of event and condition relationships captured by the ontology:

• Which events were made possible or enabled by the outcome of the Brexit vote?

• Which events were considered alternatives to the UK exiting the EU?

• Which events were prevented from happening due to the lockdown?

In our experiments on FARO, we employ Zephyr, as it demonstrated superior performance in

our previous evaluations. Additionally, while earlier experiments utilized an older version of

GPT-4, we now include tests with the updated GPT-4o model to assess potential improvements

in performance brought by this newer version. Below, we present a qualitative assessment of

the generated CQs, focusing on their quality, specificity, and domain diversity.
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Zero-Shot Prompting

Across all zero-shot scenarios, we observe that the LLMs tend to generate very generic CQs.

For instance, GPT-4 produced the following example:

Which statement results from a given condition?

This pattern of overly broad and vague questions was consistent across all tested models,

indicating that without additional context or guidance, LLMs struggle to align generated CQs

with the specific semantics of the FARO ontology.

few-shot - Classes Only

When prompting with ontology classes alone, none of the models produced high-quality or

meaningful CQs. The output remained vague and lacked alignment with the structure or

purpose of FARO. Examples include:

How are relata involved in the transition from one event to another?

What conditions must be met for a statement to be considered true?

Which statuses are most commonly reported in relation to a significant event?

few-shot - Summary Schema, Classes and Properties

Introducing a logical scheme or the properties together with classes into the prompt substan-

tially improved the relevance and coherence of generated CQs.

For instance, GPT-4 produced accurate questions, although with limited topical diversity. Most

of the generated CQs centered around the example it was given—Brexit:

Which events resulted in the literal statement of post-Brexit economic uncertainty?

Which events intentionally cause political disruption after the Brexit vote?

Which events do not cause the expected public backlash in the Brexit scenario?

Which conditions result in statements about the UK’s exit from the EU?

The same behaviour was seen with Zephyr: with logical scheme summary prompting or the

inclusion of properties with classes, it showed more structure but lacked topical diversity and

often repeated question patterns. Many questions were highly influenced by the provided

examples.

On the other hand, GPT-4o demonstrated noticeable improvement in both accuracy and

domain diversity. It generated well-formed and meaningful questions across a range of topics:
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Which conditions result in the declaration of a national emergency?

What statements are the outcomes of severe weather conditions?

Which events intentionally aim to cause economic growth?

What events are temporally related to a global pandemic?

Which conditions re-emerge in cyclic economic patterns?

What relata are related to the technological advancements in the 21st century?

Which events are temporally related to the rise of social media platforms?

What statements were intended to cause a change in consumer behavior?

Overall, these experiments highlight the importance of context and example design in guiding

LLMs to produce meaningful and ontology-aligned CQs. While zero-shot setups consistently

yield generic outputs, using a scheme summary prompting and including booth classes and

properties significantly improves both relevance and coherence. Among the tested models,

GPT-4o showed the best balance between accuracy and topical diversity.

3.5 Towards a More Comprehensive Benchmark

Addressing the gap in assessing LLM performance for reverse engineering an ontology, it

is essential to evaluate their effectiveness across other subtasks to gain a comprehensive

understanding of their capabilities and limitations in knowledge engineering. This highlights

the need for a deeper investigation into the characteristics of ontologies that impact the

accuracy of LLM-generated responses and vice versa.

In this section, we further detail the elements of this benchmark: the use cases and tasks to be

evaluated (Section 3.5.2), the curated datasets (Section 3.5.1), and the evaluation metrics for

improving LLM performance (Section 3.5.3).

3.5.1 Benchmark Data

In addition to the availability of CQs that we discussed before for selecting the ontologies, we

propose to consider the following criteria to include ontologies in the benchmark:, compre-

hensive documentation of the ontology, FAIR-related scores attached to the ontology, SPARQL

queries demonstrating the usage of the ontology and/or SHACL [58] shapes constraining its us-

age. Furthermore, we advocate for a selection that covers diverse domain of discourses. From

a conceptualization point of view, the selected ontologies should exhibit different structure

(e.g. relatively flat ontologies such as schema.org13 versus nested models such as FRBR [47])

13https://schema.org/

26

https://schema.org/


3.5 Towards a More Comprehensive Benchmark

and make use of well-known ontology design patterns (e.g. event-based modeling like CIDOC-

CRM14). Although not all ontologies provide the requisite information for every criteria, they

should still be suitable for evaluation in specific tasks.

Domain of Discourse. The benchmark should cover as many domains as possible to be able

to draw the line between the performance of LLMs and a given domain. Examples include:

general purpose ontologies, IT and sensors, creative industries and medias, cultural heritage

and museums, healthcare and medicine, biology and life sciences, education and e-learning,

e-commerce and retail, finance and banking, and legal sectors.

We plan to incorporate additional ontologies from other domains using well-known catalogs

such as Linked Open Vocabulary (LOV) [110] and the Industry Portal [6]. We can also rely

on [85] which provides a dataset of competency questions for different ontologies and domains

(e.g. the African wildlife ontology (AWO) [55] , the Software Ontology (SWO) [48], the Generic

Ontology of Datatypes (OntoDT) [82]) together with their translation into SPARQL queries.

3.5.2 Benchmark Tasks

Conceptualize an ontology. This task aims to conceptualize an ontology given a set of CQs

and a domain scope. A variant of it can start from a partial ontology, and the task of the LLM is

to complete the ontology by adding the missing classes and properties. In this case, we will

evaluate the LLM’s performance in accurately completing an ontology based solely on the

upper-level structure. This will help understanding the depth to which the LLM can reach

with and without CQs that could assist in clarifying user intent.

Generate Competency Questions. This task focuses on generating CQs given an ontology

or specific parts of it, similar to the approach outlined in [93]. The performance of LLMs

will be evaluated according to the prompts being used and the nature of the information

provided, such as a general description of an ontology, taxonomical branches, or even the

entire ontology. The impact of each type of input will be analyzed in order to assess the

generalization capabilities of the model and its limitations related to the domain, the structure

or the size of the ontology. Additionally, this task aims to identify best practices for prompt

formatting to enhance communication between human language and LLMs.

Produce the ontology documentation. In this task, the LLM should produce a human-

readable documentation of the ontology, emphasizing on its main classes and properties. This

can be further expanded in generating useful API calls, e.g. following the SPARQL Transformers

14https://cidoc-crm.org/
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approach [69]. This can be achieved by either inputting the entire ontology or using a chain-

of-thought (CoT) [126] approach, in case of complex ontologies.

Implement queries corresponding to CQs. This task will assess the LLM’s ability to generate

autonomously relevant queries given the ontology structure and the user intent expressed

with competency questions.

Verbalize Knowledge Graph Excerpts. The task involves generating human-readable inter-

pretations of a dataset, using an ontology as a guide for the LLM to structure the information.

The goal is to go beyond the verbalization of all possibles triples (subject, verb, object) and to

generate paragraphs that summarize the graphs.

3.5.3 Evaluation Metrics and Process

In this section, we outline the process for evaluating and improving LLM performance using a

factorial experiment design based on the following factors:

1) Prompting strategies: presence or absence of partial knowledge of the competency

questions, taxonomy, and documentation in the LLM’s context, depending on the

specific task similar to an ablation study.

2) Data instance: presence or absence of instances from a knowledge graph structured by

a given ontology to guide the LLM.

The evaluation process will be iterative, refining the integration of the knowledge graph with

the LLM at each step and assessing performance improvements along the way. Multiple

iterations will be conducted and the results will be analyzed using statistical methods to

quantify progress. To facilitate comparison between different models or methods, we propose

to rely on a CI/CD-enabled pipeline based on the tools developed in [93], with performance

results tracked using a leaderboard.

Table 3.5 summarizes the evaluation techniques intended for each of the benchmark tasks

(Section 3.5.2).

• Semantic Similarity. This is typically implemented as a cosine similarity between

vectors embedding a ground truth sentence and a generated response from a LLM.

SentenceBERT is generally used for evaluating the CQ generation and ontology docu-

mentation tasks.
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3.6 Conclusion

Task Evaluation Techniques
Conceptualize an ontology Ontology Evaluation Criteria, Logical Consis-

tency.
Generate Competency Questions Semantic Similarity.
Produce the ontology documentation Semantic Similarity, between the generated

documentation and the existing definition of
classes and properties).

Implement queries corresponding to CQs Structure Comparison.
Verbalize Knowledge Graph Excerpts Fluency and Coherence.

Table 3.5: Benchmark Tasks and Evaluation Techniques

• Ontology Evaluation Criteria. Using an existing ontology as the gold standard, we can

assess the accuracy, completeness, and conciseness of the generated ontology [88]. This

serves the tasks of ontology generation and ontology enrichment. However, adaptability,

clarity, and computational efficiency are not addressed in this research, as they depend

on the ground truth ontology.

• Logical Consistency. This enables us to validate the semantic formalization of an

ontology, typically using tools such as the Hermit reasoner [107].

• Structure Comparison. When evaluating the generation of queries, this measure will

compare the structure of the generated query with a ground truth query. We can leverage

the RTED algorithm, which calculates the Tree Edit Distance (TED) [83] for this purpose.

• Fluency and Coherence. When verbalizing and summarizing KG excerpts (instance data

guided by an ontology), this metric will assess the fluency (grammatical correctness)

and adequacy (referring to the accurate integration of triples [53]) of the generated text.

3.6 Conclusion

To explore what types of questions the FARO ontology can answer, we first evaluated the ability

of LLMs to generate competency questions across a range of ontologies. This formed part of a

broader investigation into how LLMs can support knowledge engineering tasks, particularly

in the context of ontology development.

We designed a methodology and implemented a data processing pipeline involving six LLMs,

four prompting strategies (zero-shot, few-shot with classes,few-shot with classes and prop-

erties, and few-shot with schema summaries), and five diverse ontologies. These initial

experiments helped us identify effective prompting conditions, highlighting the importance

of including examples and relationship information in prompts to improve the quality of

generated CQs. Interestingly, we also observed that overly detailed prompts could reduce
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model performance in some cases, suggesting a need for balanced prompt design.

From these results, we selected the most promising models—Zephyr and GPT-4—for further

testing on the FARO ontology. We also included GPT-4o, which was not available during the

initial experiments, to assess its performance.

Qualitative analysis unveiled that while zero-shot and class-only prompts generally produced

vague or poorly aligned questions, schema-informed prompting led to significantly better

results. In particular, GPT-4o demonstrated the strongest performance, generating accurate,

semantically coherent, and topically diverse CQs. Examples include: “Which events intention-

ally aim to cause economic growth?” and “What statements were intended to cause a change

in consumer behavior?”

Encouraged by these findings, we extended our work beyond CQs generation and proposed

a benchmark to evaluate the ability of LLMs in a broader range of knowledge engineering

tasks. This benchmark aims to systematically assess how LLMs can contribute across different

stages of ontology-based system development, from data modeling to application-oriented

reasoning.
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Chapter 4

Constructing an Event Relation

Dataset

The construction of an event relation dataset is a crucial step in advancing automatic event

relation extraction methods, particularly for fine-grained causal reasoning. This chapter

introduces the construction of a dataset centered on a subset of event relations from the

FARO ontology—namely Cause, Intend, Prevent, Enable, and Not Cause. These relations were

selected due to their limited representation in existing literature and their critical role in

capturing nuanced semantic distinctions beyond simple causality. Given the limitations

in existing datasets, we extend and re-annotate two well-established resources, TimeBank

and EventCausality by incorporating additional event relation types, ensuring compatibility

with the TimeML annotation framework. To further enhance data coverage and balance, we

leverage LLMs for data augmentation and integrate commonsense knowledge from sources

such as The Atlas of Machine Commonsense (ATOMIC) [99]. The resulting dataset serves as

a foundation for training and evaluating models in event relation extraction, with applica-

tions in causal reasoning, narrative generation, and fact-checking. This chapter details the

dataset construction process, annotation methodology, augmentation strategies, and the final

structured representation as a knowledge graph.

4.1 Initial Dataset Construction

In this section, we describe a dataset that includes some of the relations described in FARO,

focusing on the contingent relations. we believe that a first version of a multi-relation event

dataset is crucial to start designing new automatic methods for extracting them. Note that

this is the first dataset incorporating Intend, and differentiating between Cause, Prevent, and

Enable. These relations have been chosen because poorly represented in available datasets.

We developed this dataset by extending and re-annotating two existing datasets with new event

relations types, namely intention, enabling, prevention, and explicit negation of causality.

The choice of the datasets were based on their format (TimeML), which was convenient for
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extending it with other relation link.

• TimeBank [122], published by Brandeis University, providing 183 English news articles

with over 27,000 event and temporal annotations about events, times and temporal links

between events and times. The annotation respects the TimeML 1.2.1 specification.

• EventCausality [80], the dataset comes with causal and temporal annotations on 25

news articles collected from CNN7, giving at the end 1.3k events, 3.4k temporal links

and 172 causal relations between events.

Both selected datasets are represented using the TimeML format [87], which we kept it as a

base. This format enables to annotate events in the text and to declare possible connections

between them using one among:

• TLINK, a temporal relation between events (or between an event and a time expression).

Ex: “John left (ei1) 2 days before (s1) the attack (ei2)" −→

<TLINK eventInstanceID="ei1" signalID="s1"
relatedToEvent="ei2" relType="BEFORE" magnitude="t1" />

• ALINK, a relationship between an “aspectual" event (events that add a notion about an

action whether it begins, finishes, continues, etc.) – normally represented by phrasal

verbs, e.g. start to– and its argument event: initiation, continuation, etc. Ex: John started

(ei5) to read (ei6) −→

<ALINK eventInstanceID="ei5"
relatedToEventInstance="ei6" relType="INITIATES" />

• SLINK, refers as a Subordination Link, which is used for contexts introducing relations

between two events, or an event and a signal. Ex. “John said (ei2) that he taught (ei3)

on Monday." −→

<SLINK eventInstanceID="ei2"
subordinatedEventInstance="ei3" relType="EVIDENTIAL" />

While TimeBank uses all 3 types of links, EventCausality instantiates explicit TLINK relation

tags, with causal links are represented separately in another file – not following TimeML, so

hard to re-use in other dataset. We kept the temporal links and we enriched it by new event

relation tags.
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4.1.1 A generic relation link: RLINK

Following the experience described in [76] with the addition of the causal link CLINK, we

extended TimeML with a new relation type RLINK, which we designed as a generalisation

of the existing ones (TLINK, ALINK, CLINK), and enriched the previously described datasets

accordingly. RLINK – or relation link – is a description of a generic relationship between two

events, that can be further specified. A RLINK instance has 4 attributes as following:

• Link Identifier (lid) represents an ID for the relation, unique at the document level;

• Relation type (relType) refers as the type of relation between two events or the predicate

of the triple, which can be one of the property of FARO, e.g. Cause, Prevent, etc.;

• Event instance Identifier (eventInstanceID) is the relata with the role of subject of the

triple;

• Related event instance Identifier (relatedEventInstance) is the relata with the role

of object of the triple.

Example. “Subcontractors will be offered a settlement (ei264) and a swift transition (ei265)

to new management is expected to avert an exodus(ei268) of skilled workers from Waertsilae

Marine’s two big shipyards."

<RLINK eventInstanceID="ei264"
lid="l42" relType="prevention" relatedEventInstance="ei268" />

<RLINK eventInstanceID="ei265"
lid="l43" relType="prevention" relatedEventInstance="ei268" />

4.1.2 Candidate Generation

We re-annotated each of the mentioned datasets applying a semi-automatic procedure, based

on expression matching as first step, followed by a manual check to validate the extracted

annotations.

First, we collected a set of potential signal words for each of the 5 studied relations. We

searched in the text these signals and extracted the sentences containing them, which we

consider potential candidates. Each candidate sentence is dispatched according to the number

of possible event pair combinations of relata that can construct the relation, among all the

already annotated events for that specific sentence in the original datasets. In other words, we
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created a table in which each line contains a unique combination of two events, the signal

word, the document id and the full sentence, as in Table 4.1.

Event1 eid1 Event2 eid2 signal Annotation DocumentID Sentence

settlement e44 expected e14 avert 0 w s j0187.tml Subcontractors will ...

... ... ... ... ... 0 w s j0187.tml Subcontractors will ...

settlement e44 exodus e46 avert 1 w s j0187.tml Subcontractors will ...

... ... ... ... ... 0 w s j0187.tml Subcontractors will ...

transition e45 exodus e46 avert 1 w s j0187.tml Subcontractors will ...

Table 4.1: Table of the candidate pairs for a specific relation type (prevention), with manual
annotation (1 = correct, 0 = wrong).

In the following, we detail the strategy applied for the signal collection and the extraction for

each relation type, together with some examples.

Causality.

We adopted the manually defined causal signals and causal verbs in [77], in which causal

signals are nominal phrases that express causality (e.g: because of, in order to, as a result

of). However, causal verbs are a set of verbs representing the act of causing, such as: cause,

bribe, push, etc. The first automatic selection results in 1790 candidate causal relation for

TimeBank dataset, and 697 for EventCausality dataset. After dispatching, we ended up with

9658 and 1205 possible event pair causal relation for TimeBank and EventCausality datasets

respectively.

Intention.

To capture intention, we manually created a list of possible intention signals (e.g: want, plan,

aim). Additionally, we adopted another set of events as signals taken from the TimeBank

dataset belonging to the class I-action. I-action (Intentional action), is an argument for those

events that express an action of intention to do something.

As a result of automatic intention signals matching, we got 412 candidate expression for

holding intention for TimeBank and 154 for EventCausality dataset. However, after extracting

all possible event pair combinations, we ended up with 4028 and 230 intention candidate

expression for TimeBank and EventCausality datasets respectively.
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Prevention.

We integrate prevention signals as defined in [77], in which are initially included into the causal

verbs list and claimed to express prevention, e.g: block, bar, deter, etc. After the exploitation

of these signals, we could extract 120 and 25 candidate expression, which lead to 988 and 53

event pair combination from TimeBank and EventCausality respectively.

Enabling.

For this event relation, we defined a list of verbs that alert the existence of enabling, such as

authorize, warrant, entitle, etc.. We extended this list with enable signals as defined in [77], e.g:

help, permit, empower, etc. to guarantee a high coverage. As a result, we obtained 41 and 17

candidate expression and 328 and 16 candidate event pairs combination for TimeBank and

EventCausality datasets respectively.

Not Causality.

To extract the explicit not cause relation, we rely on the previously extracted causal relations,

in which, we first naively pick those expression having both negation and causality at the same

time, than manually validate the right ones. Consequently, we obtained 230 and 124 candi-

date expression and 1640 and 255 candidate event pairs from TimeBank and EventCausality

datasets respectively.

4.1.3 Manual Assessment

The described process extracted a long list of candidate relations, most of them being in-

correct and to be filtered out. The structure in Table 4.1 has been then used by two fluent

English speakers annotators, which manually checked the candidate sentences. The process

is summarised in the following steps:

1. Each annotator reads and annotates 300 lines for each type of relation.

2. On this preliminary annotation, we compute Cohen’s kappa inter annotator agreement

(IAA) [56] between the two annotations.

• If the IIA does not show a substantial agreement (> 0.6), the annotators meet,

check the contrasting annotations and agree on a strategy. Then, 300 different

lines are chosen and the process goes back to point 1.

• Otherwise, we progress to next point.

3. The annotation is completed for the rest of the datasets, each annotator taking a unique
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portion.

During annotation, only relations with precised relata have been considered as correct, while

others have been marked as not correct. The annotation process relied on an IAA = 0.7112,

which is considered a substantial agreement. Table 4.2 shows the initial stats of our annotated

dataset.

In the following example, the signal word is marked in bold, events have been marked using

italic, but only the underlined ones have been considered part of relationships of type Prevent

by the annotators in Table 4.1.

Example. “Subcontractors will be offered a settlement and a swift transition to new man-

agement is expected to avert an exodus of skilled workers from Waertsilae Marine’s two big

shipyards, government officials said."

Relation type Cause Intend Prevent Enable Not-Cause

Number of relations 283 44 13 18 3

Table 4.2: Total number of relations validated by annotators for each relation type. These
relations are present in the released Event Relation dataset.

Noticing the imbalance in the initial dataset, we decided to conduct additional annotations.

To address this, we utilized a large corpus of English-language newswire texts from the French

news agency AFP 1, comprising over 2 million articles. Our goal was to extract missing sen-

tences for the under-represented event relations using the signals described in the previous

section. This process resulted the following improvement: after manually evaluating X (to

check) sentences, we were able to increase the number of examples for the enable relation

from 18 to 100 and for the prevent relation from 13 to 81. As shown in Table 4.3 After this

improvement, the new stats are the following:

Relation type Cause Intend Prevent Enable Not-Cause

Number of relations 283 44 81 100 3

Table 4.3: Final number of relations validated by annotators for each relation type after
including candidates from the AFP dataset.

1https://www.afp.com/en
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4.2 Data Augmentation with LLMs

The initial dataset described above has two major limitation: its size and the large unbalance

between relation types. In this section, we describe our efforts for overcoming these limitation

using augmentation techniques with LLMs.

Our data augmentation strategy for expanding the dataset is based on the automatic genera-

tion of sentences using a prompt-based model. Using the right prompt as input, the model

would provide new synthetic sentences for enriching the dataset.

We use the GPT-3 language model [15], and more precisely the GPT-3.5 text-davinci-003

variant as described in the OpenAI documentation.2 We are interested in generating sentences

that involve events and relationships between them, particularly those related to prevention,

intention, and enabling.

4.2.1 Prompt-based Sample Generation of Sentences

When designing the prompt utilized to generate synthetic examples for a specific relation type,

we include:

1. the definition that the FARO ontology assigns to that relation type;

2. a subset of relevant examples from the dataset.

We consider a sequence of words Xi = [x1, xt1, . . . , t2, xn], representing an event relationship

occurring between two Relata, of a specific relation type ERx. The words xt1 and xt2 respectively

represents in the text the two Relata which are the subject and the object of the relations. The

definition of the relation type definition(ERx) is taken from the FARO ontology.

The selection of the prompt is done after a series of attempts. For sentences generation,

we started by leveraging only the task description in the prompt. Therefore, the generated

sentences where too short and basic, while we need realistic and longer sentences, similarly to

those in the Original Dataset.

Table 4.4 demonstrates an effort to prompt the model to produce sentences that showcase

connection between events with the desired relation type, but the resulting answer falls short

of meeting our intended expectations.

The prompt text to generate sample sentences including relations of type ERx is written as the

following:

2https://platform.openai.com/docs/guides/completion
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Table 4.4: Example of prompting attempts that fell short of producing the desired results

Prompt Answer Limitation
Give me an event that en-
ables the happening of
other event.

One event that enables
the happening of another
event is a person’s deci-
sion to take an action. For
example, a person’s deci-
sion to get up and walk
across a room enables the
person to arrive at their
destination.

• Prompt had no ex-
amples from the ex-
isting dataset.

• Answer was too
simple.

• Did not describe
a real-world sce-
nario.

• Explanation was
given instead of an
actual expression.

Describe a situation
where an event is an
intention to cause an-
other event, for example:
Companies such as Mi-
crosoft or a combined
worldcom MCI are trying
to monopolize Internet
access.

An example of an event
intended to cause an-
other event is when com-
panies such as Microsoft
or a combined world-
com MCI attempt to mo-
nopolize Internet access.
By controlling the major-
ity of the market, these
companies can dictate
the terms and prices of
access, potentially limit-
ing consumer choice and
driving up costs...

• Explanation was
given instead of an
actual expression.
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Prompt(ERx) = definition(Event) + definition(ERx) + request(ER) + examples(ERx)

This prompt definition concerns prevention and intention relations. In the context of enabling

relation, we include the definition of a condition as follows:

Prompt(ERenable) = definition(Event) + definition(Condition) + definition(ERenable) +

request(ER) + examples(ERx)

where request(ER) refers to the task description that is given to the language model along with

the definitions and examples(ERx) are randomly-selected examples from the existing dataset

which will be used to iteratively expand and reformulate the dataset.

Example: Prompt used to generate sentences with event relation of type Enabling

definition(Event) An event is a possible or actual event, which can possibly
be defined by precise time and space coordinates.

definition(Condition) A condition is the fact of having certain qualities, which
may trigger events.

definition(ERenableA) The enables relationship connects a condition or an
event (trigger1), with an other event (trigger 2) it is con-
tributing to realize as an enabling factor.

request(ER) Give me very long political example sentences following
these examples and give me each sentence in one line.

examples(ERenable) ...

Note that the original dataset was re-annotated based on Timebank [118] and Event Causality

dataset [80], both of which are derived from news articles. This makes the majority of the

sentences falling within the political domain. Therefore, introducing the word political in

the prompt is to ensure that the generated sentences were coherent and consistent with the

original dataset domain.

4.2.2 Prompt-based Event Trigger Annotation

Similarly to sentence generation, we leverage definitions of events to the prompt, adding few

examples illustrating the right position for event triggers for each relation types. The prompts

have been chosen to acquire the most similar sample pattern to facilitate parsing.

For an event relationship ERx including prevention or intention, the prompt for selecting their

event trigger words is designed as follow:

Prompt Event Triggers ERx= definition(Event) + definition(ERx) + requesttrig(ERx, sentence,

xt1, xt2)
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where the last element is the description of the task of retrieving event triggers from the text.

This request takes the following shape:

If in this sentence <TEXT OF THE SENTENCE> is present an expression with a

<RELATION TYPE> relationship between <xt1> (trigger1) and <xt1> (trigger2),

what would be the trigger1 and trigger2 in these sentences? Give me only one

single word for each trigger an only two triggers per sentence. Put each pair

between parentheses in a separate line.

For event relations of type enable, the definition of the condition is modified in the following

way:

Prompt Event Triggers ERenable= definition(Event) + definition(Condition) +

definition(ERenable) + requesttrig(ERenable, sentence, xt1, xt2)

Example: Prompt used to generate event triggers with event relation of type Prevention

definition(Event) An event is a possible or actual event, which can possibly
be defined by precise time and space coordinates.

definition(Condition) A condition is the fact of having certain qualities, which
may trigger events.

definition(ERenable) The prevent relationship connects an event (trigger1)
with the event (trigger 2) for which is the cause of not
happening.

request(ET) If in this sentence “Subcontractors will be offered a set-
tlement and a swift transition to new management is ex-
pected to avert an exodus of skilled workers from Waertsi-
lae Marine’s two big shipyards, government officials said."
is present an expression with a prevention relationship
between settlement (trigger1) and exodus (trigger2), what
would be the trigger1 and trigger2 in these sentences?
Give me only one single word for each trigger and only
two triggers per sentence, put each pair between paren-
theses in a separate line.

4.2.3 Manual Validation

We use these methods and we generate 600 sentences with each of the relations.

To guarantee the accuracy of the generated set of samples and their appropriate event triggers,

we manually validate each synthetic sentence, ensuring its adherence to the given definition.
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Overall, 90.77% of all generated sentences were correctly representing an event relation of the

requested type. After removing the wrong samples from the dataset, we proceed checking the

correctness of their extracted event triggers for the remaining correct sentences.

The generated events triggers were not consistent in term of their patterns from one generation

to another. For this reason, an additional parsing step was needed. For doing that, we identified

the different textual patterns, processed and categorized these patterns by removing irrelevant

words such as ‘(trigger 1)’, and retaining only the precise word or sequence of words that

represent the essential part of the event. We were able to identify roughly 12 different patterns.

Some examples are reported in Table Table 4.5.

Table 4.5: Three of the different textual patterns which GPT-3 was returning in output for the
Event Triggers selection.

Pattern Number Event Triggers
0 Entitles, Buy
1 Approval (trigger1), Acquire (trigger2)
2 “Trigger1 (military): success Trigger2 (diplomatic): risks"

After this processing, we validated the correctness of the two trigger words, measuring an

accuracy of 75.15% for trigger-1 and 66.82% for trigger-2. Sentences with wrong triggers were

not eliminated from the dataset, but instead manually fixed. Table Table 4.6 shows the detailed

accuracy scores for each relation type.

We merged the synthetic data with our original dataset, resulting into a larger and more diverse

dataset. after duplicates cleaning we ended up with 1228 new sentences – with relative event

triggers – making a total 1891 sentences.

Test Set

The test set of the dataset is taken purely from the news dataset. After investigation we have

found it a bit polluted since few sampels from the test set were used as seeds for generation.

In order to address the issue of similarity among certain test samples, we have removed

sentences from the test set based on a similarity assessment conducted using SentenceBERT

Relation types Intention Prevention Enabling Total

Correct Generated Sentences(%) 93.82 97 81.5 90.77
Correct ET1 (%) 75.13 81.83 68.5 75.15
Correct ET2 (%) 73.47 77 50 66.82

Number of Checked Examples 600 600 600 1800

Table 4.6: Percentage of Correct Sentences and Event Trigger Words with GPT-3
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embeddings [94] and cosine similarity (threshold of 90% similarity). We compensated for the

reduction of around 21% by incorporating additional sentences that contained the necessary

relations. To achieve this, we manually examine 4130 sentences of the AVeriTeC dataset [103],

which consists of news data, in order to extract 216 sentences annotated with fine-grained

causal relationships. These sentences are solely used on the test set.

The statistics of this new dataset – latter in the text named the Augmented Dataset – are

reported in Table 4.7.

Relation Type Original Dataset Augmented Dataset

Prevent 81 500
Enable 100 450
Intend 42 459
Cause 268 268

No-Relation 172 172

total 663 1849

Table 4.7: Augmented Dataset Statistics

However, some limitations have also been observed: the enhanced dataset is still largely

imbalanced, with the less represented classes (no relation and direct cause) having around a

third of samples of the most represented ones.

To tackle the imbalance issue of previous dataset regarding the directly cause relation type,

we explored additional pre-existing datasets containing causal relations. Specifically, we

incorporated causal examples from the Causal News Corpus (CNC) [114], a dataset consisting

of 3,417 annotated sentences, from which, 1,811 sentences contain cause-effect annotations,

while the rest are labeled as non-causal. After analyzing several examples from the dataset, we

mapped them to the direct causality relation defined in the FARO ontology.

4.3 Data Augmentation with Common Sense

In addition to re-use existing datasets, we propose to improve event relation coverage by

leveraging existing common sense knowledge bases and generating additional examples using

LLMs. Our strategy involves extracting structured knowledge from sources such as ATOMIC

and augmenting it with LLM-generated data to fill gaps, particularly for under-represented

relations such as enabling and prevention. Additionally, we incorporate negative sampling to

introduce the no-relation type, helping the model to recognize cases where no event relation

exists. Our method consists of the following key steps:

• We extract relevant event relations from ATOMIC, a large-scale common sense knowl-
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Subject Relation Object Mapped relation
PersonX looks before you leap. xIntent to be cautious intends-to-cause
PersonX looks towards PersonY xWant to greet PersonY intends-to-cause
PersonX loses 15 pounds xEffect has more energy causes

Table 4.8: Example Triples from the ATOMIC Dataset with FARO Mappings

edge graph.

• Recognizing that ATOMIC lacks certain key event relations such as enabling and pre-

vention we expand the dataset by generating new examples with LLMs. This process

involves:

– Using an LLM to generate diverse sentences corresponding to the missing relations.

– Iteratively refining the dataset by feeding these examples back into an LLM to

increase variety and ensure broad domain coverage.

The following subsections provide a detailed explanation of each step.

Leveraging Common Sense Data from ATOMIC

ATOMIC is a large-scale knowledge graph designed to enhance deep learning models’ ability

to perform if-then reasoning and reason about familiar events by leveraging crowd-sourced

knowledge extraction. It contains over 877k inferential knowledge tuples that describe com-

monsense situations. Unlike traditional approaches that rely solely on taxonomic information

from corpora, ATOMIC provides examples of everyday situations that are considered common

sense.

Among those, we are interested on types that can be mapped to the FARO relations. We

observe that some relations – (o|x)Want/ xIntent and (o|x) Effect3 – overlap with the definition

of the direct cause and intention relationships (Table 4.8). Consequently, we extract these

examples from ATOMIC and include them in our dataset under the intend and cause relation

types. Furthermore, since ATOMIC lacks event relations such as enabling and prevention, we

expand the dataset by generating new examples, as described in the next section.

3In ATOMIC, the prefix ‘x’ typically represents the person or entity which is the subject of an action. For instance,
‘xIntent’ signifies the intention of person X, the entity initiating the action. On the other hand, the prefix ‘o’ stands
for ‘others,’ indicating the impact or perspective from the viewpoint of those affected by the action. For example,
‘oEffect’ denotes the effect of person X’s actions on others, capturing the consequences or observed outcomes of
their behavior.
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Augmenting Common Sense Knowledge for Event Relation Extraction

We make use of a LLM to generate diverse sentences corresponding to the relations enabling

and prevention. Additionally, we apply an iterative refinement process where the generated

examples are fed back into the LLM for further augmentation, increasing variety and ensuring

broad domain coverage. The prompt that we have used is given in Figure 4.1, noting that for

the first iteration, we omit the examples part only.

To ensure high-quality generated data, we evaluate multiple LLMs. The selection process

is based on a manual review of the initial outputs, assessing their coherence, diversity, and

adherence to expected relation types. The best-performing model is then used for subsequent

data generation and refinement.

Task Description

Objective:
Generate augmented sentences containing two events with a RelationType

relationship.

Definition: Relations and Events

Task Instructions:

• Sentences must depict common-sense scenarios.

• Each sentence should include two events.

• The generated examples should adhere to the provided structure.

• Do not generate more than the requested number of sentences.

Output Format:

Output:
Generate examples with RelationType relations following the specified format.

Figure 4.1: Prompt structure for generating commonsense examples for a given relation type

We evaluated three models known for their state-of-the art performance: Llama2 [115],

Zephyr [117], and Truthful-DPO-TomGrc FusionNet. Truthful-DPO, based on Mixtral, a

sparse mixture of experts model (SMoE) developed by MistralAI, was the top-performing

model on the Hugging Face leaderboard at the time of development4. A manual review of the

first 20 outputs show that Zephyr and Truthful-DPO produced accurate annotations, whereas

Llama2 struggled for correctly identifying spans of text and was therefore excluded from

further experimentation.

4https://huggingface.co/spaces/Mikelue/yunconglong-Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B
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4.4 Combined Dataset

To help the model to identify the cases where no event relation exists, we introduce nega-

tive samples. This is achieved by restructuring the dataset into event triples and randomly

swapping either the subject or the object in a way that invalidates the original relation. This

approach ensures that the model learns to distinguish between valid and spurious event

relations.

Manual Assessment

To assess the quality of the generated data, we have manually reviewed 100 generated exam-

ples for each relation type in order to identify systematic errors. Specifically, we filter out

incorrect annotations by removing patterns that frequently lead to miss-classifications, such

as sentences containing contrastive conjunctions or contradiction-related terms. For example,

while instructing the LLM to generate a sentence for the causal relationship “enable”, we ob-

tained the following generated sentence: <ARG0>Introducing salt</ARG0> into boiling water,

<ARG1>it prevents</ARG1>. which makes use of the term “prevents” yielding a contradiction.

This sentence is filtered out.

4.4 Combined Dataset

We finally constructed a combined dataset that combine sentences from both the news

datasets and the common sense datasets in order to evaluate whether integrating common

sense knowledge enhances fine-grained causality extraction or not. This combination allows

us to assess the impact of augmenting real-world textual data with generalizable causal pat-

terns. To ensure a balanced representation of causal relations, we maintain an equal number

of samples per relation type across both sources (news and commonsense). Specifically, for

each relation present in the news dataset, we include an equivalent number of examples

from the commonsense dataset. This combined dataset allows us to examine whether intro-

ducing structured common sense knowledge improves the model ability to capture causal

dependencies beyond what is observed in news texts alone.

Table 4.9 summarizes the final dataset statistics after augmentation and duplicate cleaning.

4.5 Modeling the Extracted Event Relations in a Knowledge Graph

In order to foster application also in other fields, we shaped our dataset also as the Knowledge

Graph (KG), following common Semantic Web principles.

For the sake of example, let’s consider the following sentence:
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Category Dataset Total Cause Enable Prevent Intend No-rel.

News Data
Original Data 663 268 100 81 42 172
Synthetic Data 1,228 0 350 419 459 0
CausalNews Corpus (CNC) 3,316 1,710 0 0 0 1,606

Common Sense
ATOMIC 315,173 82,242 0 0 146,588 86,943
Synth. Common Sense 205,884 0 65,485 53,456 0 86,943

Total 526,264 84,321 66,025 54,067 147,189 175,664

Combined dataset 6792 3520 814 948 944 566

Test dataset 632 351 89 52 40 100
including AVeriTeC 216 133 46 26 11 0

Table 4.9: Dataset Statistics

The spokesman said that the proposed guidelines caused Crossland to revise its

business objectives

faro:relata faro:relata 

nif:sentence

prov:entity

literal(title) literal(author) literal:year

The spokesman said that the proposed 
guidelines caused Crossland to revise its 
business objectives 

proposed guidelines revise

Automating Temporal 
Annotation with TARSQI Verhagen et al. 2005

Figure 4.2: Knowledge Graph Schema

The schema of the Knowledge Graph is reported in 4.2, in which it is possible to appreciate a

group of entities. The group is composed by the sentences of the news articles, their prove-

nances, and the described event relation. For the former, we employed the NLP Interchange
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Format (NIF)5 [40]. The event relation is instead reported using the previously mentioned

FARO ontology. To ensure traceability of our data, each sentence has an associated provenance.

We achieve this by assigning a provenance node (prov:Activity) to every sentence, which links

the extracted knowledge to its original source.

In this design, sentences (nif:sentence) can reveal in the text (nif:word) events interconnected

by a relation (e.g., faro:causes). To ensure traceability of our data, each sentence is assigned a

provenance, linking extracted information to its original source. This is achieved by associating

each sentence with a provenance node (prov:Activity) that includes metadata such as the title,

authors, and publication year of the source.

The provenance information is assigned based on the source of the data:

• Sentences extracted from news datasets are linked to their original sources, either

TimeBank, EventStoryLine, or AFP , depending on their origin. Those sourced from the

Causal News Corpus (CNC) are specifically referenced from [114] to acknowledge their

original authors.

• Sentences derived from the ATOMIC knowledge graph are distinguished from sentences

generated by language models. While ATOMIC sentences are linked directly to their

original work, those generated by models like Zephyr or GPT-3 are explicitly attributed

to software using the (prov:SoftwareAgent) property.

• Sentences labeled as no-relation are synthetically created by swapping subjects and

objects from existing sentences. Such sentences are also attributed to software as their

provenance.

To ensure consistency and transparency, each provenance node contains additional metadata:

• The dcterms:title property stores the dataset or paper title.

• The dcterms:creator property lists the authors of the dataset or publication.

• The fabio:hasPublicationYear property records the year of publication.

By structuring provenance in this way, we ensure that each extracted relation maintains a clear

lineage, improving transparency, validation, and reproducibility in downstream applications.

We published this KG using FAIR principles, including link disambiguation, in a public SPARQL

endpoint and through dumps in Turtle format available on the open-source repository6.

5https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
6https://github.com/ANR-kFLOW/knowledge-graph/tree/main/dump/KG
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4.6 Conclusion

In this chapter, we have outlined the construction of a novel event relation dataset that focuses

on capturing a range of causal and contingent relations, extending existing datasets such as

TimeBank and EventCausality. Through the introduction of RLINK and the incorporation of

event relations such as Cause, Intend, Prevent, Enable, and Not Cause, we have expanded

the capacity for fine-grained causal reasoning. Our approach combines semi-automatic an-

notation, manual validation, and large language model-based augmentation to overcome

the challenges of dataset imbalance and limited coverage of specific relations. By integrating

commonsense knowledge from ATOMIC and leveraging LLMs for synthetic data generation,

we have created a robust and diverse dataset. This dataset, structured as a knowledge graph,

provides a valuable resource for further research in causal event extraction, narrative genera-

tion, and automated fact-checking systems. We have create a KG out of this dataset having all

the sentences of the news articles and the extracted FARO relations between them together

with the origins of these sentences using the provenance property.

This dataset will serve as the foundation for training an ERE system, which we will be described

in details in the following chapter.
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Chapter 5

Event and Event Relation Extraction

from Text

Event Relation Extraction from text remains a challenging task in the information extraction

community, particularly when dealing with fine-grained causal relationships between events

such as directly cause, enable, prevent, or intend. In this chapter, we introduce a novel model

capable of extracting these refined causal relations from text. We explore and compare various

techniques for relation classification and event extraction, both as independent tasks and

within a multitask learning framework. Additionally, we evaluate the effectiveness of zero-shot

and few-shot prompting for different LLMs in comparison to Pre-trained Language Models

(PLMs). Our experiments demonstrate the added value of commonsense knowledge and show

that PLMs trained on news data enriched with commonsense reasoning outperform LLMs for

this task.

5.1 Causal Event Relation Extraction: Literature Review and Gap

Analysis

Various techniques have been employed to extract event relations from texts, including super-

vised, unsupervised, semi-supervised, and distant supervision methods. These approaches

primarily focus on extracting specific event relations, such as causality, temporality, and coref-

erence [72]. Auto-regressive sequence-to-sequence models, such as REBEL, classify event

relations by extracting triples (subject, relation, object) from text [46]. LLMs have also shown

promise in this domain [45]. For example, the Flan-T5 model combined with chain-of-thought

prompting and few-shot learning using GPT-3.5 outperformed the REBEL baseline for re-

lation extraction on the CoNLL04 dataset [124]. Additionally, LLMs have been applied to

causal relationship extraction from tabular data [71]. Recent advances have used PLMs to

improve event relation extraction. [104] has combined data augmentation using GPT-3.5 with

a RoBERTa-based multi-layer tagging approach to identify multiple causal relations in a single

sentence. This method achieved top performance in the Event Causality Identification Shared
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Task 3 at CASE 2023 [114].

However, existing approaches typically focus on coarse-grained or generic causal links and

have not been applied to the extraction of refined causal relations —such as prevent, enable, or

intend—as formalized in our data model. This gap motivates the need for dedicated models

capable of capturing such nuanced semantic distinctions to be be able to apply them in

downstream application.

5.2 Approach

Event relation extraction can be decomposed into three interconnected subtasks:

(1) Relation Detection (RD) involves identifying whether a causal relation exists or not

between two events. This task can be framed as a binary classification problem;

(2) Relation Classification (RC) involves sequence classification, where sentences are

classified into one of the target relations. The set of relations will be in our case: cause,

enable, prevent, intend, or no-relation;

(3) Event Extraction (EE) is the process of span detection, which precisely identifies the

spans of text that represent the subject and the object of the relation, referred to as

event1 and event2.

We explore three strategies for Event Relation Extraction. (1) The first strategy decomposes

the task into the three subtasks – training and testing each subtask separately – with the aim

of assessing whether this decomposition reduces complexity and enhances performance or

not. (2) The second strategy adopts a multitask learning framework, where a single model

jointly learns all three subtasks in an end-to-end manner, leveraging shared representations.

(3) The third strategy relies on prompting available Large Large Models. This latter strategy

does not require any training nor fine-tuning step, but few-shot prompting needs a handful of

examples.

5.2.1 Fine-Grained Causality Extraction as Three Separate Subtasks

In this strategy, the three subtasks are handled separately.

Relation Detection. This task is modeled as a binary sequence classification problem that

aims to decide whether a particular sentence contains a fine-grained causal event relation or

not. This serves as a preliminary step as subsequent processes will only be executed when a

relation is detected. This approach minimizes unnecessary computational costs and mitigates
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potential sources of confusion. We categorize the sentences in our dataset into positive

examples (class 1) if they contained relations such as cause, enable, prevent, or intend, and

negative examples (class 0) otherwise. For this task, we trained a simple transformer-based

binary classifier.

Relation Classification. This task constitutes a sequence classification problem with five

distinct categories. For the relation classification, we trained a transformer-based model that

receives a sentence as input, trained to classify the sentence into one of five classes: cause,

enable, prevent, intend or no-relation, which are returned in output after a linear activation

module.

Event Extraction. The detection of the events composing the relation is cast as a token

classification problem. The spans are annotated following the BIO1 tagging scheme [91]. We

provide below an example including a causal relations between the subject prolonged drought

and the object severe water shortage:

“The(O) prolonged(B-C) drought(I-C) across(O) the(O) region(O) resulted(O) in(O) severe(B-E)

water(I-E) shortages(I-E) and(O) crop(O) failures(O), leading(O) to(O) economic(O) hardship(O)

for(O) local(O) farmers(O).”

We trained again a transformer-based model to predict the appropriate BIO tag for each token.

For these three subtasks, we experiment with both BERT and RoBERTa [140]. For relation

detection and relation classification, we used the pre-trained version of the two models for

sequence classification.2 For the event extraction sub-task, we leverage a version of the

models specifically pre-trained for the Named Entity Recognition (NER) task.3 These models

are fine-tuned on our dataset for fine-grained causality extraction.

During inference, we first use the relation detection model as a filter to exclude cases where

no causal relation exists. Furthermore, we also train and test our model on detecting these

cases (no relation) for the relation classification and event extraction subtasks. This allows us

to evaluate their effectiveness in handling potential false positive leakage from the initial filter

coming out of the relation detection model.

1BIO = Beginning, Inside, Outside
2https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#transformers.

BertForSequenceClassification, https://huggingface.co/FacebookAI/roberta-large
3https://huggingface.co/dslim/bert-base-NER,https://huggingface.co/51la5/roberta-large-NER
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Require: Input tokens T , batch size B , max seq length L, relation classes R, BIO labels N
1: Initialize: Encoder, classification heads (RD, RC, EE)
2: Initialize: Loss functions LRD , LRC , LEE

3: Encode input: H ← Model(T )
4: Extract pooled output P and sequence output S
5: Relation Detection:
6: RD_l og i t s ← Linear(P,2)
7: Compute loss: L ←LRD (RD_log i t s, l abel sRD )
8: Initialize Logits:
9: RC _log i t s ← 0(B ,R)

10: EE_l og i t s ← 0(B ,L,N )

11: for i ← 1 to B do
12: if argmax(RD_log i t s[i ]) = 1 then
13: RC _log i t s[i ] ← Linear(P [i ],R)
14: EE_log i t s[i ] ← Softmax(Linear(S[i ], N ))
15: else
16: Assign RC _l og i t s[i ,′ no − r el ati on′] ← 1.0
17: Assign EE_log i t s[i , :,0] ← 1.0
18: end if
19: end for
20: Compute additional losses:
21: L ←L +LRC (RC _l og i t s, l abel sRC )+LEE (EE_log i t s, l abel sEE )
22: Return: {L ,r el ati on_log i t s, t y pe_log i t s, span_log i t s}

Figure 5.1: Multi-Head RoBERTa pseudo-code for Causality Extraction

5.2.2 Fine-Grained Causality Extraction as an End-to-End Pipeline

In this strategy, a single model is trained using multi-task learning to predict a complete

triplet as output given an input text. This approach enables the model to handle all three sub-

tasks within a unified architecture. We experiment with two models: sequence-to-sequence

(seq2seq) architectures (encoder-decoder) and classification architectures (encoder only).

seq2seq architectures have demonstrated strong performance in relation extraction tasks by

converting raw text into structured representations [46]. These models typically employ an

encoder-decoder framework, where the input text is processed to generate structured triplets

representing causal relationships.

Example input:

“The government’s swift action to impose a lockdown prevents the rapid spread

of COVID-19 among the population.”

Output:

<triplet> impose a lockdown <subj> spread of COVID-19 <obj> prevent
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REBEL is an auto-regressive seq2seq model based on BART [66], composed of an encoder

and a decoder layer, which has achieved state-of-the-art performance in general relation

extraction. REBEL processes raw text and returns as output a triplet (Subject, Relation, Object).

This approach is similar to a natural language translation, but the translation concerns text to

triplets rather than language to language.

Alternatively, we use a classification-based approach to treat causality extraction as a multi-

task classification problem. We designed a model architecture with three classification heads

to handle the three different subtasks:

1. Relation Detection Head: a binary classifier determines whether a causal relation exists

in the given input text.

2. Relation Classification Head: a multi-class classifier predicts the specific type of causal

relation (out of five possible categories).

3. Event Extraction Head: a token-level classifier applies BIO tagging to identify the spans

of text corresponding to cause and effect within the text.

If the first classifier predicts that no causal relation exists, the model assigns the label no-

relation to the relation classification head and labels all tokens with O in the BIO tagging

scheme. Otherwise, the model proceeds with the other two classification heads to predict

the relation type and extract relevant events. The pseudo-code of this approach is shown in

Figure 5.1.

We use RoBERTa that has shown effectiveness in generic causality extraction and event ex-

traction tasks [64, 104]. Both REBEL and RoBERTa have never – in previous work – been

explicitly trained or evaluated for fine-grained causality extraction, where relations are more

semantically precise and aligned with a specific relational schema.

5.2.3 LLMs as Relation Classifiers and Event Extractors

LLMs have demonstrated strong performance across various NLP tasks, including language

understanding, text classification, and information retrieval [18]. Their effectiveness is driven

by training on massive datasets and the application of advanced learning techniques such

as self-supervised learning, fine-tuning, instruction tuning, reinforcement learning, and in-

context learning, enabling them to generalize across a wide range of tasks [138]. In this work,

we have assessed the performance of some LLMs on fine-grained causality extraction task and

compare their performance with other pre-trained models that are discussed above.

We have considered both zero-shot and few-shots prompting. Given a sentence from our

dataset, along with the definitions of each relation we aim to extract, we prompt the LLMs to
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extract the subject, object, and relation from the text as illustrated in Figure 5.2. The output of

the LLMs is parsed to extract the subject, object, and relation from a given text. This process is

repeated along all the test set. The implementation is represented in Figure 5.3 and makes use

of the LangChain framework4 [19] for easy interaction with different LLMs.

In our experiment, we compare the performances of both a closed model (GPT-4o5) and an

open weights model (Zephyr-7B-beta-AWQ6). The latter is a variant of the Zephyr-7B-beta

model7 quantized with Activation-aware Weight Quantization (AWQ) . This lighter version of

the model allows for faster inference and requires less memory.

Prompt: You are an expert in fine-grained causality extraction. Your task is to extract the subject,
object, and relation from the given sentence. The relation must be one of the following: cause,
enable, prevent, intend, or no_relation (if none of the refined causal relations apply).

Relation Definitions: The definitions of cause, intend, enable, and prevent are based on the
FARO ontology.

Task Instructions: Extract the subject, object, and relation for the following sentence.
Sentence: "input_sentence"

Output Format: Subject: <extracted_subject>, Object: <extracted_object>,
Relation: <extracted_relation>

Important Guidelines:

• The relation must be one of: cause, enable, prevent, intend, or no_relation.

• Extract the actual words from the sentence for both subject and object.

• DO NOT use placeholders like ‘<subject>‘, ‘<object>‘, or ‘<relation>‘ in the output. Always
provide extracted values from the input sentence.

• If the sentence does not contain any of the four refined causal relations, output:
Relation: no_relation.

Examples: examples

Figure 5.2: Fine-grained causality extraction prompt

5.3 Experiments

This section presents an analysis of the model performance across different datasets and strate-

gies, focusing on relation detection, relation classification, and event extraction. Table 5.1

presents the experiment results.

4https://python.langchain.com/
5https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/
6https://huggingface.co/TheBloke/Zephyr-7B-beta-AWQ
7https://huggingface.co/HuggingFaceH4/Zephyr-7b-beta
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5.3 Experiments

Examples
News Data /

Combined Data

Yaml Prompt 
Template

Prompt 
Generation                    LLMs Output

Figure 5.3: Workflow of Event Relation Extraction with LLMs

Dataset Strategy Model Relation Detection Relation Classification Event Extraction Average F1
P R F1 P R F1 P R F1

News
End-to-End

REBEL 0.86 0.42 0.56 0.75 0.60 0.65 0.58 0.65 0.59 0.60
RoBERTa 0.98 0.98 0.98 0.79 0.71 0.74 0.19 0.20 0.20 0.64

Separate
BERT 0.94 0.85 0.89 0.8 0.76 0.77 0.58 0.64 0.61 0.76

RoBERTa 0.86 0.94 0.89 0.71 0.77 0.73 0.66 0.67 0.66 0.76

Combined
End-to-End

REBEL 0.72 0.51 0.60 0.77 0.74 0.75 0.74 0.68 0.70 0.68
RoBERTa 0.99 0.96 0.98 0.75 0.80 0.77 0.19 0.20 0.20 0.65

Separate
BERT 0.93 0.91 0.92 0.68 0.74 0.7 0.56 0.64 0.60 0.74

RoBERTa 0.93 0.92 0.92 0.71 0.76 0.73 0.67 0.61 0.64 0.763

LLM
GPT4 (0-shot) 0.18 0.85 0.29 0.54 0.37 0.33 0.37 0.23 0.23 0.29

Zephyr (0-shot) 0.19 0.79 0.31 0.31 0.32 0.23 0.25 0.25 0.24 0.26

News LLM

GPT4 (2-shot) 0.45 0.83 0.59 0.52 0.62 0.53 0.41 0.43 0.42 0.51
GPT4 (4-shot) 0.40 0.97 0.57 0.55 0.64 0.54 0.46 0.44 0.45 0.52

Zephyr (2-shot) 0.38 0.66 0.48 0.42 0.51 0.44 0.29 0.28 0.27 0.39
Zephyr (4-shot) 0.17 0.98 0.29 0.28 0.22 0.10 0.23 0.21 0.20 0.19

Combined LLM

GPT4 (2-shot) 0.34 0.88 0.49 0.49 0.58 0.46 0.36 0.35 0.35 0.43
GPT4 (4-shot) 0.28 0.92 0.43 0.50 0.55 0.44 0.34 0.33 0.32 0.39

Zephyr (2-shot) 0.22 0.94 0.36 0.41 0.38 0.30 0.29 0.29 0.29 0.31
Zephyr (4-shot) 0.16 0.95 0.27 0.46 0.22 0.11 0.30 0.30 0.30 0.23

Table 5.1: Combined performance across subtasks with Precision (P), Recall (R) and F1-score
(F1) and an average F1-score on the cleaned test set derived from [92]

5.3.1 Comparison of End-to-End vs. Separate Strategies

For both the news and combined datasets, in 66.66% of the cases, the models trained using

the end-to-end strategy outperform those trained on separate tasks. This confirms the benefit

of shared parameter learning. For relation classification on news data alone, the performance

of both approaches remains comparable. Conversely, for EE, the separately trained RoBERTa

model outperforms its end-to-end counterpart, indicating that the shared parameter approach

was less effective for this task.

5.3.2 Impact of Common Sense Knowledge Integration

Integrating commonsense knowledge into the dataset (i.e. using the combined dataset) leads

to notable improvements, particularly for end-to-end models. In 70% of cases, models trained

on the combined dataset performed either better or in par with their counterparts, with 67% of

these cases showing improved performance. Notably, in the remaining cases, the performance
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drop was minimal, with a maximum decline of only 0.07%.

For instance, training REBEL on the combined dataset enhances its RD F1-score by 4%, RC by

10%, and EE by 11%. Similarly, RoBERTa, in an end-to-end setting, shows a slight improvement

in RC while maintaining stable performance across other tasks.

In contrast, models trained separately benefit primarily in RD, while their performance in other

subtasks remains unchanged or only marginally improves when trained on news data alone.

This suggests that commonsense knowledge enhances the understanding of event relations,

but its impact varies based on the learning strategy. It also implies that models explicitly

trained on individual subtasks may already capture implicit commonsense knowledge, limiting

the benefits of additional augmentation.

5.3.3 LLMs for Fine-Grained Causality Extraction

The performance of GPT-4 and Zephyr varies significantly across different tasks and settings.

In general, GPT-4 consistently outperforms Zephyr in all settings, achieving higher F1-scores

in RD, RD, and EE. Adding a few-shot context improves performance across most subtasks.

The 4-shot setting provides a notable boost, with GPT-4 reaching an F1-score of 0.52 on the

News dataset and 0.43 with 2-shot on the Combined dataset. Zephyr also shows improvements

but still lags behind GPT-4.

We observe that LLMs do not benefit from the commonsense data. This may be due to the

fact that these models are trained on vast amounts of data and already capture essential

commonsense knowledge. Consequently, incorporating additional commonsense examples

reduces the proportion of news data examples, potentially leading to a decline in perfor-

mance. Notably, for both 2-shot and 4-shot settings, we randomly select examples from both

commonsense and news datasets.

Compared to PLMs, RDs under-perform significantly in structured extraction tasks. The

highest-performing fine-tuned models reach an average F1-score of 0.76 (News) and 0.763

(Combined), while GPT-4, even with 4-shot prompting, only attains 0.48 (News) and 0.38

(Combined).

Breaking down performance by subtask, we observe distinct trends across models:

• Relation Detection: RoBERTa achieves the highest F1-score of 0.98 in both datasets

using the end-to-end approach, but BERT and RoBERTa in the separate strategy remain

competitive with scores around 0.89–0.92.

• Relation Classification: The best performance is observed with the combined dataset

using RoBERTa in an end-to-end manner reaching 0.77 and also with BERT on the news
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Dataset with the same performance. In this subtask, most of the models benefit from

the inclusion of common sense knowledge.

• Event Extraction: The best-performing model (REBEL, end-to-end) improves by 11%

when using the combined dataset, suggesting that common sense augmentation is

beneficial for event extraction.

5.4 Platform and API for Event Relation Extraction

Our goal is to perform event relation extraction from textual data, focusing on four semantically

precise event relations: Direct-Cause, Enable, Intend, and Prevent. We converted this pipeline

into a Web API and we developed a front-end user interface to make our system accessible to

a broader audience, to demonstrate the capabilities of our model in action, and to facilitate

hands-on interaction with fine-grained event relation extraction. This also enables researchers

and practitioners to test custom examples, explore model outputs, and better understand how

causal reasoning is handled in context.

First, the model filters out sentences that do not have a causal event relation. The sentences

containing a causal relation are further processed by the RC module to determine which type

of event relation is in the sentence from the four relations. Finally, the EE module extracts the

subject and the object of the event relation in a given sentence. Figure 5.4 illustrates these

modules.

RD

Output: 0/1
Models: RoBERTa

Output: Relation Type
Models: Roberta/ 
Langchain LLMs/ 

REBEL

RC

Output: (Subject, 
Object)

Models: RoBERTa/ 
Langchain LLMs/REBEL

EE

Filtered 
Sentences

Input
       Input Text 

Figure 5.4: The ERE pipeline workflow

ERE Pipeline

REBEL

Langchain

Hugging Face
(Roberta)

Streamlit

Application 
Framework

UI

Figure 5.5: Streamlit UI and Application
Framework

The front-end application enables users to experiment with the capabilities of the models.

This application is developed using Streamlit8, which acts as both the web application and

the web API as shown in Figure 5.5. The Streamlit application receives input from the user

and passes it along to the Python pipeline via a configuration file. The user can write his own

8https://streamlit.io/
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Figure 5.6: Users can configure each step of the event relation extraction pipeline by selecting
models for sentence filtering, relation classification, and span extraction. They can choose
between preset or custom inputs, and provide an OpenAI API key if using GPT-4. The pipeline
runs upon submission.
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text or use a preset input. After the user makes his choice of the model used for each task, the

inference running in the back-end will be produced.

The output returned to the user will include his original text used to produce the inference

with highlights of subject and object of the extracted event relation. Next to the highlights are

labels indicating what part of the span it is (subject or object) together with the event relation

type.

The classification for the relation can either be: cause, intend, prevent, enable, or other. Other

refers to when the model producing the classifications gives a non-standard response. Figure

5.6 shows a screenshot of the demo.

5.5 Conclusion

We thoroughly study the event relation extraction task with a focus on fine-grained causal

relations that extend beyond traditional categories. We introduce the first model capable of

accurately extracting these refined causalities from text. key take-away:

• The end-to-end approach is generally more effective than the separate approach, par-

ticularly for relation detection and classification;

• Common sense knowledge improves performance, especially for end-to-end models

and event extraction;

• RoBERTa performs best overall, achieving the highest average F1-score (0.763) when

trained separately on the combined dataset;

• Event extraction remains challenging, but augmentation with common sense knowl-

edge provides a noticeable improvement;

• LLMs lag behind fine-tuned PLMs, with GPT-4 and Zephyr showing potential in few-

shot settings but still under-performing compared to models like RoBERTa and BERT in

structured information extraction tasks.

To support experimentation and foster accessibility, we developed an interactive pipeline,

made publicly available through a Streamlit-based interface. This demo allows users to

visualize the event relation extraction process in an intuitive and accessible format. Basically,

users can input custom sentences and receive automatically generated causal inferences,

enabling hands-on exploration of our system’s capabilities.

We believe that the described method can be highly beneficial for a series of downstream tasks

and applications. This will be the focus of next part of this thesis.
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Chapter 6

A Knowledge Graph-Based

Storytelling Approach

Narratives play a crucial role in shaping perceptions, beliefs, and decision-making processes.

While contemporary pre-trained language models have demonstrated remarkable capabilities

in text generation and question-answering, they remain limited in knowledge coverage and are

susceptible to societal biases. This work aims to bridge these gaps by integrating knowledge

graphs into narrative construction. Rather than solely relying on fundamental aspects such as

the 4W (who, what, when, where) and general relationships, our approach incorporates fine-

grained semantic relations, capturing nuanced causal dynamics—such as an event preventing,

intending to cause, causing, or enabling another event. By leveraging state-of-the-art methods

to predict these relations, we show that automatically generated narratives can achieve greater

grammatical coherence and semantic accuracy.

To further enhance the depth and richness of generated narratives, we propose expanding

the WebNLG dataset [32], originally limited to 4W relations, by incorporating refinecd causal

relations form our dataset. This integration enables the generation of more linguistically

sophisticated text, embedding richer causal and semantic structures to improve narrative

coherence and informativeness.

6.1 Related Work: Storytelling and Narratives

Narratives stand at the heart of our societal fabric, serving our understanding and facilitating

the exchange and preservation of knowledge, and cultural heritage. These narratives filter

through our everyday lives, appearing in diverse forms such as commercials, political cam-

paigns, news broadcasts, literary works, television shows, and more, each with its unique

purpose and significance. What makes narratives truly captivating is their transformative

power: they possess the ability to shape our perceptions, instill beliefs, and steer our choices

and actions [35]. Consequently, the quest to innovate in the realm of complex narrative gen-

eration holds the potential to usher in a new era of AI systems that are intricately attuned to
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human sensibilities. Building upon the profound role of narratives in our society, it becomes

evident that our means of narrative generation and comprehension are intertwined with the

capabilities of modern AI. Pre-trained large language models, exemplified by models such as

BERT , and GPT-3, have showcased remarkable progress in text generation, and conversational

tasks. Yet, these models, shaped by training on extensive datasets drawn from undisclosed and

diverse sources, bear intrinsic limitations, including knowledge gaps, inaccuracies, and soci-

etal biases [27]. Their challenges in maintaining semantic coherence and capturing long-term

dependencies within text generation further underscore the need for innovation in narrative

crafting [67, 75].

A narrative graph [13] incorporates two main components: the individual representation of

events, including the “four W" aspects (who, what, when, where) and the interconnection of

these events through temporal and causal relationships. Since no KG existed with the refined

causal relations, none was used for narratives generation.

KG summarization entails an initial step of information retrieval and selection. To acquire the

essential nodes for event description, an effective approach involves ranking techniques that

assign significance to nodes based on the relationships they possess. Various methods can be

used such as entity ranking, relationship ranking, and semantic document ranking [51]. [14]

proposes a system that can identify relevant information needed to build a narrative graph,

by using an informed graph search traversal strategy. To determine which information is

considered ’relevant’ the method uses filters to prune the search space with respect to the

Simple Event Model (What, Who, Where, When).

On the other hand, different methods for generating texts from knowledge graphs have been

proposed. In [132], triples are extracted to fine-tune a GPT-2 model [89], making the model

dependent on the input triples. A similar approach is introduced in [96], involving BART and

T5 [90]. This approach obtained state-of-the-art performances on the AGENDA dataset [60] but

not on the WebNLG dataset. Both found that PLMs work well on unordered representations of

the graph. JointGT [54] uses BART and T5, and exploits new pre-training methods to explicitly

preserve the input graph’s structural information. JointGT outperforms the other mentioned

technique on WebNLG, which might indicate that including the topology of the graph lead

to better results. A different approach [73] uses a transformer encoding structure to encode

both the global information and the local topology information, and feeds a transformer to

decode and generate text. However, this did not work as well as the previously mentioned

technique [96], which used a PLM without encoding. This might indicate that PLMs obtain

better results than self trained transformer models.
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6.2 Dataset

In this section, we present the datasets that we used to train our method:WebNLG and the

portion of our dataset referred to as the FARO dataset in the remainder of this paper, for ease

of reference. At the time of writing this section, only a small portion of the FARO dataset was

available, making it comparatively smaller than the larger dataset used.

For evaluation, we use two evaluation datasets: the FARO test set and the ASRAEL KG [97].

ASRAEL is a knowledge graph that includes various event-related articles and their intercon-

nections, including the 4W relations.

Before our evaluation, ASRAEL lacked precise semantic relations. Therefore, we had to extract

these relations from the event articles (linked to the KG) to conduct the assessment. We

enhanced the ASRAEL KG with these extracted additional relations (similarly to the ones

in FARO), resulting in a more dense and comprehensive knowledge graph. To achieve this

objective, we used REBEL to extract events and relations (cause, enable, prevent, and enable).

Furthermore, we leverage an existing event co-reference resolution model [11] to perform the

task within the KG. This model creates clusters of mentions, computes similarity scores for

each cluster, merges those with the highest score, and repeats this process until the score fell

below a defined threshold, which we empirically set to 0.95. This clustering process resulted in

a graph primarily composed of clusters with a single mention, which are due to not finding a

similar match. According to our manual assessment, the algorithm matched correctly a large

number of syntactic matches, which makes it trustworthy. In total, we successfully clustered

45,031 mentions, with 36,057 being unique. The resulting narrative graph1 provides a RDF

representation of event co-references and relationships, enriched with ontologies such as NLP

Interchange Format (NIF) 2, SEM and FARO to describe the relations between triples, further

enhancing the context and meaning of our KG.

6.3 Knowledge graph summarization

Knowledge Graph summarization comprises two tasks: the selection of pertinent information

from the KG, and the text generation based on the extracted data.

6.3.1 Relevant Information Selection

A SPARQL query has been written to extract the essential nodes, such as persons, places, and

times, crucial for narrative construction from a main event within the ASRAEL KG. This query

1https://github.com/ANR-kFLOW/KG2Narrative/blob/main/Data/graphs/final_generated/eag_complete_
merged.ttl

2https://persistence.uni-leipzig.org/nlp2rdf/
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prioritizes the selection of events involving the 4W nodes with higher frequencies of incoming

edges. Mentions are selected similarly; the larger the cluster of co-referent mentions (formed

by the event co-reference model) is, the higher the priority of said cluster. Since we face a

limitation on the number of input tokens of the text generation model, up to three mentions

are selected from the same cluster.

The quality of the output depends largely on the quality the output of previous steps (relation

extraction and co-reference resolution). Future work aims to enhance the accuracy of both

these tasks and explore methods for identifying indirectly linked relevant nodes to selected

events.

6.3.2 Text Generation from Knowledge Graphs

As anticipated in Section 6.1, using a PLM instead of training a language model from scratch

can lead to better results. Furthermore, incorporating the graph’s topology into the model

has been shown to generate better natural text. JointGT [54] incorporates both of these

characteristics, hence, we adopted this method. The authors pre-trained this model on the

KGText dataset [20], consisting of 7 million graph-text pairs extracted from English Wikipedia

dump.3 It includes around 1.8 million entities and 1,210 relations.

The WebNLG dataset does not contain any of the FARO relations. Therefore, we fine-tuned

the model on a merged dataset, combining the WebNLG and FARO dataset, as in Table 6.1

without making changes to the model itself. The creation of this combined dataset involves

the following multi-step process. Initially, entities and their respective encodings are extracted

from the WebNLG dataset. Subsequently, entities from the FARO dataset are encoded utilizing

the extracted encodings from WebNLG. Finally, the resulting encodings and their relations are

integrated into the original WebNLG dataset, thereby producing the combined dataset.

Table 6.1: Sizes of the datasets used for training and evaluating the JointGT model.

Dataset Train Val Test
WebNLG 12,876 1,619 1,600
FARO 1,800 201 108
Combined 14,676 1,820 1,708

The model undergoes fine-tuning on the WebNLG dataset. We refer to the original model as

base model, and the model fine-tuned on the combined dataset as combined model.4

3https://dumps.wikimedia.org/
4The model was replicated using the same parameters from the original paper, except for the batch size lowered

due to memory constraints. The parameters are Learning rate: 0.000025, Batch size: 4, Epochs: 10, Optimizer:
Adam. Early stopping: 10 epochs
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6.4.1 Quantitative analysis

Table 6.2: The performance metrics of the best performing model on their corresponding
validation and test set – either WebNLG or the combined set. Both models are evaluated also
on the FARO test set.

Model Dataset BLEU METEOR ROUGE Step Epoch

Base (WebNLG)
Val 0.6642 0.4727 0.7558 22400 6
Test 0.6529 0.4681 0.7535 - -
FARO test 0.0 0.0565 0.1299 - -

Combined
Val 0.6368 0.4543 0.7468 36000 9
Test 0.6101 0.4409 0.7260 - -
FARO test 0.0477 0.0877 0.1949 - -

Table 6.2 provides crucial insights into the model’s performance, measured by the BLEU,

METEOR, and ROUGE metrics. BLEU emphasizes precision, indicating how accurately the

generated text aligns with the reference text. On the other hand, ROUGE focuses on recall,

gauging the extent to which the reference text is captured in the generated output. METEOR

combines elements of both precision and recall, and its effectiveness can be further enhanced

by incorporating improved word matching strategies. ROUGE suggests a high level of align-

ment with reference texts in conveying information, while BLEU shows minor word deviations

from references. The lower METEOR score might stem from alignment nuances in score

calculation. Notably, the base model’s test performance closely mirrors the results outlined in

the original JointGT paper. The model that was trained on the combined dataset performed

slightly worse for all three metrics than the model that was trained on the base WebNLG data.

This can be explained by two considerations. First, it is evident in Table 6.2 that tests on FARO

have very low performances. Secondly, the FARO dataset only accounts for a relatively small

proportion in the combined dataset (Table 6.1). To better understand the reasons, a qualitative

analysis is proposed in the next section.

6.4.2 Qualitative analysis

We examine instances from WebNLG and FARO datasets to analyze the base and combined

model’s performance. Observing Tables 6.3 and 6.4, the text generated by the combined

dataset-trained model appears more semantically robust. The base model’s generated text for

FARO triples (Table 6.3, column Base generated) is notably brief, often mirroring the triples

with semantic inaccuracies. Conversely, the combined model produces more coherent and

accurate sentences in the same dataset (column Combined generated), maintaining triple

direction. However, it’s important to note that while the generated content respects triple order

and semantic accuracy, it may still have limitations in altering the original label’s content.
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We also get a sight why the quantitative results are slightly worst for the combined model.

The WebNLG data (Table 6.4) contains multiple triples per instance, giving more information

about the text, and contains multiple labels. The FARO data (Table 6.3) contains only one

triple per instance, together with one target sentence (label). Therefore, the model has less

information about what to generate, and less chances to match the target label. Looking at

the FARO input triples and the target label, it can be seen that the relationship (predicate) is

often not explicitly represented by a particular word in the target sentence (implicit relation),

making the evaluation with matching words harder. We provide additional insights in the

appendix.

User Evaluation on ASRAEL To evaluate the system’s performance, seven events from the

ASRAEL dataset have been selected based on several criteria: values for the 4W properties,

linking to a minimal number of articles, etc. The two largest (in terms of having the most arti-

cles) events in ASRAEL having all of the 4W properties are selected for evaluation: “Operation

Breaking Dawn", and “2021 storming of the United States Capitol". The rationality behind

this is to ensure that the information selection method is challenged by having an extensive

amount of information to choose from. Among the remaining events in ASRAEL that include

information about the place and time, five additional events are selected, bringing the total to

seven.

The information selection method is used to select time, place, actor, and up to three mentions

from the seven selected events. The base and combined models are used to generate text from

the selected information. This information per event can be found in the appendix, together

with the generated text. A manual evaluation was needed due to the absence reference text for

automated metrics. Three annotators with a proficient level of English fluency determined

which text was better for each event, by using either “win", “lose", or “tie", assessing fluency

(grammatical correctness) and adequacy (correct integration of triples). This method aligns

with the approach in [54]. Majority voting determined the winner or equality between models,

followed by a non-parametric sign test at a significance level of α = 0.05 to establish superiority.

The non-parametric statistical sign-test is used to compare data. It assesses whether the

median difference between observations differs significantly from zero, providing a p-value

that indicates the probability of observing the given difference or a more extreme difference if

the null hypothesis (no difference) were true. The significance level, denoted by alpha α, is

a predetermined threshold set at 0.05, against which the p-value is compared to determine

statistical significance. Results of this annotation are accessible in Table 6.5.

The combined model produces better fluent text than the base model in 71.4% of the cases.

The non-parametric “sign test" was performed to measure a significant difference in the

fluency of the text. With a p-value of 0.11, no significant difference was found. The same was
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done to gauge the text’s adequacy. With a p-value of 0.25, no significant difference was found.

Table 6.5: Fleiss’ Kappa (κ) indicates perfect, and moderate agreement between annotators.
The wins, losses, and ties when comparing the combined model against the base model are
indicated in percentages. No model was significantly better than another with a significance
level of 0.05.

Model
Fluency

κ
Adequacy

κ
Win % Lose % Tie % Win % Lose % Tie %

Combined vs Base 71.4 14.3 14.3 1.0 28.6 0.0 71.4 0.6

Table 6.6: BLEU, METEOR, and ROUGE scores per model on the generated text from the
article.

Model BLEU METEOR ROUGE
Combined 0.1681 0.2081 0.3622
Base 0.1874 0.2273 0.3738

Table 6.7: Fleiss’ Kappa (κ) indicates substantial agreement between annotators. The wins,
losses, and ties when comparing the combined model against the base model are indicated in
percentages. The combined model was significantly better than the base model in generating
adequate sentences.

Model
Fluency

κ
Adequacy

κ
Win % Lose % Tie % Win % Lose % Tie %

Combined vs Base 33.3 16.7 50.0 0.73 58.3 8.3 33.3 0.61

User Evaluation on an Manually Annotated Event To demonstrate whether the obtained

results are consistent independently from the quality of the information extraction output, we

decided to perform a user evaluation on a single article (sample), which has been manually

annotated by handcrafting the resulting subgraph. This subgraph has been processed with

both the combined and base model, and then evaluated using either “win", “lose", or “tie",

in the same way as described in the previous section. The percentage of wins, losses and

ties for the combined model, together with the Fleiss’ kappa are reported in Table 6.7. The

combined model has been assigned more wins for producing fluent and adequate text. The

non-parametric “signed test" is applied to test if this is significant, again, with a significance

level of 0.05. With a p-value of 0.34, no significant difference is found in generating more fluent

texts between models. With a p-value of 0.04, a significant difference is found in generating

more adequate sentences by the combined model, compared to the base model.

BLEU, METEOR, and ROUGE metrics have been computed using the sentences from the

article as “reference label". These scores are detailed in Table 6.6. This illustrates that the

base model performs slightly better than the model that was trained on the combined data. A

reason for this could be formulated by looking at the generated texts, which can be found in
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the appendix. More often than the combined model, the base model will output parts of the

triple without taking the relationship between them into account. This will result in a badly

formed sentence, but higher metrics, since more triples are incorporated. This is also reflected

in the scores in Table 6.7, where the combined model is commonly noted for producing more

fluent texts. Furthermore, the scores in Table 6.6 (computed on a single annotated article) are

much lower then those computed on the whole WebNLG test set (Table 6.2). This outcome

could be expected, considering that some of the triples extracted from the article are not, or to

a limited extend, present in the original WebNLG data used to pre-train the JointGT model.

6.4.3 Conclusion

We studied in this chapter how to build complex narratives in the form of graphs of events,

generating text with good level of complexity and semantic richness, expecting the system to

generate answers beyond only What (the event), Who (the actor), Where (the location), and

When (the time).

We enhanced the WebNLG dataset through the incorporation of the FARO dataset, aimed

at refining the semantic depth of event relations. The expanded dataset now encompasses

intricate relations including causality, prevention, intention, and enabling. From qualitative

analysis, we can state that training on precise event relations produces more complete gener-

ated sentences, while no statistically significant difference was observed on fluency. Future

work will experiment on more data to draw final conclusions. Our information selection from

the graph focuses solely on the main event, disregarding pertinent details from interconnected

events. Additionally, the data used for fine-tuning differs from the original dataset in terms of

triple counts and instances, potentially impacting model evaluation.

73





Chapter 7

Fact Checking with Knowledge

Graphs

In fact-checking, a common reason to reject a claim is the presence of erroneous cause-effect

relationships between described events. Current automated fact-checking methods lack

dedicated refined causal-based reasoning, potentially missing a valuable opportunity. In this

section, we proposed a first approach to involve event relationships in a verdict predictor for

fact checking. Our methodology combines an event relation extractor, semantic similarity

computation and a set of if-then logical rules to detect contradictions or equivalences between

the events in a claim and those in the evidence tested on two fact-checking datasets.

7.1 Related Work: Explainable Fact-Checking

Various end-to-end fact-checking systems have been developed. Hassan et al. [39] created a

system that assesses claim veracity using keyword searches for evidence and knowledge bases,

relying on traditional features like part-of-speech tags and sentiment for a 3-way classification

experimenting with classifiers such as random forests and SVMs. In contrast, others employ

deep neural networks (DNNs) for evidence selection and natural language inference, marking

early examples of explainable fact-checking [108]. Popat et al. [84] use attention mechanism as

a way to extract the most important words in an evidence as an explanation. The explanation

gathered from the aforementioned ways is often not comprehensive [61]. Other methods use

mining rules and knowledge graphs, which provide more comprehensive explanations, but

that face coverage and scalability issues. Finally, other methods rely on summarization [10].

Models for textual entailment are widely used in verdict prediction [37]. These models are

primarily deep learning black-box models, whose strong performance is counterbalanced by

the lack of any explainability, making it difficult for humans to understand the logic behind

the predictions. To address this problem, several works have been conducted in this area,

focusing on attention mechanisms, summarization, or rule mining [61]. However, all of these

lack precise causal explanations.
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Recently, the CheckWhy dataset for fact-checking has been released [109]. This dataset in-

cludes 19,596 samples, mostly generated using generative models with some manual valida-

tion, from which 36% involve event causality. The dataset has been tested with LLMs, and its

effectiveness in combination with any rule-based approach is yet to be proven. Causality in

fact-checking has been also studied in [112], demonstrating the causal deductive reasoning

capabilities of LLMs, while in [21], causal graphs and counterfactual reasoning is applied to

the task. All these approaches are restricted to what we refer to as direct causality, or rely on

loosely defined causal links, which often results in vague explanations.

7.2 Reasoning Rules

In this section, we introduce relation-based reasoning rules to deduce the most probable ver-

dict for a given claim, knowing the evidence. These rules are intended to be found: 1. between

events in the claim; 2. between events in each evidence; 3. between one event in the claim and

one event in the evidence (or vice-versa).

Throughout this section, we use four placeholders – A, B , C , and D – to represent events

or entities that can be related by “cause,” “enable,” “intend,” , “prevent”, or “no-relation”

eventually. We will consider in the claim the events A and B and their relationship “A → B”.

Similarly, we will consider in the evidence the events C and D and their relationship “C → D”.

We also consider the degree of similarity between events and how that affects overall alignment

or misalignment between a claim and its evidence. Below, we outline four key scenarios:

Logical Alignment, Logical Misalignment, Causal Loops, and Cherry-picking Scenarios.

Logical alignment

This scenario is verified if the claim and the evidence include the same (or similar, or transitively-

linked) events, which are also connected by the same relation. In the claim A → B , and in the

evidence C → D . There is logical alignment if the relation is the same and:

• C is similar to A and D is similar to B ;

• in absence of such similarities, we find a possible relation between A and C and/or

between B and D which offer partial support by transitivity. In other words, while simi-

larity between events provides a clear pathway to alignment, a direct causal connection

can also strengthen the claim in cases where event similarity is not established.

If at least one of the previous cases is verified, we can conclude that the evidence supports the

claim.
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Example. In the following claim-evidence pair:

Claim: Sumo wrestler Toyozakura Toshiaki committed match-fixing, ending his career in 2011

that started in 1989.

Evidence: He was forced to retire in April 2011 after an investigation by the Japan Sumo

Association found him guilty of match-fixing.

Let the events be denoted as follows: Notation:

A : Committed match fixing

B : Ending

C : Investigation

D : Retire

Relationships: From the claim and evidence, we have the following relationships:

1. A
causes−−−−→ B (Direct cause from the claim)

2. C
causes−−−−→ D (Direct cause from the evidence)

3. A
causes−−−−→C (Direct cause linking claim and evidence)

4. B = D (Equivalence between Retire and Ending from the evidence)

Deduction: Using the relationships above, we deduce:

1. A
causes−−−−→C and C

causes−−−−→ D =⇒ A
causes−−−−→ D (by transitivity)

2. B = D =⇒ A
causes−−−−→ B

Thus, A
causes−−−−→ B is confirmed through transitivity (via evidence).

Conclusion: The evidence and the claim are logically consistent, demonstrating proper

alignment. Figure 7.1 illustrates the above detailed scenario.

Logical Misalignment

In the claim A → B , and in the evidence C → D . The relation in the evidence (e.g. prevent) and

the one in the claim (e.g. cause) are opposite. If we find a similarity matching (C is similar to

A and D is similar to B), we can conclude a direct contradiction to the claim: the same event

cannot both cause (or enable/intend) and prevent the same outcome, making the evidence

more likely to refute the claim.
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committed 
match-fixing ending

Cause

investigation retireCause

Cause

Support 

Figure 7.1: An example of a Logical Alignment.

Example. In the following claim-evidence pair:

Claim: Exercising daily causes significant muscle fatigue over time.

Evidence: Research shows that daily low-intensity exercise activates recovery mechanisms

in the body, preventing the onset of chronic muscle fatigue and improving overall stamina

instead. Notation: Let the events from the claim and evidence be represented as follows:

Notation:

A : Exercising daily

B : Muscle fatigue

C : Activates recovery mechanisms

D : Prevents muscle fatigue

Relationships: From the claim and evidence, we have the following:

1. A
causes−−−−→ B (Exercising causes muscle fatigue, from the claim)

2. A
causes−−−−→ C (direct-cause between Exercising form the claim and activates recovery

mechanisms, from the evidence)

3. C
prevents−−−−−−→ D (prevention from the evidence)

4. B = D
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Deduction: Using the above relationships:

1. A
causes−−−−→C

2. C
prevents−−−−−−→ D =⇒ C

causes−−−−→¬D

=⇒ A
causes−−−−→¬D =⇒ A

prevents−−−−−−→ D

3. A
causes−−−−→ B and simultaneously A

prevents−−−−−−→ B (Contradiction).

Contradiction: A single event (A: Exercising daily) cannot simultaneously cause and prevent

the same outcome (B : Muscle fatigue), leading to a logical inconsistency.

Conclusion: The claim and evidence are logically inconsistent, as the evidence contradicts

the claim’s assertion. This inconsistency is due to the conflicting causal and prevention

relationships. Figure 7.2 illustrates the case.

Exercising Fatiguecause

Activates Fatigue
prevents

cause

Refute 

Figure 7.2: An example of a Logical Misalignment.

Causal loops

In this case, we check for a “closed causal loop” among four events A, B , C , and D by looking

at the relationships (cause, enable, intend, or prevent) between each pair. We first take a claim

(A → B) and an evidence (C → D) and infers how A might relate to C and how D might relate

to B . If all four relationships form a consistent cycle (such as a chain of causes, enables, or

intends), we have a closed causal loop, which implies an high probability that the evidence is

supporting the claim. Since “prevent” is by definition considered the cause of not happening

of another event, two consecutive “prevent” relations effectively become a “cause” because of

the effect of a double negation. For example, if A prevents B and B prevents C , it is as though

A causes C .
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Example. In the following claim-evidence pair:

Claim: Poor infrastructure causes economic decline.

Evidence: transportation inefficiencies leads to supply chain disruptions and reduced eco-

nomic activity

Notation:

A : Poor infrastructure

B : Economic decline

C : Transportation inefficiencies

D : Supply chain disruptions

Relationships: From the claim and evidence, we have the following:

1. A
causes−−−−→ B (Claim: Poor infrastructure causes economic decline)

2. A
causes−−−−→C (Evidence: Poor infrastructure causes transportation inefficiencies)

3. C
causes−−−−→ D (Evidence: Transportation inefficiencies cause supply chain disruptions

and reduced economic activity)

4. D
causes−−−−→ B (Evidence: Supply chain disruptions and reduced economic activity cause

economic decline)

Deduction: Using the relationships above, we deduce:

1. A
causes−−−−→C and C

causes−−−−→ D =⇒ A
causes−−−−→ D

2. A
causes−−−−→ D and D

causes−−−−→ B =⇒ A
causes−−−−→ B.

Conclusion: The claim A
causes−−−−→ B is supported by the evidence through a causal loop.

Cherry-picking Scenarios

In this step, we look only at the evidence linked to a specific claim, ignoring the claim itself.

We check for internal inconsistencies or selective usage of evidence, practice commonly

addressed as “cherry-picking”. Concretely, we group all evidence entries under the same claim,

then compares each pair of evidence elements. Each piece of evidence is represented as a

〈sub,rel,obj〉 triple, where “sub” and “obj” are events or entities, and “rel” is the relationship
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between them. The code measures how similar these events/entities are (e.g., sub1 vs. sub2,

obj1 vs. obj2).

A claim is flagged for cherry-picking if certain patterns in the evidence emerge. For instance, it

checks whether two pieces of evidence use the same relationship (rel1 = rel2) but involve sub-

jects or objects that are dissimilar or opposites. If any of these mismatches is found, we deem

the set of evidence potentially cherry-picked, because the evidence is either inconsistently

presented or selectively used to reinforce the same relation in conflicting ways. Consequently,

we assume here that the verdict is more probable to be cherry-picking.

Example. Here are two pieces of evidence for a given claim:

Evidence 1: Frequent testing of the entire population would help identify so-called hidden hid-

den carriers individuals infected with SARS-CoV-2, the virus that causes Covid-19, but who have

no symptoms of it. They seem to play an important role in the spread of Covid-19. Identifying

these silent spreaders could help public health workers be more effective at contract tracing by

identifying others who have been exposed and may require quarantine.

Evidence 2: Testing the entire population would undoubtedly identify a large number of such

individuals, unnecessarily sidelining them from work and society.

While the event Testing from the first evidence is equivalent to Testing from the second evi-

dence, the second components of the relation differ significantly. Not only are they dissimilar,

but they also have opposite polarities the first is positive (tracing), while the second is negative

(sidelining). This discrepancy may raise concerns about a potential cherry-picking scenario.

This is illustrated in Figure 7.3.

Figure 7.3: An example of a Cherry-Picking Scenarios.

7.3 Methodology - Reasoner Blocks

In this section, we present the methodology employed to predict the verdict of selected causally

relevant claims. Our pipeline begins with event relation extraction conducted separately within

the claim and evidence (Section 7.3.1). We also describe the approach used to extract refined

causal relationships across claims and evidence (Section 7.3.2). Additionally, we detail our

methods for distinguishing between similar, dissimilar, and opposite events using similarity
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and dissimilarity measures to accurately establish connections between events (Section 7.3.3).

These modules are then combined in our reasoning approach (Section 7.3.4).

7.3.1 Causality Extraction within the Claim/Evidence

Causal relation extraction is initially performed within a single context, either the claim or the

evidence, without considering cross-context relations. To achieve this, we use our ERE models

in inference mode. Since ROBERTA consistently outperformed other models for both RD and

RC, we prioritize its predictions for these subtasks. On the other hand, we use REBEL for the

EE task.

Example Input:

The government’s swift action to impose a lockdown prevents the rapid spread of COVID-19

among the population.

Output:

• RD = 1,

• RC = prevent,

• <triplet> impose a lockdown <subj> spread of COVID-19 <obj> prevent

If the REBEL model produces a relation classification RC that differs from that of RoBERTa,

we retain the prediction from RoBERTa, as it is the best-performing model according to our

evaluation.

7.3.2 Causality extraction across Claim and Evidence

In this section, we describe the process of refining causality extraction between events across

different contexts, specifically between those mentioned in the claim and the evidence. For the

example, it would be valuable to identify the prevention relationship between the event limit

all nonessential interactions in the evidence and the event death in the claim, as illustrated

in Figure 7.4.

To accomplish the task described, we tested two different strategies, relying on Common Sense

knowledge bases and Large Language models respectively. A key observation that motivated

this approach is that event pairs across different contexts (e.g., between claim and evidence

sentences) are often only weakly connected through the surrounding textual content. Instead,

their underlying causal relationship is more easily inferred through commonsense reasoning.

For instance, identifying that the evidence event limit all nonessential interactions prevents
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Safer at Home plan deathPrevent

Safer at Home plan limit all nonessential 
interactions

Enable

Prevent

Figure 7.4: An example of Refined Causality Extraction between Events across the Claim and
the Evidence

the claim event death requires understanding commonsense principles about public health

interventions not surface-level cues from the text itself (see Figure 7.4).

Common Sense-based Causality Extraction

To support refined causality detection between events in claims and evidences, we lever-

aged structured commonsense knowledge as a foundation for training. Specifically, we used

our curated commonsense dataset which includes both knowledge from ATOMIC and LLM-

generated examples as a proxy training set to model implicit event relations grounded in

everyday reasoning.

The goal was to train a classifier that takes as input a pair of events represented as short textual

spans and predicts the most appropriate causal relation between them. These event pairs

simulate the cross-context structure found in fact-checking: one event originates from a claim,

and the other from supporting or refuting evidence. During training, the model learns to

associate such event pairs with one of five target relations: cause, enable, intend, prevent, or

no_relation.

Table 7.1 presents the size of the final commonsense dataset, split across training, develop-

ment, and test sets.

Dataset no_relation intend cause enable prevent Total
Train 103,979 87,558 49,200 39,235 31,963 311,935
Dev 34,955 29,509 16,523 13,130 10,747 104,864
Test 34,354 29,521 16,519 13,120 10,744 104,258
Total dataset 521,057

Table 7.1: Overview of the employed Common Sense knowledge Base

Table 7.2 outlines the results obtained from the test set of commonsense shown in table 7.1.

We can see that the system is accurately detecting the refined causal relations between the

events of commonsense.
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Class Precision Recall F1-Score

cause 0.8248 0.8424 0.8335

intend 0.8523 0.8924 0.8719

prevent 0.9849 0.9929 0.9889

enable 0.9755 0.9776 0.9765

no_relation 0.8669 0.8208 0.8432

Table 7.2: Results of Causality Extraction between Claim Events and Evidence Events using
Commonsense

LLMs causality extraction

LLMs are widely recognized for their strong capabilities in understanding human language

and performing common-sense reasoning. Leveraging this strength, we explored prompting

techniques to extract refined causal relationships between events in claims and evidence.

For this purpose, we utilized the LLM Phi-3-Medium-4K-Instruct, which demonstrates state-

of-the-art performance in common-sense reasoning, while at the same time It requires fewer

parameters and less computational effort [1]. The following prompt was employed in a few-

shot manner to guide the model’s output.
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Event Relation Extraction Prompt

System: You are an expert in commonsense reasoning and refined causal relation

extraction. Your task is to identify the most appropriate relation between two events.

The possible relations are: cause, intend, prevent, enable, or no-relation. Only

answer with one of these relation names no explanations.

Definitions:

• cause: Connects an event with its effect.

• intend: Connects an event with the effect it is intended to cause, regardless of

outcome.

• enable: Connects a condition with the event it helps to bring about as an en-

abling factor.

• prevent: Connects an entity or event with another event that it causes not to

happen.

• no-relation: No meaningful causal or intentional relation exists.

Examples:

• Q: What will be the relation between earthquake and death?

A: cause

• Q: What will be the relation between vaccination and infection?

A: prevent

• Q: What will be the relation between signing a contract and starting the job?

A: enable

• Q: What will be the relation between training hard and winning the race?

A: intend

Final Query:

Q: What will be the relation between {event1} and {event2}?

A:

To evaluate the performance of the LLM in extracting refined causality between events across

claims and evidence, and since no ground-truth is available for this sake, we have performed

qualitative assessment through manual evaluation. We sampled 40 examples from the dataset

where the LLMs performed causality extraction. These examples, a mix of claims and evidence,

were manually assessed for accuracy. Out of the 40 examples, 33 were correctly processed,
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resulting in an accuracy of 82.5%.

7.3.3 Similarity, Dissimilarity, and Opposites

To determine if two events are the same, different, or opposites, we rely on sentence similarity,

dissimilarity, and Polarity (Pol).

We evaluate two configurations: (1) Events only and (2) Events with context(event spans

concatenated with the claim or evidence from which they originate). For cases where the

events are an exact match (same surface form), we rely on the "Events only" configuration.

However, when the events do not exactly match, we switch to the "Events with context"

configuration, which incorporates additional context from the Claim/Evidence text. This

enhancement allows for a more accurate reflection of event similarity.

To better explain this approach, we will make use of the 3 following examples.

Example 1

Claim: Dr. Qadir went on hunger strike when in prison and stopped when he could

get his demands; then he was released from custody on January 25, 2006, as a result of

efforts by special envoy of the Austrian foreign ministry, Gudrun Harrer, a journalist.

Evidence: He was released from custody on January 25, 2006, as a result of efforts by

special envoy of the Austrian foreign ministry, Gudrun Harrer.

Example 2

Claim: Sumo wrestler Toyozakura Toshiaki committed match-fixing, ending his career

in 2011 that started in 1989.

Evidence: He was forced to retire in April 2011 after an investigation by the Japan Sumo

Association found him guilty of match-fixing.

Example 3

Claim: The drought caused severe crop failures in the region.

Evidence: Because of the prolonged dry conditions, agricultural yields in the area were

dramatically lower than usual.

In these examples, we have an alignment between events in the claim and events in the

evidence. For each case, the "Events with context" configuration produced the higher similarity

score, as shown in Table 7.3. Based on empirically results on the entirety of use cases, we
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set the threshold for event similarity to 0.54, as events with similarity above this value are

considered similar.

Input Ex1 Ex2 Ex3
Events only 0.3235 0.2448 0.2589

Events + context 0.7632 0.6709 0.6533

Table 7.3: Cosine similarity for the three examples above.

Sometimes, events represent concepts that are simply dissimilar (indicated by a similarity

score falling below a certain threshold). However, in other cases, they represent exact opposites.

According to [24], antonyms can be as similar or even more similar than synonyms, aside

from their Pol. This insight suggests that we can detect opposites by identifying pairs of events

with high similarity but contrasting polarities.

To investigate this, we sampled five pairs of claims and corresponding evidence in which the

statements contradict each other, and the events involved are opposites. We computed simi-

larity and polarity under three configurations: 1. Evaluating events in isolation, 2. Evaluating

whole claim text vs whole evidence text, and 3. Evaluating the full triple text (sub,rel,obj). We

can discuss the following example, represented also in Figure 7.5:

Claim: A study released on November 15, 2023, found that companies with strict dress codes

experience a decline in employee morale.

Evidence: The Workplace Institute surveyed 150 firms with relaxed dress codes in October 2023

and found that employees reported a 25% higher job satisfaction rate than those at 100 compa-

nies enforcing formal attire. Notably, 72% of respondents from casual dress policy advocates felt

more creative at work.

We then determined which configuration best captured the correct polarity (e.g., one event

positive, the other negative) alongside high similarity. The configuration that produced the

correct opposing polarities with strong similarity scores was ultimately chosen to identify and

confirm opposite relationships.

Similarity is computed as the cosine similarity between the embeddings of two input events

obtained from SentenceBERT:

Similarity = cos(EmbeddingEvent1
,EmbeddingEvent2

)

For polarity detection, we utilize the DistilBERT base uncased model fine-tuned by Hugging-
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face1 for sentiment analysis, and reaching an accuracy of 91.3%. The model takes the input

text and outputs a polarity classification: N (Negative) or P (Positive).

Table 7.4 demonstrates that evaluating the complete triple (sub, rel, obj) yields the hightest

percentage of correct polarities, and the second highest similarity scores making it the most

effective configuration among those considered.

Based on the empirically determined similarity threshold and the opposites check, which

suggests that opposites are semantically similar but exhibit different polarities, we define the

following rules. Given two text inputs T1 and T2:

• Is-Similar(T1,T2) =⇒ Similarity(T1,T2) > threshold and Pol(T1) = Pol(T2) (PP or N N ).

• Is-Dissimilar(T1,T2) =⇒ Similarity(T1,T2) < threshold.

• Opposites(T1,T2) =⇒ Similarity(T1,T2) > threshold and Pol(T1) ̸= Pol(T2) (P N or N P

).

Strict Dress Codes
Decline in

Employee Morale
cause

Relaxed Dress Codes Increase in
Job Satisfaction

cause

Figure 7.5: Two pairs of “opposite” triples illustrating cause relationships.

Correct Average
Comparison Polarity Similarity

Claim vs Evidence 20% 0.76
Claim Event vs Evidence Event 50% 0.50
Triple Claim vs Triple Evidence 80% 0.61

Table 7.4: Comparison of correct polarity and average similarity across different levels of
analysis.

7.3.4 Reasoning Approach

The reasoner analyzes the claim and evidence by checking the relationships between their

events. It performs the following key tasks:

1https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english

88

https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english


7.4 Evaluation

1. Causal Loop Check (Figure 7.6) verifies if the events form a closed causal cycle, indicat-

ing support for the claim.

2. Similarity and Relationship Check (Figure 7.7) compares the relationships and similar-

ities between events to determine alignment or contradiction.

3. Cherry-picking Detection (Figure 7.8) identifies inconsistencies or selective usage of

evidence that may bias the verdict.

A cause B

C cause D
A cause C

D cause B

C Prevent D
A Prevent  C

A cause C
D prevent B

True

A and B are events from the claim
C and D are events from the evidence

Figure 7.6: Implementation structure of the Causal Loop Check.

A cause B

C cause D

C Prevent D

sim(A, C) 

A cause C

Null

Null

sim(B, D) Null

Support

Null

A and B are events from the claim
C and D are events from the evidence

Refute

Refute

sim(B, D) 

Figure 7.7: Implementation structure of a Similarity and Relationship check. (sim is referring
to Is-similar shortened for visibility)

C cause D

E cause F Is-similar(C, E) 
Dissimilar(D, F)
                or         
Opposites(D,F) 

Cherry- Picking

C and D are events from a claim evidence
E and F are events from another claim evidence

Figure 7.8: Implementation structure of a cherry picking scenario check.

7.4 Evaluation

This section outlines the evaluation datasets and the strategies used to assess our reasoning

framework. We explain the filtering criteria applied to each dataset and the evaluation setups

adopted for performance analysis.
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7.4.1 Evaluation Datasets

To assess the effectiveness of our reasoning framework, we conducted evaluations on two

widely used fact-checking datasets: AVERITEC and FEVEROUS. For AVERITEC, we retained

only claims linked to informative textual answers, excluding boolean and unanswerable cases.

In FEVEROUS, we filtered the data to include only claims supported fully by textual evidence.

Additionally, we constructed a manually curated subset from AVERITEC, ensuring that each

instance contained at least one valid use case where the reasoner was expected to generate a

verdict. For this subset, we applied minimal manual corrections to subject and object spans

within claims and evidence to fix minor misalignments introduced by the EE system. Relation

labels predicted by the ERE model were left unchanged. These adjustments aimed to simulate

a cleaner extraction context limited to individual claims and evidence texts to ensure reliable

inputs for subsequent reasoning steps, including similarity, polarity, and cross-event relation

extraction. This setup enabled a more accurate assessment of the reasoner’s performance

under improved semantic conditions.

AVeriTeC

The AVERITEC dataset consists of 4,568 real-world claims, each paired with question–answer

evidence and textual justifications used to determine verdicts. Every item is annotated with

one of four verdict labels:

• Supported: The evidence fully supports the claim.

• Refuted: The evidence directly contradicts the claim.

• Conflicting Evidence (Cherry-picking): The evidence presents conflicting information

neither fully supporting nor fully refuting the claim.

• Not Enough Evidence: The evidence is insufficient to make a conclusive judgment

about the claim s veracity.

In our evaluation, we use the training subset of AVERITEC, as it is aligned with ground truth

labels that enable quantitative assessment.

To prepare the AVERITEC dataset for evaluation, we first excluded claims answered with

either a boolean or unanswerable response, retaining only those with extractive or abstractive

answers. We also exclude the Not Enough Evidence portion of the dataset, since our reasoning

system is not designed to produce this type of verdict.
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FEVEROUS

The FEVEROUS dataset [5] (Fact Extraction and VERification Over Unstructured and Struc-

tured information) contains 87,026 claims annotated with evidence sourced from Wikipedia.

Due to time and resource constraints, we randomly selected a subset of 4,392 claims for our ex-

periments, assuming this sample size to be reasonably sufficient for evaluating the reasoner’s

performance.

Each claim is labelled as supports, refutes, or not enough info. Evidence may include textual

sentences or table cells, along with annotator metadata (e.g., query actions, page clicks,

evidence types). For our experiments, we retained only claims supported by fully textual

evidence and excluded those referencing table cells, yielding a filtered subset suitable for text-

only based reasoning. We Also exclude the NOT ENOUGH INFO part since it is not handled by

the reasoner. We then filtered out claims where was no causal relation, retaining a total of 1183

claims for evaluation. These were distributed across two verifiable categories: 705 SUPPORTS

and 478 REFUTES.

Reasoner Specific Subset (RSS)

Our reasoning framework is based on a set of rule-based mechanisms operating over event

relations, similarity, and polarity. While this approach allows for explicit and interpretable

inference, it does not guarantee coverage of all examples within the datasets. This limitation

applies to both AVERITEC and FEVEROUS, as not all claim–evidence pairs contain use cases

compatible with the system’s reasoning rules.

To ensure a fair evaluation, we constructed a controlled subset consisting of claim–evidence

pairs that contain verified reasoning use cases. While we do not assume that the reasoner will

always respond correctly since the final outcome also depends on other components such

as similarity scoring and polarity detection we ensure that a valid use case is present. This

setup allows us to meaningfully assess the reasoner’s behaviour in cases where its mechanisms

should, in principle, be activated, and helps isolate genuine reasoning failures from issues

caused by the absence of applicable use cases.

The creation process involved the following steps:

• We randomly sampled 765 claims from the AVERITEC dataset.

• For each claim–evidence pair, we first checked whether it contained a valid use case for

reasoning (e.g., causal loops or contradictions).

• If a valid use case was found, we then inspected the event representations extracted

independently from the claim and the evidence texts using our ERE models.
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• We manually corrected misaligned subject and object spans, as these event structures

are the foundation for all subsequent reasoning operations, including cross-sentence

event relation extraction between the claim and evidence, similarity computation, and

polarity detection.

Due to the significant manual effort required, we limited this process to one dataset. Without

any particular preference between AVERITEC and FEVEROUS, we selected AVERITEC based

on practical constraints.

The final benchmark consists of 86 validated (claim, evidence) pairs across 60 unique claims.

Table 7.5 shows the stats for each dataset after filtering.

Filtering Step AVERITEC FEVEROUS

Total unique claims 2998 1736

Total answers / total evidences 8479 3836

Answer Type Distribution (AVeriTeC)

Extractive 4571 –

Abstractive 2225 –

Boolean 1297 –

Unanswerable 386 –

Claims excluding Boolean and Unanswerable types 2783 1736

Claims with no relation 850 44

Claims after excluding claim with not enough evidence 1759 1183

Label Distribution

Refuted / REFUTES 1066 478

Supported / SUPPORTS 581 705

Conflicting Evidence / Cherrypicking 112 –

Table 7.5: Filtering steps and label distributions for AVERITEC and FEVEROUS datasets before
running the reasoning pipeline.

7.4.2 Evaluation stategy

In our evaluation, we define two distinct configurations for computing performance metrics:

• Configuration 1 – Tolerant: This configuration is applied in the fully automatic setting

for both AVERITEC and FEVEROUS. It adopts a lenient evaluation strategy, focusing

only on the system’s performance when it chooses to respond.
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– Recall is defined as the proportion of cases where the reasoner successfully pro-

duces a verdict (i.e., does not abstain), relative to the total number of evaluated

cases.

– Precision measures the proportion of correct verdicts among those that were

actually produced (i.e., abstentions are excluded).

– Abstentions (None outputs) are excluded from metric computation. This is be-

cause they may arise from either genuinely irrelevant inputs or from missed rea-

soning opportunities due to limitations in similarity matching or claim–evidence

alignment. Penalizing such cases equally would not accurately reflect the system’s

reasoning capability.

• Configuration 2 – Strict: This configuration uses a more rigorous evaluation policy. It

is primarily applied to the manually verified subset of AVERITEC, where each example

has been checked to ensure that it contains a reasoning-relevant claim–evidence pair.

We manually evaluated 765 claim, in which we could select 60 claims that contains at

least one of the selected use cases that we have discussed earlier that mean the system

is ideally expected to react and answer correctly, of course is till depend on the similarity

calculation, polarity, and relations across claim and relation events.

– The system is expected to always produce a verdict. Every abstention (None) is

treated as a false negative (FN), thus reducing recall.

– Recall is computed as the number of correct verdicts over the total number of

evaluated cases, including abstentions.

For the automatic versions of AVERITEC and FEVEROUS, we apply this configuration

across all examples, including those where the model abstains from producing a verdict.

Every abstention is treated as a false negative, regardless of whether the inputs repre-

sent a valid use case or not. While this may appear stringent, it allows us to assess the

model’s robustness under challenging and ambiguous scenarios, acknowledging that a

complete manual evaluation of all use cases is infeasible.

The metrics are computed as follows:

– True Positives (TP) and True Negatives (TN): Cases where the predicted verdict

matches the gold label.

– False Positives (FP): Cases where the system produces an incorrect verdict.

– False Negatives (FN): Cases where the system abstains from providing a verdict.

This formulation allows us to evaluate the effectiveness of the reasoner both in terms of its

ability to provide answers (recall) and the accuracy of those answers (precision).
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7.5 Discussion

Table 7.6 summarizes the performance of our reasoning framework across different config-

urations, datasets, and knowledge sources. We evaluate both the cases where the reasoner

was dependent on the LLM or the model trained ion commonsense for inferring the relation

between events across the claim and evidence triples on the AVERITEC and FEVEROUS

Test Set Knowledge Source Precision (P) Recall (R) F1-Score

RSS † LLMs 0.55 0.45 0.5

Common Sense 0.51 0.45 0.48

AVERITEC (Strict)
LLMs 0.48 0.19 0.27

Common Sense 0.54 0.2 0.29

AVERITEC (Tolerant)
LLMs 0.47 0.35 0.4

Common Sense 0.52 0.37 0.43

FEVEROUS(Strict)
LLMs 0.5 0.44 0.47

Common Sense 0.51 0.44 0.47

FEVEROUS(Tolerant)
LLMs 0.52 0.62 0.56

Common Sense 0.52 0.62 0.56

Table 7.6: Precision, recall, and F1-Score for each knowledge source across the different
evaluation datasets. † RSS refers to the Reasoner-Specific Subset, composed exclusively of
validated use cases; tolerant evaluation was unnecessary as all examples are guaranteed to
trigger reasoning.

On the reasoner specific subset of, the system achieves an F1-score of 0.50 with LLMs and 0.48

with common-sense knowledge bases ERE. The over-performance of LLMs based reasoning is

very slight. In 50% of the cases the model either does not provide an answer or the answer is

wrong. This can be due to wrong relation between events across the claim, evidence, wrong

polarity, or similarity calculations.

Across the non manually selected bases of both AVERITEC and FEVEROUS, we observe

significant variance between strict and tolerant settings:

• In the strict configuration, recall drops significantly on AVERITEC for both sources.

This is expected, as abstentions (None) are penalized as false negatives anyway.

• In contrast, the tolerant configuration presents a more optimistic perspective. When

the system chooses to respond, its predictions are generally correct. This is evident in

the improved F1-scores.

On FEVEROUS, the performance is more balanced across both reasoners regardless of the

model used for extracting cross claim-evidence relations. Under the strict setting, both achieve
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an F1-score of 0.47. In the tolerant setting, this increases to 0.56 for both, with recall peaking

at 0.62. This highlights that FEVEROUS may contain more concrete, fact-based pairs that are

easier to match and reason over.

7.6 Conclusion

In this chapter, we integrated causal reasoning into automated fact-checking. By leveraging

semantically refined event relationships and reasoning rules, our system addresses the limi-

tations of existing approaches that often lack causal interpretability. The dual evaluation of

LLM relations-based and common sense bases causal reasoning demonstrates the system’s

potentials in serving explainable fact-checking.

While the reasoner achieves around 50% f1-score, its strength lies not in outperforming existing

models in raw metrics, but in offering structured, interpretable justifications for verdicts when

valid causal use cases are present. Rather than functioning as a standalone predictor, the

system is best positioned as a complementary layer that can enhance existing fact-checking

models. By surfacing explicit causal links, logical inconsistencies, and polarity mismatches,

it provides interpretable insights that can either support or question the decisions made by

black-box veracity classifiers.
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Chapter 8

Conclusions

8.1 Summary of the Research

In my thesis, the work focuses on the automatic extraction of refined causal relationships

between events from text, with applications in narrative generation and explainable fact-

checking. We introduced the Facts and Events Relationship Ontology (FARO), a novel data

model specifically developed to represent event relationships within knowledge graphs. FARO

provides a semantically-rich structure that allows users to traverse event flows effectively,

either retrospectively to identify causes and conditions, prospectively to explore consequences,

or through various other semantic connections. By explicitly encoding these relationships,

FARO enables the construction of interconnected event timelines.

As a foundational contribution, we first conducted an extensive comparative analysis of

existing partially overlapping event relationship models. This systematic literature review

identified gaps and redundancies in the existing approaches, ultimately informing the pre-

cise set of relationships captured by FARO. Building upon this ontology, we developed an

enriched event relation dataset that extends beyond existing benchmarks such as TimeBank

and EventCausality. Our dataset uniquely integrates causal and contingent relationships,

including refined relation types such as Cause, Intend, Prevent, Enable, and Not Cause. To

address common challenges such as class imbalance and limited relation coverage, we com-

bined semi-automatic annotation, rigorous manual validation, and synthetic data generation

leveraging LLM. Furthermore, incorporating commonsense knowledge from ATOMIC has

resulted in a robust and comprehensive knowledge graph dataset, facilitating deeper research

in narrative generation, causal event extraction, and automated fact-checking.

Subsequently, we conducted an in-depth investigation of the event relation extraction task,

with a particular focus on fine-grained causal relations. We introduced the first model capable

of extracting these refined causal links from text, achieving an average F1-score of 0.763 across

relation detection, relation classification, and event extraction.
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Several key findings emerged from our analysis: end-to-end models generally outperform

sequential approaches, especially in relation detection and classification; the integration

of commonsense knowledge consistently boosts extraction performance; RoBERTa exhibits

superior effectiveness among tested PLMs; and despite progress, event extraction remains

inherently challenging. Additionally, while LLM demonstrated promising potential in few-shot

scenarios, they have yet to match the performance of fine-tuned PLM like RoBERTa and BERT.

We also demonstrated practical applicability by developing a publicly accessible pipeline

enabling users to perform event relation extraction interactively.

We have explored the possible downstream application of our model such as complex narrative

generation and explainable automated fact-checking.

In the narrative context, we enhanced the WebNLG dataset by integrating the FARO model,

enriching semantic expressiveness of generated texts. Preliminary qualitative analysis indi-

cated that training on refined event relations notably improves completeness of generated

narratives, although fluency remained largely unaffected.

In the context of explainable fact-checking, we introduced a novel system that integrates

semantically refined event relations with explicit causal reasoning rules, addressing the inter-

pretability gap in existing approaches. Our reasoning framework achieved an F1-score of 50%

on a manually verified subset containing confirmed reasoning use cases, and demonstrated

comparably strong performance on broader datasets where such use cases were not explicitly

annotated. These results provide a solid foundation for leveraging fine-grained causal extrac-

tion in fact-checking tasks and establish a competitive baseline for future improvements in

explainable reasoning systems.

8.2 Future Work

Looking ahead, this thesis envisions future work across three complementary themes: Knowl-

edge Engineering with LLMs, Event Relation Knowledge Graph Construction, and Down-

stream Applications. Each area will be developed as follows.

Knowledge Engineering with LLMs Building on the observed potential of LLMs for ontology-

driven tasks, future work will aim to deepen our understanding of the factors that influence

LLM performance in this context:

• Ontology Characteristics: Investigate how different ontology structures and vocabularies

affect the quality and accuracy of LLM-generated outputs, especially in specialized

domains.
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• Competency Question (CQ) Design: Study the impact of CQ formulation strategies and

the influence of property features—such as names, descriptions, and logic—on LLM

responses.

• Ontology Reuse and Complexity: Evaluate how well LLMs handle ontologies that incor-

porate or extend existing data models.

• Broader Ontology Coverage: Extend our analysis to include ontologies from datasets like

CQ2SPARQLOWL [85] and SILKNOW [102], to generalize findings.

• Human vs. LLM Performance: Compare CQs generated by LLMs with those produced by

domain experts unfamiliar with the data model.

• Refined Evaluation Protocols: Improve CQ quality control by filtering redundant or

irrelevant queries and refining performance metrics.

Event Relation Knowledge Graph Construction In the domain of knowledge graph con-

struction and refinement, several technical directions will be pursued:

• Coreference Resolution: Enhance internal consistency by resolving event coreferences

and aligning event mentions across contexts.

• Entity Linking: Connect extracted events and relations to external knowledge bases

such as EventKG [34] and Wikidata [123].

• Graph Validation Techniques: Apply link prediction and deletion techniques to assess

and improve reliability and completeness.

Downstream Applications For the two applications we have discussed—narrative generation

and explainable fact-checking—future work will focus on extending and refining the utility of

the proposed ERE system within these contexts.

• Narrative Generation:

– Improve event clustering by identifying sub-events and relations at the document

level.

– Use NLP-based data augmentation to enhance dataset quality and coverage.

• Explainable Fact-Checking:
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– Integrate external knowledge bases (e.g., Wikidata, domain-specific ontologies)

into the reasoning layer.

– Expand the evaluation dataset using high-quality claim-evidence pairs, including

data from CheckWhy [109] and potential crowdsourced annotations.

8.3 Future Research Directions

Building upon the foundation established in this thesis, several promising avenues for future

research emerge. These directions aim to extend the semantic depth, contextual reach, and

real-world applicability of event-based KGs.

Commonsense and Implicit Event Linking for Knowledge Graph Updating

In real-world applications such as journalism or public health surveillance, it is crucial for

KGs to dynamically adapt to new information. We propose developing a continual learning

pipeline that leverages both commonsense priors and document context to match incoming

news events with existing nodes in the KG, even when surface features differ. This would

include linking co-referential or semantically overlapping events, even across heterogeneous

sources. Techniques such as event coreference resolution [139] and contrastive learning for

event matching [38] can be leveraged to enhance this pipeline. Another potential can be

improving our refined causlaity extraction model to be able to do cross paragraph or even

cross documnets relations. This aligns with recent efforts in discourse-level event extraction

and narrative coherence modelling [22, 133]. A hybrid approach combining fine-tuned PLMs

as knowledge-augmented transformers (e.g., using our commonsense dataset as base) with

the natural language understanding power of LLMs could help infer implicit causality across

distant events.

Incorporating event “status” (e.g., planned, happened, did not happen) would support both

temporal and semantic updates, enabling the continuous evolution and refinement of the

knowledge graph [120]. Such modelling could further help identify recurring patterns that

often govern transitions between event states—revealing, for example, common precursors

that increase the likelihood of a planned event materializing or being cancelled.

Multimodal Event Representation and Enrichment

Text alone may not capture the full context of events—news often includes images or videos

that provide additional cues. Future work could investigate multimodal representation learn-

ing techniques [65, 137] to encode visual and textual signals jointly. This would be particularly

useful for detecting visually anchored causal narratives (e.g., protest imagery linked with
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reported causes or consequences) and for building richer KG representations.

User-Driven KG Refinement and Browser-Based Lightweight Models

We propose the development of a browser-based KG exploration interface that embeds a

lightweight version of our causal relation extraction model (e.g., using distilled RoBERTa or

quantized transformer variants). This would allow users to highlight causal chains in real-time

while navigating news articles. Integrated user feedback mechanisms could annotate new

event links or flag errors, feeding back into an active learning loop for KG improvement. This

aligns with research in interactive machine learning and human-in-the-loop KG construc-

tion [7].

Detection of Logical Fallacies and Causal Loops of Browsed News Articles

A particularly impactful application of our system was the detection of logical inconsistencies

or misleading causal narratives in fact-checking tasks. But this was restricted to only researcher

use on a small dataset. We propose using the updated KG to automatically identify causal loops,

contradictions, or spurious correlations (e.g., post hoc fallacies) also as a browser extension,

can be particularly useful on fast-paced platforms like Twitter or Reddit. The challenge here

will be minimizing the complexity of the reasoner to ensure real-time analysis, lightweight

processing, and seamless integration without disrupting user experience.

By extending the current contributions into these directions, we envision a next-generation

causal knowledge platform that is multimodal, continuously evolving, and socially grounded.

This system could serve not only academic purposes but also support journalistic integrity,

policy modelling, and public education.
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8.1 Introduction

Cette thèse traite du défi scientifique que constitue l’extraction précise des flux événementiels

à partir de données textuelles, cruciale pour la prise de décision, l’analyse historique et la

modélisation prédictive.

Pour commencer, nous présentons FARO (Facts and Event Relations Ontology), une ontologie

innovante permettant de structurer 25 relations distinctes entre événements et faits, facili-

tant ainsi des représentations sémantiques enrichies et une meilleure compréhension des

interactions événementielles.

Dans un premier temps, nous abordons les modèles de données existants, en analysant les

ontologies et base de données actuels dédiés aux relations entre les événements. Cette thèse

critique révèle les limites des modèles de données actuels, notamment leur focalisation sur des

relations entre évènements générales telles que la causalité simple ou les relations temporelles,

laissant de côté des interactions plus raffinées.

Ensuite, nous détaillons la conception de l’ontologie FARO. Nous expliquons le choix des

classes principales telles que « Évènement » et « Condition », et leur regroupement sous

la classe abstraite « Relata ». FARO intègre des relations plus sophistiquées, notamment la

causalité directe, la facilitation, la prévention, l’intention, et des relations comparatives comme

l’opposition et la similarité. Ces relations enrichies permettent une meilleure modélisation

des flux événementiels complexes et une exploration plus fine des liens entre événements.

Pour faciliter l’extraction robuste des relations événementielles raffinées, nous avons constitué

une base de données annoté de manière novatrice, comprenant plus de 500 000 phrases. Ce

corpus, enrichi par l’utilisation de grands modèles de langage (LLMs), d’intelligence artificielle

générative et de connaissances de bon sense issues du graphe de connaissances ATOMIC,

couvre des relations telles que la causalité directe, la facilitation, la prévention et l’intention.

Nous détaillons le processus rigoureux d’annotation manuelle et semi-automatique, ainsi

que les méthodes d’augmentation des données, notamment via des techniques de prompt
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engineering et l’intégration de connaissances de bon sens.

Nous développons ensuite un modèle avancé d’extraction capable d’identifier avec précision

ces relations causales fines. Notre approche comprend l’évaluation comparative de plusieurs

stratégies, notamment l’extraction causale à grain fin en tant que pipeline complet ou en sous-

tâches séparées, et l’intégration de connaissances de bon sens dans les modèles d’extraction.

Notre travail inclut également le développement d’une plateforme interactive basée sur

Streamlit, permettant aux utilisateurs d’expérimenter différents modèles et configurations

pour l’extraction des relations événementielles à partir de textes en temps réel. Cette plate-

forme offre une visualisation intuitive des résultats d’extraction et une évaluation qualitative

facilitée pour les chercheurs et utilisateurs généraux.

Nous validons enfin l’efficacité pratique de notre approche par deux applications concrètes :

• Génération narrative améliorée en utilisant des graphes de connaissances structurés

enrichis par des relations causales fines, nous générons des récits plus cohérents et sé-

mantiquement riches. Cette approche est évaluée qualitativement et quantitativement,

montrant une amélioration significative en comparaison des modèles existants basés

uniquement sur des relations événementielles générales.

• Vérification automatique des faits: nous présentons un système innovant qui exploite les

relations causales fines pour améliorer la prédiction du verdict et fournir des explications

compréhensibles par l’homme sur les contradictions éventuelles entre revendications

et preuves. Notre système, utilisant un raisonnement causal explicite, démontre une

capacité accrue à détecter les contradictions logiques, améliorant ainsi la transparence

et la fiabilité des systèmes de fact-checking.

En conclusion, cette thèse propose une méthodologie complète allant de la modélisation

ontologique à l’extraction et à l’application des relations événementielles raffinées, ouvrant

des perspectives prometteuses pour des recherches futures dans l’analyse sémantique des

événements, la génération narrative et la vérification automatisée des faits.

8.2 Modèle des Données

Ce chapitre propose un modèle sémantique pour la représentation des relations entre événe-

ments, un aspect crucial mais souvent sous-exploité dans les graphes de connaissances. Alors

que les relations temporelles et causales ont été largement étudiées, d’autres types de rela-

tions comme la corrélation, l’intention, la concession ou encore la comparaison restent peu

modélisées dans les ressources existantes.
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Nous présentons FARO (Facts and Events Relationship Ontology), une ontologie conçue pour

représenter jusqu’à 25 types de relations distinctes entre événements et conditions, réparties

en quatre catégories principales : temporelles, méréologiques, contingentes et comparatives.

Contrairement à d’autres modèles, FARO intègre une hiérarchie des relations et des contraintes

logiques (e.g. disjonction, transitivité), facilitant l’inférence sémantique.

Le chapitre s’ouvre sur un état de l’art détaillé des modèles existants (ontologies et jeux

de données), mettant en évidence leurs limites. Il en ressort que les approches existantes

ne permettent pas de capturer l’ensemble des relations inter-événementielles de manière

homogène. En comparaison, FARO propose une couverture plus complète et un design

modulaire facilitant son intégration dans des environnements sémantiques.

Nous discutons ensuite des choix de modélisation de FARO, qui repose sur deux classes

principales (Event et Condition) regroupées sous Relata, et permet de représenter l’état

d’un événement (réalisé, non réalisé, potentiel ou planifié). Des exemples tirés de textes

illustrent la richesse des relations couvertes, y compris celles au-delà de la causalité simple

(e.g. enables, prevents, not cause, correlates-with, etc.).

Enfin, nous montrons comment FARO peut contribuer à la construction de graphes d’événements

mieux connectés et sémantiquement enrichis, facilitant la navigation dans les flux d’événements

et l’inférence automatique. FARO est disponible publiquement en OWL1.

8.3 Base des Données

e chapitre présente la construction d’un jeu de données de relations entre événements destiné

à améliorer l’extraction automatique de relations causales fines. Il se concentre sur cinq types

de relations issues de l’ontologie FARO : Cause, Intend, Prevent, Enable, et Not Cause.

8.3.1 Sources et annotation

Deux ressources existantes ont été réutilisées : TimeBank et EventCausality, toutes deux au

format TimeML. Une nouvelle balise RLINK a été introduite pour généraliser les liens entre

événements, avec quatre attributs principaux : identifiant de lien, type de relation, identifiant

de l’événement source, et identifiant de l’événement cible.

Un processus semi-automatique a été employé pour générer des paires candidates, basé sur

des mots-signaux spécifiques à chaque type de relation. Une annotation manuelle a ensuite

été réalisée par deux annotateurs, avec un accord inter-annotateur (Cohen’s kappa) de 0.7112.

La première phase a permis d’obtenir le nombre suivant de relations annotées correctement :

1https://purl.org/faro/
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Relation Cause Intend Prevent Enable Not-Cause

Nombre de relations 283 44 13 18 3

Pour pallier l’importante imbalance, des articles AFP (Agence France-Presse) ont été exploités.

L’annotation manuelle de ces nouveaux articles a permis d’augmenter à 81 relations de type

Prevent et 100 de type Enable, avec les nouvelles statistiques suivantes :

Relation Cause Intend Prevent Enable Not-Cause

Nombre final 283 44 81 100 3

8.3.2 Augmentation par LLM

Pour élargir davantage le corpus, des modèles de langage (GPT-3.5 text-davinci-003) ont

été utilisés pour générer 600 phrases par type de relation sous-représentée. Les prompts

incluaient : (i) la définition selon FARO, (ii) des exemples extraits du jeu de données, et (iii)

une requête spécifique selon le type de relation.

Un exemple de prompt : Give me very long political example sentences following these examples

and give me each sentence in one line. Les phrases générées ont été validées manuellement,

avec un taux de précision de 90.77% pour les phrases, 75.15% pour le premier événement, et

66.82% pour le second :

Relation Phrases correctes ET1 correct ET2 correct

Intend 93.82% 75.13% 73.47%

Prevent 97% 81.83% 77%

Enable 81.5% 68.5% 50%

Le jeu de données final contient 1228 phrases synthétiques supplémentaires, menant à un

total de 1891 phrases après dé-duplication.

8.3.3 Test set et évaluation

Le jeu de test initial a été nettoyé via Similarité Cosine avec SentenceBERT (seuil de 90%). Pour

le compléter, 216 phrases avec des relations fines ont été extraites manuellement depuis le jeu

AVeriTeC.
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Statistiques finales du jeu augmenté

Relation Original Augmenté

Cause 268 268

Intend 42 459

Prevent 81 500

Enable 100 450

No-Relation 172 172

Total 663 1849

8.3.4 Ajout de Connaissances de Bon Sens

Des triplets provenant d’ATOMIC (ex. xIntent, xWant, xEffect) ont été intégrés et alignés avec

les relations FARO, en particulier pour Cause et Intend. Pour combler les lacunes sur Enable et

Prevent, de nouvelles phrases ont été générées par LLMs comme Zephyr et Truthful-DPO.

Des exemples négatifs ont été introduits via permutation des sujets et objets des relations

existantes. Au total, les données combinées (réelles et synthétiques) couvrent plus de 526,000

phrases :

Source Total Phrases Relations incluses

CNC (nouvelles) 3,316 Cause, No-Relation

ATOMIC (CS) 315,173 Cause, Intend, No-Rel

LLMs (CS synth.) 205,884 Prevent, Enable, No-Rel

8.3.5 Graphe de Connaissances

Un graphe de connaissances a été construit pour représenter les relations entre événements,

suivant les principes FAIR. Les phrases sont modélisées avec NIF, les relations avec l’ontologie

FARO, et la provenance via le vocabulaire PROV-O (provenance humaine, AFP, ATOMIC ou

génération LLM).

Chaque phrase est reliée à une source (dataset, publication, ou agent logiciel) à travers une

activité de provenance contenant le titre, les auteurs et l’année.
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8.3.6 Conclusion

Ce chapitre propose un pipeline complet pour construire un jeu de données annoté en

relations d’événements, enrichi par LLMs et connaissances de bon sens. Il introduit un

format unifié de représentation des relations (RLINK) et une modélisation RDF permettant

l’utilisation en raisonnement causale, vérification automatique de faits et génération narrative.

Ce travail offre une base solide pour l’évaluation et l’amélioration des systèmes d’extraction

de relations événementielles.

8.4 Extraction des Relations entre Événements à partir de Textes

Ce chapitre explore l’extraction fine de relations causales entre événements, telles que cause,

enable, prevent et intend, en mettant en œuvre des modèles d’état de l’art. Le modèle proposé

améliore de 25% la performance par rapport au précédent meilleur système [92], atteignant

un score F1 moyen de 0.763.

8.4.1 État de l’art :

Des approches supervisées, non-supervisées, par supervision distante ou semi-supervisées

ont été utilisées pour extraire les relations d’événements (causalité, temporalité, coréférence).

Les LLMs comme GPT-3.5 (via few-shot learning) surpassent REBEL [46] sur CoNLL04.

8.4.2 Méthodologie proposée :

Trois sous-tâches sont identifiées :

(1) Détection de relation (RD) : classification binaire (relation causale ou non),

(2) Classification de la relation (RC) : prédiction parmi les 5 classes,

(3) Extraction des événements (EE) : détection des spans via étiquetage BIO.

Trois stratégies sont évaluées :

• Modularisée : chaque sous-tâche est traitée indépendamment (RoBERTa, BERT),

• Fin-à-fin (end-to-end) : architecture multi-tâches avec têtes dédiées (RoBERTa, REBEL),

• Prompting LLM : évaluation de GPT-4 et Zephyr via zero/few-shot.
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8.4.3 Résultats expérimentaux (F1-moyen sur données combinées) :

• Modèle RoBERTa (séparé) : 0.763 (meilleur résultat global),

• REBEL (end-to-end) : 0.68,

• GPT-4 (4-shot) : 0.39,

• Zephyr (4-shot) : 0.23.

Impact du raisonnement de sens commun : L’intégration de connaissances de sens com-

mun (via données augmentées GPT-3.5) améliore :

• REBEL : +4% (RD), +10% (RC), +11% (EE),

• RoBERTa : légère amélioration en RC, stabilité en RD.

Comparaison des stratégies :

• 66.6% des cas : le fin-à-fin est supérieur à l’approche modulaire.

• Extraction d’événements : mieux gérée par les modèles séparés.

• LLMs : sous-performent face aux PLMs. GPT-4 dépasse Zephyr mais reste en retrait (F1

max = 0.52).

8.4.4 Interface démo :

Une application Streamlit est développée. Elle permet à l’utilisateur de :

• choisir les modèles pour chaque sous-tâche (RD, RC, EE),

• visualiser les relations extraites avec mise en évidence colorée,

• tester l’extraction sur des phrases personnalisées.

8.4.5 Conclusion :

• Les PLMs surpassent les LLMs pour les tâches structurées.

• L’architecture modulaire avec RoBERTa donne les meilleurs résultats.

• L’intégration du raisonnement de sens commun est bénéfique pour la généralisation.
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8.5 Applications des graphes de connaissances basés sur les événe-

ments

Ce chapitre explore deux principales applications des graphes de connaissances basés sur les

événements qui ont été développées et évaluées : la génération de récits basée sur les graphes

de connaissances et la vérification de faits sensible à la causalité. Ces deux applications

s’appuient sur les relations d’événements définies dans l’ontologie FARO et utilisent des

techniques d’extraction de relations événementielles pour améliorer le raisonnement, la

génération de texte et la prise de décision.

8.5.1 Génération de récits à partir de graphes d’événements

Les récits sont des outils fondamentaux pour transmettre le savoir et influencer la perception

humaine. Les modèles actuels de génération de texte tels que BERT et GPT-3, bien que

très fluides linguistiquement, sont limités en termes de couverture des connaissances et de

cohérence sémantique. Pour remédier à ces limites, notre approche intègre des graphes de

connaissances basés sur les événements et utilise des relations causales affinées pour produire

des récits plus informatifs et cohérents sur le plan sémantique.

La méthode étend le jeu de données WebNLG en y incorporant le jeu de données FARO,

introduisant des relations sémantiques fines telles que cause, prevent, enable, et intend. Ces

relations enrichissent la structure et le contenu des récits générés.

Le processus comprend :

• L’extraction des événements et des relations fines à l’aide de REBEL, ainsi que le re-

groupement des mentions coréférentes via la résolution de coréférence événementielle.

• Le résumé du graphe de connaissances à l’aide d’une requête SPARQL guidée par des

heuristiques basées sur la fréquence pour identifier les nœuds pertinents (4W : qui, quoi,

quand, où).

• L’injection de ces nœuds sélectionnés dans le modèle JointGT pour la génération de

texte. Le modèle est affiné sur un jeu de données combiné WebNLG + FARO.

Le modèle a été évalué quantitativement (BLEU, METEOR, ROUGE) et qualitativement par des

annotations humaines. Bien que les scores de métriques soient légèrement inférieurs à cause

des différences de structure et d’échelle, les résultats qualitatifs ont montré une amélioration

de l’adéquation et de la cohérence des récits générés.

Les travaux futurs viseront à améliorer la qualité de l’extraction d’événements et à sélectionner

des événements indirectement liés pour générer des sous-graphes plus riches.
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8.5.2 Raisonnement causal pour la vérification de faits

Dans le domaine de la vérification de faits, nous proposons une approche fondée sur le raison-

nement causal explicable, visant à détecter et justifier les incohérences entre affirmations et

preuves à l’aide de relations événementielles affinées. Contrairement aux systèmes actuels

souvent opaques, notre méthode s’appuie sur une architecture interprétable combinant

extraction de relations, calculs sémantiques et règles logiques.

Le moteur de raisonnement mis en place démontre de bonnes capacités d’inférence, en parti-

culier lorsque les cas d’usage correspondent aux hypothèses causales du système. Dans ces

configurations, le raisonneur s’avère efficace, et il reste performant même dans des contextes

plus génériques où la couverture n’est pas garantie. Cette robustesse est constatée aussi bien

sur AVERITEC que sur FEVEROUS, ce dernier montrant une compatibilité naturelle avec les

cas d’usage du système.

Ces résultats valident l’intérêt de l’intégration du raisonnement causal fin dans des systèmes

de fact-checking explicables, et ouvrent la voie à des développements futurs visant à enrichir

l’extraction automatique et à étendre l’évaluation à des jeux de données variés, notamment

ceux orientés vers la causalité comme CHECKWHY.

8.5.3 Conclusion

Ces deux applications démontrent la puissance et la polyvalence des graphes de connaissances

événementiels pour améliorer la compréhension du langage, le raisonnement et l’explicabilité.

Qu’il s’agisse de génération de récits ou de vérification de faits causale, l’intégration de sé-

mantiques événementielles fines et de représentations structurées permet de concevoir de

nouveaux systèmes d’IA interprétables, plus proches de la logique humaine.

8.6 Conclusion générale

Cette thèse a exploré l’extraction automatique de relations causales affinées entre événements

à partir de textes, en se concentrant sur deux principales applications : la génération de

récits et la vérification explicable de faits. Ce travail propose à la fois des ressources fonda-

mentales et des systèmes concrets qui approfondissent notre compréhension de la causalité

événementielle et enrichissent la sémantique des applications en aval.

Pour pallier l’absence de formalisation dans les modèles de relations événementielles existants,

nous avons introduit l’ontologie FARO (Facts and Events Relationship Ontology), conçue pour

modéliser des relations causales et contingentes fines au sein de graphes de connaissances.

FARO permet un raisonnement rétrospectif et prospectif via des relations sémantiques précises
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telles que Cause, Intend, Enable, Prevent, et Not Cause. Ce modèle favorise une navigation

plus significative entre événements, au bénéfice de la représentation des connaissances et de

l’interprétabilité dans les systèmes de décision.

Sur cette base, nous avons construit un jeu de données raffiné de relations événementielles,

au-delà des benchmarks traditionnels comme TimeBank ou EventCausality. Ce jeu intègre de

l’augmentation de données via LLMs, une validation manuelle, ainsi que des connaissances

issues d’ATOMIC, pour une représentation plus riche et diversifiée des connexions causales

entre événements. En traitant les problèmes de rareté relationnelle et de déséquilibre des

classes, nous posons les bases de futurs systèmes d’extraction causale plus performants.

Nous avons ensuite proposé un modèle basé sur RoBERTa pour l’extraction de ces relations.

Des expérimentations approfondies ont montré que notre approche surpasse significative-

ment les bases existantes, avec une amélioration d’environ 25% du F1-score. L’évaluation a

révélé plusieurs points clés : les modèles de bout en bout surpassent les approches en pipeline,

les connaissances de sens commun améliorent la précision, et les PLMs comme RoBERTa

restent les plus efficaces. Cependant, la désambiguïsation des relations et la coréférence

événementielle restent des défis ouverts.

Pour favoriser l’accès et l’expérimentation, nous avons développé une pipeline interactive

et publique pour l’extraction des relations événementielles. Nous avons démontré la valeur

pratique de ce système à travers deux cas d’usage concrets :

Génération de récits : en intégrant le jeu FARO au benchmark WebNLG, nous avons permis la

génération de récits sémantiquement enrichis. Les expériences montrent que les relations

événementielles raffinées améliorent l’informativité et la structure du texte généré, bien que

les gains en fluidité restent modestes. Les limites liées à la couverture des sous-événements

soulignent le besoin de techniques plus avancées de résumé de graphe et de regroupement au

niveau du document.

Vérification explicable de faits : Nous avons proposé un cadre de raisonnement explicable

combinant des relations causales extraites et des règles logiques explicites pour inférer la

véracité des affirmations. Le raisonneur montre des performances prometteuses, notamment

en termes d’explicabilité. Lorsqu’il est confronté à des cas d’usage bien définis, il produit

des résultats solides, validant ainsi la pertinence de son architecture orientée interprétabilité.

Même dans des contextes plus génériques ou moins structurés, où l’alignement avec les

schémas de raisonnement attendus n’est pas garanti, le système reste robuste, avec de bonnes

performances observées sur les jeux de données AVERITEC et FEVEROUS. La généralisa-

tion observée sur FEVEROUS suggère une compatibilité naturelle avec les faits concrets,

renforçant son potentiel pour des applications de vérification transparentes et adaptables.

Dans l’ensemble, cette thèse propose de nouveaux modèles, jeux de données, outils et cadres
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de raisonnement qui font progresser l’état de l’art en extraction de relations événementielles

et dans ses applications. En combinant sémantique formelle, apprentissage machine et cas

d’usage concrets, ce travail ouvre la voie à de futures recherches sur la compréhension causale

à partir des textes.
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