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Abstract
Most approaches to voice anonymisation focus predominantly
upon the obfuscation of timbral attributes. Approaches to
evaluation which use traditional automatic speaker verification
(ASV) systems such as ECAPA-TDNN can result in the over-
estimation of anonymisation performance since they too focus
on timbral cues. In this paper, we show that the use of residual
non-timbral attributes, e.g. related to prosody, rhythm, style and
accent which also carry information related to the voice iden-
tity, can still be used to re-identify the speaker. When timbral
cues are compromised, non-timbral cues can provide more re-
liable estimates of anonymisation performance. We also show
that, when trained to focus on non-timbral attributes, a WavLM-
based model outperforms the baseline ECAPA-TDNN model
when operating upon anonymised speech. Using the latter, the
equal error rate for the best 2024 VoicePrivacy Challenge base-
line is overestimated by 32% relative. Ultimately, we hope to
provide a fresh perspective, laying the foundation for more ro-
bust and comprehensive evaluations of voice anonymisation and
highlighting the importance to future anonymisation systems of
obfuscating non-timbral information.
Index Terms: voice privacy, anonymisation, speech disentan-
glement, non-timbral, voice attributes

1. Introduction
Given that voice recordings contain sensitive information which
can be used to identify individuals or infer personal traits [1],
the rapid growth of voice-activated services has amplified pri-
vacy concerns. Voice anonymisation techniques have hence
been developed to sanitise speech recordings of the voice iden-
tity thereby preventing remaining sensitive content from being
linked to the original speaker. At the same time, specific voice
services and applications demand the preservation of other lin-
guistic and paralinguistic attributes [2].

Most anonymisation systems are based upon the use of
distinct representations of speech [2], one usually a form of
speaker or voice representation and at least one more used as
an auxiliary representation of other speech attributes, e.g. the
linguistic content, prosody, rhythm, accent etc. The general ap-
proach to anonymisation then involves the manipulation or sub-
stitution of the speaker representation followed by its recom-
bination with the auxiliary representation to generate a voice-
anonymised output.

The common underlying assumption is that voice identity
information is contained predominantly in the speaker repre-
sentation. Upon its substitution with the representation of an-
other speaker, the output speech signal should be fully sanitised
of any cues which could be utilised to re-identify the original
speaker. If this was the case, then such approaches would re-

sult in perfect voice anonymisation. In reality, however, some
voice identity information resides also in the auxiliary repre-
sentation. Anonymisation performance is then suboptimal and
residual voice information can still be used to re-identify the
original speaker, albeit to a lesser degree.

What precisely constitutes residual voice information is dif-
ficult to determine. If one assumes that the dominant source
of voice information in the speaker representation is related
to timbre, it is not a stretch to assume that voice information
contained in the auxiliary representation is predominantly non-
timbral, e.g. prosody, rhythm, style and accent, etc. Setting
aside for now the debatable distinction between the respective
timbral and non-timbral content of speaker and auxiliary rep-
resentations [3, 4, 5], the key to improving anonymisation per-
formance lies in the sanitisation of voice information contained
in the auxiliary representation. With this longer-term goal in
mind, we have hence set out to determine the degree to which
non-timbral and other sources of voice information can be used
to re-identify the original speaker post-anonymisation and what
is the potential to improve anonymisation performance through
their obfuscation.

We propose the use of variants of the popular ECAPA-
TDNN [6] and WavLM [7] automatic speaker verification
(ASV) models which are retrained specifically to focus upon the
use of non-timbral information and report their use for the eval-
uation of anonymisation performance. Our study explicitly fo-
cuses on disentangled embeddings in order to isolate and anal-
yse the contribution of non-timbral cues to speaker identity. We
show that current approaches to evaluation exaggerate anonymi-
sation performance and that the degree of voice identity infor-
mation residing in non-timbral cues is considerably higher than
some might think. Our retrained systems designed to focus on
non-timbral information can be used to re-identify the speaker
when the usual timbral cues are unreliable. The findings provide
new insights for future research in anonymisation in addition to
evaluation.

The main contributions of this work are as follows.

• We demonstrate that non-timbral cues (e.g., prosody, rhythm,
speaking style, and accent) can still be used to re-identify
speakers after anonymisation.

• We propose ASV models retrained specifically to focus on
non-timbral cues.

• We show that these models outperform baseline ECAPA-
TDNN systems in all attack scenarios, revealing weaknesses
in existing anonymisation evaluations.

• Our WavLM-based systems outperform the top VoicePrivacy
Attacker Challenge systems on all anonymisation systems ex-
cept one.

• We highlight the importance of obfuscating non-timbral cues
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in future anonymisation systems and advocate for the consid-
eration of non-timbral cues in future evaluations.

The remainder of this paper is organised as follows. In Sec-
tion 2 we provide a review of relevant work in the literature and
context for our research. In Section 3 we describe the design
of ASV systems which focus upon the use of non-timbral cues
to infer the voice identity and in Section 4, the experimental
setup. We present results for some anonymisation systems in
Section 5 and an analysis of the findings and implications in
Section 6. Conclusions and the directions of our ongoing work
are presented in Section 7.

2. Related Work
2.1. VoicePrivacy Challenge and Evaluation

The bulk of related work has been performed within the scope
of the VoicePrivacy initiative founded in 2020 [8]. The first
challenge was held the same year [9], with subsequent editions
being held biennially since. Six baseline anonymisation sys-
tems were made available to the community for the most recent,
third edition, with three among them (B3-B5) being competitive
with the state of the art at the time. Baseline B3, a combina-
tion of automatic speech recognition (ASR) and text-to-speech
(TTS) synthesis, uses a generative adversarial network (GAN)
to generate pseudonymised speaker representations in the form
of speaker embeddings [10]. B4 leverages a neural audio codec
to obfuscate the voice identity [11], while B5 incorporates vec-
tor quantization to enhance the disentanglement of linguistic
and voice representations [12].

Through the VoicePrivacy Challenge (VPC), different met-
rics have been proposed for evaluation [2]. The word error rate
(WER) and the unweighted average recall (UAR) are used to
evaluate utility preservation, reflecting respectively the preser-
vation of linguistic content and emotional state. That for as-
sessing privacy, which is the primary consideration in our work,
is the equal error rate (EER) which reflects the potential to re-
identify the original speaker using an ASV system. The de-
fault evaluation scenario involves the so-called semi-informed
attack model: in order to reduce domain-mismatch, and hence
to strengthen the attack, the ASV system used for EER estima-
tion is itself trained using data which is anonymised using the
same anonymisation system under test [2].

2.2. Limitations of Existing Evaluation and ASV Models

Even if current anonymisation systems achieve high EERs,
it is acknowledged in the community that EER estimates
are themselves of questionable reliability. In the words of
Bäckström [13], ‘privacy (here, anonymisation) is only as good
as the adversarial model’. Use of a weak adversarial/attack
model will result in an exaggerated estimate of anonymisation
performance; reliable estimates can only be made using the
strongest possible model [14].

The ASV system provided by the VPC organisers is based
upon the adaptation of the SpeechBrain [15] implementation
of the long-established ECAPA-TDNN model [6]. Based on
time-delay neural networks and channel attention mechanisms,
it is used for the extraction of robust speaker embeddings which
are scored using cosine similarity. It is however acknowledged
that the ECAPA-TDNN model is not the strongest possible [7].
Even though it is retrained using anonymised data, the architec-
ture was designed to operate upon unprotected speech data, not
data where the usual cues might be compromised. An adversary
seeking to re-identify the original speaker post-anonymisation

might fare well to use alternative cues, e.g. non-timbral cues
and those extracted using a stronger ASV model.

WavLM [7] is one such stronger model. Built on a self-
supervised learning paradigm, WavLM is built on a Transformer
backbone, making it particularly interesting for analyzing non-
timbral characteristics in speaker privacy evaluations. Thanks
to its architecture, WavLM effectively captures long-range de-
pendencies, contextual interactions, and non-timbral features
such as prosody, accent, and speaking style, all attributes of
the voice identity [16]. Notably, it has been shown to outper-
form ECAPA-TDNN using benchmarks such as the VoxCeleb1
database [7] and is hence a stronger candidate ASV system in
our work for the evaluation of anonymisation performance.

2.3. Disentanglement and Vulnerabilities in Anonymisation

Previous studies have revealed the vulnerabilities in anonymisa-
tion systems, especially through analysis of disentangled speech
representations. These representations separate speaker identity
from other speech aspects, allowing targeted manipulation or
analysis. Early foundational work by Williams and King [17]
introduced methods to disentangle style factors from speaker
embeddings, enabling more interpretable representations. This
was extended by Williams et al. [18] using a VQ-VAE to sepa-
rate phone and speaker information. These studies suggest that
disentangled speech representations could be used for the re-
identification of anonymised speakers. While disentanglement
remains challenging [19], [20] introduced the Binary-Attribute-
based LR estimation approach (BA-LR) to disentangle speaker
voice characteristic into so-called BA-vectors, a vector of n
binary attributes. Voice conversion systems such as Speech-
Split [21] and AutoVC [22] enable aspect-specific voice manip-
ulation by disentangling speech into components such as con-
tent, rhythm, pitch, and timbre. Other works focus on reversibil-
ity or identity leakage. Champion et al. [23] demonstrated
the vulnerabilities of voice anonymisation systems using align-
ment techniques like Wasserstein-Procrustes analysis to match
x-vectors [24] before and after anonymisation. Panariello et
al. [25] highlighted weaknesses stemming from vocoder drift,
which refers to the substantial difference between an input x-
vector and the x-vector extracted from the vocoder output, in-
dicating that even pseudo-anonymised x-vectors can leak voice
information.

2.4. VoicePrivacy Attacker Challenge

The VoicePrivacy Attacker Challenge [26] was launched in late
2024 to foster further progress in attack models and evalua-
tion. The objective was to develop stronger attacker systems
against voice anonymisation techniques as a means to improve
evaluation reliability. A summary of these systems is presented
in [27]. A set of anonymisation systems were selected as attack
targets including the three competitive baselines (B3, B4, B5)
in addition to four systems developed by the VoicePrivacy 2024
Challenge participants (T8-5, T10-2, T12-5, and T25-1).

Xinyuan et al. [28] developed the T8-5 system, an ad-
mixture based technique enabling flexible adjustments to the
privacy-utility trade-off, also achieving an EER of over 40%.
Yao et al. [29] proposed the T10-2, a serial distillation approach
to process distinct representations of spoken content, voice, and
emotion, achieving an EER exceeding 40%. T12-5 [30] is based
on B5, with additional pitch smoothing. T25-1 [31] proposed a
disentanglement of content (VQ-BN as in B5) and style (global
style token - GST) features and emotion transfer from target
speaker utterances. Despite these impressive results, EERs re-
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main below 50%, the target which would suggest that no voice-
dependent information remains [11, 12, 29].

Diverse attacker systems emerged from the VoicePrivacy
Attacker Challenge. One of the best attacker systems proposed
by Zhang et al. [32] combines data augmentation enhanced fea-
ture representations and a speaker identity difference enhanced
classifier to improve ASV performance. They showed that the
EER for the best baseline (B5) falls from 34% to 27% for Lib-
riSpeech test data, a reduction of 21% relative. Another top-
performing system proposed by Lyu et al. [33] adapts a pre-
trained ResNet34 ASV model [34] with a LoRA technique [35]
using anonymised data. This approach reduces the EER for B5
by 26% relative. Li et al. [36] proposed SpecWav-Attack, a
system which leverages wav2vec2.0 for feature extraction, in-
tegrates spectrogram resizing and incremental training to im-
prove attack performance. The approach proposed by Mawalim
et al. [37] is based upon the fine-tuning of the TitaNet-Large
model [38] with anonymised data achieves a reduction of 21%
relative EER for B5. [39] used alternative distance metrics and
voice kNN-VC-based voice normalisation to attack anonymi-
sation sytems. Tomashenko et al. demonstrate the potential of
leveraging phoneme duration, a non-timbral attribute estimated
from the analysis of speech temporal dynamics to re-identify
anonymised speakers [40].

2.5. Limitations and Gaps Addressed in This Work

In summary, current anonymisation evaluation relies on ASV
models not optimally suited for protected data, and often un-
derestimates residual speaker information embedded in non-
timbral cues. Although recent attacker systems have demon-
strated substantial progress, few explicitly target disentangled
representations or non-timbral characteristics. Our work builds
on these insights by using stronger ASV systems retrained to
exploit such cues, thereby providing a more realistic evaluation
of anonymisation robustness.

3. Influence of non-timbral cues
In this section we describe a set of ASV systems which focus by
design on global speaker characteristics, i.e. entangled timbral
and non-timbral attributes, and their adaptation to focus more
specifically on non-timbral cues. We also describe the experi-
mental setup and the three different attack models used in our
experiments.

3.1. ASV baselines

To enable comparisons to other results reported in the litera-
ture, we use the reference ECAPA-TDNN system provided by
the VPC organisers. It is henceforth referred to as E-VPC.
We also trained two additional ASV baselines, E-SPK and W-
SPK based respectively on ECAPA-TDNN and WavLM archi-
tectures. The suffix SPK denotes systems which model global
speaker characteristics. In contrast to E-VPC, which is trained
using the LibriSpeech train-clean-360 (LS360) dataset, E-SPK
is trained using the Voxceleb1&2 datasets and with the modest
adjustments to the training parameters described in Section 4.
Drawing inspiration from [16], we also explored the potential
of the WavLM model [7]. Its use is authorised in the evalua-
tion plans for both the 2024 VoicePrivacy Challenge [2] and the
2024 VoicePrivacy Attacker Challenge [26]. These baselines
provide reference points to evaluate the added value of focusing
on non-timbral cues.

3.2. Adaptation to non-timbral characteristics

We adapted both ASV baselines to focus on the use of non-
timbral (NT) characteristics giving E-NT, based on ECAPA-
TDNN and W-NT, based on WavLM. Both systems are trained
using datasets converted by a voice conversion (VC) process in
order to mask the timbral characteristics of the original speaker
while preserving, to varying degrees, non-timbral characteris-
tics such as prosody, rhythm, style, and accent. The VC pro-
cess is implemented using the Retrieval-based Voice Conver-
sion (RVC) framework1 depicted in Figure 1. This framework
is designed to retain the temporal structure of the source speech:
by using SSL features that preserve the number of frames and a
training process that minimises misalignment, the output signal
is naturally synchronised with the input. This alignment ensures
that non-timbral aspects such as rhythm and speaking rate are
preserved in the converted signal. To visually confirm this syn-
chronisation, Figure 2 shows an example of voice conversion,
where a source utterance from VoxCeleb2 is converted to a tar-
get speaker identity from the LS360 dataset. The spectrograms
of the source and converted waveforms are closely aligned in
time, demonstrating the preservation of temporal structure.

Training is nonetheless performed using original speaker
labels. NT variants hence provide a controlled environment to
evaluate the influence of non-timbral characteristics.

3.3. Attack models

We report experiments performed using the usual three VPC-
defined attack models described in [2, 9, 41], also illustrated in
Figure 3. All three models involve comparisons between a pair
of utterances, an original or anonymised enrolment utterance
and an anonymised trial utterance. Anonymisation performance
is evaluated in terms of the ASV EER.

For the ignorant (I) attack model [9], the adversary com-
pares original enrolment and anonymised trial utterances with-
out any compensation for anonymisation. Under the lazy-
informed (L) attack model, the adversary makes a nominal ef-
fort to compensate for the use of anonymisation. To reduce
domain mismatch, the adversary anonymises the enrolment ut-
terance so that comparisons are made between anonymised en-
rolment and anonymised trial utterances. The adversary is as-
sumed to have access to the same anonymisation system, but not
the specific configuration [2]. The third, strongest model is the
semi-informed (S) attack. In an effort to further reduce domain
mismatch, the adversary now uses the same anonymisation sys-
tem to produce anonymised data with which to retrain the ASV
system, referred as ASV anon

eval in [2].
Results for I and L attack models are included to show the

benefit to the adversary of focusing specifically on non-timbral
cues, features that remain after anonymisation removes identi-
fiable timbral information. These two attack models are par-
ticularly informative because they test model robustness with-
out requiring retraining on anonymised data, unlike the semi-
informed S model. In contrast, the results for the semi-informed
model show the extent to which informative cues (including
non-timbral) can be learned automatically when the ASV anon

eval
system is retrained using anonymised data. These models
help to reveal the extent to which non-timbral cues remain ex-
ploitable after anonymisation.

1We used the implementation available at https://github.
com/RVC-Project
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(a) Training procedure (b) Inference procedure

Figure 1: An illustration of the RVC training and inference procedures where y denotes the input source waveform, ŷ denotes the
output converted waveform, xlin denotes a linear spectrogram, xssl denotes SSL features, and g denotes a speaker embedding. By
design, RVC preserves the number of SSL frames and produces a converted waveform which is perfectly synchronised with the source
waveform.

Figure 2: Example of voice conversion using RVC. Top: source
audio extracted from VoxCeleb2, id00012. Bottom: source au-
dio converted to the LS360 ”7416” female voice. The signals
are perfectly temporally synchronized.

Figure 3: Privacy evaluation in ignorant (I), lazy-informed (L)
and semi-informed (S) attack models. In the S attack model, the
attacker uses a retrained ASV system, ASV anon

eval which is fine-
tuned on anonymised data.

4. Experimental setup
RVC is trained using data collected from the first 99 speakers of
the VCTK dataset [42]. Data for the remaining 10 speakers was
set aside for testing as in [16]. VoxCeleb1&2 datasets were used
as source data for RVC-based conversions. Each utterance is
converted to a target voice chosen at random from among the 99

VCTK speakers, thereby resulting in converted VoxCeleb1&2
datasets with +1M utterances. Figure 4 illustrates our full exper-
imental pipeline, covering both the RVC-based data conversion
and the training of the speaker verification systems. To demon-
strate the effect of domain adaptation, we generated converted
LS360 in identical fashion by applying RVC to the LibriSpeech
train-clean-360 dataset resulting in 104k utterances. The mo-
tivation here is to evaluate the performance of our systems on
a different domain, and whether retraining on domain-matched
data improves performance.

Having noticed that E-VPC does not result in proper model
convergence when trained according to the VPC pipeline,2 and
to ensure a fair comparison with our other approaches, E-SPK
and E-NT benefit from modest adjustments to the training pa-
rameters. The initial learning rate was reduced from 1e-2 to
1e-3 while the number of training epochs was increased from
10 to 20. The ECAPA-TDNN architecture used for the 2024
VPC and in our experiments is a light version with 512-channel
layers. During the training of W-NT and W-SPK, speaker verifi-
cation task is performed with a module built on top of WavLM
that classifies the speaker identities. This module is composed
of two linear blocks with rectified linear unit activations and
batch normalization (features sizes are 378 for the input, then
512 and 250, and 7323 output classes)

For I and L attack models, the reference E-VPC model and
the E-SPK model are used whereas E-NT and E-NT-360 are
trained respectively using the converted Voxceleb1&2 datasets
and converted LS360 datasets respectively for 10 epochs. Fol-
lowing [16], W-SPK, W-NT and W-NT-360 are fine-tuned from
WavLM-Large3 using original Voxceleb1&2, converted Vox-
celeb1&2 and converted LS360 respectively for 6 epochs.

For the semi-informed attack model, and for each anonymi-
sation model, ASV anon

eval variants of W-NT, W-SPK, E-VPC, E-NT
and E-SPK are re-trained or fine-tuned for 20 epochs from pre-
trained versions using the respective anonymised LS360 dataset.

5. Results
Results for the VPC baseline systems and the best VPC 2024
submissions described in Section 2 are presented in Table 1.
A lower EER indicates greater vulnerability of the anonymisa-

2https://github.com/Voice-Privacy-Challenge/
Voice-Privacy-Challenge-2024

3We used the publicly model available at https:
//huggingface.co/microsoft/wavlm-large
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(a) Speaker Verification Training Pipeline (b) Embedding extraction used for Speaker Classification

Figure 4: Overview of the experimental pipeline. Original VoxCeleb1&2 utterances are converted using Retrieval-based Voice Con-
version (RVC), resulting in datasets that preserve, to some extent, non-timbral speaker cues. Speaker verification (ASV) models are
trained on both original and converted datasets to assess the impact of non-timbral cues.

tion system to speaker re-identification, meaning the anonymi-
sation is less effective. This table is used to demonstrate how ef-
fectively the new non-timbral representations can compromise
voice privacy. Comparisons are made to highlight: the differ-
ence in performance for ECAPA and WavLM-based ASV sys-
tems; the influence of non-timbral adaptations; the influence of
WavLM in capturing non-timbral cues.

5.1. Comparison of ASV models

The E-SPK system performs consistently better than E-VPC for
the S attack model, suggesting that E-VPC is suboptimal. W-
SPK performs better than E-SPK for both L and S attacks and
hence provides a substantially stronger attack. For the S attack,
the EER for E-VPC and B5 drops from 34% to 23% using W-
SPK, corresponding to an overestimate of 32% relative. This
substantial reduction shows that stronger ASV models offer
greater potential to capture residual voice characteristics post-
anonymisation, that estimates of performance can be overesti-
mated easily and even the use of a stronger model can reveal
weaknesses in anonymisation. Denoising and pre-training us-
ing a considerably larger quantity of data supports the extraction
of more discriminative representations, leaving WavLM-based
methods better equipped to handle the variability introduced by
anonymisation and a stronger candidate for evaluation.

5.2. Impact of non-timbral cues on re-identification

Results for E-SPK under the S attack model are better than
those for E-VPC, published in [2] on account of the training
optimisations described in Section 4. For the L attack and
for all anonymisation systems, EERs for E-NT are lower than
those for the E-SPK system. For example, the EER of 48% for
the B4 baseline (near-to-perfect anonymisation) drops to 41%.
These results show that, when timbral information is compro-
mised, the same system trained to use non-timbral information
achieves better and more reliable estimates of performance.

Results for the W-NT system shown in the penultimate
block of Table 1 show that, for the L attack, W-NT achieves
lower EERs than W-SPK for all models, echoing the same find-
ing for E-NT and E-SPK models. For the B4 baseline, for ex-
ample, the EER of 45% for W-SPK drops to 32% for the W-NT
system.

However, there is less of a difference between the EERs for
the S attack when comparing E-SPK and E-NT or W-SPK and
W-NT. This can be attributed to the fine-tuning of each ASV
model using anonymised data which serves to reduce the dif-
ferences between cues leveraged by each system. Fine-tuning
equips both models with similar capabilities to distinguish be-
tween speakers, thereby reducing the advantage of W-NT in this
context. E-NT-360 and W-NT-360 outperform E-NT and W-NT
systems respectively for both I and L attacks, indicating the
benefit of domain adaptation to LibriSpeech data.

5.3. Influence of WavLM in capturing non-timbral cues

While E-NT and W-NT models are both designed to focus
on non-timbral characteristics, their architectures are different.
Their use of non-timbral characteristics results in strong per-
formance for both L and S attacks. By concentrating on non-
timbral characteristics, they become less reliant on timbral cues,
which enhances performance when these same cues are com-
promised due to anonymisation. W-NT consistently outper-
forms E-NT, supporting our intuition that the transformer-based
architecture of W-NT is better able to capture and utilise non-
timbral cues when comparing original and anonymised data. Its
ability to capture subtle characteristic shifts post-anonymisation
provides an advantage over the ECAPA-TDNN architecture.

5.4. Comparison with top VoicePrivacy attacker systems

We present the performance of our systems in the same style
proposed for the VoicePrivacy Attacker Challenge [26]. Fig-
ure 5 illustrates how our systems, especially, W-SPK and W-
NT outperform the top two submissions to the VoicePrivacy At-
tacker Challenge, namely the systems by Zhang et al. [32] and
Lyu et al. [33], for each anonymisation systems. Both of our
models achieve low EERs, outperforming both competing sys-
tems by a significant margin. Notably, W-SPK obtains the low-
est EERs for all anonymisation systems except for T10-2. We
further discuss this finding in Section 6. These results highlight
the importance to anonymisation of obfuscating not just timbral
attributes, but also non-timbral attributes.
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Table 1: EERs (%) for ignorant (I), lazy-informed (L) and semi-informed (S) attack models for the LibriSpeech test subset and for each
anonymisation baseline and each ASV system. Un. denotes EERs for unprotected data. Best results for S and I&L are in bold.

E-VPC E-SPK E-NT E-NT-360 W-SPK W-NT W-NT-360
Un. 4.6 0.3 15.0 9.1 0.4 7.8 6.8

I L S I L S I L S I L I L S I L S I L
B3 47.4 45.7 27.3 48.3 47.5 26.2 42.9 42.7 26.4 40.4 36.5 47.6 44.8 17.5 38.2 34.7 17.4 35.0 28.1
B4 47.8 49.5 30.3 47.8 47.9 27.1 40.7 40.9 28.0 38.2 38.0 44.6 44.5 14.5 34.2 32.0 14.8 28.1 30.7
B5 49.1 48.7 34.3 49.8 49.7 31.6 47.2 46.7 31.2 45.2 43.5 48.8 48.7 22.5 42.5 42.0 23.2 38.3 38.3

T8-5 45.5 48.2 40.9 42.4 47.1 41.1 39.1 43.2 41.9 38.1 43.9 41.7 45.2 22.8 32.8 36.3 23 31.9 34.7
T10-2 36.2 35.9 40.8 36.8 38.4 35.7 31.3 31.6 38.2 23.2 25.3 32.8 34.7 32.2 23.6 22.1 29.2 14.5 14.4
T12-5 49.1 51.1 33.2 49.5 50.2 33.8 48.3 48.5 32.5 45.8 44.7 47.1 48.6 23.9 44.4 43.2 23.9 40.1 37.2
T25-1 48.8 49.5 39.8 49.9 49.5 35.8 47.1 48.2 36.8 45.4 43.6 48.2 48.9 24.1 44.7 44.1 27.9 40.4 37.6

Figure 5: EERs for the semi-informed attack model (S) for the
LibriSpeech test. Results shown for our systems and the two
best systems from the VoicePrivacy Attacker Challenge [27].

6. Discussion
This study sheds new light on the role of timbral and non-
timbral cues in ASV and their influence in voice anonymisation
and evaluation. Our findings indicate that non-timbral cues can
survive anonymisation processes, especially when using certain
ASV models. This suggests that current anonymisation meth-
ods may need to incorporate strategies specifically targeting
these cues. For all ASV models, the focus on non-timbral cues,
even under an ignorant attack model, leads to lower EERs than
global cues under a stronger lazy-informed attack model. When
a stronger ASV system is fine-tuned using anonymised data un-
der the strongest, semi-informed attack model, the advantage
of systems trained to focus on non-timbral characteristics is di-
minished suggesting that fine-tuning using anonymised data is
somewhat effective in adapting to use of the same non-timbral
cues.

These findings carry important implications for the devel-
opment and evaluation of voice anonymisation systems. Most
anonymisation systems do not fully protect the voice iden-
tity since residual, non-timbral characteristics such as prosody,
speaking style and accent, remain critical identifiers, even af-

ter anonymisation. Many previously reported estimates of
anonymisation performance might not be fully trustworthy,
adding further weight to the arguments within the community
to consider stronger approaches to evaluation. Similar con-
cerns were raised by Williams et al. [43], who showed that
anonymised voices, while harder for ASV systems to recognise,
remain perceptually easy to imitate, further highlighting unre-
solved privacy risks and the need for stronger anonymisation
strategies.

We acknowledge that our findings are entangled implicitly
in results for the VPC semi-informed attack model, yet we make
them more explicit. The retraining of ASV anon

eval systems for
the semi-informed attack model is not dissimilar to the proto-
col used in our work — the obfuscation of timbral cues via
anonymisation and then the refocusing on what remains. Our
use of the RVC system is akin to anonymisation. By using RVC-
generated data to train an ASV anon

eval system, we better isolate
and can better observe the difference between what is domain
adaptation and what is instead the use of non-timbral informa-
tion. The E-NT-360 system is equivalent to an ASV anon

eval sys-
tem which is domain-adapted to data generated using the RVC-
based anonymisation system. Its use for the evaluation of other
anonymisation systems for the ignorant and lazy-informed at-
tack models then reveals the real influence of non-timbral cues
in contrast to what is purely domain adaptation (results for semi-
informed attacks).

Our W-NT and W-SPK systems outperform Lyu et al.’s ap-
proach [33] for all anonymisation systems except T10-2. T10-2
employs a serial disentanglement strategy to gradually disentan-
gle the global speaker identity and time-variant linguistic con-
tent and paralinguistic information. We hypothesise that this
system is particularly effective at obfuscating non-timbral at-
tributes, the same attributes upon which our systems are trained
to focus. Interestingly, Lyu et al.’s attack system also uses
WavLM as a feature extractor, integrating LoRA modules into
a pretrained ResNet34 ASV model, allowing fine-grained adap-
tation to anonymised data distributions without affecting ASV
performance on unprotected audio. The architecture and train-
ing protocol likely contribute to its superior performance for
T10-2, despite the stronger generalisation of our models across
other anonymisation systems.

We also acknowledge some limitations of the study re-
ported in this paper. While the E-NT and W-NT systems are
trained to focus on residual, non-timbral cues, we cannot be
certain that this is all they use. Some timbral information corre-
sponding to the original speaker may remain in RVC-converted
data used for the training of E-NT and W-NT systems. The
similarity in results for the semi-informed attack model does
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nonetheless suggest that NT-variant systems learn the same,
or similar cues when they are trained using anonymised data.
While it is likely that these cues are of non-timbral origins, con-
firmation demands further investigation to better understand the
distinction and interplay between timbral and non-timbral char-
acteristics and their contrasting prevalence in both speaker and
auxiliary representations used for anonymisation.

While we use the term ”non-timbral” to describe residual
speaker characteristics such as prosody, rhythm, accent, and
speaking style, we acknowledge that the boundary between tim-
bral and non-timbral attributes is not clean-cut. In practice,
speaker identity information is distributed across multiple en-
tangled acoustic dimensions. Our methodology relies on the
assumption that RVC-based voice conversion suppresses most
timbral cues while preserving non-timbral traits. However, we
are currently unable to quantify the residual speaker information
carried by each specific non-timbral attribute such as rhythm,
prosody, accent, or speaking style. The extent to which each
of these characteristics contributes to re-identification remains
an open question, and is the subject of ongoing investigation.
Early work by Tomashenko et al. [40] has started to investigate
the role of phoneme duration, a non-timbral attribute in speaker
re-identification. These findings reinforce the relevance of non-
timbral cues, but further analysis is needed to disentangle their
individual contributions and interactions, especially under dif-
ferent anonymisation strategies.

What is clear from the results reported in this paper and
elsewhere is that the key to improving anonymisation perfor-
mance lies in the sanitisation of speaker-dependent cues con-
tained within the auxiliary representations, whatever their na-
ture. This will be difficult given that F0, energy, phone dura-
tion and even phonetic transcripts, etc., may preserve residual
speaker information, but are often essential to the downstream
application and cannot be removed without sacrificing utility.
Still, we predict some remaining potential to obfuscate residual
speaker-dependent, but application-independent cues. Future
work should target the anonymisation of these residual cues to
improve performance. In parallel, and as a matter of course, we
should explore the use for evaluation of stronger ASV systems
which use both timbral and non-timbral cues.

7. Conclusions and Perspectives
In this paper we report experimental evidence of the critical
need to address both timbral and non-timbral characteristics in
voice anonymisation as well as in the use of ASV systems used
for evaluation. Our analysis reveals a significant gap of up to
32% relative between estimates of anonymisation performance
reported in the literature and comparable results achieved us-
ing stronger ASV systems and those specially designed to fo-
cus upon the use of residual, non-timbral cues. Our systems
outperform the best systems submitted to the VoicePrivacy At-
tacker challenge for all but one anonymisation system, show-
ing the influence of non-timbral cues in the re-identification
of anonymised speakers. Stronger verification systems like
WavLM are able to learn these cues upon fine-tuning with
anonymised data and offer some potential to identify the source,
and to study the influence of such residual cues. Based upon
the results of this work, we are now studying the relative influ-
ence of specific characteristics like prosody, rhythm, style and
accent, all non-timbral cues which carry speaker-dependent in-
formation and which can be used by an adversary to re-identify
the original speaker post-anonymisation. Obfuscation of these
characteristics will likely be challenging and will demand the

design of new, specific anonymisation techniques. Arguably
much more important in the nearer term is the adoption of sim-
ilarly strong verification models for the benchmarking of com-
peting anonymisation solutions to improve evaluation reliabil-
ity.
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