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Abstract—Affine Frequency Division Multiplexing (AFDM)
has shown great potential in high-mobility communication sce-
narios. However, efficient pilot design and low-complexity re-
ceiver algorithms remain challenging. In particular, conventional
subcarrier-embedded and superimposed pilot schemes often suf-
fer from excessive guard interval overhead and interference be-
tween pilots and data symbols. To overcome these limitations, this
paper introduces a novel time-domain block-type pilot structure
that enables effective pilot-data separation while reducing the
overhead of guard intervals. Building on a parametric bilinear
model derived from a time-domain basis expansion model (BEM),
we propose a joint channel estimation and signal detection
framework for AFDM systems. To facilitate the implementation
of this framework with high computational efficiency, we develop
a low-complexity sampling-based Expectation Propagation (EP)
algorithm, which leverages Dirac mixture sampling approxi-
mations to simplify the computation of intractable integrals
in bilinear message passing. Through benchmark comparisons
with the Genie-aided bound and other established algorithms in
both channel estimation and data detection, simulation results
demonstrate the effectiveness of the proposed algorithm.

Index Terms—Affine frequency division multiplexing, joint
channel estimation and signal detection, basis expansion model,
expectation propagation, parametric bilinear inference.

I. INTRODUCTION

S communication technologies evolve toward the next
generation, the introduction of higher frequency bands
[1] and high-mobility scenarios such as Unmanned Aerial
Vehicle (UAV) communications, Vehicle-to-Everything (V2X),
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and integrated Space-Air-Ground-Underwater (SAGU) net-
works [2] has led to increasingly severe doubly selective chan-
nels [3]. These channels are characterized by both significant
multipath propagation and Doppler shifts. Such challenging
propagation conditions have exposed the limitations of conven-
tional waveforms like Orthogonal Frequency Division Multi-
plexing (OFDM), which perform well in low-mobility, Sub-6
GHz environments. Consequently, the development of novel
waveforms such as Orthogonal Time Frequency Space (OTFS)
[4] and Affine Frequency Division Multiplexing (AFDM)
[5], which support robust transmission over time-frequency
selective channels, has attracted growing research interest.

A. Related work

Among the emerging waveform candidates, affine frequency
division multiplexing (AFDM) has recently gained increasing
attention. As a chirp-based multicarrier modulation scheme,
AFDM not only provides robust error performance, but also
exhibits notable advantages in embedded pilot-based channel
estimation [5]. Compared to the two-dimensional guard in-
tervals required in delay-Doppler (DD) domain modulation
schemes like OTFS, AFDM requires fewer guard intervals
and thus provides higher spectral efficiency [6]. Benefiting
from the flexible selection of dual-chirp parameters, AFDM
can adapt to channel variations by tuning the chirp parameters
at the transmitter and receiver sides. As a result, AFDM
exhibits strong potential for achieving full path diversity
[5] and equal signal-to-interference-plus-noise ratio (SINR)
transmission [7]. Beyond error performance, the adjustable and
extensible chirp parameters in AFDM can be leveraged for
various purposes: grouping pre-chirp signals and introducing
index mapping to embed additional index information [8];
reducing the peak-to-average power ratio (PAPR) in multi-
carrier systems by selecting appropriate pre-chirp parameter
sets based on the affine-frequency-domain signal [9]; and
serving as cryptographic keys to enhance secure communi-
cation between legitimate transceivers [10]. In the context of
emerging requirements for next-generation standards, AFDM
shows great potential in three key areas: first, when integrated
with sparse code multiple access, it supports outstanding
massive connectivity in high mobility channels [11]; second,
its distinctive chirp subcarrier structure enables superior per-
formance in integrated sensing and communication [12], [13];



and third, AFDM has demonstrated robust performance in non-
terrestrial network (NTN) scenarios, such as aeronautical and
land-mobile satellite channels [14].

Accurate channel estimation and signal detection consti-
tute a crucial part of practical communication systems and
pose significant challenges, particularly under high-mobility
conditions. To address this, [5], [15] present multiple pi-
lot embedding algorithms in the affine frequency domain.
These algorithms exploit the path resolvability of the affine-
frequency-domain channel for channel estimation and intro-
duce guard intervals to mitigate interference between pilots
and data symbols. [16] proposed two low-complexity detection
algorithms in the affine frequency domain, which closely ap-
proaches the performance of the minimum mean square error
(MMSE) equalizer. Building on this, [7] further explored the
equivalence between MMSE equalization in the time domain
and the affine frequency domain, and proposed a time-domain
iterative equalization scheme with low complexity. To further
improve spectral efficiency, [17] introduces a superimposed
pilot embedding scheme that eliminates guard intervals by
overlaying high-power pilots directly onto data symbols in
the affine frequency domain. However, the absence of guard
intervals inevitably results in severe interference between
pilots and data, necessitating multiple iterations of interfer-
ence cancellation. As a result, the achievable performance is
constrained by residual interference [18].

The aforementioned studies on channel estimation and sig-
nal detection in AFDM systems generally follow a loose cou-
pled design, where the estimated channel is directly provided
to the detector or used for interference cancellation. These
algorithms do not fully exploit the exchange of soft informa-
tion between estimation and detection stages, which can be
crucial for improving overall performance in complex channel
conditions. As a result, joint channel estimation and signal de-
tection techniques have attracted increasing attention in high-
mobility scenarios, particularly when the channel estimation
overhead is constrained due to a limited number of pilot
symbols and short guard intervals, and further improvements in
receiver performance are required. Such techniques have been
explored in various waveform designs, including OFDM [19],
faster-than-Nyquist multicarrier signaling [20], OTFS [21],
[22], and AFDM [23]. By formulating the system model as a
bilinear inference problem, these approaches utilize advanced
message-passing algorithms, including variational Bayesian
inference [24], parametric bilinear generalized approximate
message passing (PBIGAMP) [25], and parametric bilinear
Gaussian belief propagation (PBiGaBP) [26], to enable data-
aided channel estimation and iterative signal recovery. Never-
theless, these algorithms often suffer from high computational
complexity, which becomes particularly pronounced when the
number of subcarriers is large, posing practical implementation
challenges.

B. Motivation and Contributions

In both the subcarrier-embedded and superimposed pilot
schemes discussed above, guard interval overhead and mu-
tual interference between pilots and data remain significant

challenges. This naturally raises the question: Can one design
a pilot arrangement that introduces minimal guard intervals
while still effectively separating pilots from data to prevent
mutual interference?

To explore this question and enhance the receiver perfor-
mance of AFDM systems with low complexity, we investigate
a novel pilot arrangement along with a joint channel estimation
and signal detection framework for AFDM systems. The main
contributions of this work are as follows:

o Inspired by the narrower band structure of the time-
domain channel matrix compared to its affine-frequency-
domain counterpart, we propose a block-type time-
domain pilot arrangement to reduce channel estimation
overhead. We further compare the pilot arrangement
schemes in both domains and analyze their respective
transmission efficiencies.

e We introduce a time-domain channel approximation
based on the basis expansion model (BEM) to achieve
a compact parametric representation of the AFDM time-
domain received signal. Building upon this, we formulate
a parametric bilinear inference problem and construct a
corresponding factor graph to enable efficient inference
within the JED framework.

o Leveraging the expectation propagation (EP) rule, we
derive the message update rules and approximate the
intractable integrals arising in the bilinear model using
Dirac mixture sampling, which serve as an efficient
approximation of Gaussian distribution. Based on this, we
develop a sampling-based EP (SEP) algorithm for JED in
AFDM systems.

o Through numerical simulations, we verify the effective-
ness of the time-domain pilot arrangement and bench-
mark the proposed SEP algorithm against existing base-
lines. The SEP algorithm achieves performance close to
the state-of-the-art PBiGAMP, exhibiting only a slight
gap to the genie-aided bound in terms of normalized
mean squared error (NMSE) and bit error rate (BER),
while maintaining lower computational complexity than
PBiGAMP.

C. Organization and Notation

The rest of the paper is organized as follows. Section II
reviews the basic concepts of AFDM, DD channels, and the
basis expansion model (BEM), which serve as the foundation
for the proposed pilot arrangement and transceiver system
model introduced in Section III. Section IV presents the
joint channel and data estimation scheme within the SEP
framework. Simulation results for the proposed algorithm are
provided in Section V. Finally, conclusions are drawn in
Section VI.

We use b to denote a scalar, b a vector, and B a matrix. Iy,
and Oy denote the N x N identity matrix and zero matrix,
respectively. (-)! represents the conjugate transpose, and (-)"
denotes the n-th power. D(B) returns a vector composed of
the diagonal elements of the matrix B. The notation [b]y
means taking the modulo operation of b with respect to N.
The notation |[b| and [b] means taking the floor operation
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Fig. 1: The time-frequency representation of AFDM and

OFDM subcarriers.

applied to the value of b. By; ;) represents the element in the
i-th row and j-th column of matrix B, and b;) represent the
i-th element of vectors b.

II. PRELIMINARIES

In this section, we review the basic concepts of AFDM,
the delay-Doppler-based channel representation, and the BEM
used for channel approximation.

A. AFDM

AFDM introduces a novel approach to multicarrier mod-
ulation by employing chirp-based waveforms that spread in-
formation across both time and frequency dimensions. Unlike
conventional systems such as OFDM, where each subcarrier is
confined to a fixed frequency bin, AFDM modulates data using
chirp-like subcarriers that evolve over time and frequency
simultaneously. This structural distinction endows AFDM with
superior resilience to interference and fading. Fig. 1 illustrates
the distinct time-frequency representations of AFDM and
OFDM subcarriers.

The core innovation of AFDM lies in its adoption of the
Discrete Affine Fourier Transform (DAFT) and its inverse
(IDAFT), which extend the conventional Fourier transform
by incorporating two chirp parameters, ¢; and co. These
parameters introduce controlled quadratic phase variations in
both the time and frequency domains. The transmitted signal
s in the time domain is obtained by applying the IDAFT to
the data vector x € CV*!, as described by the following
expression:

N-1
1
Sm:ﬁ;a:n@n(m)7mzo’l""’N—L (D

where ¢, (m) = es2m(cin®+ymn+eam®) represents the chirp
orthogonal basis functions of IDAFT, and ¢; and ¢, represent
the two chirp parameters that determine IDAFT and DAFT.

Note that the expression in (1) can be written in matrix
form as s = Alx € CV*1, where A" € CVN*V s the
IDAFT matrix and A is the DAFT matrix. The matrix A can
be computed using the diagonal matrices A, and A,, as
well as the discrete Fourier matrix F':

A = A, FA.,, 2

where A, = diag(e‘ﬂ’w"z,n =0,1,...,N — 1) € CN*N,
and F € CV*¥ can be efficiently computed using FFT. Com-
pared to FFT, DAFT requires 2N extra complex multiplication
operations which results in a slight increase in complexity.

Due to the unitary property of DAFT, the IDAFT can be
represented as

A7l =A" = ATFUAL. 3)

In the AFDM receiver, the DAFT is applied to convert the
time-domain signal back to the affine frequency domain,
enabling further signal processing such as demodulation or
equalization.

B. Channel

The channel response can be characterized using the DD
representation as follows.

N, path

h(r,v) = Zhi(g(T*T,;)(S(l/*Vi), )

where Ny,p denotes the number of propagation paths, and h;,
7;, and v; represent the complex path gain, delay, and Doppler
shift associated with the i-th path, respectively. Within the
geometric coherence time, the physical propagation paths are
assumed to remain time-invariant, implying that the associated
delay and Doppler parameters (7;,v;) are constant over the
considered time interval.

To facilitate practical implementation, the DD coordinates
(74, v;) are typically mapped to normalized delay and Doppler
taps. Specifically, the corresponding delay tap /; and Doppler
tap f; for the i-th path can be determined based on the system
bandwidth B and subcarrier spacing A f as follows:

li = BTi7 lz S [Oulmax]y
Vi
fi - Ff, fz € [7fmax; fnlax]- (5)

We assume that each Doppler shift follows the Jakes spec-
trum, i.e., v; = f.vcos(;)/c, where f. denotes the carrier
frequency, v is the terminal speed, c is the speed of light,
and 0; is uniformly distributed as 0; ~ U[—m, 7]. For typical
parameters f. = 6 GHz, v = 550 km/h, and Af = 15 kHz,
the resulting Doppler tap satisfies | f;| < 0.2. To accommodate
higher carrier frequencies, the subcarrier spacing in 5G NR
is designed as an integer multiple of 15 kHz. Moreover, in
wideband systems, the time resolution is sufficiently high
such that fractional delay taps can be approximated by integer
values. Therefore, in the sequel, we consider doubly selective
(underspread) channels characterized by integer-spaced delay
taps and fractional Doppler shifts, with each Doppler tap
satisfying |f;| < 0.5.

For a transmission block of length N with a cyclic prefix
(CP) ', the matrix H; € CNV*¥ can be expressed as

Noan
H = Z hiAp TTY,, (6)

i=1

! Analogous to the CP used in OFDM, the AFDM system introduces a
chirp-periodic cyclic prefix (CCP). Under the conditions that N is even and
2Ncy € Z, the CCP is equivalent to the conventional CP.
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Fig. 2: AFDM baseband transmission framework with time-domain pilot arrangement.

where Ay, = diag(e*j%ﬂfi",n =0,1,..., N —1) represents
the diagonal Doppler shift matrix, and Iy € CV*V is the
cyclic shift matrix, defined as:

0 .- 0 1
1 0 0

Hy=1. o )
0 1 0

C. Basis expansion channel model

Both the superimposed pilot scheme [17] and the single-
subcarrier pilot embedding scheme [5] are typically designed
under the assumption that each delay tap is associated with a
single dominant Doppler component. This idealized sparsity
facilitates path-wise channel estimation and is particularly
suited for open environments with well-separated scatterers.
However, such models fail to capture the complexity of rich-
scattering scenarios, such as V2X, where each delay tap may
encompass multiple Doppler components [18], [27].

To overcome this challenge, we leverage a BEM approach
that describes these overlapping paths at the same delay tap
using basis functions. Specifically, the contribution of each
path to the overall signal is modeled as a weighted sum
of orthogonal basis functions, enabling a more compact and
efficient representation of the time-varying channel character-
istics.

Among various BEMs, the discrete prolate spheroidal basis
expansion model (DPS-BEM) is particularly attractive due to
its time-concentrated and band-limited basis functions [28].
For a given sequence length N, the DPS is defined as the
eigenvectors of matrix ¥ € CN*N, given by:

Vg = Aida, ®)
where the matrix elements are given by
in|2 - b max N
W, = S0 =0 /N Ny )

m(a — b) ’

The eigenvalue A; € [0,1] quantifies the energy con-
centration ratio within the specified Doppler bandwidth
[— finax, fmax]- The dominant eigenvectors are typically selected
for channel modeling. Therefore, the [-th delay tap correspond-
ing path in (6) can be expressed as a weighted superposition
of D dominant DPS sequences, as follows:

D
hy= > hD(Af) =) bads+ea~®b,  (10)

1:l;=1 d=1

where D is the basis dimension determined by D = [2 fax |+
1, ® € CV*P denotes the matrix consist of basis expansion
function ¢g, by = [by1,--- ,b.p]T € CP*! is the corre-
sponding coefficient and ¢ € CV*! is the model error. Due
to the negligible modeling error of the BEM, we omit it in
subsequent analyses for the sake of analytical tractability.

III. SYSTEM MODEL WITH TIME-DOMAIN PILOT
ARRANGEMENT

Based on the AFDM signal and channel model presented
in Section II, we propose a transmission framework with
time-domain pilot arrangement and compare it with its affine-
frequency-domain counterpart.

A. Tranceiver design

Fig. 2 illustrates the proposed AFDM baseband transmission
framework with time-domain pilot arrangement, departing
from conventional affine-frequency-domain chirp subcarrier
pilot arrangements [5].

At the transmitter, Zadoff-Chu (ZC) sequence pilots and
AFDM-modulated time-domain data blocks are alternately
structured with guard intervals. The composite signal frame
is defined as:

(1)

So = [Scp; Sp; Sccp; SD; Scp; Sp)s



where the components of the composite signal frame are
detailed as follows:

e ZC Pilots:

_ —jmkn(n+1)/Np
=e ,

SP(n) n:O,l,...,Np—l, (12)

represent identical ZC sequence pilots placed at both ends
of the data block. The root index & is coprime to the pilot
length Np.

o AFDM-Modulated Data:

sp = Allx e CNox1 (13)

where x denotes the symbol sequence generated by
mapping the input bit stream onto an M-ary constella-
tion alphabet S = {ag,a1,...,an—1}. The vector sp
represents the time-domain signal obtained by applying
the inverse DAFT matrix A" to x.

e Guard Intervals:

_ —j2mer (N24+2Nngy)
SCCP(Ncp+nep) = SD(Np+ng) € P "

SCP(Neptnep) = SP(Nptngp)s ep = —New, -+, =1, (14)

represent the CCP [5] for data and the CP for pilots,
respectively. To mitigate inter-block interference between
pilots and data, the cyclic prefix length should satisfy
N cp > lmax-

Due to the identical pilot design, the first CP can be regarded
both as the CP of sp and as the CP of the subsequent composite
signal s = [sp;sccp;sp;scp;sp] € CNXL. After removing
the first CP from sg, the received signal corresponding to s
passing through a doubly selective channel with additive white
Gaussian noise (AWGN) can be expressed as:

r=H;s+n, 5)

where r € CV*! represents the received signal, and n €
CN*! is complex-valued AWGN with n ~ CAN(0,021y).
Assuming that the transmission duration of sy does not exceed
the geometric coherence time, the delay and Doppler shifts of
the channel paths are considered invariant. Under this assump-
tion, the time domain channel matrix H; can be expressed as
described in (6).

By further removing the guard interval between the pilot and
data, the pilot and data can be considered mutually orthogonal.
The subsampled received signal can then be expressed as:

rp Vipr Hyr O 0 sp ngp
rp | = | Vpr = 0 Hp 0 sp| + [np |,
TRrp Vypr 0 0 Hgp| [sp nRp
(16)
where
Vir = [Ing, Onps(N—Np) )5
Vb = [0y (Np+-New) > INo s ONp s (Np+New) |
Vrp = [Onps(N=Np)s INp) s (17)

denote the corresponding subsampling matrices. Due to the
properties of AWGN, time-domain subsampling does not af-
fect the noise distribution. Therefore, the noise components of
npp, Np, , and ngp are assumed to follow n ~ CN(0, ogINp),
n ~ CN(0,021y,) and n ~ CN(0,021y;,), respectively.

B. Comparison of time-domain and affine-frequency-domain
pilot arrangement

Fig. 3 compares the time-domain and affine frequency-
domain pilot arrangement schemes, highlighting their struc-
tural differences.

In the time-domain approach, guard intervals are inserted
between adjacent blocks along the time domain, placing
pilot symbols outside the data blocks to facilitate channel
estimation [29], [30]. In contrast, the affine-frequency-domain
arrangement distributes guard intervals across subcarriers, em-
bedding both pilots and data symbols within the same block.

The guard intervals serve to prevent mutual interference
between pilot and data symbols. Accordingly, the required
guard interval lengths, denoted by Q) and Q),¢, depend on the
effective bandwidths (i.e., the number of non-zero elements)
of the equivalent channel matrices in the time and affine-
frequency domains, respectively.

To illustrate the differences of these equivalent channels, we
first recall that the time-domain equivalent channel matrix fol-
lows a similar form to that in (6), while the affine-frequency-
domain counterpart is given by:

Npmh NP““‘
Hy =Y hH;=> hAA, I AY (18)
i=1 i=1

where H; corresponds to the ¢-th propagation path. The entries
of H; can be explicitly expressed as:

1 &(ClNlefbli+CQND(a27b2))T

Hip) = e ™ i(ap),  (19)
where
Np—1 izm( )
Tiap) = Z e (ebrirRbatin
n=0
—j2n(a—b+fi+2Npeils) _ g
__¢ ) (20)

e—J2m(a—b+f;+2Npecil;)/Np _ 1

Under a fractional Doppler shift condition where |f;| < 0.5,
the term Ty, 3y is effectively non-zero only within a localized
region centered at b = [a + loc;]n,, spanning approximately
2k, + 1 entries [5]. Here, loc; = [2Nc¢1li]n,, ko denotes a
predefined sensitivity threshold introduced by the fractional
Doppler shifts, and the notation -]y, represents the modulo-
Np operation.

For illustration, we consider a simplified example involving
16 x 16 equivalent channel matrices in both the time-domain
and affine-frequency-domain under a two-path DD channel,
as depicted in Fig. 3. In the affine-frequency-domain case
(with k, = 2), dark-colored regions highlight the central non-
zero entries of H; whereas the light-colored regions represent
the energy leakage range caused by fractional Doppler shifts.
As observed from the figure, the time-domain channel matrix
is sparse and concentrated near the main diagonal, which
reflects the limited delay spread of the channel. Consequently,
the corresponding guard interval (), only needs to span this
delay spread in order to suppress inter-block interference. In
contrast, the affine-frequency-domain channel matrix demon-
strates a broader dispersion of non-zero elements, stemming
from the joint delay-Doppler effect inherent in the AFDM
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system. This results in a larger effective bandwidth and thus
necessitates a longer guard interval Q,s to avoid interference
between pilot and data symbols.

Moreover, due to the alternating arrangement of pilot and
data blocks, every two short frames share a single pilot sym-
bol. This design further improves spectral efficiency. As the
number of consecutively transmitted short frames K increases,
the spectral efficiency is further enhanced due to the amortized
overhead of the pilot symbol. By jointly considering the CCP,
guard intervals, and pilot overhead, we introduce the metric of
transmission efficiency, defined as the ratio of the data payload
length to the total transmission length. For the time-domain
scheme, the transmission efficiency is given by:

Np (K —1)Np

pyg- . @l
YT Ko £3Qi 12Ny T K(No 1 2Qi + ) Y

As K — 0o, we have
A No (22)

-
© " Np+2Q; + Np

where Q; = Ncp = lmax.
As a comparison, the transmission efficiency of the affine-
frequency-domain scheme is given by

Np —2Qq — 1 Np
Np + @ Np + Qi+ 2Qu+ 1

where Qu = (2ky + 1) (lmax + 1) — 1.

Accordingly, under the large-K transmission assumption,
the time-domain scheme can be approximately considered
to achieve higher transmission efficiency as long as Np <
(4ky + 1)(Imax + 1). To satisfy the condition for a non-
underdetermined estimation problem, we recommend choosing
the pilot length N, such that ;o +1 < N, < (4dky+1) (Imax+

Aaf = (23)

1). This flexible design range enables a balanced trade-
off between channel estimation accuracy and pilot overhead,
and offers improved transmission efficiency over the affine-
frequency-domain pilot arrangement. The effectiveness of both
schemes under different transmission efficiency settings is
further evaluated in the simulation section.

IV. SEP-BASED JOINT ESTIMATION AND DETECTION

Building on the transmission design introduced in the
previous section, we present a joint channel estimation and
data detection framework based on the time-domain BEM
model, including the construction of a factor graph and the
derivation of the SEP algorithm, along with a discussion of
its performance and implementation aspects.

A. Parametric bilinear problem

By jointly considering the BEM in (10) and time-domain
subsampling in (17), the time-domain channel matrix corre-
sponding to the data block can be reconstructed as

lmax

Hp = ) diag (Vph) I},
=0

lmaw

= diag (Vp®b;) My,
=0
lmaz D

> biadiag(Vpe,) iy,

=0 d=1
Q
£ Z qulP
q=1

where H, = diag (Vpop,) Iy, d = [¢]p and | = [ & ].

(24)
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Further, the observation model for rp can be expressed as

Q Q
Ip = Z bgHys +np = Z quqAHx + np.

q=1

(25)
q=1
This formulation leads to a parametric bilinear estimation
problem, where the objective is to jointly estimate the channel-
related parameter b = {bq}qQ:1 and detect the transmitted
signal x from the noisy observation rp.

By introducing an auxiliary variable z, = b,H,A"x, the
joint probability density function (PDF) can be derived as

p(rDa {Zq}qQ:17X7b | rLP7rRP) = p(rD | Zy,.. 'aZQ)

J1p(ze 1 5.09)p(s | %) [ [ (xn) [ 2(bg | TLp, TRE). (26)

The factor graph for (26) is illustrated in Fig. 4. For
simplicity, the factors in the factorization (26) are denoted as

U, = p(rp | z1,...,2¢9) = CN (rD; qu, JZIND> ,
a

(27a)

U, =p(zq|8,by) = 6(zqg — bgHys), (27b)

U, =p(s | x) = 0(s — Alx), (27¢)

Uy, =plan) = Y Plxn = ai)d(zn — i), (27d)
a; €EQ

Wy, = p(bg | TLp, TRP) = CN (by; 1,5 M, ) - (27e)

Specifically, ¥y, and ¥, can be initialized using conventional
approaches such as subsampling least squares (SLS) estima-
tion [30] and linear minimum mean square error (LMMSE)
detection [7]. Unlike the conventional assumption of uni-
form priors for x, we adopt a non-uniform pseudo-prior
derived from the LMMSE estimate, which serves as a more
informative initialization. This approach, inspired by recent

works [31], [32], has been shown to accelerate convergence
and improve the numerical stability of iterative algorithms.
Similar strategies are also referred to as non-uniform priors
in [33].

B. Update rules

With a given factorization, the message passing algorithm
can be interpreted as the exchange of two types of messages:
the message from a factor node to a variable node, and the
message from a variable node to a factor node.

In the considered model, each variable z,, is directly con-
nected to both its local prior factor ¥, and the joint factor
V. To simplify notation and avoid redundancy, we assume
the messages exchanged along these edges are equivalent and
omit repeated update steps in the sequel. Specifically, we have:

My Wy, = MUgizy,,

(28)

Based on the above conventions, the message update steps
can be outlined as follows.

1) : UPdate my, sz, = CN(xna N‘limn;xnvn‘llmn;zn)-

To simplify the subsequent message passing, EP is used to
approximate the categorical distribution with a complex Gaus-
sian distribution [34]-[36]. With EP projection, the message
is given by

mmn?‘l/s = my

PR

Proj [V, my, v, ]

M, an (T5) o (29)

Mg, v,
2) . Update my,;s = CN(S; Hyg:s, C\I/s;s)'
According to (27c), the information in the affine frequency
domain is transformed into the time domain via the IDAFT.
the message from node W4 to node s can be derived as

H
Ky, .s = A Hx; 0,

C\Ils;s = AHCX;\PSAv (30)



where py.v, is defined by pix; \I,S(n)
a diagonal matrix with Cy. Ve () = Neni s
3) : Update Ms;w, = C (Zq; Ho iz, C\Ils;zq)-
The message forward from node s to node Uy,
expressed as

= fa, v, and Cxp, is

can be

Mo, < M | [ mw, s €Y
G#q
According to the Gaussian multiplication lemma [34], we
obtain
-1

=) Cyl .+ Gyl ,
a#q
psw,, =Cosw,, | Y Colittags + Cylpas |- (32)
d#q
The scalar form for the n-th element becomes:
HosniW,, = Msily, (n)”’ Nsn;Way = CS;‘I’Z‘Z (n,n)’ (33)

4) : Update my v, = CN(zg(n); to,0, a2 Toai¥ zq("))

The message can then i)e obtained by comblmng the contri-

butions from all components except the n-th one, as follows:
-1

an;\yzq(n) = Z 1/,’7\qu(ﬁ);bq + 1/77’% ’
n#En
/"L\I/Z (ﬁ),b
Mbq;\Dz(](n) - an;\PZQ(n) Z Niq + Mbq/an (34)
it TWag (23
5) : Update MY sz4ny) = CN(Zq(n)§ KW 5240y 0 n\Pr;zq(n))-

The update of my,,,, can be interpreted as a soft inter-
ference cancellation process, where the residual interference-
plus-noise component can be approximated as a complex
Gaussian random variable according to the central limit theo-
rem (CLT), as shown below:

- Z Zg(n) T Dp(n)

q#q

Zg(n) = I'D(n) (35)

Residual interference plus noise

The mean and covariance of the message can be approxi-
mated by the following expressions:

_ 2
N izqn) —%n + E N340y
q#q

=TIDp(n) — Z ,U"I/z;zq(")v
G7#q

KWz () (36)

where

Hq (7L7?:L) MS'fL ?‘I’zq )
2

lu‘l’zq Zg(n) = I’qu§\I’zq(n)

U‘PZq§zq(n) = Mbg; 0, HQ(n,ﬁ)uSﬁ§‘I’zq
2

H‘I(n,h)nSﬁ§\I/zq

q(n)

Zq(n)

+ ’ Hoqsw Hy )

+T}bq§‘1’zq("> H’I(n n)n?n Wy Hq(n n)’ (37)

where H, (n

2) denotes the nonzero entry in the n-th row of
H,. 7
q

6) : Update mw, ., b, = CN(bgi fw, ()ibq M0, (0y3bg)-
According to the message passing rule of EP, the message
from z, to b, is

m\Iqu 1b
Proj U Uy My, (2g)Ms;w,, (8)Mp, 0, (bg) dzqu}
m\IIhq (Zg

Proj U M2, (0 Hys)ms v, (s) mq,bq;zq(bq)ds}

m\Ilbq;zq

X

(38)

Considering that the integral in the above equation is
difficult to solve in closed form, ms;y, is approximated by
a Dirac mixture density with Ky components to simplify the
integral:

K
ks
Flsn) =D wk, - 6(sn — sb3,), (39)
ko=1
where wy, denotes the positive weights satisfying
K k. - . -
stzl wg, = 1 and sgs, is sampling position for the

n-th element in vector s. Such an approximation is widely
used in nonlinear problems [37] and can be obtained via
random sampling or deterministic methods like generalized
fibonacci grids sampling [38].

Benefiting from the structured decomposition provided by
the time-domain BEM, each row of the channel matrix
H, contains only a single nonzero element. This sparsity
enables the reformulation of high-dimensional computations
into scalar-wise operations, thereby avoiding high-dimensional
sampling and significantly reducing computational complexity.
Expressing s in scalar form and substituting (39) into (38), the
approximated message can be written as:

my b

zq(n):%q

- KS . S S
Proj [m‘llbq;zq(m st:1 wi, CN (bmﬂg,nv ng,n) /|Hq(n n)S q, |2]

o
MMai¥ag(y)
PI‘OJ [Zk - P;nCN(bq, [ vk“ )]
. 40)
g5z ()

The integration over the Dirac mixture leads to a K-
component Gaussian mixture inside the projection operator,
as shown in (40) where Pk* denotes the normalized weight,
and CN (bg; ks, vks) represents the corresponding complex
Gaussian distribution:

. kS ks
i wg, CN(0; Hogi%s, .~ Hains Mogi®s Nyn)
%h x | )
q(n,
k k -1
’Uq’jn = (l/nqin, + 1/an;\1/zq(n)) )
ks _ ,k k k.
eq,n - vq,sn (Mq,sn/ann + Mbq;‘l’zq(n) /an;‘l’zq(n)) ?
(41)
where
s /j"llr'vzq (n) ks _ n‘Pr;zq(n)
qunf - H ks 7,’7‘1»” - |H sks 2°
d(n,n)"q,n q(n,n)°q,n




After applying the projection operation to the K-
component Gaussian mixture, the resulting complex Gaussian
distribution has the following mean and variance:

Z A

qn+|€qn b |2

q,n

2)_

le (42)

=20

By combining (40) and (42), the message M, (b, CAN
be updated as:

-1
1 )
(Mg, )

mbq;“’%(n)) :
(43)

= (1/1127n

— s b
= Moy (n)iba (eq,n/vqm = Hbg; 0,

nq’zq (n) ibg

K@, (nysbe a(n)

7) Y Update ”n\IJz 1Sm CN(Snvulllz ,s,Lan\Ilzq,s“)

Similar to the previous step, the Dirac mixture approxima-
tion is adopted to simplify integral computations. my, 0, 18
approximated by a Dirac mixture density with Kj, components:

Kb

= E wk}b .

ky=1

5(bg — bE®). (44)

The message approximated via sampling can be expressed
as

My, isn

Proj [msn Wzg Zkb 1 Wi, CN (Snmuq ny Mg, n) /|Hq(n n)Vq kb‘ ]

msn'\I’ZQ
. K k k k
Proj [Zkbh:1 PyhCN (SM €qin, Uqbn)]

LLERS P

X

(45)

where H, (m
of H,.

The integration over the Dirac mixture leads to a Kj-
component Gaussian mixture inside the projection opera-
tor, as shown in (45), where Pé“”;L denotes the weight,
and CN (sp; ek €qlns v(’;bn) represents the corresponding complex
Gaussian distribution:

wg, CN(0; s, 1w,

) denotes the nonzero entry in the n-th column

k k
- Iu’qbna Usn,;ﬁ/zq + nq,bn)

ky
fos CRNE |
Vgtn = (/s +1/g1) 7
ern = 0 (e, v, [sw,, + i, /1), (46)
where

b, = lu\l’r;zq(h; : fbn _ nq'r;zq(f;) '

HQ(ﬁ n) bg" |Hq(ﬁ7n °|?
Following the derivation in (42), e ,, and vy ,, can be sim-

ilarly obtained and are omitted here for brevity. The updated
message My is given by:

zq3Sn

—1
q>8n (l/v;,n - 1/778n;\llzq> ;

B, 50 = T, 580 <€Z,n/1’2,n )

T M0y, /7)3n§quq> :

8) : Update Mg, ¥, = CN(S; Hs; T, Cs;\Ils)~
According to the Gaussian multiplication lemma, the mes-
sage forward from node s to node Wy can be updated as

-1
q

Ms; v, = Cs;\I!s (Z Cq;iq;sﬂqlzq;s> .
q

where M, s is defined by M, s

(48)

(n) = /’L\I’zq§5n’ and C\I’x§x
(n,n) =N, 550

9) : Update mu,;o, = CN (0} 0,10, M0sia, -

By transforming the message from the time domain back to
the affine frequency domain, we obtain:

is a diagonal matrix with Cq,z s

[A,"LS;\I/S} (n)
[ACqq, A"

M‘I’s:,wn =

U\Ils;fn = (n,n) * (49)

C. Inference

The desired estimates Bq and z,, can be obtained by com-
puting the approximated posterior distribution, as follows:

Tp = argmax Y,
a€S

—1
~ 1 1 'u'\IIz (7L);bq lub
b=\t )
” U\qu<n,),bq b, " W\quw,bq b,

(50)

(xn = a) LLLZ RS

By substituting the estimated result l;q in (50) into (24), the
time-domain reconstruction matrix is obtained. Meanwhile, the
estimate ,, is demapped onto the constellation to recover the
transmitted bit.

D. Algorithm Description and Discussion

According to the aforementioned derivations, the SEP-based
time domain JED algorithm proposed for AFDM systems is
concluded in Algorithm 1.

To facilitate the convergence and stability of the proposed
algorithm, two synergistic approaches are employed:

o A damping factor g € [0, 1] is introduced to regulate the

convergence rate : Myew = g Mpew + (1 — g) - Moq;

o To address potential negative variances in EP iterations,
clipping is applied to constrain the precision values 1/n
(defined as the reciprocal of variance) within a numer-
ically stable range, thereby ensuring numerical stability
and preventing divergence;

E. Complexity Analysis

Based on Algorithm 1, the complexity analysis is presented
in Table 1. Steps 3-5 involve repeated operations, which can be
simplified using the identity >_, . f(n) = >_, f(n) — f(7)
and precomputing ) f(n). For instance, in Step 4, this opti-
mization reduces the complexity from O(QNp?) to O(QNp).
Steps 2 and 7 can be efficiently implemented using the DAFT,
achieving a reduced complexity of O(Np log Np). Addition-
ally, since the iteration only concerns the diagonal elements



Algorithm 1: The Proposed SEP-Based JED Algo-
rithm

1 Initialization

2 repeat

3 forn=0to Np —1 do

4 Update my, .., based on (29);

5 L Update m,,, .v, based on (28);

6 Update my_;s based on (30);

7 for g =1to Q do

8 for n=0to Np — 1 do

9 Update ms,,;w, based on (32-33);
10 Update My, based on (34);

11 Update MW7, () based on (36-37);
12 Update my, ., based on (39-43);
13 Update mw, s, based on (44-47);

14 Update ms. v, based on (48);

15 for n=0to Np —1 do

16 Update my,.,, based on (49);
17 Update my,,.w, based on (28);

18 until termination condition is met;

19 Output:b,, Vg € [1,Q]; &,, ¥n € [0, Np — 1]

TABLE I: Complexity analysis based on Algorithm 1.

Step Complexity Step Complexity Step  Complexity
1 O(MN) 2 O(NlogN) 3 O(QN)
4 O(QN) 5 O(QN) 6 O(KsQN)
7 O(KyQN) 8 O(QN) 9 O(NlogN)

of the variance matrix, the output variances in these steps
can be directly computed via averaging the input variances,
eliminating the need for multiplication with the AFT matrix.
Incorporating the above optimizations, the overall per-iteration
complexity is approximately O(M Np + Np log Np + (K +
Ky)QNp).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm in terms of NMSE for channel estimation and BER
for signal detection, to verify its effectiveness in JED.

A. Simulation Setup

The specific simulation parameters are as follows.

Channel setup: The number of propagation paths was set
t0 Npan = 20, with a maximum delay tap of I, = 4. Each
path follows an exponentially decaying power delay profile.
The channel was modeled with integer-valued delay taps and
fractional Doppler shifts, where the Doppler frequencies were
uniformly distributed over the range [— fmax, fmax]-

Communication system setup: The transmitter is assumed
to know the maximum delay for guard interval design, while
the receiver is assumed to have perfect phase compensation
and time synchronization. Unless otherwise specified, we
consider an AFDM system operating at a carrier frequency
of 9 GHz, with a subcarrier spacing of 15kHz and a total

TABLE II: Complexity comparison

(Ng: Number of Doppler grid points; Ti.,: Iteration count;
M:: Constellation order; P, = lmax + 1; Bt = 2lmax + 1. )

Algorithm Channel Estimation Detection

GS + LMMSE O(NY O([P? + B2 + log(Np)]Np)
SLS + LMMSE O(QNp) O([P? + B2 + log(Np)]Np)
SEP O(Tiier[M Np + Np log Np + (Ks + Kp)QNp))
PBiGAMP O(Tier@NB)

of 512 subcarriers. In the following simulations, SNRp and
SNRp denote the symbol energy-to-noise ratios for pilot and
data signals, respectively.

Algorithm details: The proposed SEP algorithm employs a
generalized Fibonacci grid sampling method [38]. For iterative
algorithms involved in the evaluation, the maximum number of
iterations was set to 25. In addition, the algorithm is considered
to converge early if the following stopping criterion is satisfied
over three consecutive iterations:

Hf)(t+1) _ p+2) H b® _ H+1) H
2 2

<1x1072,

s L

2 2

We consider several baseline algorithms to benchmark the
proposed SEP algorithm within the JED framework. Grid
search (GS) is a representative channel estimation algorithms
based on affine-frequency-domain pilot embedding [5], and
also serves as a performance reference for superposed pi-
lot schemes [17] under successive interference cancellation
conditions. LMMSE denotes the low-complexity detection
algorithm proposed in [7]. SLS corresponds to a time-domain
pilot arrangement scheme that reconstructs the channel via
interpolation using pilots placed on both sides of the data
block [30]. PBiGAMP is a state-of-the-art, low-complexity
solver for parametric bilinear inference problems [25], and
has been widely adopted in recent JED systems [20]. Genie-
aided represents the performance bound when one side of the
bilinear model (either the channel or the signal) is assumed
to be perfectly known. Among the above algorithms, GS
performs channel estimation based on the affine-frequency-
domain pilot arrangement, while the others, including SEP,
SLS, PBiGAMP, and Genie-aided, are built upon time-domain
pilot arrangements.

The computational complexities of the proposed and base-
line algorithms are summarized in Table II. PBIGAMP, as
the state-of-the-art algorithm for JED, has a per-iteration
complexity of O(QN3), which scales quadratically with the
number of subcarriers Np. Therefore, under the assumption
of a large Np, the proposed scheme achieves significantly
lower computational complexity, exhibiting log-linear rather
than quadratic scaling with respect to Np.

B. Results and Discussion

Fig. 5 presents a comparative analysis of the proposed
algorithm against several baseline schemes. The conventional
GS+LMMSE and SLS+LMMSE methods, which do not in-
corporate joint processing, serve as representative non-JED
baselines. In contrast, algorithms that perform JED exhibit
markedly improved performance, approaching the genie-aided
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Fig. 5: Performance comparison of different algorithms versus
SNR in terms of NMSE for channel estimation and BER for
signal detection, with 4-QAM constellation, SNRp = SNRp,
ky =4, Np = 4lax, and K, = K = 7.

bound. Specifically, at a target BER of 10~%, the proposed
algorithm achieves a performance gain of approximately 5 dB
over the SLS baseline. Moreover, when E;/Ny > 15 dB,
the corresponding channel estimation NMSE of the proposed
method closely approaches the genie-aided lower bound. The
PBiGAMP algorithm exhibits the best overall performance
among the evaluated schemes, primarily due to the charac-
teristics of the matrix H,A in (25), which align well with
the algorithm’s underlying assumptions of dense matrix and
large system dimensions. However, the high matrix density
also leads to substantial computational complexity, which
may hinder its practical deployment in systems with limited
processing resources. By contrast, the proposed SEP algorithm
adopts scalar-level sampling approximations that significantly
reduce computational burden while maintaining competitive
performance. Although a marginal performance loss is ob-
served compared to PBiGAMP, the substantial reduction in
complexity makes SEP a more practical solution for AFDM
systems with large subcarrier dimensions.

Fig. 6 compares the performance of the affine-frequency-
domain pilot arrangement scheme (Algorithm: GS+LMMSE)
and the time-domain pilot arrangement scheme (Algorithm:
SEP) under varying user mobility speeds. Considering that
subcarrier-based pilot embedding schemes benefit significantly
from higher pilot SNR due to their susceptibility to interfer-

>k = 4, Mot = 81.98% ~O- Ny = Ao, A, = 95.28%
D>k = 8, Aot = 66.47% -O- Ny = 8linax, Ay = 92.35%

T T T T

Affine-frequency-domain pilot,
SNRp = 40dB, SNRp = 12dB

Time-domain pilot,
SNRp = SNRp = 12dB
A -

50 100 150 200 250 300 350
speed (km/h)

(a)

Affine-frequency-domain pilot,

SNRp = 40dB, SNRp = 12dB

Time-domain pilot,
SNRp = SNRp = 12dB

50 100 150 200 250 300 350
speed (km/h)

(b)

Fig. 6: Performance comparison of affine-frequency-domain
and time-domain pilot arrangements under different user mo-
bility conditions in terms of NMSE for channel estimation
and BER for signal detection with 4-QAM constellation and
K,=Kp,=T.

ence, a higher SNRp than SNRp, is allocated in this simulation
to better reflect their performance under favorable conditions.
As observed, both schemes exhibit similar performance at a
low speed of 50 km/h. However, as the user speed increases,
the performance of the affine-frequency-domain scheme de-
grades noticeably, whereas the time-domain scheme maintains
consistently strong performance across all mobility levels,
demonstrating superior adaptability to high-speed scenarios.
The performance gap primarily arises from the fact that the
affine-frequency-domain scheme relies on the assumption that
each path can be well resolved under the affine-frequency-
domain equivalent channel matrix. However, in scenarios
with rich scattering, the limited path resolvability constrains
the effectiveness of the grid search algorithm. From another
perspective, the grid search essentially approximates the time-
varying channel using a single Fourier basis, which leads
to approximation errors that are less severe in low-mobility
scenarios—hence the relatively better performance in such
conditions. Moreover, the affine-frequency-domain scheme
suffers from substantial transmission efficiency loss due to the
insertion of numerous guard intervals. While increasing the
guard length can mitigate pilot-data interference, the resulting
performance improvement is limited. In contrast, the time-
domain scheme not only achieves higher spectral efficiency but
also offers superior JED performance, making it more suitable
for high-mobility applications.

Fig. 7 presents the performance of the proposed algorithm
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Fig. 7: Performance comparison of the proposed algorithm un-
der different constellation orders in terms of NMSE for chan-
nel estimation and BER for signal detection, with SNRp =
SNRp, Np = 4lmax 4-QAM), Ny = 8lyax (16-QAM), and
K, =K, ="1.

under 4-QAM and 16-QAM constellations. In terms of NMSE
for channel estimation, 4-QAM exhibits slightly lower error
than 16-QAM at 3 dB, owing to the longer pilot length used
in the 16-QAM case. However, as the SNR increases, 4-
QAM consistently outperforms 16-QAM in both NMSE and
BER. This advantage is attributed to the larger minimum
Euclidean distance of 4-QAM, which reduces symbol ambi-
guity and enhances the effectiveness of data-aided iterative
estimation. In contrast, the denser 16-QAM constellation is
more vulnerable to noise, introducing greater uncertainty in
the JED message passing process. Notably, at high SNR (e.g.,
E,;/Ny > 21dB for 16-QAM), the NMSE of the proposed
algorithm approaches the genie-aided bound. On the other
hand, at low SNR, the BER performance of the proposed
algorithm is closer to the genie-aided BER bound. This is
because, in low-SNR regimes, additive noise dominates the
overall error performance, whereas in high-SNR regimes, the
residual interference caused by imperfect channel estimation
becomes the primary limiting factor. Overall, 4-QAM demon-
strates superior performance in both channel estimation and
signal detection, making it a favorable choice in intermediate
SNR regimes where reliability is critical. In contrast, 16-
QAM requires higher SNR levels or the assistance of advanced
techniques, such as channel coding or multiple-input multiple-
output schemes, to achieve performance comparable to the
robustness provided by 4-QAM.

Fig. 8 illustrates the convergence behavior of SEP-based
channel estimation under different numbers of samples used
to approximate the Gaussian distribution. When ks = kp = 1,

x107*
¥ - ]
>Ks=K,=1 j
7 [<FKs=K=1 ||
|-O-Ks =K, =25 |
6 |4—Ks=K, =49/
= L |
Z !
o=l |
Z. 5 }
1
4l
1
Iteration
(a)
5x 1073
[I>Ks=K,=1
L5 <FKs=K, =7
-O-Ks=K,=25
@ 1 |—4+—Ks =K, =49
[p]
2
P
4
0.5

Iteration

(b)

Fig. 8: Convergence behavior versus number of sampling
points. (a): NMSE convergence at SNRp = SNRp = 12 dB;
(b): NMSE convergence at SNRp = SNRp = 20 dB.

the Dirac mixture reduces to a Dirac-delta function, ignoring
the variance in the message passing process [39]. When
ks = kp > 1, the approximation corresponds to a deterministic
sampling scheme (e.g., eneralized fibonacci grids sampling).
As shown, under low SNR conditions, the Dirac mixture yields
better performance than a single Dirac-delta approximation.
For example, the NMSE improves from 0.0045 to 0.0038,
with a relative gain of approximately 15.6%. Moreover, even
with a small number of sampling points, the Dirac mixture
achieves excellent performance, and further increasing the
number of samples does not result in noticeable improvements.
In contrast, at high SNR, the performance of the single
Dirac-delta approximation becomes comparable to that of the
Dirac mixture. This is because, according to the asymptotic
property lim, o CN(z;pu,n) = 6(xz — p), the Dirac mix-
ture approximation effectively reduces to a single Dirac-delta
function §(x — ) when the variances become sufficiently
small, which commonly occurs in high-SNR regimes. This
simplification also opens up the possibility of incorporating
adaptive decision mechanisms to further reduce complexity.
Due to space limitations, this direction is left for future work.

VI. CONCLUSION

In this paper, we proposed an AFDM transmission frame-
work based on a novel time-domain pilot placement strat-
egy. By introducing the notion of transmission efficiency,
we highlighted the advantages of the proposed scheme over
conventional affine-frequency-domain pilot designs. To enable
efficient joint estimation and detection, we further formulated
a bilinear inference problem in the time domain using a
BEM. Building on this model, we developed a SEP algorithm



by leveraging EP message passing and Dirac mixture ap-
proximations. Simulation results confirmed that the proposed
method achieves a favorable trade-off between performance
and computational complexity.

Future work includes extending the proposed framework
to doubly fractional-selective channels, where both delay and
Doppler taps are fractional. We also plan to investigate the
integration of channel coding to improve performance in low
and moderate SNR regions, and to explore the potential of
combining with Turbo structures.
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