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Abstract—The rapid advancement of deepfake technology has
raised significant concerns about the authenticity of digital media
and its potential misuse. While much progress has been made
in developing methods to detect whether a video is fake or
not, a critical question remains: Can we go one step further?
What additional information can be derived once a deepfake is
identified? Beyond merely flagging manipulated content, under-
standing the source of the manipulation holds significant value
for forensics and investigation. This paper addresses one aspect
of this challenge by demonstrating how to recover information
from the driving video, i.e., the input video guiding the deepfake
generation, to identify the person acting in the driving video
(suspected driver). By learning facial expressions and movements
unique to a suspected driver, we can identify which deepfake
has been generated using videos of the suspected driver in a
pool of deepfakes. While the current limitation of this work
implies having a large quantity of data concerning your suspected
identity, this work proves the feasibility of deducing information
on driving videos directly from the deepfakes. Code available at:
https://github.com/Thiresias/BRT-driver-identification

Index Terms—Deepfake, biometrics, media forensics, behav-
ioral analysis

I. INTRODUCTION

Research into synthetic media generation has witnessed
unprecedented growth in recent years. Since the advent of
Generative Adversarial Networks (GANs) [13] and, more
recently, with Diffusion Models (DMs) [16], the number of
fake media online has skyrocketed. Websites and platforms
specializing in synthetic content generation have emerged,
offering tutorials, tools, and software that enable even non-
experts to create convincing deepfakes. Despite their be-
nign applications in the entertainment industry, they have
increasingly been associated with malicious purposes. They
can facilitate misinformation campaigns, damage personal and
professional reputations, and enable sophisticated scams, as
evidenced by recent high-profile incidents [27]. The potential
for deepfakes to be weaponized in criminal activities, such as
identity theft or fraud, remains a pressing issue that is still
underestimated in its full scope. In particular, facial deepfakes
(e.g., Face Swap/Face Reenactment) are more likely to be used
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Fig. 1. In the cat-and-mouse game between the generation and detection of
deepfakes, we present a new task of deepfake forensics: Identifying the person
acting in the driving video.

with malicious intent because they allow the attacker to ”steal”
someone else’s identity, creating authenticity issues.

Deepfake videos become harder and harder to differentiate
from real content. Many efforts are being made to develop
tools to differentiate AI-generated content from real content.
On the one hand, new laws are promulgated, asking content
providers to label fake content as generated using AI (e.g.,
with the European AI Act). On the other hand, research is
conducted to develop tools to automatically detect and label
videos as fake or not. Such methods rely on learning any
traces of manipulations found in the fake videos. Despite the
recent progress in forgery detection, state-of-the-art deepfake
detectors struggle to obtain good generalization performances
to unseen generators. Generation always seems to be one
step ahead of detection. However, generation and detection
do not exactly address the same objectives. While generation
focuses on learning the biometric features of the target to
create realistic deepfakes, detection aims to identify any type
of manipulated content, regardless of the target’s identity.

To fill this gap, a part of the research community focuses
its effort on Person Of Interest (POI) Deepfake detection.
Unlike previous methods, the goal is to find inconsistencies
in the biometric information of a POI. Compared to traces
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Fig. 2. Summary of our approach: From a set of deepfakes using different
driver masters, we determine if a suspected identity is effectively driving the
deepfake based on facial behavior.

of forgery, the analysis of the physical attributes and the
behavioral signature is not entirely removed by common image
processing post-processing, such as compression.

Finally, one question remains: What can we do after labeling
fake videos? Just as biometry refers to the elements that allow
the identification of a biological person, or hardwaremetry [12]
refers to the identification of the camera that took a certain
image, we use deepfakemetry to denote all the clues that
characterize a deepfake video (source image, driving video,
architecture of the neural network, ...).

In this paper, we address the problem of driver identifica-
tion to demonstrate that we can extract information concerning
the driving video used to generate a deepfake. Because Face
Swap and Face Reenactment rely on the use of a driving
video to generate their deepfakes, the head-pose, the eye gaze,
and the facial expressions are out of the distribution of the
behavioral signature of the identity portrayed in the video.
A visual explanation of the task is provided in Figure 2.
Therefore, if we have prior knowledge of the puppeteer, are we
able to detect and unmask deepfakes that have been generated
by this person?

POI’s deepfake detectors, based on facial behaviour anal-
ysis, can recognise when a person’s behavioural signature is
or is not present in a video. Therefore, these models should
perfectly fit this novel task. Instead of learning the behavior
of the target of the deepfake, we aim to learn the behavior of
the attacker to recognize the deepfakes made by this identity.

The contributions are the following:
• We improved an existing pipeline to learn the facial

behavior of a deepfake impersonator so that we learn only
the facial dynamics without leaking information from the
physical appearance.

• We proved that this upgraded pipeline allows us to
recognize the hidden driver behind a deepfake video.

The paper is divided as follows: In Section II, we will
present the state of the art of face swap and face reenactment,

alongside recent progress in deepfake detection and other
research that started to deal with going beyond the simple
detection of deepfakes. In Section III, we will present our
new approach by upgrading an existing pipeline, and we will
present the task of driver identification. In Section IV, we
will show that our approach can identify an attacker inside a
deepfake video. Finally, we will discuss the obtained results
and the future works in Section V.

II. RELATED WORKS

Generation: Face Swap and Face Reenactment technologies
have rapidly evolved with advancements in deep learning
and computer vision. Face swap [19]–[21] focuses on re-
placing one person’s face with another’s by identifying facial
landmarks and ensuring natural alignment. In contrast, face
reenactment manipulates a target face to mimic the expressions
or movements of a source [33], [36], [39], [42].

Tools like DeepFaceLab [29], SimSwap [4], or DeepLive-
Cam [11] enable high-fidelity face swapping. Face reenact-
ment frameworks such as First Order Motion Model [33] or
LIA [39] allow expressive control of a target face based on a
single input image.

Finally, more advanced techniques have emerged that use
diffusion models to create fully synthetic motion for a face
driven by audio input [10], [32], [34], [40]. The movements
in the deepfake are completely artificial and do not come
from any real person. Therefore, we can not expect to find
the movement of the attacker within the deepfake video. So
we will not consider these generators for our study.

Detection: The cornerstone of a good deepfake detector
is the ability to stay robust even with unseen generation
techniques. This underscores why significant research efforts
are devoted to designing detectors capable of identifying all
types of forgeries, regardless of the generation technique used
[2], [3], [8], [35], [41]. However, artifact-based detection
suffers from difficulties in generalizing to real-world scenarios.
Indeed, traces of manipulations can be caused by genuine al-
gorithms, from lossy compression to social networks pipelines
[17], [23], [24], [38].

Therefore, POI deepfake detection allows us to rely on
information other than artifacts for labeling videos: Biomet-
rics. It is defined by the National Institute of Standards
and Technology as “A measurable physical characteristic or
personal behavioral trait used to recognize the identity or
verify the claimed identity, of an applicant ” [28]. They can
be physical (facial attributes, iris, fingerprint) or behavioral
(facial mimics, specific head gestures, eye-blinking rhythm)
[18]. The process of deepfake creation involves the copying
of physical biometric attributes to match with expressions
and facial movements that do not belong to the target of
the deepfake. Analyzing mismatch in biometrics leverages
discriminative information between fake and real faces. For
example, in [9], they analyzed the mismatch between the
inner face and outer face to improve the detection of face
swaps. However, behavioral biometrics is more suitable for
detection because deepfakes do not contain the behavioral



Fig. 3. Pipeline of BRT+. We introduce a multiscale sequence extraction module and a Temporal centering layer to the existing pipeline BRT from [22].
BRT used a facial dynamic encoder from [39] on all frames of a sequence to obtain a frame-by-frame description of the head-pose, gaze direction, facial
expression, etc... Then, we feed this sequence of descriptions to a Transformers encoder that learns to produce facial behavior embeddings at the video level.
Finally, a classification head gives the final prediction (i.e., Does this behavioral signature belong to our suspected driver?).

signature of the identity displayed in the video. Furthermore,
[26] suggested that the behavioral signature could be exploited
to determine if a video is fake or not. Few works relying on
behavior analysis already exist, and they have two distinct
approaches to tackle the problem. The first strategy consists
of training a model to learn similarities between an input
video and a set of real POI reference videos [6], [7]. The
second strategy consists of training a model to learn the POI’s
behavioral signature directly from videos of the POI [1], [5],
[22] against a set of videos from other identities.

Beyond the detection of deepfakes: As stated in the
Introduction, an emerging field of research is dedicated to
identifying elements to determine the origin of a deepfake.
Many works have already been conducted in the identification
of the generator used to create deepfake images. Indeed, CNN-
generated images leave unique fingerprints based on their
architecture [37]. These digital fingerprints can be exploited
to identify the generator at the source of the deepfake [14],
[15], [25].

Regarding driver identification, no study is fully dedicated
to this task. However, Cozzolino et al. [7] have already
demonstrated the potential for forming clusters of individuals
based on the similarity of their facial movements. They
propose a deepfake detection model specifically designed to
detect deepfakes of a POI based on facial movements. Their
approach analyzes facial motions and expressions to detect
inconsistencies in how a person behaves when talking. The
model is based on a Temporal ID Network (3D-CNN) trained

using an adversarial strategy, where a 3D Morphable Model
is used to challenge and improve the detector’s robustness. In
a nutshell, their model is able to compute a similarity score
between an input video and a set of reference videos. This
similarity indicates how the facial movements of the input
video are close from those inside in the reference videos.
Therefore, their model should provide results that are better
than random in the task of driver identification.

Problem of Identity Leakage: Studies have shown that
neural networks are likely to learn the physical attributes of
people present in their training set [8]. Therefore, specific
architectures are required to disentangle information related to
physical and behavioral biometrics. A solution to this problem
already exists if we look at works on deepfake generation. In
[39], the authors propose an extra module to encode facial
dynamics disentangled from the physical attributes.

In this paper, experiments with ID-Reveal showed that
despite great performances in POI-deepfake detection and
driver identification for Face Swapping, ID-Reveal failed at
accurately identifying the driver in Face Reenactment deep-
fakes (see Section IV). These tests suggest that the drop in
performance is related to a leakage of physical attributes in
the encoding of the movements.

In the next section, we describe our approach for the task
of driver indentification.



III. METHOD

In this section, we present the methodology used to recog-
nize the driver behind deepfake videos. First, we detail the
model used to learn the facial behavior of a single individual,
leveraging gaze patterns, facial mannerisms, and head pose
signatures. Second, we will explain how this learned behavior
allows us to identify the driver in manipulated videos.

A. Behavior Recognition Transformer +

For our work, we design the improved pipeline BRT+ to
learn the facial behavior (facial expression, eye gaze, head
pose) of one single identity as in [22]. It depends on a facial
dynamic encoder from the Face Reenactment tool LIA [39],
followed by a transformer encoder that transforms the frame-
level information to a video-level description of the behavior
from the input video. The full pipeline is depicted in Figure
3.

In the following sub-section, we will detail the full archi-
tecture. The new modules and layers introduced by BRT+ are
flagged by the ”(BRT+)” mention.

1) Multiscale input sequences (BRT+): Facial behavior
encompasses the unique set of expressions, micro-expressions,
and mannerisms that characterize an individual. These be-
haviors are inherently distinctive and can serve as valuable
features for building classifiers as they provide discriminative
information about a person’s identity. However, accurately
capturing and representing facial behavior poses a challenge
due to the varying temporal dynamics of different expressions.
While some behaviors, such as eye blinks and muscle con-
traction, occur within milliseconds (high-frequency behaviors),
others, like nodding or frowning, unfold over a longer duration
(low-frequency behaviors).

To detect as many behavioral signatures as possible, we de-
signed a multiscale frame-to-sequence extraction module. Let
V = (ft0 , ...ftT ) be a full video clip, where t0 (resp. tT ) is the
time of the first (resp. last) frame of the video clip. We extract
a sequence of N frames I = (ftk , ftk+δt, ..., ftk+(N−1)δt)
where δt is a time interval chosen randomly according to
the duration and the frame rate of the video, such that
Nδt < tT − t0. For the rest of the paper, we define tk and
tl = tk + (N − 1)δt, which are respectively the first and the
last frames of the extracted sequence.

2) Encoding face dynamic: Once the input sequence is
obtained, we feed it to the facial dynamic LIA’s encoder frame
by frame.

LIA is a face reenactment algorithm that is able to re-
construct a face with a different facial expression extracted
from another picture. It suggests that LIA includes a highly
advanced encoder of facial dynamics. Furthermore, the au-
thors have shown that the encoder effectively captures facial
dynamics independently of the subject’s physical identity.
This property is particularly valuable in the context of driver
identification, as it enables the encoding of all the facial
movements without being influenced by the individual’s visual
appearance in the video.

In summary, for an input sequence I = (ftk , ..., ftl), we
obtain H = (htk , ..., htl), a frame-by-frame description of the
facial dynamics.

3) Temporal centering layer (BRT+): However, some in-
formation regarding the physical appearance might remain in
each embedding. To ensure we get rid of the maximum of
information linked to the physical appearance, we center the
embedding along the time axis. That way, we force the model
to learn temporal variation instead of average information.

From a sequence of facial dynamics H we remove the
average temporal information to get H̄ = (h̄tk , ..., h̄tl) =
(htk − h̄, ..., htl − h̄) where

h̄ =
1

T

N−1∑
j=0

htk+jδt (1)

This is a crucial step to remove as many physical attributes
as possible. Not doing this step induces an important decrease
in performance for the task of driver identification for Face-
Reenactment deepfakes. The weights of the facial dynamic
encoder are frozen during the training.

4) Gathering video-level information: The sequence of
embeddings h provides only a description of facial dynamics
across all frames in the sequence, without explicitly lever-
aging temporal information. We must incorporate temporal
dependencies to effectively learn the behaviors associated with
one identity, For this purpose, we use a Transformer encoder,
which excels at capturing relevant temporal patterns within
our sequence of embeddings.

Outperforming traditional recurrent models that process
sequences step-by-step and often struggle with long-range
dependencies, Transformers leverage attention mechanisms to
analyze all time steps simultaneously. It leads to a better rep-
resentation of the relationships between the different dynamics
of the face, making them well-suited to learn behaviors specific
to an individual.

We encode the video-level information as Zheng et al. did
in [43]. They used a learnable [CLS] token to encode the class
of the sequence. After the training of the temporal transformer
encoder, the encoding of the [CLS] token by the Transformer
will embed the facial behavior of the sequence.

5) Classification, loss, and score at the video-level.:
The last part of the pipeline consists of a simple Multi-
Layer Perceptron, composed of ReLU activation functions
and dropout layers to improve classification generalization for
unseen videos.

For the classification task, we use a simple Binary Cross-
Entropy loss. For a single observation/prediction pair (y/ŷ),
the binary Cross-Entropy loss is defined as:

LBCE(y, ŷ) = −( y.log(ŷ) + (1− y).log(1− ŷ) ) (2)

The backpropagation will update the weights of both the
Transformer encoder and the classifier.

Finally, to evaluate our model, we use the following guide-
lines: For one video clip V, we randomly extract K sequences.



Fig. 4. Scheme of the database for one identity. We first generate a pool
of deepfakes made with all the different identities from CDFv2 (on the left).
Then, we add deepfakes of CDFv2 identities driven by videos from our list
of known driving identities (on the right). For clarity, only Face Reenactment
is illustrated in this figure.

In consequence, the network will return K predictions. The
likelihood of a video containing the facial behavior of the
suspect identity is defined as the average score obtained by
the K sequences. Once all videos have their score, we can
compute the usual classification metrics as defined in the next
subsection.

B. Driver identification task

The task is described in Figure 2. After training one model
per suspected identity, we test our approach at accurately
identifying the videos driven by the suspected identity. Specif-
ically, we assessed whether each trained model could correctly
classify deepfakes in which the suspected identity was used as
the driver, discriminating them from other manipulated videos.

Each of our three specialized models was tested on the
full pool of deepfake videos generated from the Celeb-DF-v2
dataset. This pool contains a mixture of deepfakes, including
those where the suspected identity was the driver and those
featuring other random identities. To evaluate performance, we
ran each model sequentially on its corresponding test set and
measured its ability to correctly classify deepfakes driven by
our suspected identity against others.

To quantify our results, we computed the following classi-
fication metrics: ROC AUC and Precision-Recall (PR) AUC.
ROC AUC evaluates the discriminative power of our models,
i.e., their ability to discriminate between deepfakes driven by
the suspected ID and deepfakes driven by other people. Unlike
accuracy, ROC AUC is better suited for imbalanced datasets.
A random (resp. perfect) classifier is expected to have a ROC
AUC of 50% (resp. 100%) PR AUC is a metric that is sensitive
to samples predicted positive with a high confidence score; it
controls the precision/recall balance for different classification
thresholds. It is informative to know if we can trust a score
when the confidence score is high. It is also well-suited when
there is a class imbalance, which is the case in this study. Also

in practice, compared to the number of all existing deepfakes,
the number of deepfakes driven by a specific identity is not
significant. A random (resp. perfect) classifier is expected to
have a PR AUC equal to (100 × r)% (resp. 100%), with r
being the ratio of positive samples in the dataset.

TABLE I
NUMBER OF REAL VIDEOS PER SUSPECTED IDENTITY USED TO GENERATE

THE TRAIN AND TEST SETS.

Number of videos
Train Test

Belkacem 571 132
Obama 168 29
Trump 153 30

TABLE II
NUMBER OF FAKE VIDEOS VIDEOS GENERATED FOR THE TEST SET. FS

AND FR MEAN RESPECTIVELY FACE SWAP AND FACE REENACTMENT. (-)
AND (+) REFER TO THE NEGATIVE AND THE POSITIVE CLASS OF EACH

TEST SET.

Test set Source ID Driver ID FS FR

Belkacem VS CDF CDF CDF (-) 132 536
Belkacem (+) 58 130

Obama VS CDF CDF CDF (-) 132 536
Obama (+) 59 29

Trump VS CDF CDF CDF (-) 132 536
Trump (+) 46 30

IV. RESULTS

In this section, we first describe the construction of our
database, which consists of real videos of different suspected
identities (only 3) and other individuals. Second, we present
and analyze the results of our driver identification experiments,
where we evaluated the ability of our models to correctly
recognize the driver behind deepfake videos. We report key
performance metrics, including ROC Area Under the Curve
(ROC AUC) and Precision-Recall AUC (PR AUC) for two
different types of deepfake manipulations: face reenactment
and face swap. Table II reports the number of videos generated.
The face swaps were generated using the Roop FaceSwap
generator [31]. The reenacted faces were generated using
FOMM [33].

We compared our approach with BRT [22] and ID-Reveal
[7]. Even if these last methods have been designed for the
deepfake detection task, they are the closest works we can
derive for driver identification based on facial movements.

Table III summarizes the classification performances of our
models for each suspected ID.

A. Database

To train and evaluate our models, we constructed a dataset
comprising both real and deepfake videos. Our goal is to train
multiple distinct models, each specialized in recognizing the
facial behavior of a specific identity while distinguishing it
from general facial behaviors observed in other individuals.
We took the real videos of [22], which consists of tv/radio in-
terviews, conferences and public addresses from 3 politicians;



Fig. 5. ROC curves (on top) and Precision-Recall curves (on bottom)
on Face-Reenactment subset only for 3 suspected IDs. The blue, orange,
and green curves refer respectively to ID-Reveal, BRT, and BRT+ model
performances on Face Reenactment. The red dotted line corresponds to the
expected curve of a random classifier.

The former French minister Najat Vallaud-Belacem, and two
American presidents; Barack Obama and Donald Trump. Table
I shows how many video clips were gathered by suspected
drivers.

1) Training Data: For each identity, we collected a set
of real videos showcasing their natural facial expressions,
gaze behavior, and head pose dynamics. To provide a diverse
contrast during training, we supplemented these videos with
approximately 1,000 real videos from the FaceForensics++
dataset [30]. This combination enables the model to learn the
unique facial behavior of our suspected drivers against a cohort
of varied individuals, improving its ability to generalize and
differentiate between identities.

2) Testing data: To evaluate our approach, we constructed
a test set consisting of a pool of deepfake videos generated
from the CelebDFv2 dataset [21]. Using 536 real videos from
CelebDFv2, we applied Face Swaps and Face Reenactments
techniques to synthesize manipulated videos where different
identities were swapped. Within this pool of deepfakes, we
carefully embedded deepfakes generated with each suspect as
the driving identity.

For testing, we ran our trained model to the pool of
deepfakes driven either by Celeb-DF-v2 IDs or our suspected
driver, systematically verifying whether the model could cor-
rectly classify deepfakes where the suspected driver was
indeed the driver versus deepfakes involving other individuals.
This process resulted in multiple test sets, one for each identity,
allowing us to assess the effectiveness of our approach in
identifying the driver across different manipulated videos.

B. Global performances

Overall, BRT+ results demonstrate a strong performance
across both face-reenactments and face swaps tasks, with AUC
values consistently exceeding 80%.

Fig. 6. ROC curves (on top) and Precision-Recall curves (on bottom)
on Face-Reenactment subset only for 3 suspected IDs. The blue, orange,
and green curves refer respectively to ID-Reveal, BRT, and BRT+ model
performances on Face Swap. The red dotted line corresponds to the expected
curve of a random classifier.

As mentioned in Section III-B, a random classifier is
expected to have a PR AUC equal to the ratio of positive
samples. Therefore, for a random classifier, the baselines are
the following:

• For Face Reenactment experiment: the baseline of PR
AUC is 0.200, 0.051, and 0.053 for N. Vallaud-Belkacem,
B. Obama, and D. Trump, respectively. It represents the
area under the curve of the red dotted line in Figure 5
PR curves.

• For Face Swap experiment: the baseline of PR AUC is
0.305, 0.309, and 0.258 for N. Vallaud-Belkacem, B.
Obama, and D. Trump, respectively. It represents the area
under the curve of the red dotted line in Figure 6 PR
curves.

In summary, our model is able to differentiate deepfakes
made with a driving video of the suspected identity and
deepfakes driven by another. However, the low Precision-
Recall AUC indicates that driver identification is still far
from ready for real-world application, as high-confidence
predictions cannot yet be fully trusted.

C. Performance per generators

Comparing the two deepfake generation techniques, we
observe that:

With BRT+, we obtain similar ROC AUC on Face Swap
and Face Reenactment, outperforming BRT and ID-Reveal at
finding the driver identity on Face Reenactment deepfakes.
The performance of BRT and ID-Reveal on face reenactment
data is close to that of a random classifier. We hypothesize that
this is due to the Identity Leakage phenomenon described in
Section II, as face reenactments preserve only the behavioral
signature and contain no physical information about the driver.
This hypothesis is further supported by the observation that



BRT and ID-Reveal are more effective with Face Swap videos
(see Figure 6), surpassing BRT+ in both ROC and PR AUC.

Another explanation could be that face swap better preserves
the movements of the driver than face reenactment. Where
Face Swap only alters physical attributes of the inner face,
Face Reenactment generates a video where all frames are close
from the source image, and the semantics of the movement
are not fully retained in the final deepfake. This would align
with a key finding from [26], which states: ”synthetic videos
[...] are seen as less real and less engaging than the original
source video.”. The authors conducted subjective tests where
participants evaluated the naturalness of a person’s talking
behavior in real videos versus deepfakes created with FOMM
[33]. There is a lack of movement amplitude and liveliness in
the deepfakes created with Face Reenactment, suggesting that
the facial movement is not perfectly transferred.

In both cases, BRT+ results suggest that our method relies
on behavioral biometrics for driver identification, as it achieves
similar ROC-AUC performance on both face swap and face
reenactment data. Thanks to the temporal centering layer,
any remaining traces of physical identity — which can be
assumed to remain constant over a few seconds — as well as
individuals’ default facial expressions, are not learned during
the training phase.

TABLE III
VIDEO-LEVEL ROC AUC AND PRECISION-RECALL AUC FOR THE TASK
OF DRIVER IDENTIFICATION FOR FACESWAP AND FACE-REENACTMENT.

COMPARISION BETWEEN BRT+ AND ID-REVEAL.

Face reenactment
ID-Reveal BRT+ (our)

IDs ROC AUC% PR AUC% ROC AUC% PR AUC%
N.V-B 60.26 26.35 81.23 56.14
B.O 51.60 5.00 87.42 48.13
D.T 69.88 11.79 88.19 21.62

Face swap
ID-Reveal BRT+ (our)

IDs ROC AUC% PR AUC% ROC AUC% PR AUC%
N.V-B 88.44 81.09 81.77 63.76
B.O 90.87 85.17 85.42 78.92
D.T 98.55 96.45 91.94 82.77

D. Performance per IDs

We also noticed differences between the classification per-
formances for the different identities. For example, the model
trained on Donald Trump videos always obtains a better AUC,
whatever the generator. We suspect that Donald Trump’s facial
mimics are more expressive than those of Barack Obama or
Najat Vallaud-Belkacem. Therefore, an individual with a very
specific set of mannerisms and behavioral signatures is more
likely to be identified when one of their videos is used to drive
a deepfake. This assumption must be verified with a bigger
dataset containing more identities.

V. DISCUSSION AND CONCLUSION

In this work, we introduced driver identification, which aim
at identifying the driver behind deepfake videos. To do so,

we propose a new pipeline based on the analysis of the facial
behavior of a suspected person. The main challenge of this
task lay in finding a tool to extract the facial movements while
preventing the leakage of the physical appearance. Our results
demonstrate that the proposed method is able to discriminate
deepfakes generated using a specific identity as the driver
from those driven by other identities. Our method retrieves
information about the driver as well for Face Swap and Face
Reenactment

Performance varies across different identities, with strong
mannerisms being the easiest to recognize, as evidenced by
consistently higher AUC values. This suggests that individuals
with highly distinct facial mannerisms are more easily unveiled
in deepfake videos, reinforcing the idea that behavioral signa-
tures play a crucial role in driver identity attribution.

Overall, our findings support the feasibility of driver identi-
fication as a novel tool for deepfake forensics, providing new
insights into understanding and attributing deepfake content
based on facial behavior dynamics. While driver identification
shows promise, its real-world applicability remains limited
due to the identity-dependent nature of our models, as it is
impractical to maintain a comprehensive collection of video
recordings for all possible identities.

Future research could focus on determining the minimal
amount of video recordings needed to effectively learn an
individual’s facial behavior. This would help optimize driver
identification for practical applications by reducing data re-
quirements while maintaining reliable performance. Investigat-
ing how different recording conditions (e.g., lighting, camera
angle, and emotional expressions) affect the learning process
could further refine this approach.

Additionally, another promising direction is the develop-
ment of a foundation model capable of encoding facial dynam-
ics without requiring separate training for each identity. Such a
model could leverage large-scale datasets to learn generalized
facial behavior patterns while allowing for efficient adaptation
to specific identities. This would significantly enhance the
scalability of driver identification, making it more applicable
in real-world forensic scenarios where pre-recorded data of all
individuals may not be available.
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