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Ergodic Capacity Analysis for Terrestrial-LEO-GEO
Relay Systems With Stochastic Orbit Modeling
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Abstract—This paper investigates an uplink transmission from
a terrestrial user to a geostationary Earth orbit (GEO) satellite,
using multiple low Earth orbit (LEO) satellites as amplify-
and-forward (AF) relays. We first model the altitudes of LEO
spherical orbits as a one-dimensional stochastic point process,
where multiple satellites are randomly and uniformly distributed
along each orbit. Then, we derive an approximate expression
for the ergodic capacity by introducing a novel stochastic
geometry-based analytical approach, which effectively captures the
impact of random satellite distributions on system performance.
Using this approximation method, we also derive the ergodic
capacity accounting for the one-dimensional Poisson point process
(PPP) and the terrestrial-satellite channel modelled with Rician-
shadowed fading. Finally, the accuracy of the derived expressions
is validated through Monte Carlo simulations, and the results
further confirm that the one-dimensional PPP can accurately
approximate the delivery performance even when a reasonable
minimum inter-orbit distance for LEO satellites is considered.

Index Terms—Amplify-and-forward relaying, ergodic capacity,
stochastic point process, terrestrial-LEO-GEO system.

I. INTRODUCTION

The rapid development of satellite communication systems
has spurred significant interest in hybrid terrestrial-satellite
networks, especially those involving low Earth orbit (LEO)
satellites [1]–[3]. LEO satellites provide global coverage
and low-latency communication, making them suitable for
a wide range of applications, including broadband internet
services, remote sensing, and disaster management. Meanwhile,
geostationary Earth orbit (GEO) satellites remain crucial due
to their fixed position relative to the Earth, allowing continuous
communication with a large ground area [4]–[6].

Establishing a reliable communication link between terres-
trial users and GEO satellites presents significant challenges
due to severe pathloss and shadowing effects caused by the long
distances and obstructions in the direct line-of-sight (LoS) path.
To address these issues, LEO satellites, positioned much closer
to the Earth’s surface, can serve as relay nodes, facilitating
signal transmission between terrestrial users and GEO satellites
[7], [8]. However, the studies in [7], [8] considered only a
simplified scenario involving a single random LEO satellite as a
relay, without accounting for the more realistic and increasingly
relevant scenario of multiple LEO satellites acting as relays.
This limitation overlooks the potential of utilizing multiple LEO
relays, which has become feasible with the rapid expansion of
LEO satellite constellations.
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Stochastic geometry (SG) provides a powerful framework
for analyzing the performance of complex networks, including
satellite communication systems, by modeling the spatial dis-
tributions of network components as stochastic point processes
[9]. Among the various models, the spherical binomial point
process (BPP) is particularly effective for representing scenarios
where a finite number of satellites are distributed uniformly
on a spherical surface. Although BPP-based models do not
fully account for the deterministic structures of actual satellite
constellations, prior studies have shown that these differences
have minimal impact on network topology and performance
metrics [10]. Consequently, the BPP model strikes a balance
between analytical tractability and modeling accuracy, making
it a practical choice for large-scale satellite networks.

A very recent study [11] adopted the SG framework to
model multiple LEO satellites serving as relays for data
transmission from a terrestrial user to a GEO satellite. This
work modeled LEO satellites as a spherical homogeneous
BPP, assuming a uniform distribution within a single spherical
orbit. While this approach offers mathematical simplicity, it
is limited by its focus on a single LEO orbit, which does
not adequately capture the complexity of current and future
mega-LEO constellations comprising multiple orbits. Another
recent work [12] extended the SG-based analysis to model
multiple LEO orbits, providing insights into the communication
performance between terrestrial users and LEO satellites.
However, this study exclusively focused on terrestrial-to-LEO
communications, without considering the uplink transmission
to GEO satellites. This omission limits the applicability of its
results in scenarios requiring GEO satellites for global coverage
and long-distance communication.

Within the SG analytical framework, the ergodic capacity
is often derived by integrating the outage probability (OP)
expression, which itself may involve complex formulations.
These prior studies, including [11] and [12], primarily focus on
analyzing OP or its variants, such as the coverage probability,
but do not examine the ergodic capacity. However, ergodic
capacity is a critical performance metric as it represents the
long-term average data transmission rate over varying channel
conditions [13, Ch. 4]. Unlike OP, which provides a snapshot
view of the system’s performance under specific conditions,
ergodic capacity captures the system’s average delivery per-
formance and reliability over time, making it more relevant
for applications requiring consistent communication quality.
Despite its importance, calculating ergodic capacity within
the SG framework often introduces significant computational
challenges due to the additional infinite integral over already
complex OP expressions [14]. This underscores the need for
a computationally efficient approach to evaluate the ergodic
capacity in SG-based analysis.
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In this paper, we analyze the delivery performance of
an uplink transmission from a terrestrial user to a GEO
satellite via multiple LEO relays, where the relays employ
the amplify-and-forward (AF) strategy. We first model the
altitudes of LEO satellites using a general one-dimensional
stochastic point process and assume that a finite number of
LEO satellites are uniformly distributed on the spherical surface
of each LEO orbit, following a BPP. Based on this model, we
derive an approximate expression for the system’s ergodic
capacity using a novel analytical approach that significantly
reduces computational complexity. Building on this, we focus
on a specific case where the LEO altitudes are modeled
as a one-dimensional homogeneous Poisson point process
(HPPP), with the terrestrial-satellite channels subject to Rician-
shadowed fading. Using the approximation derived for the
general stochastic process case, we further obtain an analytical
expression for the ergodic capacity under the HPPP and Rician-
shadowed fading assumptions. Finally, we validate the accuracy
of the analytical expression for HPPP through Monte Carlo
simulations, demonstrating that the HPPP remains robust even
when a practical minimum contact distance is enforced between
adjacent LEO orbits. This consideration is particularly relevant
for real-world satellite deployments and highlights the practical
applicability of our framework.

II. SYSTEM MODEL

As illustrated in Fig. 1, a terrestrial node (denoted by S) seeks
to communicate with a GEO satellite. However, due to signifi-
cant factors such as long distances and severe obstructions, the
direct link between S and the GEO satellite experiences heavy
shadowing, leading to unreliable performance. To enhance
the uplink communication quality, LEO satellites within the
field-of-view (FoV) of S serve as AF relays1. These LEO
satellites are distributed across various LEO spherical orbits
at altitudes ranging from Hl to Hu above the Earth’s surface.
The communication procedure consists of two phases: First,
S transmits its signal to both the GEO satellite and the LEO
satellites. Due to the heavy shadowing on the direct link, the
LEO satellites assist by relaying the received signal from
S to the GEO satellite using the AF strategy. Finally, the
GEO satellite combines the direct signal (received under heavy
shadowing) with the relayed signals from the LEO satellites
for decoding.

The altitudes of these LEO spherical orbits can be modelled
as a one-dimensional stochastic point process.2 Similar to [16],
[17], we consider that N LEO satellites are uniformly placed
on the sphere’s surface of each LEO orbit. To describe the

1While the studies in [7], [8] utilized the decode-and-forward (DF) scheme,
this approach becomes increasingly complex and less practical when massive
LEO relays are involved. In contrast, the AF scheme offers a more efficient and
scalable alternative for such scenarios. By simply amplifying and forwarding
the received signals without requiring decoding at each relay [15], the AF
scheme significantly reduces the processing complexity, making it a more
suitable choice for large-scale LEO satellite networks.

2While traditional satellite constellations are often characterized by fixed
parameters, such as specific altitudes and well-defined orbital planes, LEO
satellites are subject to dynamic variations influenced by gravitational pertur-
bations, atmospheric drag, and adjustments from operational maneuvers. As
discussed in [12], modeling LEO altitudes using a one-dimensional stochastic
point process offers a more adaptive and practical framework to account for
these variations and evaluate delivery performance effectively.
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Fig. 1: A two-dimensional cross-sectional view illustrating an LEO satellite
at the maximum FoV angle of the land user S in the j-th orbit, serving as a
relay for uplink communication from S to the GEO satellite.

positions of the communications nodes under consideration,
we establish a right-hand Cartesian coordinate system in Fig. 1,
with the vertical axis z defined as the line connecting the Earth’s
center to the terrestrial node S. After that, we use β to denote
the zenith angle of the GEO satellite. We use θm to define
the maximum FoV angle of S. That is, as long as the zenith
angle of an LEO satellite w.r.t. S lies in the interval [0, θm], we
treat it as a feasible relay forwarding the messages of S. Using
basic geometric principles, the maximum zenith angle θjm of
a serving LEO satellite located in an orbit with a radius rj
relative to the Earth’s center can be easily derived. Specifically,
the cosine of θjm is given by the following expression

cos θjm (1)

=

√
1− 1

r2j

(√
r2j sin

2 θm −R2
E sin4 θm −RE cos θm sin θm

)2

where RE denotes the radius of the Earth. Based on some
basic probability theory, we have the following proposition.

Proposition 1: The number of serving LEO satellites on the
j-th orbit with radius rj , where rj itself is a random variable,
follows a binomial distribution with a success probability of
(1− cos θjm)/2, conditioned on a specific value of rj .
Proof: This is determined by the ratio of the surface area within
the broadcasting region, where the available LEO satellites
can reside, to the total surface area of the j-th spherical orbit.
This ratio applies because the LEO satellites are assumed to
be randomly and uniformly distributed on the spherical surface
of their respective orbit. ■

A. Channel Model
We assume that the terrestrial-satellite channel experiences

both small-scale fading and pathloss, while the link between any
LEO satellite and the GEO satellite is affected only by large-
scale pathloss3. Small-scale fading in the terrestrial-satellite link
is modelled using Rician-shadowed fading. Let LEOjk denote
the k-th serving LEO satellite in the j-th orbit, and let hjk

represent the small-scale channel gain for the S–LEOjk link.
The statistics of hjk are determined by three parameters: mse,
bse, and Ωse. Specifically, 2bse represents the average power
of the scattered component, while Ωse denotes the average
power of the LoS component. The parameter mse reflects the
obstruction degree of the LoS component. We refer to [18] for

3The LEO-GEO link is assumed to be dominated by large-scale pathloss
only, as it involves a high-altitude satellite-to-satellite connection with clear
LoS conditions and minimal scattering or shadowing effects. Given the vast
distance and the absence of terrestrial obstacles, small-scale fading is negligible.
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more details. The probability density function (PDF) of |hjk|2
is given by [18, Eq. (6)].

f|hjk|2(x) = αse exp(−φsex) 1F1(mse; 1; δsex), (2)

where αse ≜ 1
2bse

(
2bsemse

2bsemse+Ωse

)mse

, φse ≜ 1
2bse

, and δse ≜
Ωse

2bse(2bsemse+Ωse)
. In (2), 1F1(·; ·; ·) denotes the confluent

Hypergeometric function of the first kind [19]. Similarly,
the channel gain from S to the GEO satellite hsg is also
characterized by three parameters: msg , bsg and Ωsg .

B. AF Relaying
The received signal at LEOjk during the first phase is

yjk,s =
√
Lsd

−α1

jk,shjks+ zjk, where s ∈ C denotes the signal
transmitted by S, and Ls denotes the transmit signal-to-noise
ratio (SNR) at S, and djk,s denotes the distance from S to
LEOjk, and α1 > 0 denotes the pathloss exponent of the
terrestrial-LEO satellite channel. zjk denotes the Additive
White Gaussian Noise (AWGN) with zero-mean and unit-
variance. We assume that the AF gain at each LEO satellite
dynamically adjusts to compensate for channel fading in each
instantaneous channel realization. To limit the output power of
the relay when inverting the channel in deep fading, the AF
gain at LEOjk is of the form [15] Ajk = 1

1+SNRjk,s
∈ [0, 1],

where SNRjk,s ≜ Lsd
−α1

jk,s |hjk|2 denotes the received SNR at
LEOjk. To prevent signal cancellation at the GEO satellite
caused by phase differences from multiple relays, each relay
applies a phase shift. This phase adjustment is essential due to
the differing positions of the LEO relays relative to the GEO
satellite. Under the AF relaying strategy and the phase shift
ϕjk, the transmit signal at LEOjk takes the form

yjk,g =
√

LrAjk exp(ȷϕjk)

(√
Lsd

−α1

jk,shjks+ zjk

)
, (3)

where Lr represents the power applied by LEOjk after inverting
the first hop channel.

Again during the first phase, the GEO can also receive the
signal sent from the source S, despite the heavy shadowing
over the channel. Specifically, the signal received at the GEO
satellite during the first phase is given by

ysg =

√
Lsd

−α0
sg hsgs+ zg1, (4)

where dsg and α0 denote the delivery distance between S and
G and the pathloss exponent respectively, and zg1 ∼ CN (0, 1)
denotes the AWGN at the GEO satellite during the first phase.

Recall that the second hop from the LEO satellite to the
GEO satellite only suffers from the large-scale pathloss. We
use Φ and Nj to respectively denote the collection sets of the
LEO orbits and the serving LEO satellites in the j-th orbit.
The combined signal over the two hops at the GEO satellite is

yg = ysg +
∑
j∈Φ

∑
k∈Nj

√
Lrd

−α2

jk,gyjk,g + zg2 (5)

where djk,g denotes the distance from LEOjk to G, and α2 > 0
denotes the pathloss exponent of the LEO-GEO channel, and
zg2 ∼ CN (0, 1) denotes the AWGN at the GEO satellite during
the second hop. After substituting ysg and yjk,g into the above,

we can express the combined signal as (6), shown at the top
of the next page. To ensure that the signals from multiple LEO
relays do not cancel each other out and to prevent the relayed
signals from interfering destructively with the direct link signal,
we apply the phase shift ϕjk = −Arg{hjk} − Arg{hsg}+ π

2
at LEOjk. Here, Arg{·} represents the phase of the complex
number.4 The SNR for decoding s at the GEO satellite is
expressed as (7), shown at the top of the next page.

The ergodic capacity of this hybrid terrestrial-satellite system
is of the form

C̄ =
1

2
E {log2 (1 + SNRg)} bits/s/Hz (8)

where the ergodic capacity is averaged over small-scale channel
fading and random locations of LEO satellites.5

III. PERFORMANCE ANALYSIS

In this section, we first parameterize the ergodic capacity
defined in (8) for a general one-dimensional stochastic point
process to model the random LEO altitudes. We then focus
on the specific case of an HPPP with Rician-shadowed fading
channels and derive the corresponding ergodic capacity.

Before the main results, we define the following parameters6

Ξ1 ≜ E
{∑

j∈Φ

|Nj |2d−α2
j,g

}
(9)

Ξ2 ≜ E
{
I{|Φ| ≥ 2}

∑
j∈Φ

∑
i∈Φ,i̸=j

|Nj ||Ni|
√

d−α2
j,g d−α2

i,g

}
(10)

Ξ3≜E
{∑

j∈Φ

∑
k∈Nj

Lr(R
2
g + r2j − 2Rgrj cosβ)

−α2/2

1 + Ls(rj −Re)−α1 |hjk|2

}
, (11)

where I{·} denotes the well-known indicator function. I{|Φ| ≥
2} equals 1 if |Φ| ≥ 2; otherwise, it equals 0.

Theorem 1: For any one-dimensional stochastic point process
Φ to model the random LEO altitudes and for any fading
channels, we can always approximate the ergodic capacity
of the considered hybrid terrestrial-satellite system as7 C̄ ≈
1
2 log2 (1 + γ̄) , where γ̄ is defined as

γ̄ ≜
Lsd

−α0
sg E{|hsg|2}+ LrΞ1 + LrΞ2

2 + Ξ3
. (12)

Proof: The proof is relegated to Appendix I. ■

4The Doppler shift caused by the high-speed movement of LEO satellites
introduces additional phase noise and frequency offset, potentially degrading
system performance if not properly mitigated. Literature such as [11] discusses
techniques like bit synchronization adjustments and spectrum spreading to
counter these effects effectively. Additionally, while we assume perfect beam
alignment, real-world pointing errors caused by jitter could reduce the received
signal power. These effects are typically mitigated in practical systems through
advanced tracking and alignment techniques, but a detailed analysis of their
impact could serve as an extension of this work.

5In this paper, E{·} represents the expectation over all random variables,
while EX{·} indicates the expectation taken only over the random variable
X . Additionally, E{·|X} denotes the expectation conditioned on X .

6Here, we have a slight abuse of notation where | · | denotes both the
cardinality of a set and the magnitude of a complex number.

7Terrestrial interference, which can degrade the ergodic capacity in practical
systems, was not explicitly analyzed in this work. However, our analytical
framework can accommodate such interference by modeling it as additional
Gaussian noise in the worst-case scenario, which enhances the overall noise
power at the satellites. Consequently, the derived results serve as strict lower
bounds for the system’s performance when terrestrial interference is present.
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yg=

√
Lsd

−α0
sg hsgs+

∑
j∈Φ

∑
k∈Nj

√
LrLsd

−α1

jk,s d
−α2

jk,gAjkhjk exp(ȷϕjk)s+
∑
j∈Φ

∑
k∈Nj

√
Lrd

−α2

jk,gAjk exp(ȷϕjk)zjk + zg1 + zg2 (6)

SNRg =

∣∣∣∣√Lsd
−α0
sg hsg +

∑
j∈Φ

∑
k∈Nj

√
LrLsd

−α1

jk,s d
−α2

jk,gAjkhjk exp
(
− ȷArg{hjk} − ȷArg{hsg}+ ȷπ2

)∣∣∣∣2
2 +

∑
j∈Φ

∑
k∈Nj

Lrd
−α2

jk,gAjk

(7)

Ξ1 = λ

∫ Hu+RE

Hl+RE

(
N2 (1− cos θjm)2

4
+N

(1− cos2 θjm)

4

)
(R2

g + r2j − 2Rgrj cosβ)
−α2/2drj (13)

Ξ2 =

(
λ

∫ Hu+RE

Hl+RE

N
1− cos θjm

2
(R2

g + r2j − 2Rgrj cosβ)
−α2/4drj

)2

(14)

Ξ3 = Lrλ

∫ Hu+RE

Hl+RE

N(1− cos θjm)

2(R2
g + r2j − 2Rgrj cosβ)α2/2

∫ ∞

0

αse exp(−φsex) 1F1(mse; 1; δsex)

1 + Ls(rj −Re)−α1x
dxdrj (15)

In the following, we model the random distribution of
LEO altitudes as a one-dimensional HPPP under Rician-
shadowed fading channels. Based on Theorem 1, we derive
the approximation of the ergodic capacity in Corollary 1.

Corollary 1: For the case of HPPP with intensity λ and
Rician-shadowed fading channels, the expectation terms of γ̄
in (12) are given by (13), (14) and (15), as shown at the top
of this page. Additionally, E{|hsg|2} = 2bsg +Ωsg .
Proof: The proof is relegated to Appendix II. ■

IV. NUMERICAL RESULTS

In this section, we present the numerical analysis of the
ergodic capacity for the proposed terrestrial-LEO-GEO relay
system. The key simulation parameters are as follows: the radius
of the Earth is RE = 6371 km, and the radius of the GEO orbit
is RG = 42164 km. The heights of LEO orbits are uniformly
distributed over the range [Hl = 160, Hu = 2000] km, with
an intensity of λ and a minimum contact distance of c = 50
km between adjacent LEO orbits. The simulated results, based
on the exact SNR in (7), are represented by symbols in Figs.
2–4. For the analytical results, we consider the randomness
of LEO altitudes as an HPPP8 with the same intensity λ and
apply Corollary 1 to evaluate the ergodic capacity, depicted
as red solid lines in Figs. 2–4. The primary objective of such
numerical comparisons is to demonstrate that the simple HPPP
model can effectively approximate scenarios where a contact
distance constraint is imposed between adjacent LEO orbits.
The zenith angle of the GEO satellite is set to β = π

12 . For
simplification, we assume all pathloss exponents are equal
to 2, i.e., α0 = α1 = α2 = 2. The terrestrial-GEO link
experiences frequent heavy shadowing, while the terrestrial-
LEO links experience infrequent light shadowing. As indicated
in [18, Table III], the channel parameters for the terrestrial-GEO
link are msg = 0.739, bsg = 0.063, and Ωsg = 8.97 × 10−4,
while for the terrestrial-LEO link, they are mse = 19.4, bse =

8We also adopt the BPP to model LEO deployment, where the number
of LEO orbits follows a binomial distribution, in contrast to the Poisson
distribution in PPP. As the intensity of LEO orbits increases, the perfor-
mance difference between BPP and PPP becomes negligible. However, the
corresponding numerical comparison is omitted here due to space limitations.

0.158, and Ωse = 1.29. The total number of satellites in each
LEO orbit is N = 1000.

In Fig. 2, we analyze the impact of increasing the transmit
SNR Ls at the terrestrial user on the ergodic capacity. As Ls

increases, the ergodic capacity improves due to the enhanced
SNR over both the terrestrial-LEO (first hop) and LEO-GEO
(second hop) links. This is expected because stronger signals
result in better overall system performance. Moreover, the
ergodic capacity increases with the maximum FoV angle θm.
A larger θm allows the terrestrial user to access more LEO
satellites, enabling more satellites to act as AF relays. These
additional relays improve the overall received power at the
GEO satellite, thus enhancing the system performance. The
analytical results for the one-dimensional HPPP closely match
the simulated results across various θm values, confirming its
accuracy even when a contact distance constraint is imposed.

Fig. 3 explores the ergodic capacity for varying intensities
λ of LEO orbits. As λ increases, more LEO satellites become
available to serve as AF relays, resulting in higher ergodic
capacity. However, as the intensity λ increases, we observe
a slight degradation in the match between the analytical and
simulated results. This is particularly noticeable at λ = 0.02,
which corresponds to 20 LEO orbits over 1000 km on average.
This value represents the largest LEO orbit intensity, given
the minimum contact distance of c = 50 km between adjacent
LEO orbits. Despite this slight degradation, the one-dimensional
HPPP model still provides high accuracy, even under the most
challenging case of high orbit intensity.

In Fig. 4, we examine the ergodic capacity when Lr at the
LEO satellites is fixed. Unlike Fig. 2, where Lr scales with
Ls, the ergodic capacity remains unchanged at low values
of Ls. This occurs because the LEO satellites employ AF
relaying, where they invert the power sent from the terrestrial
user before forwarding the signal to the GEO satellite. In this
low Ls regime, the contribution of the direct S–GEO link is
negligible, and thus increasing Ls does not significantly affect
the end-to-end performance. When Ls is sufficiently large,
the direct S–GEO link becomes dominant, resulting in the
ergodic capacity converging across different values of Lr. This
indicates that at high Ls, the system’s performance is primarily
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Fig. 2: Ergodic rate versus Ls for Lr = 2Ls and λ = 0.01 orbits/km
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Fig. 4: Ergodic rate versus Ls for θm = π
6

and λ = 0.01 orbits/km

influenced by the direct link rather than the relayed links.

V. CONCLUSIONS

In this paper, we analyzed the uplink communication from
a terrestrial user to a GEO satellite, with multiple LEO
satellites acting as AF relays. We first modelled the LEO
altitudes using a general one-dimensional stochastic point
process and derived an approximate expression for the ergodic
capacity. We then considered a special case of HPPP and
Rician-Shadowed fading channels, obtaining the corresponding
ergodic capacity. The derived results were validated through
Monte Carlo simulations, demonstrating a close match between
the analytical and simulated results, even when a practical
minimum contact distance was enforced between adjacent LEO
orbits. These findings confirm the accuracy and effectiveness
of using a one-dimensional HPPP to represent the random

altitudes of LEO orbits, providing a realistic and practical tool
for evaluating performance in LEO-involved satellite systems.

Despite the progress made, several practical factors remain
to be addressed. For instance, the treatment of terrestrial inter-
ference at the satellites and the potential beam misalignment
between satellites can significantly impact the overall delivery
performance of the terrestrial–LEO–GEO system. Although
terrestrial interference could be modeled as additional Gaussian
noise to obtain a tractable lower bound for ergodic capacity,
a more comprehensive analysis remains an open challenge.
Furthermore, since the adopted spherical BPP framework is
also capable of representing the random deployment of UAVs,
extending the current study to encompass hybrid aerial networks
— such as coordinated UAV-LEO-GEO systems — offers a
promising avenue for future research.

APPENDIX I: PROOF OF THEOREM 1

As suggested in [15], we approximate the AF gain as
Ajk ≈ SNR−1

jk,s = (Lsd
−α1

jk,s |hsg|2)−1, which provides a tight
approximation to the delivery performance. Substituting this
approximate AF gain into (7) and considering the phase shift
at each LEO relay, we can simplify the combined SNR as

SNRg ≈
Lsd

−α0
sg |hsg|2+

∣∣∑
j∈Φ

∑
k∈Nj

√
Lrd

−α2

jk,g

∣∣2
2 +

∑
j∈Φ

∑
k∈Nj

Lrd
−α2

jk,gAjk

. (16)

Based on the SNR approximation in (16) and using [20, Lem.
1], we can approximate the ergodic rate as C̄ ≈ 1

2 log2 (1 + γ̄′)
where γ̄′ is defined as

γ̄′=
E
{
Lsd

−α0
sg |hsg|2 +

∣∣∣∑j∈Φ

∑
k∈Nj

√
Lrd

−α2

jk,g

∣∣∣2}
2 + E

{∑
j∈Φ

∑
k∈Nj

Lrd
−α2

jk,gAjk

} . (17)

We note that this approximation becomes tight as the summation
terms both in the numerator and the denominator of γ̄′ increase
(cf. [20], [21]). To the best of the authors’ knowledge, this
approximation method is applied to the analysis of stochastic
point processes for the first time, though it originates from the
analysis in massive multiple-input and multiple-output (MIMO)
systems.

For the numerator in (17), we have that

E
{
Lsd

−α0
sg |hsg|2 +

∣∣∣∑
j∈Φ

∑
k∈Nj

√
Lrd

−α2

jk,g

∣∣∣2}
= Lsd

−α0
sg E{|hsg|2}+ E

{∣∣∣∑
j∈Φ

∑
k∈Nj

√
Lrd

−α2

jk,g

∣∣∣2}
(a)
≈ Lsd

−α0
sg E{|hsg|2}+ E

{
Lr

∣∣∣∑
j∈Φ

|Nj |
√

d−α2
j,g

∣∣∣2}
= Lsd

−α0
sg E{|hsg|2}+ LrE

{∑
j∈Φ

∑
i∈Φ

|Nj ||Ni|
√
d−α2
j,g d−α2

i,g

}
= Lsd

−α0
sg E{|hsg|2}+ LrΞ1 + LrΞ2, (18)

where (a) follows from that we assume the distances from all
serving LEO satellites in a given orbit to the GEO satellite
are nearly identical, by considering cos θjm → 1. For instance,
if we take θm = π

6 and rj =
4
3RE (the maximum LEO orbit

radius), then using (1), we find that cos θjm ≈ 0.990.
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Ξ3=E
{
|Φ|

}
E
{ ∑

k∈Nj

Lr(R
2
g + r2j − 2Rgrj cosβ)

−α2/2

1 + Ls(rj −Re)−α1 |hjk|2

}
=λ∆HE

{
N(1− cos θjm)

2
Eh

{
Lr(R

2
g + r2j − 2Rgrj cosβ)

−α2/2

1 + Ls(rj −Re)−α1 |hjk|2

}}
(26)

For the denominator of γ̄ in (17), by using djk,g ≈ dj,g =√
R2

g + r2j − 2Rgrj cosβ, we have that

E
{∑

j∈Φ

∑
k∈Nj

Ljkd
−α2

jk,gAjk

}
≈ Ξ3. (19)

Substituting (18) and (19) into (17), we can derive (12).

APPENDIX II: PROOF OF COROLLARY 1

We use the one-dimensional HPPP with intensity λ to model
the radius of the LEO orbits, so the PDF of rj is given by

frj (x) =
1

∆H
, for rj ∈ [Hl +RE , Hu +RE ] (20)

where ∆H = Hu −Hl denotes the length of LEO orbits.
The main derivation of Corollary 1 is to calculate Ξ1, Ξ2

and Ξ3 in Theorem 1 for HPPP and Rician-Shadowed fading
channels. In an HPPP, we have the facts: i) the number of
LEO orbits |Ψ| and the radius of an arbitrary LEO orbit rj are
independent; ii) |Nj | and dj,g are independent given rj ; iii)
|Nj | and |Ψ| are independent; iv) |Ψ| follows from a Poisson
distribution with the mean of λ∆H . So we can write Ξ1 as

Ξ1 = EΨ

{∑
j∈Φ

E{|Nj |2
∣∣Ψ}d−α2

j,g

}
(21)

(a)
= EΨ

{∑
j∈Φ

(
N2 (1− cos θjm)2

4
+N

(1− cos2 θjm)

4

)
d−α2
j,g

}
= E{|Ψ|}E

{(
N2 (1− cos θjm)2

4
+N

(1− cos2 θjm)

4

)
d−α2
j,g

}
,

where (a) is due to the fact that |Nj | follows from a Binomial
distribution with the success probability of (1 − cos θjm)/2
(cf. Proposition 1). Considering that E{|Ψ|} = λ∆H and
substituting the PDF of rj into the above, we can derive (13).

For Ξ2, considering the facts i), ii) and iii), we have that

Ξ2 = EΨ

{
I{|Φ| ≥ 2}|Φ|(|Φ| − 1)E2

{
|Nj |d−α2/2

j,g

∣∣Ψ}}
=E{I{|Φ| ≥ 2}|Φ|(|Φ| − 1)}E2

{
1− cos θjm

2N−1
d
−α2

2
j,g

}
. (22)

Considering the fact iv), we have that

E {I{|Φ| ≥ 2}|Φ|(|Φ| − 1)}

=

∞∑
n=2

n(n− 1)Pr {|Ψ| = n} =

∞∑
n=0

n(n− 1)Pr {|Ψ| = n}

= E{|Ψ|(|Ψ| − 1)} = E{|Ψ|2} − E{|Ψ|} = λ2∆2
H . (23)

Substituting (23) and the PDF of rj into (22), we get (14).
For Ξ3, considering the facts i) – iv), we can easily derive

(26), as shown at the top of this page. Substituting the PDF of
rj into (26) yields (15). The derivation of E{|hsg|2} directly
follows from [22, Prop. 5.1].
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