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Abstract—This paper investigates the non-negligible latency
associated with repositioning fluid antennas (FA) and delves
into the challenge of maximizing the antenna trajectory-aware
sum-rate for FA-enhanced systems. Different with conventional
transmission schemes that swiftly reposition antennas to their
desired positions, we introduce an innovative protocol that jointly
optimizes antenna movement and signal transmission during the
repositioning phase. To reduce the computational complexity,
we reformulate the problem into a more tractable weighted
minimum mean square error (WMMSE) framework, which
is particularly tailored for FAs. Subsequently, we employ the
WMMSE algorithm and a majorization-minimization technique
to refine the beamforming strategies and antenna positioning,
respectively. Furthermore, we introduce a planar motion mode
that confines each FA within a designated region, leading to a low-
complexity, closed-form solution. Numerical results demonstrate
that the antenna trajectory-aware FA-enhanced system surpasses
traditional systems in performance.

Index Terms—Fluid antenna, antenna trajectory, sum rate
maximization, planar motion mode.

I. INTRODUCTION

As the antenna technology continues to evolve, multiple-
input multiple-output (MIMO) systems have experienced a
remarkable expansion in capacity, capitalizing on the addi-
tional spatial degrees of freedom (DoFs). Nonetheless, tradi-
tional MIMO systems, which rely on fixed-position antennas
(FPAs), encounter limitations in achieving further performance
improvements. In light of the recent advancements in liquid
metal technology, fluid antennas (FAs) have emerged as a
cutting-edge solution. These antennas dynamically adapt their
physical positioning in response to the time-varying dynam-
ics of wireless channels, thereby optimizing MIMO system
capabilities.

A multitude of research efforts have been dedicated to the
analysis and enhancement of FA-enhanced MIMO systems.
Works such as [4], [5] have explored the deployment of FAs in
transceivers to bolster the capabilities of point-to-point MIMO
systems. Furthermore, studies like [6], [7] have examined
multiuser transmission scenario where FAs are exclusively
integrated into the base station (BS). Specifically, the motions

of the FA elements, constrained by practical device perfor-
mance, has been conceptualized as discrete actions, referred
to as ports. Additionally, [8] has investigated scenarios where
only users are equipped with FAs. Moreover, drawing on the
potential of FAs, a spectrum of recent research has delved into
optimizing their performance under diverse configurations,
including physical-layer security [9], integrated sensing and
communication (ISAC) [10], over-the-air computation [11],
and mobile edge computing [12], among others. However,
the antenna adjustment often introduces non-negligible delays,
which can substantially impact system performance [13].
Particularly, the adjustment of one antenna may be subject to
constraints imposed by the positions of adjacent antennas to
avoid collisions or mutual coupling, further intensifying the
actuation delay. Consequently, such delays can degrade the
effective data transmission rate, especially when the channel
coherence time is limited.

Hence, this paper aims to investigate the FA trajectory-
aware sum-rate maximization problem. The main contribu-
tions of this paper are summarized as follows: i) We first
develop an FA trajectory-aware sum-rate maximization prob-
lem, which is subsequently transformed into an equivalent
weighted minimum mean square error (WMMSE) problem
compatible with FAS, thereby significantly improving the
problem’s tractability. ii) To solve this problem efficiently,
we employ the block coordinate descent (BCD) method to
iteratively optimize all variables and adopt a planar motion
mode to derive a low-complexity closed-form solution for
FA trajectory. iii) Numerical results demonstrate that the FA-
enhanced systems outperform their traditional counterparts.
Moreover, the adoption of the planar motion mode notably
decreases computational demands, albeit with a minor trade-
off in performance.

II. SYSTEM MODEL

We consider a multi-user downlink FA-enhanced system,
which consists of a BS equipped with M FAs and K single-
FA users. Unlike conventional systems, this setup allows the



positions of transmit FA at Bs and the receive FA at user
k to be dynamically adjusted within Ct and Cr

k respectively.
This flexibility, enabled by technologies such as liquid metal
[1], [2], enhances spatial diversity gains. Instead of following
traditional transmission protocols, which rapidly reposition
antennas to target locations but experience reduced transmis-
sion rates during adjustments, we introduce an innovative
approach to simultaneously optimize antenna trajectory and
signal transmission over multiple time slots.

Let S denote the number of time slots within the channel
coherence time, with each slot having a duration of τ . The
position of FA m at the BS and that of the FA for user k during
the s-th time slot are given by tm(s) = (xm(s), ym(s))T

and rk(s) = (xk(s), yk(s))
T , respectively. Hence, during

s-th time slot, the position vector of all transmit FAs at
BS and receive FA at users can be expressed as t(s) =
(t1(s)

T , · · · , tM (s)T )T and r(s) = (r1(s)
T , · · · , rK(s)T )T ,

respectively. To ensure practical feasibility and enhance an-
tenna efficiency, a minimum inter-FA distance of D is main-
tained between any two FAs at the BS to mitigate potential
electrical coupling, i.e.,

∥ti(s)− tj(s)∥ ≥ D,∀i ̸= j,∀s. (1)

Due to the the limited power available to operate the FAs, a
maximum allowable speed is imposed on each FA, i.e.,

∥tm(s)− tm(s− 1)∥ ≤ V t
maxτ,∀m,∀s,

∥rk(s)− rk(s− 1)∥ ≤ V r
maxτ,∀k, ∀s,

(2)

where V t
max and V r

max represent the maximum speeds of each
FA at the BS and the users, respectively. tm(0) and rk(0)
denote the initial positions of the transmit FA m at the BS
and the receive FA for user k before adjustment, respectively.

In an FA-enhanced system, the channel response for user k
is influenced by the position vector that can be expressed as
hk(t(s), rk(s)) ∈ CM×1 during the s-th time slot. Thus, the
received signal is given by

yk(s) = hH
k (t(s), rk(s))

K∑
k=1

wk(s)sk(s) + zk(s), (3)

where wk(s) ∈ CM×1 and sk(s) ∈ C represent the beam-
forming vector and the transmit signal intended for user k,
respectively. By combining all beamformers, the beamforming
matrix is defined as W(s) ≜ (w1(s),w2(s), · · · ,wK(s)) ∈
CM×K . The term zk(s) ∼ CN (0, σ2) represents the additive
noise. Furthermore, the signal-to-interference-plus-noise ratio
(SINR) at user k can be expressed as

γk(s) ≜
|hH

k (t(s), rk(s))wk(s)|2∑
i̸=k

|hH
k (t(s), rk(s))wi(s)|2 + σ2

. (4)

A. Channel Model based on Field-Response

At time s, the difference of the signal propagation distance
for the l-th AoD of user k between the FA m position and the
origin at the BS is measured as

ρtl,k(tm(s)) = xm(s) sin θtl,k cosϕ
t
l,k + ym(s) cos θtl,k,

(5)
where (θtl,k, ϕ

t
l,k) denotes the elevation and azimuth AoDs for

the l-th transmit paths between the BS and user k. Similarly,
the signal propagation phase difference for the l-th AoA
between the FA and the reference point at user k is

ρrl,k(rk(s)) = xk(s) sin θ
r
l,k cosϕ

r
l,k + yk(s) cos θ

r
l,k, (6)

where (θrl,k, ϕ
r
l,k) denote the elevation and azimuth AoAs for

the l-th receive paths between the BS and user k. We assume
that there are a total of Lt

k AoDs and Lr
k AoAs in the downlink

channel matrix between the BS and user k. Consequently, the
field-response vector aggregating all AoDs related to user k
and the m-th FA at the BS and all AoAs at the user k can be
expressed as

fk(tm(s)) =

[
ej

2π
λ ρt

1,k(tm(s)), · · · , e
j 2π

λ ρt
Lt
k
,k
(tm(s))

]T
,

gk(rk(s)) =
[
ej

2π
λ ρr

1,k(rk(s)), · · · , ej
2π
λ ρr

Lr
k
,k(rk(s))

]T
.

(7)

Thus, the downlink communication channel vector from the
BS to user k, which is associated with the antenna position
vectors, is given by

hk(t(s), rk(s)) = FH
k (t(s))Σkgk(rk(s)), (8)

where Fk(t(s)) ≜ (fk(t1(s)), · · · , fk(tM (s))) ∈ CLt
k×M sig-

nifies the field-response matrix at the BS, while Σk ∈ CLt
k×Lr

k

indicates the path-response matrix. This path-response matrix
encompasses all multi-path responses between every possible
AoA and AoD.

B. Problem Formulation

Our goal is to maximize the trajectory-aware sum rate by
jointly designing the transmit beamformer and the antenna
trajectory, which is subject to the minimum inter-FA distance,
FA speed, and the transmit power constraints. Let W ≜
{W(1),W(2), · · · ,W(S)}, t ≜ {t(1), t(2), · · · , t(S)}, and
r ≜ {r(1), r(2), · · · , r(S)}, this optimization problem can be
formulated as

max
W,t,r

S∑
s=1

K∑
k=1

αk log(1 + γk(s)) (9a)

s. t.
K∑

k=1

∥wk(s)∥2 ≤ Pmax, ∀s (9b)

∥ti(s)− tj(s)∥ ≥ D,∀i ̸= j,∀s (9c)
∥tm(s)− tm(s− 1)∥ ≤ V t

maxτ,∀m,∀s, (9d)
∥rk(s)− rk(s− 1)∥ ≤ V r

maxτ,∀k, ∀s, (9e)
tm(s) ∈ Ct, rk(s) ∈ Cr

k, ∀s, (9f)



where all weights should satisfy αk ≥ 0,∀k and
∑

k αk = 1;
Pmax is the maximum transmit power budget at each time slot.
To simplify the original weighted sum rate maximization prob-
lem, we employ a linear receive beamforming strategy, where
the estimated signal is expressed as ŝk(s) = uk(s)

∗yk(s),∀k,
and u(s) ≜ (u1(s), · · · , uK(s))T ∈ CK×1 represents the
receive beamformer in the s-th time slot. We assume that sk(s)
and zk(s) are independent, thus, the derived expected mean-
square error (MSE) is given by

ek(s) ≜ E
[
|ŝk(s)− sk(s)|2

]
= 1 + |uk(s)|2(σ2 +

K∑
j=1

|hH
k (t(s), rk(s))wj(s)|2)

− 2Re(uk(s)
∗hH

k (t(s), rk(s))wk(s)).
(10)

Inspired by the WMMSE algorithm developed for solving
multiuser interference in the conventional communication
systems [14], we introduce an auxiliary vector v(s) =
(v1(s), v2(s), · · · , vK(s))T and reformulate the FA-enabled
WMMSE problem to make it more tractable, i.e.,

min
W,t,r,u,v

S∑
s=1

K∑
k=1

αk(vk(s)ek(s)− log(vk(s))) (11a)

s. t.
K∑

k=1

∥wk(s)∥2 ≤ Pmax, ∀s (11b)

∥ti(s)− tj(s)∥ ≥ D,∀i ̸= j,∀s (11c)
∥tm(s)− tm(s− 1)∥ ≤ V t

maxτ,∀m,∀s, (11d)
∥rk(s)− rk(s− 1)∥ ≤ V r

maxτ,∀k, ∀s, (11e)
tm(s) ∈ Ct, rk(s) ∈ Cr

k, ∀s, (11f)
v(s) ≥ 0, ∀s. (11g)

III. BCD METHOD FOR FA TRAJECTORY OPTIMIZATION

The BCD method first decomposes the optimization vari-
ables into multiple blocks, and then optimizes one block at a
time while keeping the other blocks fixed in each iteration.

A. Transceiver Beamformer Design for Each Time Slot

We first examine the optimization of the beamformer W
and the associated variables u and v, assuming FA trajectories
t and r fixed. As a result, the transmit beamformer design
problem for the s-th time slot is reduced to

min
W(s),u(s),v(s)

K∑
k=1

αk(vk(s)ek(s)− log(vk(s))) (12a)

s. t.
K∑

k=1

∥wk(s)∥2 ≤ Pmax, (12b)

v(s) ≥ 0. (12c)

This problem can be solved iteratively with a closed-form
solution [14, Table I]. Specifically, the update of uk(s), vk(s),
and wk(s) are, respectively, given by

uk(s) =

(
K∑
i=1

|hk(t(s), rk(s))
Hwi(s)|2 + σ2

)−1

hk(t(s), rk(s))
Hwk(s), (13a)

vk(s) =
(
1− uk(s)

∗hk(t(s), rk(s))
Hwk(s)

)−1
, (13b)

wk(s) = αkuk(s)vk(s)

(
µIM +

K∑
i=1

αi|ui(s)|2vi(s)

hi(t(s), rk(s))hi(t(s), rk(s))
H

)−1

hk(t(s), rk(s)),

(13c)

where µ ≥ 0 is the optimal dual variable determined by one-
dimensional search methods such that the constraint (11b) is
satisfied.

B. FA Trajectory Design at BS

To streamline computational complexity, we adopt an al-
ternating optimization framework for designing FA config-
urations. Specifically, when fixing the variables W, tj for
all j ̸= m, and r, the original optimization problem for
determining the m-th FA’s position at the BS during the s-
th time slot can be effectively simplified to

min
tm(s)∈Ct

K∑
k=1

(
fHk (tm(s))Ak,mfk(tm(s))

+ Re(bH
k,mfk(tm(s)))

)
(14a)

s. t. ∥tm(s)− tj(s)∥ ≥ D,∀j ̸= m, (14b)
∥tm(s)− tm(s− 1)∥ ≤ V t

maxτ, (14c)
∥tm(s+ 1)− tm(s)∥ ≤ V t

maxτ, (14d)

where the coefficients Ak,m and bk,m are, respectively, de-
fined as

Ak,m

≜ αkvk(s)|uk(s)|2∥wm,:(s)∥2Σkgk(rk(s))gk(rk(s))
HΣH

k ,

bk,m ≜ 2αkvk(s)

(
|uk(s)|2

K∑
j=1

(
wm,j(s)

∗
∑
n̸=m

wn,j(s)

gk(rk(s))
HΣH

k fk(tn(s))

)
− ukwm,k(s)

∗
)
Σkgk(rk(s)).

(15)
Subsequently, we develop a systematic approach for updat-
ing the antenna position vector through the minorization-
maximization (MM) framework [15]. The effectiveness of
this iterative optimization paradigm hinges on constructing
a surrogate function that systematically addresses both the
objective and constraints through carefully designed upper
bounds. During the (n)-th iteration, we establish a minorizing
approximation for the constraint function by anchoring the



linearization point at the current position estimate tm(s) =
tm(s)(n), leveraging the analytical properties of the Cauchy-
Schwarz inequality through the following procedure

∥tm(s)− tj(s)∥ ≥ (tm(s)(n) − tj(s))
T (tm(s)− tj(s))

∥tm(s)(n) − tj(s)∥
.

(16)
Concurrently, we formulate a tractable convex surrogate func-
tion for the primal objective through a quadratic approximation
strategy centered at the current iterate tm(s) = tm(s)(n)

K∑
k=1

(
fHk (tm(s))Ak,mfk(tm(s)) + Re(bH

k,mfk(tm(s)))
)

(a)

≤
K∑

k=1

Re(b̂H
k,mfk(tm(s))) + const.

(b)

≤
K∑

k=1

4π2

λ2
∥b̂k,m∥1∥tm(s)∥2 + (∇zk(tm(s)(n))

− 8π2

λ2
∥b̂k,m∥1tm(s)(n))T tm(s) + const.,

(17)
where steps (a) and (b) follow from [16, Lemmas 1-2], and

b̂k,m ≜ 2(Ak,m − αkvk|uk|2∥wm,:∥2

· ∥Σkgk(rk)∥2I)fk(tm(s)(n)) + bk,m,

zk(tm) ≜ Re(b̂H
k,mfk(tm)).

(18)

Therefore, the antenna position vector tm(s) during the s-th
time slot is updated as

tm(s)(n+1) = argmin
tm(s)∈Ct

K∑
k=1

(
4π2

λ2
∥b̂k,m∥1∥tm(s)∥2

+ (∇zk(tm(s)(n))− 8π2

λ2
∥b̂k,m∥1tm(s)(n))T tm(s)

)
(19a)

s. t.
(tm(s)(n) − tj(s))

T (tm(s)− tj(s))

∥tm(s)(n) − tj(s)∥
≥ D,

∀j ̸= m, (19b)
∥tm(s)− tm(s− 1)∥ ≤ V t

maxτ, (19c)
∥tm(s+ 1)− tm(s)∥ ≤ V t

maxτ, (19d)

which can be efficiently solved by fmincon.

C. FA Trajectory Design at Users
Given fixed parameters W, u, v, and t, the structural

independence of individual rk,∀k in the WMMSE formulation
(11) admits parallel computation across user indices. This
inherent separability in the optimization landscape enables
the original FA configuration challenge at the k-th user to
condense into the following reduced-dimensional subproblem

min
rk(s)∈Cr

k

gH
k (rk(s))Ckgk(rk(s)) + Re(dH

k gk(rk(s)))

s. t. ∥rk(s)− rk(s− 1)∥ ≤ V r
maxτ,

∥rk(s+ 1)− rk(s)∥ ≤ V r
maxτ,

(20)

where the parameters Ck and dk are defined as

Ck ≜
K∑
j=1

|uk|2ΣH
k Fk(t)wjw

H
j Fk(t)

HΣk,

dk ≜ −2u∗kΣ
H
k Fk(t)wk.

(21)

Building upon the established theoretical framework in (17),
we systematically derive a convex relaxation for the primal
objective through quadratic surrogate function construction. At
the (n)-th algorithmic iteration, this majorization procedure
is anchored at the current user-side configuration estimate
rk(s) = rk(s)

(n) and we have

gH
k (rk(s))Ckgk(rk(s)) + Re(dH

k gk(rk(s)))

≤4π2

λ2
∥d̂k∥1∥rk(s)∥2 + (∇zk(rk(s)(n))

− 8π2

λ2
∥d̂k∥1rk(s)(n))T rk(s) + const.

(22)

where

d̂k ≜ 2(Ck −
K∑
j=1

|uk|2∥ΣH
k Fk(t)wj∥2I)gk(rk(s)

(n)) + dk

zk(rk(s)) ≜ Re(d̂H
k gk(rk)).

(23)
Therefore, the FA position vector rk(s) at user k during the

s-th time slot is updated as

rk(s)
(n+1) = argmin

rk(s)∈Cr
k

4π2

λ2
∥d̂k∥1∥rk(s)∥2

+ (∇zk(rk(s)(n))−
8π2

λ2
∥d̂k∥1rk(s)(n))T rk(s),

s. t. ∥rk(s)− rk(s− 1)∥ ≤ V r
maxτ,

∥rk(s+ 1)− rk(s)∥ ≤ V r
maxτ.

(24)

IV. LOW-COMPLEXITY DESIGN

In practice, employing fmincon or CVX to tackle optimiza-
tion problems inevitably introduces significant computational
overhead. To address this, we propose a low-complexity design
approach that limits antenna motion to a specified region,
which is called planar motion mode. For clarity, the motion
mode in Section III is referred to as the general motion mode.

A. Planar Motion Mode

To reduce computational complexity, on the one hand, to
deal with constraint (14b), each FA is restricted to move within
a designated planar area and the minimum distance between
any two areas is set to D to prevent coupling effects; on the
other hand, to deal with constraint (14c)-(14d), the range of
antenna motion for each time slot is set within the common
internal tangent circle formed by the two circles constituted
by its adjacent time slots. Let t̂m(s) ≜ tm(s−1)+tm(s+1)

2 and
ψ̂m(s) ≜ V t

maxτ−
∥tm(s−1)−tm(s+1)∥

2 represent the center and
the radius of the circle, then

∥tm(s)− t̂m(s)∥ ≤ ψ̂m(s). (25)



The position optimization problem (14) can be recast as

min
tm(s)∈Ct

m

K∑
k=1

(
fHk (tm(s))Ak,mfk(tm(s))

+ Re(bH
k,mfk(tm(s)))

)
(26a)

s. t. ∥tm(s)− t̂m(s)∥ ≤ ψ̂m(s), (26b)

where Ct
m is the movement area of the m-th FA.

Through the systematic construction of a tight bound sur-
rogate in (17), we establish an iterative refinement framework
for the antenna position vector.

tm(s)(n+1) = argmin
tm(s)∈Ct

m

K∑
k=1

(
4π2

λ2
∥b̂k,m∥1∥tm(s)∥2

+ (∇zk(tm(s)(n))− 8π2

λ2
∥b̂k,m∥1tm(s)(n))T tm(s)

)
,

s. t. ∥tm(s)− t̂m(s)∥ ≤ ψ̂m(s)

= ΠCt
m



tm(s− 1)−

K∑
k=1

8π2

λ2 ∥b̂k,m∥1t̂m(s)

K∑
k=1

8π2

λ2 ∥b̂k,m∥1 + 2δ∗

+

K∑
k=1

( 8π
2

λ2 ∥b̂k,m∥1tm(s)(n) −∇zk(tm(s)(n)))

K∑
k=1

8π2

λ2 ∥b̂k,m∥1 + 2δ∗


(27)

which is a typical convex QP problem, and the closed-form
solution is provided in the Appendix. Similarly, we can derive
the closed-form solution for the position of the receiving
antenna; however, due to space limitations, we omit it.

V. NUMERICAL RESULTS

For quantitative performance evaluation, we establish a
multi-antenna base station (BS) configuration with M = 4
FAs. The channel path-response matrix elements follow inde-
pendent and identically distributed (i.i.d.) complex Gaussian
distributions. The system parameters are configured with noise
power σ2 = 15 dBm and minimum inter-antenna spacing
D = λ/2 to satisfy spatial sampling requirements.

The proposed TFA-RFA scheme is rigorously compared
against three baseline configurations: i) Traditional antennas:
Conventional static antenna deployment at both ends; ii)
TFPA-RFA: BS-side static antennas with user-side position-
adjustable FAs within receive regions; iii) TFA-RFPA: User-
side fixed antennas with BS-side position-adjustable FAs in
transmission regions.

Fig. 1 illustrates two distinct antenna motion paradigms.
Notably, optimal positioning requires coordinated nonlinear
trajectories rather than direct linear movements, as multi-
antenna systems necessitate cooperative spatial optimization.
Fig. 2 demonstrates the algorithm convergence characteristics,
revealing two key observations: (1) negligible performance

-1
.5

-1
.3

-1
.1

-0
.9

-0
.7

-0
.5

-0
.3

-0
.1

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
General motion mode

-1
.5

-1
.3

-1
.1

-0
.9

-0
.7

-0
.5

-0
.3

-0
.1

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

1
.5

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5
Planar motion mode

Fig. 1. Antenna trajectory for different motion modes.

variance between motion paradigms in terms of mean sum-
rate, and (2) significantly accelerated convergence in the low-
complexity planar motion mode, consistent with theoretical
predictions.

Fig. 3 presents the average sum-rate across varying FA
configurations, yielding three fundamental conclusions: First,
the proposed design achieves consistent performance supe-
riority over all baselines regardless of BS antenna count,
with system capacity scaling proportionally to antenna density.
Second, increasing position-adjustment degrees of freedom
(DoF) produces corresponding performance enhancements,
substantiating FA deployment as a capacity-boosting paradigm
for next-generation wireless systems. Finally, the planar mo-
tion mode attains near-optimal performance while reducing
computational complexity, motivating practical implementa-
tion of simplified motion-constrained architectures.

VI. CONCLUSION

This paper explored the sum-rate maximization problem
through antenna trajectory optimization in FA-enhanced com-
munication systems. To optimize this problem, we proposed
a BCD algorithm to optimize the trajectory. Furthermore,
we introduce a planar motion confinement mechanism that
restricts each FA’s movement within predetermined two-
dimensional subspaces, effectively reducing computational
complexity compared to unconstrained movement scenarios.
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Simulation results demonstrate that FA technology plays a piv-
otal role in advancing next-generation reconfigurable wireless
architectures.
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APPENDIX

We address the solution of (26) via dual decomposition,
noting that strong duality is applicable and the duality gap is
zero. Let δ denote the multiplier associated to the quadratic
constraint ∥tm(s) − t̂m(s)∥2 ≤ ψ̂m(s)2, the (partial) La-
grangian function for (26) is then formulated as follows:

L (tm(s), δ) = δ(∥tm(s)− t̂m(s)∥2 − ψ̂m(s)2)

+
K∑

k=1

(
4π2

λ2
∥b̂k,m∥1∥tm(s)∥2 + b̄T

k,mtm(s)).
(28)

where b̄k,m = ∇zk(tm(s)(n)) − 8π2

λ2 ∥b̂k,m∥1tm(s)(n). The
dual function is given by d(δ) = inftm(s)∈Ct

m
L (tm(s), δ).

Since L (tm(s), δ) is convex w.r.t. tm(s), we can find the
optimal tm(s) from the following optimality condition

∇L (tm(s), δ) = 2δ(tm(s)− t̂m(s))

+
K∑

k=1

(
8π2

λ2
∥b̂k,m∥1tm(s) + b̄k,m) = 0,

(29)

which yields

tm(s) =t̂m(s)−
∑K

k=1(
8π2

λ2 ∥b̂k,m∥1t̂m(s) + b̄k,m)∑K
k=1

8π2

λ2 ∥b̂k,m∥1 + 2δ
.

(30)
Then, tm(s) is projected onto the planar area Ct

m, which leads
to the desired (27). δ∗ ≥ 0 is the multiplier such that 0 ≤ δ∗ ⊥
∥tm(s)(n+1) − tm(s− 1)∥ − V r

maxτ ≤ 0.
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