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AbstTact-lntegrated Sensing and Communication (ISAC) is 
becoming a key tecbnology in 6G networks, where sensing 
baaed on ehannel state information (CSI) plays an essential 
role. Present resenreh primarily focuses on enhancing sensing 
performance, yet often overlooks security issue, especially the 
threat of unauthorized sensing that tends to receive little atten­
tion. In respense to the above threat, this paper proposes to 
nse generative AI to enhance the seeurity of CSI-baaed sensing 
systems. Specifically, we design the guarding signal according to 
the eharacteristics of CSI Ductoations cansed by user activities 
and build the corresponding database baaed on the measurements 
collected by software-defined radio. Utilizing the constructed 
dataset, we train the conditional generative di:tlusion model, 
which can produce guarding signals that are similar yet distinct 
from the original training samples. Then, these guarding signals are modulated onto pilot signals, ellectively masking the user­
induced Ductoations, thereby preventing unauthorized devices 
from performing illegitimate sensing. Taking the nser activity 
recognition as the example, esperimental evaluations illustrate 
that the proposed method reduces the recognition accuracy of 
unauthorized devices by about 75%, significandy enhancing nser 
privacy protection agaiost unauthorized sensing. 

Irukx Terms-Channel state ioformation, wireless sensing se­
curity, generative AL 

I. INTRODUCTION 

As a promising technology, integrated sensing and commu­
nication (ISAC) combines communication and sensing within 
one system, fully leveraging network resources for concurrent 
data transmission and environmental sensing [1]. A typical ex­
ample of ISAC is channel state information (CSI) based sens­
ing [2]. CSI based sensing involves analyzing CSI extracted 
from wireless communication signals to perceive users. From 
large scale to small scale, it includes users' spatial position, 
activities, and even physiological signs such as breath. While 
these efforts are comprehensive and thorough, they overlook 
the sensing security. Specifically, these sensing systems rely 
on CSI extracted from pilot signals, making them easy to 
deploy. Nonetheless, this accessibility also means that typical 
device in the open space can intercept wireless communication 

Fig. 1: An unauthorized access point(AP) conducts illegitimate 
sensing without disrupring legitimate sensing and communica­
tion activities. 

signals and employ pre-defined pilot signals to obtain CSI. 
On this basis, unauthorized devices can exploit these CSI 
measurements to sense users' daily activities. For example, 
rogue access points (APs) can catch wireless signals and 
estimated CSI to monitor user activities, as shown in Fig. I, 
causing privacy risks [3]. 

An promising approach to safegnard users against illegiti­
mate sensing is to generate a guarding signal and modulate 
it onto standard pilot signals, so as to cancel the CSI vari­
ations induced by activities of the user [4]. In this process, 
it is crucial to ensure that the gnarding signal cannot he 
reconstructed by unauthorized devices. Furthermore, another 
issue is to make sure the signal generation can dynami­
cally adjust according to variations in transmission contexts, 
which is challenging. Fortunately, recent developments in AI­
generated content (AIGC) have facilitated the evolution of 
generative AI (GAl) models [5] that can be used to produce 
the gnarding signals. Within AIGC domain, diffusion models 
are capable of creating text, images, and videos based on 
user prompts, demonstrating strong capability and adaptability 
in data generation. In fact, beside digital content generation, 
diffusion models are proficient in both signal denoising and 
generation [6], providing multiple disrinct benefits [7]. Firstly, 
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they demonstrate creativity in data generation by producing 

outputs that are similar to the training data but not identical, 

thereby ensuring diversity in the generated samples. Secondly, 

they rely on specific network parameters and random seeds 

for data generation through denoising processes, which leads 

to unpredictable results. Moreover, they are flexible, enabling 

adjustments to the signal generation process to better align 

with user prompts. Such attributes render diffusion models an 

ideal choice for the creation of guarding signals. 

Leveraging above mentioned observations, we propose using 

conditional diffusion models to generate guarding signals, 

thereby enhancing the security of CSI-based sensing systems. 

Specifically, we first conduct a detailed analysis of the CSI 

fluctuation characteristics caused by human activities and 
design guarding signals based on the analysis. Using software­

defined radios (SDR), we collect extensive CSI data to con­

struct a dataset of guarding signals, and then train a conditional 

diffusion model with this dataset. Mter that, the model is used 

to produce guarding signals, which are modulated onto pilot at 

the transmitter (Tx) to mask the CSI variations. At the receiver 

(Rx), the replication of the modulated guarding signals are 

conducted by the authorized sensing devices through running 

the same conditional diffusion model and random seed. This 

allows authorized devices to obtain the actual CSI for effective 

sensing and communication. In contrast, unauthorized devices 

cannot generate guarding signals, so they are blocked from 

accessing the real CSI and are unable to carry out illegal 

surveillance. In summary, the contributions of this paper are 

outlined as follows. 

• We conduct a thorough analysis of signal fluctuations 

caused by various human activities in indoor scenarios 

and design guarding signals based on the characteristics 

identified through this analysis. 
• We use an SDR platform to collect CSI data under 

various conditions and built a dataset of guarding signals. 

Based on this dataset, we trained a generative conditional 

diffusion model, which can then generate guarding signals 

tailored to specific input conditions. 

• Using activity recognition as an example, the proposed 
method is evaluated. Experimental results indicate that the 

activity recognition accuracy of unauthorized devices can 

be declined by about 75% by using our method, validating 

its effectiveness in protecting users from illegitimate 

monitoring. 

II. SYSTEM DESIGN 

This section describes the proposed method in detail, in­

cluding the guarding signal design, dataset construction, condi­

tional diffusion model training, and how the generated signals 

are utilized to protect users from illegitimate sensing. 

A. Signal Model 

Consider a pair of transceivers that sense users in the envi­

ronment by using orthogonal frequency-division multiplexing 

signals. The Rx receives signals and then uses the predefined 

pilot signal for both the Tx and rX to estimate the CSI 

for human activities recognition. Assunting no inter-carrier 

interference (ICI), then the CSI is obtained via 

i'l: = (xHx) -'xHy = x-'v, (I) 

where X is the transmitted training symbols, Y is the received 

training symbols, and the superscript H is the conjugate 

transpose operator. At time t, the CSI of the n-th subcarrier 

can be denoted as 

H Cfn, t) = e-je L lllj Cfn, t) e-j2�J.d,(t)fc + nJ.,t (2) 

lEPd 

+ e-i• H, Cfn, t), 
where e-Je represents the phase shift caused by synchro­

nization, H, Cfn, t) denotes sum of the CSI corresponding to 

all static propagation paths, Pd contains dynaroic propagation 

paths induced by the moving user, 011 Cfn, t) indicates the 

ioitial signal phase and attenuation of the path!, ci2�f.d,(t)/c 
is the accumulated phase due to the propagation length change 

of the path !, and nf.,t is noise. On this basis, the power of 
CSI can be expressed as 

IH Cfn, t)l2 
= L Ia Cfn, t)l2 + IH, Cfn, t)l2 (3) 

lEPd 

"2H [211"/n (vzt + dz(O)) 
n l + L...J 80' X COS + Usl 

lEPr1. 
C 

" 2 [211"/n (tl:l.vw + l:l.dw (0)) 0 l 
+ L.....J o:u' cos + uw c 

l,l'EPd 

+ W (n!.,t), 
where 

l H,a = IHs Cfn, t) 0<1 Cfn, t)l 
aw = laz Cfn, t) <>z• Cfn, t)l 
ll.vw = vz - vz' 
l:l.dw (0) = dz (0) - dz• (0) 

(4) 

vz and dz (0) are the length change rate and initial length of 
the 1-th dynaroic propagation path, O,z and Ow are the initial 

phases, and W (nf.,t) is the power of the noise multiplied by 

cross terms. As can be seen from (3) that CSI power consists 

of a combination of sinusoids and constants, with the total 

intensity influenced by IH, Cfn, t)l. Moreover, we can see the 

main fluctuations in the CSI are caused by the term in second 

raw, whose intensity is lower than I H. Uno t)l2• Given that 

distinct human activities produce different vz values, activity 

recognition can be achieved by identifying and analyzing the 

patterns of these fluctoations. 

Th mask the variations in CSI induced by human activities, 

we propose to generate the guarding signal and then multiply 

them with pilots that are used for CSI estimation at the Rx. 
Concretely, let the training symbols with N subcarriers be 

X= diag (X [0], ... , X [N- 11), (5) 

where X [n] denotes the pilot signal of the n-th subcarrier. 
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Then the training symbol with the guarding signal can be 
expressed as 

X'= diag (• (/o, t) X [0], ... ,s UN-1, t) X [N- 1]), (6) 

where s (in, t) is the guarding signal corresponding to the n­
th subcarrier. In this case, the authorized device, which has 
guarding signal, can extract real CSI via H = (X')-1Y', 
where Y' is the captored signal as X' is sent out. On the other 
hand, for the unauthorized device without guarding signal can 
obtain H' = x-1Y'. Therefore, according to (2) and (3), we 
have 

(7) 

where 

H' (/n, t) = e-i< S (/n, t) H, (/n, t) + n' fn,t (8) 

+ e-je L. Un, t) a, Un, t) e-j2wj.d,(t)fc. 
lEPd 

From (7) and (8), it is clear that the fluctuation of CSI power 
in unauthorized devices is influenced by both the channel and 
the guarding signal, hence allowing effective masking of fluc­
toations due to user activities via guarding signal adjustments. 
For instance, let IHwk Un, t)l2 be the CSI power when a user 
is walking. The fluctuation charactetistics of IHwk (in, t) 12 
are defined by many parameters, including dz (0), vz, and 
Pd, primarily governed by the static path components, which 
depend on the positions of the transmitter and receiver. Then, 
we can set sUn, t) = 1/IHwdfn, t)l, which can makes 
the CSI power obtained by the unauthorized Rx close to I. 
Hence, the CSI variations induced by the user's activity can 
be masked by the guarding signal. However, in practice, the 
activity of the human user is unknown, and aforementioned 
parameters are difficult to obtain, making it challenging to 

calculate 1/IHwd/n, t)l directly. 

B. guarding Signal Design and Dataset Construction 

Although user activities are unpredictable and related signal 
parameters are difficult to acquire, the types of activities 
performed in indoor environments are limited and the research 
shows corresponding signal parameters values fall within a 
certain range [4]. We carried out experiments in the indoor 
scenario using the method described in [ 4] to analyze the vz 
for four common user activities. The findings presented in 
Fig. 2 demonstrate that the v1 for sitting down varies from 
approxinlately 0.1 to 2.5 m/s, whereas for falling, it spans 
from about 2 to 5.5 m/s. This is notably higher than those of 
the rest activities. Based on these observations and the aim of 
the guarding signal, which is to mask user movements induced 
signal variations, the guarding signal is designed as follows 

• Un, t) = 1/IH, Un, t)l + 1/IH• Un, t)l 
+ 1/IHa (In, t)l + 1/IH• (In, t)l, 

(9) 

where H, (in, t), H2 (in, t), Ha (in, t), and H4 (in, t) are 

CSI measurements corresponding to falling, running, walking, 
and siting down, respectively. The reason for such design is 

Fig. 2: Distribution of vz corresponding to four common indoor 
activities. 

that the v1 associated with these activities spans from 0 m/s 
to approxinlately 6 m/s, nearly covering all potential values 
of vz [4]. Hence, it provides two significant benefits. First, the 
signal fluctuations induced by various indoor user activities 
can be effectively canceled by s (in, t) to certain degrees. 
Second, it also introduces new interference to further mask 
the signal fluctuation charactetistics. For instance, when a 
user waves hand, components H, Un, t) and H2 Un, t) in 
s (in, t) can help cancel the signal fluctoations. Meanwhile, 
components Ha (in, t) and H4 (in, t) contribute additional 
new interference, which further masks the signal featores 
introduced by waving hands. 

Th ensure the sUn, t) possesses the aforementioned char­
actetistics while preventing unauthorized devices from repli­
cating it, a generative diffusion is trained to produce the 
guarding signal. To guarantee the quality of s Uno t), a dataset 
containing real-world CSI measurements is built to train the 
diffusion model. Specifically, the universal software radio 
peripheral (USRP) is used to collect CSI data under vari­
ous conditions for four types of activities. Then, H, (in, t), 
H, (in, t), Ha Uno t), and H4 Uno t) are calculated and com­
bined to obtain the guarding signal, thereby building the 
training dataset. Figure 3 displays the general process of the 
dataset construction. 

C. Guarding Signal Generation 

Based on the constrncted dataset, the conditional diffusion 
model is trained to generate guarding signals. During this pro­
cess, the distance between the signal transmitter and receiver 
is used as a generation condition since it directly impacts 
the CSI power according to (3), which in torn affects the 
guarding signal. The generative diffusion model consists of 
a forward process and a reverse process. Specifically, given 
a noise scale schedule denoted as 0 < fh, . . . , fJT < 1, for 
a given guarding training signal "" � q9 (x), the forward 
process of the diffusion model involves adding noise over T 
steps to pertorb the training sample, therefore 

q (x, lx,_,) = N ( x,; )1 - fJ,x,_, f!tl) , (10) 
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Fig. 3: The process of constructing the dataset. It involves 
calculating and accumulating s Un, t) by using the CSI of 

different activities gathered in varying cases to assemble the 
training dataset. 

where I is the identity matrix. From t- 1 to t, based on above 
transition relationship, we can have 

q (x, lxo) = N (x,; fotxo, (1 - a,) I) , (11) 

where a, = IJ:,�1 (1 - f3t• ). After adding noise overT steps, 

the distribution of the perturbed training sample is 

T 
q (x1,rlxo) = II q (x,lxt-1) 

t=l 
T 

= II N (x,; v'1- f3tXt-1,/3ti). (12) 
t=l 

The diffusion model fundamentally operates as a Markov 
chain, therefore, by incorporating the generation condition u' 
into the forward process, (9) can be transformed to 

r/ (x,lx,_, u') = q (x,lx,_,). (13) 

On this basis, we can obtain 

and 

r/ (x,lx,_,) = 1 q' (x,, ulxt-1) du 

= 1 q (x,lx,_,) q (ulx,_,) du 

= q (x,lxt-1) = q' (x,lx,_, u) , (14) 

q' (x1,rlxo) = 1 q' (x1,T, ulxo) du 
T 

= 1 q' (uiXo) II r/ (x,lx,_, u)du u t=l 
T 

= II r/ (xtiXt-1) = q (x1,rlxo). (15) 
t=l 

As can be seen, the noise /31, ... , f3r is predefined, allowing 

xr to approximate N (0, I) in the forward process. Mean­
while, incorporating the generation condition in the forward 

process has no significant effect on the noise addition. 

In the reverse process, the diffusion model begins with 
Gaussian noise and generates samples through T steps of 
denoising. If q (xt-1 lxt) is accessible, the reverse diffusion 
process can be effectively executed to obtain samples from 

q (x0). However, determining q (x,_1 lx,) reqnires calculating 
the data distribution, which is practically intractable. Hence, 

q (xt-1 lxt) is parameterized, which is denoted as 

P• (xt-1lx,) = N (xt-1; JL• (x,, t), Ee (x,, t)). (16) 

Through this, the process from xr to x0 can be obtained 

T 
Pe (Xo,r) = Pe (xr) IIP• (xt-1lx,), (17) 

t=l 
and the loss function can be expressed as 

L (8) =Exo,•-N(D,I),t [I lee ( ��� fote, t ) - e, t i l
'] , 
(18) 

where L ( 8) is a weighted form of the evidence lower bound. 
Based on the aforementioned reverse process, the generation 

condition u, i.e., the distance between the signal transmitter 
and receiver, is incorporated to guide the diffusion model in 
producing the desited guarding signals. Hence, we have 

where 

T 
Pe (xo,r lu) = Pe (xr) IIP• (xt-1lx,, u), (19) 

t=l 

P• (x,_dx,, u) = N (x,_1; JL• (x,, t, u) , Ee (x,, t, u)). 
(20) 

The gnarding signals generated in this manner resemble 
but differ from those in the training dataset. This sintilarity 
fosters randomness and diversity, which hinders unauthorized 
receivers from duplicating them. According to (5), the gener­
ated guarding signals are modulated onto the original pilot 

to mask fluctuations caused by user activity. Notably, the 
signal's fluctuation characteristics primarily manifest in the 
time domain. Therefore, the guard signal remains the same 
across different subcarriers, indicating that s (fo, t) = s (in, t). 

III. IMPLEMENTATION AND EVALUATION 

The proposed method is evaluated through the USRP from 

two aspects. Firstly, the guarding signal generation based on 
the trained conditional diffusion model is presented. Subse­
quently, the generated guarding signals are modulated ontu 
the pilot signals and user activity classification is used as a 
case to evaluate the effectiveness in safeguarding users against 

unauthorized sensing. 
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Fig. 4: The hardware devices, which include the USRP N321 
along with its internal configuration, the server, external clock, 
and directional antenna. 

A. Experimental Configurations 

For hardware configuration, it involves USRP N321 devices 

and servers. The server for training and inference processes of 
the diffusion model are running Ubuntu 20.04 OS with an 
AMD Ryzen Threadripper PRO 3975WX 32-core processor 
and an NVIDIA RTX A6000 GPU. After generation, the 
guarding signals are transferred to the other server featuring 

64 GB RAM and the GNU Radio 3, linked to the USRP N321 
units through 10-gigabit Ethernet connections. Each USRP 
N321 device incorporates a processor for baseband along with 
a UBX-160 daughterboard. Synchronization across devices is 

ensured by an OctoClock-G CDA-29906. The test is conducted 
at 2.8 GHz with 100 MHz bandwidth spanning 64 subcarriers 
and a transmission rate of 100 packets per second. To improve 
the quality of both transmission and receiving, we employ 
a directional antenna with 12 dBi gain. Figure 4 provides a 

overview of the hardware used in the experiment, including 
the antennas, Xilinx baseband processor, daughterboard, etc. 

B. Performance Evaluation 

1) Guarding Signal Generation: The signal generation pro­
cess under different conditions are shown in Figs. 5 and 6. As 
can be observed, with 460 denoising steps, the gnarding signals 
are still noisy, indicating that denoising is inadequate. As 

the denoising continues, the noise further diminishes, making 
the gnarding signals clearer. After 500 steps, a complete and 
distinct gnarding signal is obtained, confirming the effective­
ness of the generation process. On this basis, we can see 
that different conditions yield different gnarding signals. For 

instance, the generated guarding signals are weaker when the 
transmitter and receiver are closer, and stronger when they are 
further apart. This occurs because when the transmitter and 
receiver are close, the signals received have higher amplitude 

and more pronounced fluctuations. Consequently, a weaker 
guarding signal is needed to effectively cancel the variation 
introduced by user activity. On the other hand, a greater 
separation needs stronger gnarding signals. This demonstrates 
that the conditions can effectively gnide the signal genera­
tion. Besides, while the generated signals mirror the training 

samples in terms of intensity and overall trends, they remain 

distinct. This underscores the variability and unpredictability, 
preventing unauthorized devices from replicating them. 

2) Protection Performance in Activity Recognition: The 
generated gnarding signals are modulated onto pilot signals 
to evaluate the performance of protecting users from unautho­
rized activity recognition. The experiment is conducted based 

on AF-ACT [3], ABLSTM [8], and PhaseAnti [9], including 
five types of activities: waving (WH), walking (WK), squatting 
(SQ), sitting (Sl), and falling (FL). The proposed method 
is compared with Secur-Fi [10] via recognition accuracy 

(RA) and accuracy degradation rate (ADR).The calculation 

of Recognition Accuracy (RA) involves dividing the number 
of accurate identifications by the total count of tests per­
formed, and ADR is defined as (RAorg- RAsJ)/RAorg• 
where RAorg is the RA without the gnarding signal, and RAsf 
is the RA of an unauthorized device when guarding signal is 

used. A higher ADR indicates better protection performance. 

Fignres 7(a) to 7(c) show that when the gnarding signal is 
used, the average ADRs of AF-ACT, ABLSTM, and PhaseAnti 
are 0.78, 0.81, and 0.72, respectively. In contrast, when Secur­

Fi is used, these systems achieve ADRs of 0.71, 0.68, and 

0.58, respectively. These results indicate that our method holds 
better protection performance. This occurs because our method 
modulates the generated gnarding signals onto the pilot signals. 

Compared to Secur-Fi, which introduces signal fluctuations 
by adjusting antennas, our method impacts the signal more 
directly and thoroughly, hence offering better protection. 

Additionally, our method works well for different types of 
activities, demonstrated by the ADRs of ABLSTM for five 
different activities are 0.81, 0.82, 0.83, 0.81, and 0.77. How­

ever, its effectiveness varies between systems. For instance, 
it has a more pronounced effect on AF-ACT and ABLSTM 
than on PhaseAnti. This is because ABLSTM and AF-ACT 
depend solely on CSI amplitude to recognize user activity, 
while PhaseAnti uses both amplitude and phase, making it 

more robust. Finally, Fig. 7(d) presents the activity recognition 
confusion matrix of AF-ACT with RAs of five activities are 
19%, 16%, 17%, 21%, and 27%. This demonstrates that 
our method prevents the systems from mistakenly classifying 
different activities as the same one. This outcome is due to 

the generated gnarding signal's degree of randomness, which 
causes the CSI features captured by unauthorized devices to 
vary, leading to unpredictable recognition results. 

IV. CONCLUSION 

This paper proposes to use the generative diffusion model 
to enhance the security of CSI-based sensing systems. It 

analyzes the signal fluctuation characteristics caused by user 
activities and designs guarding signals that can mask these 

fluctuations. On this basis, we constroct a dataset and train 
a conditional diffusion model to generate the gnarding sig­
nals. These signals are then modulated onto pilot signals to 

mask the signal fluctuations induced by the user, thereby, 
effectively preventing unauthorized devices from performing 

illicit sensing. Experimental evaluations demonstrate that the 
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Fig. 5: The guarding signal generation process when Tx and Rx are about 3 meters apart. (a) to (c) respectively show the 

guarding signals generated after 460, 480, and 500 denoising steps. (d) illustrates a sample from the training dataset. 

Fig. 6: The guarding signal generation process when Tx and Rx are about 6 meters apart. (a) to (c) respectively show the 

guarding signals generated after 460, 480, and 500 denoising steps. (d) illustrates a sample from the training dataset. 

(a) ADR of AF-ACT. (b) ADR of ABLSTM. (c) ADR of PhaseAnti. (d) Confusion matrix of AF-ACT. 

Fig. 7: The protection performance comparison. 

proposed method reduces the activity recognition accuracy of 

unauthorized devices by about 75%. Given the widespread 

accessibility of CSI for wireless sensing applications, the 

proposed method offers an innovative approach to safeguard 

users against unauthorized sensing. 
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