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Communicating over a Classical-Quantum MAC with State
Information Distributed at the Senders

Arun Padakandla

Abstract

We consider the problem of communicating over a classical-quantum (CQ) multiple access channel with classical
state information non-causally available at the transmitters, henceforth referred to as a QMSTx. We undertake a
Shannon-theoretic study and focus on the problem of characterizing inner bounds to the capacity region of a QMSTx.
We propose a new coding scheme based on union coset codes - codes possessing algebraic closure properties and
derive a new inner bound that subsumes the largest known inner bound based on IID random coding. We identify
examples for which the derived inner bound is strictly larger.

I. INTRODUCTION

Consider the scenario depicted in Fig. 1, wherein a pair of distributed transmitters (Txs) are required to
communicate independent classical messages over a classical-quantum (CQ) multiple access channel (MAC). In
addition to the symbols X1 and X2 input by Tx 1 and 2 respectively, the quantum state provided to the receiver (Rx)
is governed by a pair of classical jointly distributed random states S1, S2 whose evolution over time is independent
and identically distributed (IID). Specifically, if the channel is in state s1, s2 and Txs 1, 2 choose input symbols
x1, x2 respectively, then the Rx receives the quantum state ρx1x2s1s2 . Tx j is provided the entire sequence of
realizations of the component Sj non-causally, while the Rx remains uninformed of the states. We undertake a
Shannon theoretic study of this quantum channel, henceforth referred to as a QMSTx. Our focus is on the problems
of designing efficient coding schemes and characterizing inner bounds to the capacity region of the QMSTx.

A QMSTx is a CQ MAC with Tx state information. The study of channels with Tx state information has evinced
considerable interest [1]–[5] over the years and has had a large influence on the design of efficient coding schemes
in information theory. The investigation of a point-to-point (PTP) classical channel with Tx state information
(CSTx) (Fig. 2) led Gel’fand and Pinsker [2] to their ingenious technique of partitioning channel codes. This
Gel’fand-Pinsker technique forms a core component of the current known best coding scheme for the classical [6]
and quantum broadcast channels [7], [8] and is also employed in other network scenarios [9]–[11]. In fact, the
Gel’fand-Pinsker technique has found utility even in storage applications with defective memory cells [12]. These
works and their impact motivate our study of the QMSTx. As we shall discuss, QMSTx facilitates the development
of a new unconventional coding scheme. Specifically, we design and analyze a new decoding POVM that yields a
strictly larger inner bound to the capacity region of the QMSTx in comparison to the conventional one.

The Gel’fand-Pinsker technique remains to be the best known technique to exploit Tx state information and is
optimal for communication over both the CSTx and its CQ analogue - the QSTx. See Fig. 2. In regards to the Rx,
since a pair of independent messages need to be communicated over a QMSTx, it is natural to build a simultaneous
(joint) decoding POVM. We are thus led to a natural coding scheme for a QMSTx wherein the two Txs incorporate
Gel’fand-Pinsker’s channel code partitioning technique and the Rx adopts a joint decoding POVM to recover the
messages. The conventional long established approach in information theory is to incorporate these techniques by
building IID random codes, also referred to herein as unstructured (IID) codes. One is thus led to partitioning the
two unstructured IID random codes, building the corresponding joint decoding POVM, analyzing performance to
characterize inner bounds to the capacity region of a QMSTx. The reader is referred to Thm. 1 for a characterization
of this unstructured coding inner bound.
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Fig. 1. A QMSTx wherein two Txs observe jointly distributed
random classical states that evolve IID over time and are required
to communicate independent messages to a Rx.
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Fig. 2. A general CQ PTP channel with Tx state information
(QSTx). When the collection (ρx,s : (x, s) ∈ X × S) of
quantum states are commuting, this channel reduces to a classical
PTP channel with Tx state information (CSTx) characterized via
a stochastic matrix WY |XS (denoted in braces). Gel’fand and
Pinsker [2] focused their study on the CSTx.
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The focus of our article is to step beyond this conventional use of unstructured codes and design a new coding
scheme for the QMSTx based on union coset codes (UCC) - an ensemble of structured codes possessing algebraic
closure properties. We analyze the information theoretic performance of the proposed structured coding scheme to
derive a new inner bound (Thms. 2, 4) to the capacity region of the QMSTx. The inner bound we characterize
in Thm. 4 subsumes the unstructured coding inner bound. In Sec. III-B and IV-E, we identify non-commutative
examples for which the structured coding scheme strictly outperforms the IID random coding scheme. Specifically,
we demonstrate that the derived inner bound for these examples is strictly larger than that achievable using
unstructured IID random codes. These findings build on our earlier work [13], [14] and maybe viewed as another
step [15], [16] in our pursuit of designing coding schemes based on coset codes for network CQ communication.

We now highlight the import and significance of our contributions. Beginning from Shannon’s work and through
most of the ensuing six decades, information theoretic study has been largely restricted to analyzing unstructured
IID coding schemes. Inspired by an ingenious work of Körner and Marton [17], structured coding schemes have
been designed for several classical multi-terminal channels [14]–[16], [18]–[22] in the last two decades and have
been proven to strictly outperform [4], [18], [22], [23] conventional unstructured IID random coding schemes.
Owing to the dominant influence of IID random codes and the difficulty of performance analysis in the quantum
setting, coding schemes for multi-terminal quantum channels are largely based on unstructured IID random codes.
Our work contributes to the development of structured quantum coding strategies in the CQ setting.

Secondly, the use of coset codes and the role of algebraic closure properties in a QMSTx is unique. Coset codes
have facilitated higher rates in communication scenarios wherein a compressive bi-variate function of the messages or
codewords have to be decoded. For instance, on both the 3−user interference [15], [23] and broadcast channels [22],
coset codes enable efficient decoding of the bi-variate interference. QMSTx is a CQ MAC wherein both messages
need to be decoded and decoding a compressive bi-variate function of either the codewords or the messages can
lead to obfuscation of the messages. Indeed, coset codes have no role in communication over a CQ-MAC without
Tx states. It is therefore natural to question the utility of structured codes in communicating over a QMSTx. As we
illustrate through a self-contained discussion in Sec. III, our findings demonstrate how algebraic closure properties
can be exploited to efficiently sieve relevant information and thereby facilitate enhanced communication over a
QMSTx - a utility that can potentially be exploited in other quantum communication scenarios.

Thirdly, this study enables us to enrich the family of coset codes for CQ communication beyond nested coset
codes (NCC) [15], [16] and partitioned coset codes (PCC) [24] studied recently. As elaborated in [14] and recent
works [25], [26], NCC or PCC based coding schemes for a classical analogue of a QMSTx, i.e., a classical MAC
with states, can be strictly inferior to a UCC based coding scheme. We have taken this cue to propose and design
UCC based coding schemes for communication over CQ channels. As an auxiliary result, we also prove (Thm. 5)
that UCCs achieve capacity of a single Tx version of the QMSTx, henceforth referred to as the QSTx channel.
Lastly, our findings maybe viewed as developing new coding schemes to handle diverse CQ network scenarios
arising in an eventual quantum communication network.

Since the early work of Shannon [1], the study of channels with Tx state information continues [3], [27]–[29]
to evince interest. Recently Anshu, Hayashi and Warsi [30] have studied the problem of secure communication
over fully quantum wiretap channel with Tx state information and obtain error exponents via the technique of
simultaneous pinching. See [31]–[33] for analogous works on classical channels. Using the method of types and
tools developed by Nötzel [34], Boche, Cai and Nötzel [5] have proved achievability of the Gel’fand-Pinsker inner
bound for the QSTx (Fig. 2). More importantly, their work [5] highlights the difference between the causal and
non-causal availability of state information at the Tx in regards to the single-letterization of the capacity. Our focus
is on designing a new coding scheme and characterizing new single-letter inner bounds. We do not comment on
the optimality of the inner bounds derived herein.

Our presentation is pedagogical. We begin with preliminaries - notation and problem statement - in Sec. II.
Through a self-contained discussion in the context of a carefully chosen example, Sec. III illustrates the main ideas
of our work and the role of algebraic closure in the proposed UCC coding scheme. A general coding scheme for a
QMSTx consists of two layers - unstructured codes and UCC. We first present a simplified coding scheme involving
only the UCC layer in Sec. IV and derive a new inner bound. In Sec. V, we present a larger inner bound that
subsumes the former and comprises of both unstructured and UCC layers. Leveraging techniques in Sec. IV and
V, we prove that UCCs achieve the Gel’fand-Pinsker inner bound in Sec. VI. Being a stand-alone section, Sec. VI
assists a reader interested only in the latter and demonstrates the versatility of our proof techniques.
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II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement standard notation in QIT, for example as in [35], with the following. For n ∈ N, [n] =∆ {1, · · · , n}.
Fq denotes a generic finite field of size q, where q is a prime power and ⊕ denotes addition within the finite field
in context. For a, b ∈ Fq, a ⊖ b =∆ a ⊕ (−b), where (−b) ∈ Fq is the additive inverse of b ∈ Fq. Existence of
finite fields for any prime power can be verified via standard books in Algebra such as [36, Lemma 7.1.4]. For a
Hilbert space H, L(H),P(H) and D(H) denote the collection of linear, positive and density operators acting on H
respectively. We let an underline denote an appropriate aggregation of pairs of objects. For example, U =∆ U1 ×U2

denotes the Cartesian product for sets, x =∆ (x1, x2) ∈ X and xn =∆ (xn1 , x
n
2 ). The specific aggregation will be

clear from context. For j ∈ {1, 2}, we let j denote the complement index, i.e., {j, j} = {1, 2}. For an event (set)
A ⊆ Ω, we let A = Ω\A denote its complement. We abbreviate classical-quantum, point-to-point, independent and
identically distributed, probability mass function, orthonormal basis, spectral decomposition as CQ, PTP, IID, PMF,
ONB, SCD respectively. For a quantum state θXY ∈ D (HX ⊗HY), θX ∈ D(HX ) and θY ∈ D(HY) denote the
component states, i.e, θX = trY (θ

XY ) and θY = trX(θXY ). We let H(X,Y )θ =
∆ − tr

(
θXY log

(
θXY

))
, H(X)θ =

∆

− tr
(
θX log

(
θX
))

denote the Von Neumann entropy of the joint and component quantum states respectively. We let
H(Y |X)θ =

∆ H(X,Y )θ −H(X)θ and I(X;Y )θ =
∆ H(X)θ +H(Y )θ −H(X,Y )θ denote the conditional quantum

entropy and quantum mutual information respectively. The notions of typicality, typical projectors and the associated
facts are stated in Appendix A.

Consider a (generic) QMSTx specified through (i) two finite input sets X1,X2, (ii) two finite sets S1,S2 of states,
(iii) a PMF pS(·) on S, (iii) a collection (ρxs =∆ ρx1x2s1s2 ∈ D(HY ) : (x, s) ∈ X × S) of density operators and
(iv) cost functions κj : Xj × Sj → [0,∞) for j ∈ [2]. The cost function is additive, i.e., having observed the state
sequence snj the cost incurred by sender j in preparing the state ⊗n

t=1ρxtst is κj(x
n
j , s

n
j ) =∆ 1

n

∑n
t=1 κj(xjt, sjt).

Reliable communication on a QMSTx entails identifying a code. Throughout, except for the examples, no assumption
is made on the structure of the collection (ρxs ∈ D(HY ) : (x, s) ∈ X × S) of density operators.

Definition 1. An (n,M, e, λ) QMSTx code consists of two message index sets Mj : j ∈ [2], two encoder maps
ej : [Mj ] × Sn

j → X n
j and a decoder POVM λ =∆ {λm = λm1,m2

∈ P(H⊗n) : m ∈ M}. The average error
probability of the code is

ξ(e, λ) =∆ 1− 1

|M|
∑
m∈M

∑
sn∈Sn

pnS(s
n) tr

(
λmρm,sn

)
.

where ρm,sn =∆ ⊗n
t=1ρxtst and (xj1, · · · , xjn) = ej(mj , s

n
j ). Average cost incurred by Tx j in transmitting mj is

τj(ej |mj) =
∆ ∑

snj
pnSj

(snj )κj(ej(mj , s
n
j ), s

n
j ) and the average cost incurred by Tx j is τj(ej) =

∆ 1
|Mj |

∑
mj

τj(ej |mj).

The object of interest is the capacity region of a QMSTx defined below. In this article, we focus on characterizing
inner bounds to the capacity region of a QMSTx.

Definition 2. A rate-cost quadruple (R, τ) ∈ [0,∞)4 is achievable if there exists a sequence of QMSTx codes
(n,M(n), e(n), λ(n)) for which lim

n→∞
ξ(e(n), λ(n)) = 0,

lim
n→∞

n−1 logM(n)
j = Rj , and lim

n→∞
τj(e

(n)
j ) ≤ τj .

The capacity region C of the QMSTx is the set of all achievable rate-cost vectors and C (τ) =∆ {R : (R, τ) ∈ C }.

III. ROLE OF ALGEBRAIC CLOSURE

In this section, we explain how and why structured codes can facilitate enhanced communication over a QMSTx.
We begin by reviewing the best known unstructured coding scheme.

A. Joint Decoding of Unstructured Codes

A QMSTx being a ‘MAC extension’ of a QSTx (Fig. 2) [5], a coding scheme for a QMSTx can be obtained
by combining the Gel’fand-Pinsker technique [2] with a simultaneous decoding POVM of a MAC [37, Thm. 2].
Specifically, Tx j builds a Uj−code (Fig. 4) on an auxiliary set Uj . The Uj−code comprising of 2n(Rj+Bj)

codewords is partitioned into 2nRj bins. Message mj ∈ [2nRj ] indexes a bin and Tx j looks for a codeword within
this bin that is jointly typical with the state sequence snj . The chosen codeword, denoted as unj (mj , s

n
j ), and the

state sequence snj are mapped to an input sequence in X n
j . The latter mapping is deterministic, i.e., each code comes



4

w t γ(w, t)

0 0 |0⟩⟨0|
0 1

∣∣v⊥θ 〉〈v⊥θ ∣∣
1 0 |1⟩⟨1|
1 1 |vθ⟩⟨vθ|

Fig. 3. ρx1x2s1s2 =
γ(x1⊕x2, s1⊕s2) sj
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Fig. 4. Encoding rule for sender j.
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with a deterministic mapping that maps pairs of Uj−codewords and state sequences to input ‘codewords’ on X n
j .

The decoder POVM performs simultaneous decoding on the U1, U2−codebooks. Adopting the decoding POVM
proposed in proof of [37, Thm. 2], analyzing the error probability one can derive the inner bound characterized in
Thm. 1. The latter is the largest known inner bound achievable via any unstructured coding scheme. For a proof of
Thm. 1, the reader is referred to proof of Thm. 4 provided in Sec. V, wherein a larger inner bound that subsumes
the one characterized below is proven achievable. In Thm. 1 below, component Y is the received quantum state.

Theorem 1. A rate-cost quadruple (R, τ) ∈ Au ⊆ [0,∞)4 is achievable if there exists finite sets Q,U1,U2,
PMF pQ on Q, conditional distributions pXj ,Uj |SjQ on Xj × Uj for j ∈ [2] such that pSQUX(s, u, x) =

pS(s)pQ(q)
∏2

j=1 pXjUj |SjQ(xj , uj |sj , q) with respect to which

Rj < I(Uj ;Y,Uj |Q)Υ − I(Uj ;Sj |Q)Υ,E{κj(Xj , Sj)} ≤ τj , R1 +R2 < I(U ;Y |Q)Υ − I(U1, U2;S1, S2|Q)Υ, (1)

for j ∈ [2], where all entropies are computed with respect to the state

ΥY XSUQ =∆
∑

s,x,u,q

pSUXQ(s, u, x, q)ρxs ⊗ |x s u q⟩⟨x s u q| . (2)

Remark 1. We highlight two aspects of the above coding strategy, specifically in regards to the decoding. The
strategy of decoding the pair U1, U2−of codewords implies that effective communication is happening over the
CQMAC (U1, U2) − Y channel specified through the collection (δu1u2

∈ D(HY ) : (u1, u2) ∈ U1 × U2) where
δu1,u2

=
∑

x,s pXS|U (x, s|u)ρx,s. In contrast to a ‘plain’ QMAC without states, the presence of states S1, S2

implies that we reserve multiple pairs (U1, U2)−of codewords for a single message pair m = (m1,m2). Indeed,
any one of 2n[I(U1;S1)+I(U2;S2)] codeword pairs can be used to communicate the message pair m = (m1,m2).
The second aspect relates to what ‘chunk of the output space’ gets reserved for a message pair m = (m1,m2),
colloquially referred to as the ‘fan-out’ of m. Suppose cj(mj) : j = 1, 2 is the bin of codewords at Tx j associated
with message mj . The subspace corresponding to the span of the union of the conditional typical projectors πδu

n

pU ,η

of δun : un ∈ c1(m1)× c2(m2), i.e.

Sm =∆ {|g⟩ ∈ H⊗n
Y : ⟨g|πδu

n

pU ,η|g⟩ > 0},

has been reserved for a single message pair m. In order to enlarge the capacity region, it is desirable to keep
both the number of codeword pairs reserved for any message pair m small and the dimension of Sm as least as
possible. Indeed, this would enable pack a larger number of orthonormal fan-outs in the output space H⊗n

Y .

B. Binary Double Dirty MAC

Our discussion for the following example portrays the deficiency of unstructured codes and the role of structure.

Example 1. Let X1 = X2 = S1 = S2 = {0, 1}, pS(s) = 1
4 for every s ∈ S, HY =∆ C2 denote the qubit

space, |vθ⟩ = [cos θ sin θ]T ∈ C2 and
∣∣v⊥θ 〉 = [sin θ − cos θ]T ∈ C2. For (x, s) ∈ {0, 1}4, let ρx1x2s1s2 =

γ(x1⊕x2, s1⊕s2) ∈ D(C2), where γ(·, ·) ∈ D(C2) is provided in Figure 3, ⊕ denotes addition in the binary field
F2 and the cost function κj(xj , sj) = 1{xj=1} is the Hamming weight function. For a τ ∈ (0, 12), what is C (τ, τ)?

We begin with the θ=0 case before discussing the non-commuting θ ∈ (0, π2 ) case. θ = 0 case corresponds to
the classical channel first studied by Philosof and Zamir [4]. The following discussion describes their findings.
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Case θ = 0 : Since the collection
(
ρxs : (x, s) ∈ {0, 1}4

)
is commuting, we identify this as a classical MAC

with distributed states whose output Y ∈ {0, 1}, inputs X1, X2 ∈ {0, 1} and states S1, S2 ∈ {0, 1} are related as
Y = X1 ⊕ S1 ⊕ X2 ⊕ S2. See Figure 5. S1, S2 are uniformly distributed and the average Hamming weight of
the inputs is constrained to τ < 1

2 . This implies that, having observed the uniformly distributed state sequence
Sn
j ∈ {0, 1}n, the encoder can input a sequence Xn

j ∈ {0, 1}n of average Hamming weight at most τ < 1
2 . The

latter constraint precludes the Txs from negating the effect of the state. What rate pairs are then achievable?
We first study the best unstructured coding scheme and characterize the corresponding largest known inner bound.

Towards that end, we are required to identify an optimal choice of parameters in Thm. 1 for Ex. 1. Observe that
the effective classical channel of Ex. 1 is a ‘MAC extension’ of a CPSTx whose output Y ∈ {0, 1}, Hamming
cost-constrained input X ∈ {0, 1} and uniformly distributed state S ∈ {0, 1} are related as Y = X⊕S. Philosof and
Zamir [4] proved that the best unstructured coding scheme for Ex. 1 is obtained by replicating, at both the Txs, the
capacity achieving scheme for the CPSTx. Specifically, they prove the optimal choice of parameters in Thm. 1 for
Ex. 1 to be binary auxiliary sets U1 = U2 = {0, 1}, pUj |Sj

(1|0) = pUj |Sj
(0|1) = τ = 1−pUj |Sj

(0|0) = 1−pUj |Sj
(1|1)

and Xj = Uj ⊕ Sj for j ∈ [2].
We now detail the coding scheme corresponding to the above choice to shed light on its deficiency. See Fig. 6.

To communicate at rate Rj < hb(τ), Tx j randomly partitions the entire set of 2n sequences into 2nRj bins. The
message mj indexes the bin within which the sender looks for a codeword that is within an average Hamming
distance of τ from the observed state sequence. Since each bin contains 2n(1−Rj) > 2n(1−hb(τ)) sequences chosen
randomly, the sender finds such a codeword with probability that approaches 1 exponentially. Indeed, this can be
proved via a simple second moment method as done in [13, Upper Bound on ϵ2j in Appendix B]. Let Un

j denote
the chosen codeword and Sn

j the observed state sequence. Tx j inputs Xn
j = Un

j ⊕ Sn
j on the channel. The choice

of the Uj−codeword guarantees that the Hamming weight constraint is met.
What is the maximum sum rate the above unstructured coding scheme can achieve? Recall that each message

mj of sender j is assigned a bin of Uj−codewords, with at least 2n(1−Rj) > 2n(1−hb(τ)) codewords. Observe that
the channel relationship Y = X1 ⊕ S1 ⊕ X2 ⊕ S2 implies that the received vector is Y n = Un

1 ⊕ Un
2 . Fan-out -

the space of received sequences occupied by a single message pair m = (m1,m2) - is therefore got by adding all
possible codeword pairs in the two bins indexed by m. Since the codewords in each bin is picked uniformly and
independently without any joint structure, every pair yields with high probability a distinct sum, resulting in the
range of this addition to be of size 2n(2−R1−R2) > 22n(1−hb(τ)). Since the ‘fan-out’ of every message pair is of size
at least 22n(1−hb(τ)), we cannot hope to pack more than 2n

22n(1−hb(τ)) fan-outs in the binary output space resulting in
the following fact.

Fact 1. Consider Ex. 1 with average Hamming cost constraint τ < 1
2 . Any rate pair (R1, R2) achievable by

unstructured coding schemes satisfies R1 + R2 < uce{max{0, 2hb(τ) − 1}} where uce{f(τ)} denotes the upper
convex envelope of the function f(τ). See [4] for a proof.

We now present a linear coding scheme that can achieve any rate pair (R1, R2) satisfying R1 + R2 < hb(τ).
In the sequel, we provide a more descriptive presentation. In Appendix B, we provide a formal illustration. See
Fig. 6. For simplicity, we describe achievability of the rate pair (hb(τ), 0). Our coding scheme is identical to the
unstructured coding scheme with two key differences. The first key difference is that the bins of each sender’s
codebook are chosen to be cosets of a common linear code. Let λ2 denote a linear code of rate 1− hb(τ) whose
cosets can quantize a uniform source to with an average Hamming distortion of τ . In other words, a uniformly and
randomly chosen coset of λ2 contains a codeword within an average Hamming distance of τ of the observed state
sequence with high probability. See [38] or [14] wherein, the existence of linear codes of rate 1 − hb(τ) whose
cosets can quantize any uniformly distributed source within a Hamming distance of τ , is proven. We employ cosets
of such a linear code to quantize the two state sequences that are both uniformly distributed. Since sender 2 has
no message to transmit, it is provided with just λ2 that serves as its only bin. Sender 1 is provided with all of the
2nhb(τ) cosets of λ2, each of which serves as its bins. The encoding is identical to that for unstructured coding.

We shall now not decode the pair U1, U2−of codewords as done with unstructured IID coding. From the received
vector Y n = Un

1 ⊕ Un
2 , the decoder has to only figure out which coset of λ2 did Tx 1 choose its codeword from.

Indeed, the index of the bin or coset Tx 1 chooses its codeword from is user 1’s message. The bins of user 1’s code
being cosets of linear code λ2, from which user 2 picks its codewords, the received sequence Y n = Un

1 ⊕ Un
2 is

found in exactly the same coset (or bin) from which user 1 picked its codeword. The Rx can therefore call out the
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Fig. 6. Code on the left depicts User 1’s code and the bin on
the right depicts one bin of User 2’s code. When a bin of User
1’s code is added to a bin of User 2’s code, the rate of resulting
collection of vectors doubles to 2(1 − hb(τ)) as depicted by the
long bin on the right.

2nR1    bins 
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⨁

2
n(1-h

b (τ))

All pairs of sums of codewords in 
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Fig. 7. User 2 employs a linear code λ as its only bin and user 1
employs cosets of λ as the bins of its code. When a user 1’s bin is
added to user 2’s only bin, the resulting collection of codewords
is the same coset of the same rate 1− hb(τ).

index of the coset in which it observes the received sequence Y n as user 1’s message. Let us analyze the achieved
rate. Since the channel is noiseless, sender 1 may employ all cosets of λ2 and therefore communicate at rate hb(τ)
which is larger than 2hb(τ)− 1 for all τ ∈ (0, 12).

Fact 2. Consider Ex. 1 with average Hamming cost constraint τ < 1
2 . Any rate pair (R1, R2) satisfying R1+R2 <

uce{max{0, hb(τ)}} where uce{f(τ)} denotes the upper convex envelope of the function f(τ) is achievable via
the above coset coding strategy.

How is it that we are able to achieve a higher rate? First, our approach of decoding by identifying the coset in
which the received vector Un

1 ⊕Un
2 resides is altering the effective CQMAC on which we are communicating. We

are decoding the sum of the codewords chosen by the two Txs, not the pair. Effective communication is therefore
happening over the induced CQMAC (Ξw ∈ D(HY) : w ∈ W) wherein

Ξw =
∑

u1,x1,s1

∑
u2,x2,s2

1

4
pU1X1|S1

(u1, x1|s1)pU2X2|S2
(u2, x2|s2)γ(x1 ⊕ x2, s1 ⊕ s2)1{w=u1⊕u2},

which, in the θ = 0 case with the above choice of parameters is the CQMAC (Ξ0 = |0⟩⟨0| ,Ξ1 = |1⟩⟨1|). In essence,
we are communicating over the effective channel U1⊕U2−Y channel. Secondly, note that the number of codeword
pairs associated with any message pair m remains 22n(1−hb(τ)). Indeed, the rate of each bin - both in this and the
previous unstructured coding schemes - are identical. The key difference is however the size of the chunk of the
output space allocated to any message pair m. Algebraic closure - the property that two cosets of a linear code of
rate (1 − hb(τ)) when added yields another coset with the same number 2n(1−hb(τ)) of codewords - ensures that
every message pair has a fan-out of size 2n(1−hb(τ)) sequences within the {0, 1}n−space.

If we contrast the fan-outs of the linear coding scheme - 2n(1−hb(τ)) - and the unstructured IID coding scheme
- 2n(2−2hb(τ)), one can account for the difference in the achievable sum rate. Indeed, the linear coding scheme
achieves a rate hb(τ) which exceeds the unstructured IID coding sum rate 2hb(τ)− 1 by 1−hb(τ) - the difference
in the rates of the two fan-outs.

Going further, observe that exponentially many pairs of codewords from λ2 and the coset chosen by sender 1
have the same sum, the Rx cannot disambiguate the pair of codewords chosen by the Txs. It can only disambiguate
the sum Un

1 ⊕Un
2 and not the pair. This implies that the structured coding scheme is forcing the Rx to forgo certain

information that it was able to decode in the unstructured coding scheme. However, the structured coding is cleverly
designed so as to ensure that this forgone information is not of the messages, but of the states S1, S2. Attempting to
decode the pair of messages by decoding a compressive bivariate function - mod−2 sum - of the chosen codewords,
boost the information rate of the messages while suppressing the amount of information it gathers of the states,
and exploiting algebraic closure to ensure this are therefore the central aspects of the structured coding scheme.

Case θ ∈ (0, π2 ) : The arguments in [4] can be used to prove that the optimal choice of parameters in Thm. 1
for this case too is U1 = U2 = {0, 1}, pUj |Sj

(1|0) = pUj |Sj
(0|1) = τ = 1 − pUj |Sj

(0|0) = 1 − pUj |Sj
(1|1) and
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U1 M( 1 B, 1)n      

   U2 M( 2 B, 2)n( ),

Fig. 8. Unstructured IID coding strategy of decoding the pair of
U1, U2−codewords implies communication effectively happens via
U1×U2−codebook. 2n(B1+B2) codeword pairs are allocated for each
message pair.

Effective Input space  W

2m
ax

{ B
1,

B
2}

(M1 M, 2)

W 

Effective code over  W

g:V1 ×V2 → W

g⊗n(        )U1 M( 1 B, 1)n      

   U2 M( 2 B, 2)n

2R1    bins 

2B1

M1

V1 

V1 -code

2R2    bins 

2B2

M2

V2 

V2 -code

V1 M( 1 B, 1)n

V2 M( 2 B, 2)n g×...×g

Fig. 9. Structured coding strategy of decoding into the sum codebook
implies effective communication via the U1 ⊕ U2 = W−codebook.
Algebraic closure implies only 2nmax{B1,B2} codewords allocated
for each message pair.

Xj = Uj ⊕ Sj where ⊕ denotes addition mod−2. This implies the quantum state corresponding to which we
compute our information quantities is

σY S1S2X1X2U1U2 =
∑
s1,s2

τ(1−τ)

4

[
1{s1⊕s2

=0 } |1⟩⟨1|+
1{s1⊕s2

=1 } |vθ⟩⟨vθ|

]
⊗ |s1 s2⟩⟨s1 s2| ⊗

[
|0 1 s1 1⊕ s2⟩⟨0 1 s1 1⊕ s2|+
|1 0 1⊕ s1 s2⟩⟨1 0 1⊕ s1 s2|

]

+
∑
s1,s2

[
1{s1⊕s2

=0 } |0⟩⟨0|+ 1{s1⊕s2
=1 }

∣∣∣v⊥θ 〉〈v⊥θ ∣∣∣]⊗ |s1 s2⟩⟨s1 s2| ⊗

[
(1−τ)2

4 |0 0 s1 s2⟩⟨0 0 s1 s2|+
τ2

4 |1 1 1⊕ s1 1⊕ s2⟩⟨1 1 1⊕ s1 1⊕ s2|

]
.

The bound on the sum rate achievable using IID random codes as stated in Thm. 1 is I(U1U2;Y )σ − I(U1;S1)σ −
I(U2;S2)σ. In Appendix C, we have provided characterization of the component quantum states with respect
to which the above information quantities have to be computed. Referring to the same, it can be verified that
I(U1U2;Y )σ − I(U1;S1)σ − I(U2;S2)σ = α− 2 + 2hb(τ) where

α = h̃b((1− 2τ)2 sin θ)− h̃b(

√
1− 4ϵ(1− ϵ) sin2 θ), h̃b(x) =

∆ hb

(
1

2
+

x

2

)
and ϵ = 2τ(1− τ). (3)

It maybe verified that α = 1 if θ = 0 indicating the maximum sum rate achievable is a continuous function of θ
as one expects. In Prop. 5, we verify that the linear coding scheme achieves any rate pair satisfying R1 + R2 <
uce{max{0, α− 1 + hb(τ)}} which strictly subsumes that achievable above.

C. Sieving Relevant Information via Algebraic Closure

The key difference between the structured and unstructured coding scheme is the decoding rule. While the
former pins down the pair, the latter only decodes the sum, leaving uncertainty in the pair. Note that, the codeword
unj (mj , s

n
j ) chosen by sender j contains, in addition to the message, information about snj . By requiring the

receiver to pin down the pair (unj (mj , s
n
j ) : j ∈ [2]) of chosen codewords, the unstructured coding scheme is

forcing the receiver to gather information of the state sequences that is not of value to it. Is there a function of
(unj (mj , s

n
j ) : j ∈ [2]) that, while containing information of the pair m1,m2 of messages can also suppress the

amount of information of the pair sn1 , s
n
2 and can the coding scheme enable the Rx decode this function efficiently?

The structured coding scheme is enabling the Rx do this via the mod−2 function. This key difference of decoding
the sum of chosen codewords is coupled with the algebraic closure property of coset codes, thereby compressing
the fan-outs of every message pair and enabling more efficient packing.

From our discussion thus far, we conclude the following. Embedding the desired information - the message pair
m - in a specific compressive bivariate function - the mod−2 sum in the case of Ex. 1 - of the chosen codewords
and building codes, which when operated through this function do not explode in the range of outcomes are the
key reasons we are able to achieve strictly higher throughput. As we discuss in the next section, this phenomenon
can be exploited in a broader class of CQMACs.
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u1 u2 u1 ∨ u2
0 0 0

0 1 1

1 0 1

1 1 1

Fig. 10. Logical OR

u1 u2 u1 ⊕3 u2 u1 u2 u1 ⊕3 u2
0 0 0 1 2 0

0 1 1 2 0 2

0 2 2 2 1 0

1 0 1 2 2 1

1 1 2

Fig. 11. Mod−3 addition, i.e, field addition in F3

M1

M2

(M1 M, 2)

f x( 1 x, 2)
     x=( 1 x, 2)

(M1 M, 2)

g x( 1 x, 2)
     =x1⊕x2

Unstructured 
IID codes

Structured Codes 
possessing 

algebraic closure

One bin of 
User 1’s code

One bin of 
User 2’s code

Codewords assigned to 
one pair of messages 
by unstructured codes

Codewords assigned to 
one pair of messages 

by STRUCTURED codes

Fig. 12. The collections of four codewords each in the center depict one
bin each of the two user’s codes. The unstructured IID coding strategy of
decoding into U1 × U2codebook and disambiguate the pair is depicted on the
left and the structured coding strategy of disambiguating only the mod−2 sum
by attempting to decode into the sum codebook is depicted on the right.

D. A General Coding Strategy Exploiting the Broader Underlying Theme

The above discussions clearly illustrate the utility of algebraic closure in communication over a QMSTx. For
both the commutative and non-commutative cases of Ex. 1, rates corresponding to uniform distributions on U1, U2

were sufficient to achieve higher sum rates using coset codes. For a general QMSTx, it is necessary to achieve
rates corresponding to non-uniform distributions on U1,U2. Codewords of a random linear code are jointly related
and the natural approach of picking its generator matrix uniformly at random will ensure that the codewords are
uniformly distributed. How does one achieve rates corresponding to non-uniform distributions via linear codes? And
are their examples of QMSTx for which such non-uniform distributions can enable communication at strictly larger
rates via coset/linear codes? The rest of our article provides a definitive affirmative answer to this question. We
design union coset codes in Sec. IV specifically aimed at achieving rates corresponding to non-uniform distributions
and characterize a general inner bound in Thms. 2 and 4 that achieve rates corresponding to arbitrary distributions.
Following this, we identify a non-commutative Ex. 2 in Sec. IV-E for which rates achievable via UCCs corresponding
to a non-uniform distributions yield strictly larger rates than those achievable via unstructured IID random codes.

Are the above ideas restricted to finite field additions exploited via coset codes possessing algebraic closure
property? Absolutely not. In fact, on the contrary these point to a richer classical and quantum Shannon theory.
Consider ΥY U1U2 =

∑
u pU1U2

(u1, u2)δu1u2
⊗ |u1 u2⟩⟨u1 u2|, where δu1,u2

is as in Remark 1. Suppose there exists
a finite set W , a collection (γw ∈ D(HY ) : w ∈ W) and a map f : U1 ×U2 → W such that δu1u2

= γf(u1,u2), then
we could extract the message pair (m1,m2) by decoding into the effective W−codebook. We would then need to
build codes on Un

1 ,Un
2 that are ‘f−closed’. In other words, when we compute the range of application of f⊗n on

all pairs of codewords in a pair of bins, we must be able to non-trivially contain the outcome range. See Fig. 9
and 12. This leads us to the code construction challenge of designing f−closed codes.

On the other hand, our current algebraically closed coset codes can serve a broader range of non-linear scenarios.
Consider the logical OR truth table in Fig. 10 and suppose the induced collection (δu1,u2

: (u1, u2) ∈ {0, 1}2) of
density operators satisfies δu1,u2

= δũ1ũ2
whenever u1 ∨ u2 = ũ1 ∨ ũ2. Can we construct codes that are logical OR

∨−closed? If one views u1, u2 to live on F3 instead of {0, 1} by letting pU1
(2) = pU2

(2) = 0, then observe that
one can recover u1 ∨u2 if one recovers u1⊕3 u2. In other words, (u1, u2)−u1⊕3 u3−u1 ∨u2 is a Markov chain.
If we can therefore build codes over F3 that are algebraically closed with respect to ⊕3 and let the Rx recover
ternary addition of the pair of chosen codewords, one could potentially outperform IID random coding strategy.
We refer the reader to [23, Ex. 2] where this has been demonstrated albeit in a different communication scenario.

The above discussion and the gains we are able to glean at through simulations for non-linear examples such
as Ex. 2 suggest that we design a broader general coding strategy based on algebraically closed coset codes. This
motivates our findings in Sec. IV and V. Going beyond field addition, one can design coding strategies based on
codes closed under other well structured operations such as group and ring additions to leverage rate gains. We
refer the interested reader to [13] and [14] for pursuits along these paths.
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IV. INNER BOUND BASED ON UNION COSET CODES

Building on our discussions in the previous section and particularly Sec. III-D, we present our first main result -
a new inner bound to the capacity of the QMSTx based on union coset codes and provide a proof of achievability.
The coding scheme we propose to prove achievability is a generalization of the one we presented for Ex. 1. Ex. 1
with θ = 0 and θ ∈ (0, π2 ) serve as commutative and non-commutative examples respectively, for which the inner
bound in Thm. 2 is strictly larger than that proven in Thm. 1. In Sec. IV-E, we present a second non-commutative
example for which the characterized inner bound in Thm. 2 is computationally verified to be strictly larger than
that achievable via unstructured IID random codes (Thm. 1).

Theorem 2. A rate-cost quadruple (R, τ) ∈ Ac ⊆ [0,∞)4 is achievable if there exists a finite field V1 = V2 =
W = Fq and conditional PMFs pXjVj |Sj

on Xj × Vj for j ∈ [2] with respect to which

R1 +R2<min{H(Vj |Sj)Υ : j ∈ [2]}−H(V1 ⊕ V2|Y )Υ = min

{
I(Uj ;Y,Uj)Υ − I(U1 ⊕ U2;Uj |Y )Υ

−I(Uj ;Sj)Υ
: j ∈ [2]

}
(4)

where all mutual information quantities are computed with respect to the state

ΥYXVWS =∆
∑

s,v,w,x

pSVWX(s, v, w, x)ρxs⊗|x v w s⟩⟨x v w s| where

pSVWX(s, v, w, x)= pS(s)

2∏
j=1

pXjVj |Sj
(xj , vj |sj)1{w=v1⊕v2} for all (s, v, w, x) ∈ S × V ×W ×X .

Proof. We begin by outlining our techniques and identifying the new elements. The main novelty is in the code
structure we design and the decoding POVM we propose. In Sec. IV-A, we characterize a UCC and describe our
codes. The Gel’fand-Pinsker encoding (Sec. IV-B) is employed by both senders. We decode only the sum codeword
and hence employ a single user decoding POVM (Sec. IV-C). Since we decode into a UCC obtained by adding
two statistically correlated UCCs, our analysis is not a standard one and detailed in Sec. IV-D.

A. Code Structure

The gain in rates for Ex. 1 crucially relied on the bins of both codes being coset shifts of a common linear
code, thereby ensuring that the size of the sum of any pair of bins was contained. We observe that the shifts can
be arbitrary and there are no structural requirement on the union of these cosets. We are thus led to a UCC.

Definition 3. A UCC built over Fq is specified through a generator matrix g ∈ Fk×n
q and a map ι : F l

q → Fn
q of

coset shifts. The collection

c(m) =∆ {vn(a,m) = ag ⊕ ι(m) : a ∈ Fk
q }

forms the bin corresponding to message m ∈ F l
q and the union ∪mc(m) of bins forms the code. We refer to this

code of block-length n and rate l
n as an (n, k, l, g, ι) UCC.

We employ UCCs as the codebook for both senders. The symmetry in Ex. 1 permitted us to design codes of
the same rate for both senders. In general, to enable codes of different rates, we propose a ‘nesting’ of the two
UCCs. Without loss of generality, assume the size of sender 1’s bins is the smaller of the two. We equip user j

with UCC (n, kj , lj , gj , ιj) and enforce g2 =
[
gT1 gT2/1

]T
. See Fig. 13. This ensures that the bins of user 1’s code

are sub-cosets of the bins of user 2’s code, thus guaranteeing the desirable property mentioned prior to Defn. 3.
Let λj =

∆ (vnj (aj ,mj) =
∆ ajgj ⊕ ιj(mj) : (aj ,mj) ∈ Vkj × V lj ) denote the codebook of sender j

B. Encoding

Our encoding is identical to that described for unstructured codes in Sec. III-A. See Fig. 4. On observing
message mj ∈ [qlj ] and state sequence snj , sender j looks for a codeword in cj(mj) that is jointly typical with
snj . If it finds at least one, one among these is chosen and denoted vnj (mj , s

n
j ). If it finds none, vnj (mj , s

n
j ) is set

to a default codeword in cj(mj). The pair (snj , v
n
j (mj , s

n
j )) is mapped to an input sequence via a ‘fusion map’

fj : Sn
j × Vn

j → X n
j . For the sake of the ensuing analysis, we formalize this encoding with some notation.
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W  V1  V2= = =fq , a1∈Vk1 ,  a2∈Vk2  , a∈Vk2  ,  g1  ∈ V k1×n1   

g2/1  ∈ V (k2 - k1)× n1    g2  ∈ V k2×n1  ι1 m( 1  ι), 2 m( 2  ) ∈ V n    

ι⊕(m ι)= 1 m( 1)⊕ι2 m( 2  ) ∈ V n  ajgj⊕ιj m( j  ) ∈ V n j =1,2

ag2⊕ι⊕(m   )= ag2⊕ι1 m( 1)⊕ι2 m( 2   ) ∈ V n

a1

ι1 m( 1)
a1g1⊕ι1 m( 1)

a2

ι2 m( 2)
a2g2⊕ι2 m( 2)

∈ Vn

g1

g2/1

a1

a2

C = Linear Code with 
Generator matrix g1

C1 = Coset Code 
whose bins are 
cosets  of C

C* = Linear Code with 
    Generator matrix g2 =

Coset Code whose bins are cosets of C* 
Tx2 code has q l2       Rx code has q l1 l+ 2 

C is a sub-linear code of C*` a

ι1 m( 1)⊕ι2 m( 2) ag2⊕ι1 m( 1)⊕ι2 m( 2)
∈ Vn

Tx 2 Code

Tx 1 Code
CRx = Linear Code with Generator matrix g2 =

Code used by Rx for decoding

][

g1

g2/1][
Tx1 code 
has q l1

cosets 

Fig. 13. The entire code structure comprising of two codes employed by the Txs and code employed by the Rx is depicted with legends
for the associated terms.

Let αj(mj , s
n
j ) =

∆ ∑
aj
1{(vn

j (aj ,mj),snj )∈Tη3 (pSjVj
)} be the number of available jointly typical codewords and let

Lj(mj , s
n
j ) =

∆

{
{aj :(vn

j (aj ,mj),snj )∈Tη3
(pVjSj

)} if αj(mj ,snj )≥1

{0kj} otherwise
(5)

For every pair (mj , s
n
j ), aj(mj , s

n
j ) is an element chosen from Lj(mj , s

n
j ). We define vnj (mj , s

n
j ) =∆

vnj (aj(mj , s
n
j ),mj). A predefined ‘fusion map’ fj : Sn

j × Vn
j → X n

j is used to map the pair snj , v
n
j (mj , s

n
j ) to an

input sequence in X n
j henceforth denoted xnj (mj , s

n
j ). A remark on our notation is in order. Our notation involves

multiple objects referenced via aj(·) and/or αj(·). This choice is motivated to ensure related objects have similar
notation. We admit this causes some confusion/difficulty. To alleviate this, we have identified the corresponding
rows in Table I with a double ∗ to direct the reader’s attention to the same.

C. Decoding POVM

Consider the UCC (n, k2, l1+l2, g2, ι⊕) depicted on the top right side of Fig. 13 where ι⊕(m) = ι1(m1)⊕ι2(m2)
for m = (m1,m2) ∈ F l1

q × F l2
q . Let wn(a,m) =∆ ag2 ⊕ ι1(m1) ⊕ ι2(m2) denote a generic codeword and let λR

denote this UCC, i.e. the collection
(
wn(a,m) : (a,m1,m2) ∈ [Fk2

q ]× [F l1
q ]× [F l2

q ]
)
. Suppose for each message

pair m, the collection
(
wn(a,m) : a ∈ Fk2

q

)
is a distinct coset. In other words, suppose there is a 1:1 correspondence

between {m : m ∈ [F l1
q ]× [F l2

q ]} and the collection of cosets of λR. Then, observe that when codewords from every
distinct pair of cosets are added, the sum falls in a unique coset of λR. If the Rx correctly identifies in which coset
of this UCC, lies the sum of the two codewords chosen by the Txs, then it can recover the pair of messages. This
motivates our decoding POVM. Since we only need to identify the coset in which the sum of the chosen codewords
lie, we let πσwn(a,m)

pW ,η2 be the η2−conditional typical projector of ⊗n
t=1σwt(a,m) with respect to the PMF pW , where

σw =∆
∑

x,s pXS|W (x, s|w)ρxs : w ∈ W , pSXW is as defined in the Thm. statement. As stated in Appendix A-B,
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Symbol Description Comment
kj

n
log q and lj

n
log q User j’s binning rate and information rate respectively. WLOG assume k2 > k1.

g1 ∈ Fk1×n
q , g2 ∈ Fk2×n

q g1, g2 are the generator matrices of user 1,2’s UCCs. The generator matrices are nested to ensure containment of
g2 = [gT1 gT2/1]

T We have assumed WLOG that k2 > k1. the sum codewords when bins of users 1 and 2 are added..

ιj : F lj
q → Fn

q For message mj ∈ F lj
q , ιj(mj) ∈ Fn

q is the dither Recall that messages indexes bins and each bin of a user’s
(bias) vector of the coset corresponding to message mj . code are (random) coset shifts of a common linear code.

vnj (aj ,mj) =
∆ ajgj ⊕ ιj(mj) A generic codeword in bin/coset indexed by message mj A generic codeword in bin/coset cj(mj) defined next.
cj(mj) {vnj (aj ,mj) : aj ∈ Fkj

q } Bin/Coset corresponding to message mj

∗∗ αj(mj , s
n
j ) ∗∗ # of mj−bin codewords that are jointly typical with snj

Lj(mj , s
n
j ) Indexes of codewords in cj(mj) jointly typical with snj If this list is empty, then Lj(mj , s

n
j ) =

∆ {0kj}
∗∗ aj(mj , s

n
j ) ∗∗ Index chosen from Lj(mj , s

n
j ) to communicate

message mj when state sequence is snj
vnj (mj , s

n
j ) vnj (aj(mj , s

n
j ),mj) Vj−codeword chosen to communicate

message mj when state sequence is snj
fj : Sn

j × Vn
j → Xn

j ’Fusion map’ Maps chosen Vj−codeword and observed state
sequence to Xj−codeword

xn
j (mj , s

n
j ) fj(v

n
j (mj , s

n
j ), s

n
j ) = fj(v

n
j (mj , s

n
j ),mj) Xj−codeword chosen to communicate

message mj when state sequence is snj

pSXV W =∆ pS1S1X2X2V1V2W Chosen ‘test channel’ satisfies pS = pS and Additionally pSXV W satisfies
V1 = V2 = W = Fq is finite field of size q pSXV W = pSXV 1W=V1⊕V2

σw : w ∈ W
∑
x,s

pXS|W (x, s|w)ρxs : w ∈ W

µ
∑
x,s

pXS(x, s)ρxs

(λm : m ∈ [M]) Decoding POVM as defined in (32)
(a) γa,m, (b) πµ

η1 , (a) πµ
η1π

σ,η2
a,m πµ

η1 , (b) η1−typical projector of the state µ

πσ,η2
a,m = π

σwn(a,m)
pW ,η2 η2−conditional typical projector of σwn(a,m) with respect to pW

TABLE I
DESCRIPTION OF ELEMENTS THAT CONSTITUTE THE CODING SCHEME

we henceforth let πσ,η2
a,m = π

σwn(a,m)

pW ,η2 . We elaborate for clarity. Recall our chosen state ΥY XWS = trV {ΥY XVWS}
and let

ΥY XWS=
∑
w∈W

pW (w)σw ⊗ |w⟩⟨w| , where σw=
∑
x,s

pXS|W (x, s|w)ρxs has SCD σw=
∑
y∈Y

rY |W (y|w)
∣∣hy|w〉〈hy|w∣∣.

We then have πσ,η2
a,m = π

σwn(a,m)

pW ,η2 =
∑

yn∈Yn

n⊗
t=1

∣∣hyt|wt(a,m)

〉〈
hyt|wt(a,m)

∣∣1{(wn(a,m),yn)∈Tn
η (pW⊗rY |W )}

where pW ⊗ rY |W is the joint PMF with marginal pW and conditional PMF rY |W . We define γa,m =∆ πµ
η1π

σ,η2
a,mπµ

η1

where πµ
η1 is the η1−typical projector of the state µ =∆

∑
x,s pXS(x, s)ρxs. The decoding POVM is

λm =∆

 ∑
â,m̂1,m̂2

γâ,m̂1,m̂2

− 1

2∑
a

γa,m

 ∑
â,m̂1,m̂2

γâ,m̂1,m̂2

− 1

2

and λ−1 =
∆ I −

∑
m

λm. (6)

Clearly, the decoding POVM has ql1+l2 + 1 outcomes {−1,m ∈ [ql1 ] × [ql2 ]}. The Rx declares error if outcome
−1 is observed and declares m̂1, m̂2 if outcome m̂ = (m̂1, m̂2) ∈ [ql1 ]× [ql2 ] is observed.

D. Probability of Error Analysis

We employ the random coding technique to prove the existence of a code with the promised rates for which the
error probability falls to 0 exponentially in the block-length n. Towards that end, observe that our code and the
coding scheme is completely characterized via the following objects : the generator matrices g1, g2/1, the collection
(ιj(mj) : mj ∈ [qlj ]) of dither/bias vectors specifying the coset shifts, the indices (aj(mj , s

n
j ) : (mj , s

n
j ) ∈ [qlj ]×Sn

j ,
and the final codeword choices (xnj (mj , s

n
j ) : (mj , s

n
j ) ∈ [qlj ] × Sn

j ). Our first step is to characterize the error
probability for a generic choice of these objects. In particular, we characterize an upper bound on this error
probability composed of multiple terms. Our second step is to specify a probability distribution on the collection of
codes by specifying a distribution on the aforementioned objects. In our third step, we prove that the expectation
of each of the above mentioned terms falls to 0 exponentially if the rates of the code satisfy (4).



12

An upper bound on the error probability for a generic code : For a generic choice of the aforementioned objects,
the average error probability is

ξ(e, λ) =
∑
m

ζ̂(m)

|M|
where ζ̂(m) =∆

∑
sn

pnS(s
n)ζ̂(m|sn), ρm,sn=

∆
n⊗

t=1

ρx1(m1,sn1)tx2(m2,sn2)tst
(7)

ζ̂(m|sn) =∆ tr{(I − λm)ρm,sn}, I = I⊗n, Mj = [qlj ] and hence |M| = ql1+l2 . We consider an arbitrary pair
m = (m1,m2) and henceforth focus our study on ζ̂(m). Throughout the rest of our study of ζ̂(m), we let
a⊕ =∆ a1(m1, s

n
1 ) 0

k2−k1 ⊕ a2(m2, s
n
2 ). With this definition and (32), note that

λm ≥ (S + T )−
1

2 S (S + T )−
1

2 where S = πµ
η1
πσ,η2
a⊕,mπµ

η1
and T =

∑
â̸=a⊕

πµ
η1
πσ,η2

â,mπµ
η1

+
∑

a∈Fk2
q

∑
m̸̂=m

πµ
η1
πσ,η2

a,m̂πµ
η1
. (8)

and hence, ζ̂(m|sn) ≤ ζ(m|sn), where ζ(m|sn) =∆ tr
([

I − (S + T )−
1

2 S (S + T )−
1

2

]
ρm,sn

)
. (9)

We shall henceforth focus our study on ζ(m) =∆
∑

sn p
n
S(s

n)ζ(m|sn) which serves as an upper bound on ζ̂(m) in
(7). Towards that end, we split the event corresponding to ζ(m) into two parts - E and E - and analyze the event
corresponding to the two parts separately. Towards defining E , let

Ej1=∆
{
sn ∈ T η3

2
(pS)

}
, Ej2 =∆

{
|Lj(mj , s

n
j )| ≥ Lj ,

(snj , v
n
j (mj , s

n
j ))∈Tη3

(pSjVj
)

}
, E121 =∆

{(
snj , v

n
j (mj , s

n
j )

: j ∈ [2]

)
∈ T2η3

(pSV )

}
(10)

E122 =∆
{(
snj , v

n
j (mj , s

n
j ), x

n
j (mj , s

n
j ) :j∈ [2], wn(a⊕,m)

)
∈T4η3

(pSV XW )
}

and finally E =∆
2⋂

j=1

Ej1∩Ej2
⋂

E121∩E122,

where Lj =
∆ 1

2 exp{kj log q − n log q + nH(Vj |Sj)Υ − 3nη3} is a threshold chosen to ensure that there is at least
one jointly typical sequence. Instead of choosing Lj = 1, choosing it as above aids our error analysis. This is
evident in Appendix J where we derive an upper bound on ξ3(m) found in (40). We remark that all Von Neumann
entropies in this proof are evaluated with respect to the joint state ΥY SVWX specified in (5). Since

E =

2⋃
j=1

Ej1∪Ej2

⋃
E121∪E122 =

2⋃
j=1

Fj1∪Fj2

⋃
F121∪F122 where Fj1 =

∆ Ej1,Fj2 =
∆ Ej1 ∩ Ej2, (11)

F121=
∆

2⋂
j=1

Ej1∩Ej2 ∩ E121,F122=
∆

2⋂
j=1

Ej1∩Ej2 ∩ E121∩ E122 we have 1=1E + 1E ≤
2∑

j=1

2∑
i=1

(
1Fji

+
1F12i

2

)
+ 1E (12)

With these definitions, we have

ζ(m)≤
2∑

j=1

ζj(m)+ ζ̃2(m), where ζj(m)=∆
∑
sn

pnS(s
n)ζ(m|sn)

2∑
i=1

(
1Fji

+
1F12i

2

)
and ζ̃2(m) =∆

∑
sn

pnS(s
n)ζ(m|sn)1E . (13)

Next, in regards to ζ̃2(m), consider ζ(m|sn) defined in (9). Note that since πσ,η2
a,m ≥ 0 for every a ∈ Fk2

q , we have
S ≥ 0, T ≥ 0 are PSD. Moreover S = πµ

η1π
σ,η2
a⊕,mπµ

η1 ≤ πµ
η1Iπ

µ
η1 = πµ

η1 ≤ I implying I − S is PSD. From the
Hayashi Nagaoka inequality [39], we have

ζ̃2(m) ≤ ζ3(m) + ζ4(m) + ζ5(m) where ζ3(m) =∆ 2
∑
sn

pnS(s
n) tr

{[
I − πµ

η1
πσ,η2
a⊕,mπµ

η1

]
ρm,sn

}
1E , (14)

ζ4(m) =∆ 4
∑

sn,â̸=a⊕

pnS(s
n) tr

{
πµ
η1
πσ,η2

â,mπµ
η1
ρm,sn

}
1E and ζ5(m) =∆ 4

∑
sn,â∈Fk2

q

∑
m̂ ̸=m

psn(s
n) tr

{
πµ
η1
πσ,η2

â,m̂πµ
η1
ρm,sn

}
1E (15)

Collating through (13), (14), (15), we have ζ(m) ≤
∑5

i=1 ζi(m) where the terms in the latter sum are defined
through (13), (14) and (15). We now employ the random coding technique and prove that the average of these
terms, evaluated over the ensemble of codes, falls exponentially to 0 if the rate conditions stated in the theorem
hold. Towards that end, we now specify the distribution on the ensemble of codes.
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Distribution of the random code : We now specify the probability distribution of the random code with respect to
which we compute the expectation of the five terms mentioned above. Recall that our codes and the coding scheme
are completely specified via the objects : g1 ∈ Fk1×n

q , g2/1 ∈ F (k2−k1)×n
q , ιj(mj) ∈ Fn

q : mj ∈ [F lj
q ], aj(mj , s

n
j ) ∈

F lj
q : mj ∈ [F lj

q ], snj ∈ Sn
j and the collection of final codewords xj(mj , s

n
j ) : mj ∈ [F lj

q ], snj ∈ Sn
j . It therefore

suffices to specify a joint distribution of these objects. The generator matrices G1 ∈ Fk1×n
q , G2/1 ∈ F (k2−k1)×n

q , and
the collection (ιj(mj) ∈ Fn

q : mj ∈ [qlj ]) of dither/bias vectors specifying the coset shifts are mutually independent
and uniformly distributed on the respective range spaces. Given G1, G2/1 and the collection (ιj(mj) ∈ Fn

q : mj ∈
[qlj ]), each of (Aj(mj , s

n
j ) : (mj , s

n
j ) ∈ [qlj ]×Sn

j ) are mutually independent and uniformly distributed in Lj(mj , s
n
j )

as defined in (5). Let V n
j (mj , s

n
j ) =

∆ V n
j (Aj(mj , s

n
j ),m

n
j ) as defined earlier for a generic code. Next, given G1, G2/1,

the collections (ιj(mj) ∈ Fn
q : mj ∈ [qlj ]), (Aj(mj , s

n
j ) : (mj , s

n
j ) ∈ [qlj ] × Sn

j ) and the event V n
j (mj , s

n
j ) =

vnj (mj , s
n
j ) = (vj(mj , s

n
j )1, · · · , vj(mj , s

n
j )n) : mj ∈ [qlj ], snj ∈ Sn

j , the final codewords (Xn
j (mj , s

n
j ) : mj ∈

[qlj ], snj ∈ Sn
j ) are mutually independent and the probability that the final codeword Xn

j (mj , s
n
j ) = xnj (mj , s

n
j ) =

(xj(mj , sj)1, · · ·xj(mj , sj)n) is
∏n

t=1 pXj |VjSj
(xj(mj , sj)t|vj(mj , s

n
j )t, sjt). Mathematically stated,

P


G1 = g1, G2/1 = g2/1, ιj(mj) = dnj (mj) : mj ∈ [Mj ],

Aj(mj , s
n
j ) = aj(mj , s

n
j ) : (mj , s

n
j ) ∈ [Mj ]× Sn

j

Vj(Aj(mj , s
n
j ), s

n
j ) = vnj (mj , s

n
j ) : (mj , s

n
j ) ∈ [Mj ]× Sn

j

Xj(mj , s
n
j ) = xnj (mj , s

n
j ) : (mj , s

n
j ) ∈ [Mj ]× Sn

j , j ∈ [2]

 =
1

qk1l

1

q(k2−k1)l

(
1

qn

)ql1 ( 1

qn

)ql2

×

 2∏
j=1

∏
snj

∏
mj

1{aj(mj ,snj )gj⊕dn
j (mj)=vn

j (aj(mj ,snj )}

|Lj(mj , snj )|

 2∏
j=1

∏
snj

∏
mj

n∏
t=1

pXj |VjSj
(xj(mj , s

n
j )t|vj(mj , s

n
j )t, sjt)

 , (16)

where Lj(mj , s
n
j ) is as defined in (5). We make the following remarks for ease of reference at a later point.

Remark 2. Given G1, G2/1 and the collection ιj(mj) : mj ∈ [qlj ], Aj(mj , s
n
j ) is uniformly distributed in Lj(mj , s

n
j ).

Specifically, Aj(mj , s
n
j ) is conditionally independent of G2, G2/1 and the collection ιj(mj) : mj ∈ [qlj ] given the

lists Lj(mj , s
n
j ). As a consequence, Aj(mj , s

n
j ) is conditionally independent of V n

j (aj ,mj) for any aj given
Lj(mj , s

n
j ), and moreover, Aj(mj , s

n
j ) is uniformly distributed in the latter list.

In the rest of our proof, we derive upper bounds on ζj(m) =∆ E {ζj(m)} for j ∈ [5] that decay exponentially to
0, where the expectations in question are with respect to the distribution of the random code.

Upper bound on ζ1(m), ζ2(m) : The analysis of both these terms is identical and we let j ∈ [2] denote a
generic term ζj(m). From (13), (9) and the definition of S in (8), we note that S ≥ 0 is PSD and hence
I − (S + T )−

1

2 S (S + T )−
1

2 ≤ I implying ζ(m|sn) ≤ tr
(
I · ρm,sn

)
. Substituting this in the definition of ζj(m)

in (13), we obtain ζj(m) ≤
∑

sn pS(s
n)
∑2

i=1

(
1Fji

+
1F12i

2

)
. This involves only classical probabilities and our

study of ζj(m) will therefore closely mimic [13, Upper Bound on ϵ2j in Appendix B]. The proof of the following
propositions are provided in Appendix E.

Proposition 1. If kj log q
n > log q −H(Vj |Sj)Υ + 3η3 for j ∈ [2], then there exists a strictly positive κ > 0 such

that for all n sufficiently large ζ1(m) + ζ2(m) ≤ exp{−nκη23}

To comprehend the above bound, note that codewords of a random UCC are uniformly distributed. In a coset with
qk random codewords that are uniformly distributed (Lemma 5), the expected number of codewords that will be
jointly typical with the observed typical state sequence snj is |Tη3

(Vj |snj )|qk−n whose exponent is lower bounded by
k log q−n log q+nH(Vj |Sj)Υ−4nη. See Lemma 5. The condition in Proposition 1 guarantees the latter exponent
is positive. This implies that |Lj(mj , s

n
j )| will concentrate around exp {kj log q − n log q + nH(Vj |Sj)Υ} = 2Lj

and hence the probability that |Lj(mj , s
n
j )| < Lj falls exponentially in n.
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Upper bound on ζ3(m) : In our analysis steps, we have adopted the convention that, if unspecified, the summation
is over the entire range of the summand.1 With this convention, we have

ζ3(m) = 2
∑
sn

pnS(s
n) tr

{
ρm,sn − πµ

η1
πσ,η2
a⊕,mπµ

η1
ρm,sn

}
1E = 2

∑
sn

pnS(s
n) tr

{
ρm,sn − πσ,η2

a⊕,m

[
πµ
η1
ρm,snπ

µ
η1

]}
1E (17)

≤ 2
∑
sn

pnS(s
n) tr

{
ρm,sn − πσ,η2

a⊕,mρm,sn
}
1E +

∑
sn

pnS(s
n)
∥∥ρm,sn − πµ

η1
ρm,snπ

µ
η1

∥∥
1
1E ≤ ζ31(m) + ζ32(m), (18)

where ζ31(m) =∆ 2
∑
sn

pnS(s
n) tr

{[
I − πσ,η2

a⊕,m

]
ρm,sn

}
1E and ζ32(m) =∆ 2

∑
sn

pnS(s
n)
√

tr
{
[I − πµ

η1 ] ρm,sn
}
1E . (19)

In the above, (17) follows from cyclicity of trace, (18) follows from ‘measurement on close states’ [35, Exercise
9.1.8] and (19) follows from [35, Chain of Inequalities 9.205 through to 9.209]. As an informed reader might
have guessed, our analysis of ζ32(m) is via an analysis analogous to the pinching lemma [35, Property 15.2.7]. In
Appendix F, we have detailed the steps where we have proved that if η1 > 4η3, for all n ∈ N sufficiently large,
we have

ζ32(m) ≤ 2|Y||X ||S| exp
{
−n(η1 − 4η3)

2δ(rY XS , 4η3, |Y||X ||S|)
}
.

This leaves us with ζ3(m) ≤ ζ31(m)+2|Y||X ||S| exp
{
−n(η1 − 4η3)

2δ(rY XS , 4η3, |Y||X ||S|)
}

. Towards analyzing
ζ31(m), note that

ζ31(m) ≤ 2
∑
sn,vn

wn,xn

∑
a1∈Fk1

q

a2,a∈Fk2
q

pnS(s
n)tr

{[
I − πσ,η2

a⊕,m

]
ρm,sn

}
1E1∩E2∩F3

= 2
∑
sn,vn

wn,xn

∑
a1∈Fk1

q

a2,a∈Fk2
q

pnS(s
n)tr

{[
I − πσ,η2

a,m

]
ρxn,sn

}
1E1∩E2∩F3

= 2
∑
sn,vn

wn,xn

∑
a1∈Fk1

q

a2,a∈Fk2
q

pnS(s
n) tr

{
[I − πσ,η2

wn ] ρxn,sn
}
1E1∩E2∩F3

, where Ej =
∆

{
|Lj(mj ,snj )|≥Lj ,aj(mj ,snj )=aj

vn
j (aj ,mj)=vn

j ,x
n
j (mj ,snj )=xn

j ,

(snj ,v
n
j )∈Tη3

(pSjVj
),snj ∈T η3

2
(psj

),

}
,(20)

F3 =
∆
{
wn(a,m)=wn,a=a1 0k2−k1⊕a2

(sn,xnvn,wn)∈T4η3 (pSXV W )

}
(21)

The difficulty in analyzing ζ31(m) is the fact that the typical projectors πσ,η2
a,m are with respect to state σw : w ∈ W

and not σm,sn on which the decoding POVM is applied. Computing the expectation enables us to average over the
choice of xj(mj , s

n
j ) and thereby perform the state. In Appendix G, we prove the following proposition.

Proposition 2. For every n ∈ N sufficiently large, we have E {ζ31(m)} = ζ31(m) ≤ exp
{
−n
[
(η2 − 4η3)

2 − 9η3
]}

.

Upper bound on ζ4(m) : Referring to ζ4(m) in (15) and leveraging the definition of E1, E2 in (20), we have

ζ4(m) ≤ 2
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

∑
a2,â

∈Fk2
q

pnS(s
n) tr

{
πµ
η1
πσ,η2

â,mπµ
η1
ρm,sn

}
1E1∩E2∩F4

= 2
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

∑
a2,â

∈Fk2
q

pnS(s
n) tr

{
πµ
η1
πσ,η2

ŵn πµ
η1
ρxn,sn

}
1E1∩E2∩F4

where F4 =
∆
{
â̸=a1 0k2−k1⊕a2

wn(â,m)=ŵn

}
(22)

The key challenge in deriving an upper bound on ζ4(m) is the fact that, Wn(â,m) is not statistically independent of
the choice (Xn

j (mj , s
n
j ) : j = 1, 2). Indeed, Vj(mj , s

n
j ) is a function of the whole bin cj(mj) = (Vj(aj ,mj) : aj ∈

[qkj ]), and Wn(â,m) is an addition of codewords in c1(m1) and c2(m2). The standard proof technique crucially
relies on this statistical independence which does not hold in this case. In Appendix H, we put forth a new sequence
of steps to overcome this challenge and thereby prove the following proposition. As we have discussed in Sec. I,
this new sequence of steps can be adopted in scenarios channel codes with bins such as the CQ broadcast channel
[7], [8] among others [23].

1For certain sums wherein the summands range over the entire range we have explicitly stated this range for the sake of clarity/to remind
the reader.
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Proposition 3. For every n ∈ N sufficiently large, we have

E {ζ4(m)} = ζ4(m) ≤ 8 exp

{
−n

(
H(Y )Υ −H(Y |W )Υ + log q −H(W )Υ − 9η3 − η1 − 2η2 −

k2
n

log q

)}
.

Upper bound on ζ5(m) : Referring to ζ5(m) in (15) and leveraging the definition of E1, E2 in (20), we have

ζ5(m) ≤ 2
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

m̂ ̸=m

∑
a2,â

∈Fk2
q

pnS(s
n) tr

{
πµ
η1
πσ,η2

â,m̂πµ
η1
ρm,sn

}
1E1∩E2∩F5

= 2
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

m̸̂=m

∑
a2,â

∈Fk2
q

pnS(s
n) tr

{
πµ
η1
πσ,η2

ŵn πµ
η1
ρxn,sn

}
1E1∩E2∩F5

, where F5 =
∆ {wn(â, m̂) = ŵn} (23)

The analysis of ζ5(m), owing to the statistical independence of Wn(m̂, m̂) and the pair (Xn
j (mj , s

n
j ) : j = 1, 2)

whenever m̂ ̸= (m1,m2), is more straightforward. As we observe in the following proposition, exponent in the
bound on ζ5(m) is smaller than the exponent in the bound on ζ4(m). Therefore the bound in the following
proposition and influences the rate of the code. The proof of the following proposition in provided in Appendix I.

Proposition 4. For every n ∈ N sufficiently large, we have

E {ζ5(m)} = ζ5(m) ≤ 8 exp

{
−n

(
H(Y )Υ −H(Y,W )Υ + log q − 9η3 − η1 − 2η2 −

k2 + l1 + l2
n

log q

)}
(24)

It must be noted that the exponent in the bound (24) features k2

n log q because we have assumed k2 ≥ k1. In
general, the last term in the above stated exponent would be max{k1,k2}+l1+l2

n log q. Replacing the last term in the
above exponent, we now collate the upper bounds we have derived on ζi(m) : i ∈ [5]. Substituting (81), (92), (83),
(101) and (110) and setting η1 = 5η3, η2 = 4η3 +

√
10η3

δq(σ,pW ,η1)
, there exists a strictly positive κ > 0 such that for

all n ∈ N sufficiently large,

ζ(m) ≤
5∑

i=1

ζi(m) ≤ 16 exp

{
−n

(
log q −H(W |Y )Υ − 23η3 −

√
10η3

δq(σ, pW , η1)
− max{k1, k2}+ l1 + l2

n
log q

)}

+

2∑
j=1

exp

{
−n

(
kj
n

log q − [log q −H(Vj |Sj)Υ + 3η3]

)}
exp

{
−nκη23

}
. (25)

Performing a Fourier-Motzkin elimination on the four bounds

kj+l1+l2
n

log q < log q −H(W |Y )Υ−24η3−

√
10η3

δq(σ, pW , η1)
,
kj
n

log q > log q −H(Vj |Sj)Υ + 4η3 : j = 1, 2, (26)

we obtain the achievability of the rate pair (R1, R2) satisfying R1 + R2 = l1+l2
n log q < min{H(Vj |Sj)Υ : j ∈

[2]}−H(W |Y )Υ − 24η3 −
√

10η3

δq(σ,pW ,η1)
. Since η3 > 0 is arbitrary and δq(σ, pW , η1) is a positive constant, we can

choose η3 arbitrarily small. This completes proof of achievability of the rate region stated in the theorem.

E. Non-Commutative Examples

We now identify examples of non-commutative QMSTx for which the inner bound characterized in Thm. 2 is
strictly larger than that achievable via unstructured IID codes (Thm. 1).

Theorem 3. Consider Ex. 1 and refer to Au,Ac defined in Thms. 1, 2 respectively. There exists θ ∈ (0, π2 ) for
which Au ⊊ Ac.

Proof. Our proof relies on two facts that can be easily verified. Firstly, the inner bounds Au and Ac are continuous
functions of the underlying space of QMSTxs when viewed as functions of the QMSTxs in question. Secondly, let
us recall the inner bounds achievable via unstructured IID random codes and structured coset codes. Specifically,
R defined in [4, Eqn. (30)] or equivalently R(τ ) defined in [13, Defn. 10] is the inner bounds achievable via
unstructured IID random codes and henceforth denoted Bu(τ ) in this article. Similarly, let Bc(τ ) , characterized
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Fig. 14. Bound uce{max{0, α − 2 + 2hb(τ)}} on the sum rate achievable via IID random codes is plotted in blue and the sum rate
uce{max{0, α− 1 + hb(τ)}} achievable via UCC is plotted in red.

as Rf (τ ), denote the inner bound achievable via structured coset codes for a commutative QMSTx. Through the
characterizations of Ac, Bc(τ ),Au,Bu(τ ), it is straight forward to verify that Ac reduces to Bc(τ ) and Au reduces
to Bu(τ ) when the QMSTx is commutative. We shall now leverage these two facts in the context of Ex. 1.

For Ex. 1, Bu(τ ) = uce{max{0, 2hb(τ)− 1}} and Bc(τ ) = uce{max{0, hb(τ)}}. Since Bu(τ ) ⊊ Bc(τ ), from
the two facts stated above Au ⊊ Ac for sufficiently small θ ∈ (0, π2 ). This completes our proof.

While the above Thm. 3 and proof establishes the sub-optimality of unstructured IID random codes and the strict
improvement of coset codes, the proof relies on a continuity argument. Philosof and Zamir’s proof of sub-optimality
of the unstructured IID random coding strategy is based on an stand-alone proof without appealing to continuity. Can
we identify a non-commutative example and provide another such definitive proof? Unfortunately, this is involved
as one must identify an optimal choice for parameters that saturate Au for a chosen non-commutative QMSTx. This
requires an ingenious argument and clever identification of a non-commutative QMSTx. Instead, in the following
we provide a partial solution and prove that for a specific choice of parameters the corresponding inner bound
achievable via structured coset codes is strictly larger than that achievable via unstructured IID random codes.

Proposition 5. Consider Ex.1 for τ ∈ (0, 12) and θ = π
8 . There exists a choice of parameters, for which the inner

bound achievable via UCCs is strictly larger than that achievable via unstructured codes.

Proof. By choosing V1 = V2 = F2 the binary field and pXjVj |Sj
(1, 1 ⊕ sj |sj) = τ = 1 − pXjVj |Sj

(0, sj |sj) for
sj ∈ {0, 1} and j ∈ [2] and evaluating the inner bound in Thm. 2, it can be verified that any rate pair (R1, R2)
satisfying R1 + R2 < uce{max{0, α − 1 + hb(τ)}} is achievable where α is as defined in (3). See Fig. 14 for
plots of the rate regions R1 +R2 < uce{max{0, α− 2 + 2hb(τ)}} and R1 +R2 < uce{max{0, α− 1 + hb(τ)}}
achievable via IID and structured codes respectively to verify the latter is strictly larger.

Example 2. Let X1 = X2 = S1 = S2 = {0, 1}, pS(s) = 1
4 for every s ∈ S, µ(0) =∆ |0⟩⟨0| and µ(1) =∆ |vθ⟩⟨vθ|,

where |vθ⟩ =∆ [cos θ sin θ]T . For (x, s) ∈ {0, 1}4, let ρx1x2s1s2 = µ([x1∨x2]⊕[x2∨s2]), where ∨ denotes (binary)
logical OR, ⊕ denotes addition in the binary field F2 and the cost function κj(xj , sj) = 1{xj=1} is the Hamming
weight function. For a τ ∈ (0, 12), what are the sum rates achievable via unstructured IID and union coset codes?

Owing to the ’non-linear’ relationship between the input symbols s, s and the index of µ, it is difficult to
analytically pin down the test channel maximizing the sum rate bound (1) via unstructured IID codes. We therefore
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Fig. 16. Computed sum rates achievable using unstructured IID and
union coset codes are plotted for Example 2 for a choice of θ = 3π

8
.

α and β denote the corresponding sum rates achievable in two cases
considered before convexification.

resort to computation. In Fig. 15 we have plotted the sum rates achievable via union coset codes and unstructured
codes for a choice of θ = 7π

16 . In Fig. 16 we have plotted the sum rates achievable via union coset codes and
unstructured codes for a choice of θ = 3π

8 . The following remark summarizes three important observations.

Remark 3. Firstly, our plots illustrate that union coset codes can enable communication at significantly higher
rates in comparison to rates achievable via unstructured IID codes. Secondly, our computation reveals that Ex. 2 is
a channel wherein the maximizing test channel distribution is non-uniform. Specifically, for a symmetric Hamming
cost constraint of τ ∈ [0, 14 ], the test channel that achieves the maximum sum rate using coset codes for the above
examples is pUjXj |Sj

(0, 0|0) = 1− pUjXj |Sj
(1, 1|0) = 1− 2τ , pUjXj |Sj

(1, 0|1) = 1. This illustrates the imports of
our findings in Thm. 2 and 4 that characterize achievable rate regions for all possible test channel distributions.
Thirdly, Fig. 16 illustrates that unstructured IID codes can potentially achieve higher sum rate at Hamming cost
constraints close to 1

2 . A general coding scheme must therefore incorporate both coding strategies to be able to
achieve maximum possible rates. Our next section is aimed at designing and analyzing a unified coding scheme
that incorporates both UCCs and unstructured IID codes.

F. The Role of Union Coset Codes

Having detailed the proof, we are at an opportune point to explain the role of UCCs and why we chose the same
over nested coset codes (NCCs). In contrast to unstructured IID random codes, when we impose structure, i.e. seek
codes possessing structure and performing information-theoretic tasks such as packing and covering, we have to
pay a rate penalty. Indeed, if we employed unstructured IID random codes, the covering bound in Prop. 1 would
be kj log q

n > I(Vj ;Sj)Υ = H(Vj)Υ − H(Vj |Sj)Υ = log q − H(Vj |Sj)Υ − [log q −H(Vj)Υ]. The first term being
the lower bound in Prop. 1, we denote the excess rate - the term in [·]−parenthesis - required in structured coset
coding as βj =

∆ [log q −H(Vj)Υ]. How are we able to obtain gains over unstructured IID random codes despite of
paying this penalty in covering?

A closer look at the packing bound in Prop. 4 answers this question. For a moment, let us say we had employed
unstructured IID random codes and had found a way to decode the sum of the chosen codewords. In that case
the bound would have been kj+l1+l2

n log q < I(W ;Y )Υ = log q −H(W |Y )Υ − [log q −H(W )Υ]. In other words,
unstructured IID random code rate is more constrained that structured coset codes in regards to packing. Some
or whole of the advantage that unstructured IID random codes accrue in covering is lost in packing. Precisely,
max{H(W )Υ −H(Vj)Υ : j ∈ [2]} is the advantage enjoyed by unstructured IID random codes for not imposing
structure. However, this competes with the losses it suffers due to its insistence of decoding the pair and the
associated effect of not optimally allocating the available limited output space.

The above discussion also alerts the reader to the rate penalties one has to pay for imposing structure. One should
therefore impose structure only in those codes - packing or covering - that are exploited in encoding or decoding.
Here, we are only exploiting the fact that all of the coarser codes are coset shifts of a particular linear code. We are
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not needing that these coset shifts be structured. In other words, we are not requiring that the different coset shifts,
when viewed in totality, form a coset of a linear code. The finer or outer code need not possess algebraic closure
properties. Imposing that would unnecessarily entail a rate penalty. This motivates our choice of UCC over NCC.
We refer the reader to Remark 5 and [13] wherein group based codes entail different rate penalties motivating the
choice of UCC over NCC even more important.

V. ENHANCING IID CODING SCHEMES VIA UCCS

The UCC based coding scheme can enable efficient decoding of V1⊕V2. On a QMSTx wherein the latter function
contains the information of the pair of messages, the UCC coding scheme can outperform the use of unstructured
codes. In general, the information corresponding to the message pair can be embedded in both uni-variate and
bi-variate functions of auxiliary RVs. As our computation for Ex. 2 for the case θ = 3π

8 indicates, while UCC
codes outperform IID codes for low cost constraints, the latter can potentially achieve higher rates for large cost
constraints. It must also be noted that since structured coding scheme employs statistically correlated codebooks,
they cannot be employed to decode the pair of codewords. For example, if one considers a simple classical binary
additive MAC Y =X1⊕X2 without states, it is impossible for the Rx to decode both codewords if both Txs employ
cosets of a common linear code. A general coding scheme for QMSTx must therefore incorporate both unstructured
codes and UCCs. We present the following inner bound that subsumes inner bounds stated in Thms. 1, 2.

Theorem 4. A rate-cost (R, τ) ∈ A ⊆ [0,∞)4 quadruple is achievable if there exists finite sets U1,U2, a finite
field V1 = V2 = W = Fq of size q and conditional PMFs pUjVjXj |Sj

: j ∈ [2] with respect to which

Rj ≤ I(Uj ;UjY )Υ − I(Uj ;Sj)Υ +min{I(Vj ;Vj , U, Y )− I(V1 ⊕ V2;Vj |UY )− I(Vj ;Uj , Sj) : j ∈ [2]}
R1 +R2 ≤ I(U ;Y )Υ − I(U ;S)Υ +min{I(Vj ;Vj , U, Y )− I(V1 ⊕ V2;Vj |UY )− I(Vj ;Uj , Sj) : j ∈ [2]} (27)

where the above entropies are evaluated with respect to the state

ΥYXUVWS =∆
∑

s,u,v,w,x

pSUVWX(s, u, v, w, x)ρxs⊗|x u v w s⟩⟨x u v w s| , (28)

pSUVWX (s,u,v,w,x)= pS(s)

2∏
j=1

pXjVjUj |Sj
(xj , vj , uj |sj)1{ w=

v1⊕v2
}. (29)

for all (s, v, w, x) ∈ S × V ×W ×X .

By choosing V1 = V2 = ϕ, we can recover the inner bound achievable via IID codes in Thm. 1. By choosing
U1 = U2 = ϕ, we can recover the inner bound in Thm. 2, thus proving that the above inner bound subsumes all
known inner bounds for a general QMSTx.

Proof. We begin with an outline of the code structure, decoding POVMs and the tools/techniques we leverage for
our error probability analysis. As mentioned earlier, our approach is one of amalgamating the unstructured IID
coding scheme with the UCC based coding scheme. A pair of unstructured codes - one for each sender - identical
to that used in a proof of Thm. 1 is designed on auxiliary alphabets U1,U2. Each of these codes is partitioned
into bins to enable the encoder choose codewords jointly typical/compatible with the observed state sequence. A
pair of UCCs - one for each sender - identical in structure to that employed in proof of Thm. 2 is designed on
auxiliary alphabet V = V1 = V2 = Fq. Sender j’s message comprises of two components mj1 ∈ [Mj1] and
mj2 ∈ [Mj2] =

∆ F lj
q communicated via the Uj− and Vj−codebooks respectively.

Our decoding will leverage simultaneous (joint) and successive decoding techniques. The first layer decoding
will employ a joint decoding POVM to decode into the U1,U2−codebooks. Following this, a second stage POVM
will decode into the sum UCC codebook analogous to that in proof of Thm. 2.

Our error probability analysis will leverage techniques developed in prior works [37] to handle the complexities of
joint decoding over a 2−user QMAC, successive decoding [40] and codebook with bins. Specifically, the decoding
POVM and the techniques developed in [37] to analyze joint decoding is enhanced with the list decoding technique
proposed in Sec. IV-D to analyze joint decoding into the U1 −U2−codebooks comprising of bins. The analysis of
the second stage decoding into the sum of the UCCs is identical to that developed in Sec. IV-D.
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A. Code Structure

In contrast to Sec. IV, sender j’s message comprises of two components mj1 ∈ [Mj1] and mj2 ∈ [Mj2] =
∆ F lj

q ,
communicated via the Uj− and Vj−codebooks respectively. We let Rji =

∆ logMji

n and Rj = Rj1+Rj2 for j, i ∈ [2].
To distinguish from an underline that we have employed to aggregate random variables, messages, sets across users,
we let a tilde at the bottom to aggregate message components of a single user. We let [M˜ j ] =

∆ [Mj1] × [Mj2]

denote the aggregation of sender j’s message and m˜ j =
∆ (mj1,mj2) for j ∈ [2] denote a generic message of sender

j. As stated in the theorem, U1,U2 are finite sets and V = V1 = V2 = Fq is a finite field of size q. For j ∈ [2],
sender j’s code comprises of an unstructured (IID random) code and a UCC, henceforth referred to as Uj−code
and Vj−code respectively. Uj−code comprises of Mj1 bins βj(mj1) : mj1 ∈ [Mj1], each of which consists of
Bj codewords. Specifically, the Uj− code is (βj(mj1) = (unj (mj1, bj) ∈ Un

j : bj ∈ [Bj ]) : mj1 ∈ [Mj1]) with
unj (mj1, bj) denoting a generic codeword in bin βj(mj1). Sender j’s Vj−code is a UCC code (n, kj , lj , gj , ιj)

comprising of qlj cosets cj(mj2) : mj2 ∈ [Mj2] = F lj
q . Specifically, the Vj−code is (cj(mj2) = (vnj (aj ,mj2) =

∆

ajgj ⊕ ιj(mj2) : aj ∈ Fkj
q ) : mj2 ∈ [Mj2]) wherein vnj (aj ,mj2) denotes a generic codeword in the coset/bin

cj(mj2). Just as in proof of Thm. 2, we assume k2 ≥ k1 without loss of generality and enforce g2 =
[
gT1 gT2/1

]T
.

This ensures that the bins of user 1’s UCC V1−code are sub-cosets of the bins of user 2’s UCC V2−code.

B. Encoding

On observing message m˜ j = (mj1,mj2) and the state sequence snj , encoder j first looks for a codeword in
βj(mj1) that is jointly typical with snj . If it finds at least one, one among these is chosen and denoted unj (mj1, s

n
j ).

Next, the encoder looks for a codeword in the coset cj(mj2) that is jointly typical with the pair (snj , u
n
j (mj1, s

n
j )). If

it finds at least one such codeword, one among these is chosen and denoted vnj (m˜ j , s
n
j ). Moreover, let bj(mj1, s

n
j )

and aj(m˜ j , s
n
j ) denote the index of the chosen codewords uj(mj1, s

n
j ) and vnj (m˜ j , s

n
j ) respectively. In other words,

let unj (mj1, bj(mj1, s
n
j )) = uj(mj1, s

n
j ) and vnj (aj(m˜ j , s

n
j ),mj2) = vnj (m˜ j , s

n
j ). If any of the above steps returns

no choices, a default pair of codewords from the pair βj(mj1) and cj(mj2) bins is chosen. For the sake of the
ensuing analysis, we formalize this encoding with notation.

Let αj1(mj1, s
n
j ) =

∑
bj
1{

(un
j (mj1,bj),snj )∈T η3

2
(pUjSj

)
} be the number of available jointly typical codewords in the

Uj−codebook. Let

Lj1(mj1, s
n
j ) =

∆

{{
bj : (u

n
j (mj1, bj), s

n
j ) ∈ T η3

2
(pUjSj

)
}

if αj1(mj1, s
n
j ) ≥ 1

{0} otherwise, i.e. αj1(mj1, s
n
j ) = 0.

(30)

Let αj2(m˜ j , s
n
j ) =∆

∑
aj
1{(uj(mj1,bj(mj1,snj )),v

n
j (aj ,mj2),snj )∈Tη3

(pUjVjSj
)} be the number of available jointly typical

codeword triplets for a chosen Uj−codeword and

Lj2(m˜ j , s
n
j )=

∆

{{
aj : (uj(mj1, bj(mj1, s

n
j )), v

n
j (aj ,mj2), s

n
j ) ∈ Tη3

(pUjVjSj
)
}

if αj2(mj , s
n
j ) ≥ 1

{0} otherwise, i.e. αj2(mj , s
n
j ) = 0.

(31)

For every pair (m˜ j , s
n
j ), an element is chosen from Lj1(mj , s

n
j ) and denoted/defined bj(mj1, s

n
j ). We define

unj (mj1, s
n
j ) =∆ unj (mj1, bj(mj1, s

n
j )). Next, for the pair (m˜ j , s

n
j )), an element is chosen from Lj2(m˜ j , s

n
j )

and defined/denoted aj(m˜ j , s
n
j ) and2 we define vnj (m˜ j , s

n
j ) =∆ vnj (aj(m˜ j , s

n
j ),mj2). A predefined ‘fusion map’

fj : Sn
j × Un

j × Vn
j → X n

j is used to map the triplet snj , u
n
j (mj1, s

n
j ), v

n
j (m˜ j , s

n
j ) to an input sequence in X n

j

henceforth denoted xnj (m˜ j , s
n
j ).

C. Decoding POVMs

Having let m˜ j denote the two components of sender j’s message, we let m1 =∆ (m11,m21) ∈ [M1] =∆

[M11] × [M21] denote the components of the two senders messages indexing the U1−,U2−codebooks and
m2 =∆ (m12,m22) ∈ [M2] =∆ [M12] × [M22] = F l1+l2

q denote the components of the two senders messages
indexing the V1−,V2−codebooks. As we stated at the beginning of our proof, we employ a simultaneous (joint)
decoding POVM to decode the messages m1 indexing the U1−,U2−codebooks. The joint decoding POVM is

2The dependence of aj(m˜ j , s
n
j ) on the choice bj(mj1, s

n
j ) is implicit and represented through mj1.
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designed based on [37, Sec. V.B]. Next, a successive decoding POVM recovers the components of m2. Indeed,
recall that the pair of messages is recovered in Sec. IV by decoding into a single sum codebook. Our decoding
POVM is

{√
λm1

θm2|m1

√
λm1

: (m1,m2) ∈ [M1]× [M2]
}
∪{λ−1,

√
λm1

θ−1|m1

√
λm1

: m1 ∈ [M1]}. We begin
by specifying the POVM

{
λm1

: m1 ∈ [M1], λ−1

}
of the first stage joint decoder.

Let µ =∆
∑

x,s pXS(x, s)ρx,s, σu =∆ σu1u2
=∆
∑

x,s pXS|U (x, s|u)ρx,s and σj
uj =∆

∑
x,s pXS|Uj

(x, s|uj)ρx,s for
j ∈ [2]. We let πµ

η denote the η−unconditional typical projector of µ⊗n, πσ,η
un denote the η−conditional typical

projector of σun =∆ ⊗n
t=1σu1t,u2t

, πj,η
un
j

denote the η−conditional typical projector of σj
un
j
=∆ ⊗n

t=1σ
j
ujt . Furthermore,

for j ∈ [2], we let πj,η
mj1,bj

=∆ π
σj ,η
mj1,bj

denote the conditional typical projector of σj
un
j (mj1,bj)

= ⊗n
t=1σ

j
uj(mj1,bj)t

, πσ,η
m1,b

be the conditional typical projector of σun
1 (m11,b1)un

2 (m21,b2) = ⊗n
t=1σu1(m11,b1)tu2(m21,b2)t . With these definitions, we

let αm1,b
=∆ πµ

η4π
1,η2

m11,b1
πσ,η1

m,b π
1,η2

m11,b1
πµ
η4 ,

λ1
m1

=

∑
m̂1

∑
b

αm̂1,b

− 1

2 ∑
b

αm1,b

∑
m̂1

∑
b

αm̂1,b

− 1

2

and λ1
−1 =

∆ I −
∑

m1
λ1
m1

. Next, we specify the second stage POVM.
Consider the UCC (n, k2, l1 + l2, g2, ι⊕) where ι⊕(m2) = ι1(m21) ⊕ ι(m22) for m2 = (m21,m22) ∈ F l1

q ×
F l2
q and let wn(a,m2) =∆ ag2 ⊕ ι1(m21) ⊕ ι2(m22) denote its codewords. Referring to Appendix A-B, we let

π
δwn(a,m2)

pW ,η7 be the η7−conditional typical projector of ⊗n
t=1δwt(a,m2)

with respect to the PMF pW , where δw =∆∑
x,s pXS|W (x, s|w)ρxs : w ∈ W where pSXW is the corresponding marginal of pSUVWX defined in (28). As

stated in Appendix A-B, we henceforth let πδ,η7
a,m2

= π
δwn(a,m2)

pW ,η2 . We define γa,m2|m1
=∆ πσ,η6

m1,b
∗π

δ,η7
a,m2

πσ,η6

m1,b
∗ where

πσ,η6

m1,b
∗ is the η6−conditional typical projector of the state σun

1 (m11,b∗1)u
n
2 (m21,b∗2)

= ⊗n
t=1σu1(m11,b∗1)tu2(m21,b∗2)t

. With
these definitions, we let

θm2|m1
=∆

 ∑
â,m̂21,m̂22

γâ,m̂2|m1

− 1

2∑
a

γa,m2|m1

 ∑
â,m̂21,m̂22

γâ,m̂2|m1

− 1

2

(32)

and θ−1 =
∆ I −

∑
m2

θm2|m1
.

D. Probability of Error Analysis

As in proof of Thm. 2, we employ the random coding technique and begin by identifying the components
that make up our coding scheme, followed by characterizing an upper bound on the error probability com-
prising of multiple terms. The first stage of our coding scheme is completely characterized via the collections(
unj (mj1, bj) ∈ Un

j : (mj1, bj) ∈ [Mj1]× [Bj ]
)

and
(
bj(mj1, s

n
j ) ∈ [Bj ] : (mj1, s

n
j ) ∈ [Mj1]× Sn

j

)
for j ∈ [2].

The second stage is completely characterized via the generator matrices g1, g2/1, the collection (ιj(mj2) : mj2 ∈
[qlj ]) of dither/bias vectors specifying the coset shifts, the indices

(
aj(m˜ j , s

n
j ) : (m˜ j , s

n
j ) ∈ [M˜ j ]× Sn

j

)
, and the

final codeword choices
(
xnj (m˜ j , s

n
j ) : (m˜ j , s

n
j ) ∈ [M˜ j ]× Sn

j

)
each for j ∈ 2. For a generic code specified through

these objects, we now characterize an upper bound on the error probability.

An upper bound on the error probability for a generic code : We let [M] =∆ [M˜1]×[M˜2] and m =∆ (m˜ 1,m˜ 2) ∈ [M]
denote a generic message pair of the two senders. We remark that m = (m˜ 1,m˜ 2) = (m1,m2), where the components
of the first representation are the two sender’s messages and the components of the second representation are the
message pairs indexing the unstructured and UCC codebooks. For a generic choice of the aforementioned objects,
it can be verified using the cyclicity of the trace that the average error probability is

ξ =
∑
m

ξ̂(m) + ζ̂(m)

|M|
where ξ̂(m) =∆

∑
sn

pnS(s
n)ξ̂(m|sn), ζ̂(m) =∆

∑
sn

pnS(s
n)ζ̂(m|sn), ξ̂(m|sn)=∆ tr

{(
I−λm1

)
ρm,sn

}
(33)

ζ̂(m|sn) =∆ tr
{(

I − θm2|m1

)√
λm1

ρm,sn

√
λm1

}
, ρm,sn =∆

n⊗
t=1

ρx1(m1,s
n
1 )tx2(m2,s

n
2 )tst

, (34)
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I = I⊗n, |M| = |M11| · |M21| · ql1+l2 . We consider an arbitrary pair m = (m˜ 1,m˜ 2) and henceforth focus our
study on ξ̂(m) and ζ̂(m). We begin with ξ̂(m).

An upper bound on ξ̂(m) : Since we have fixed an arbitrary pair m = (m1,m2), we henceforth let b∗j =
∆ bj(mj1, s

n
j )

and b∗ =∆ (b∗1, b
∗
2). Since αm1,b

≥ 0 is PSD for every b ∈ [B1]× [B2], we have

λm ≥ (S + T )−
1

2 S (S + T )−
1

2 where S = αm1,b
∗ = πµ

η4
π1,η2

m11,b∗1
πσ,η1

m1,b
∗π

1,η2

m11,b∗1
πµ
η4

and T =
∑
b,m̂1

αm̂1,b
1{(m̂1,b̂) ̸=(m1,b

∗)},

and hence, ξ̂(m|sn) ≤ ξ(m|sn), where ξ(m|sn) =∆ tr
([

I − (S + T )−
1

2 S (S + T )−
1

2

]
ρm,sn

)
. (35)

Our study of ξ̂(m) will henceforth focus on ξ(m) =∆
∑

sn pS(s
n)ξ(m|sn). Analogous to our proof of Thm. 2, we

split the event corresponding to ξ(m) into E and E and analyze the terms corresponding to the these two events
separately. Let Ej1 =∆

{
sn ∈ T η5

4
(pS)

}
,

Ej2=∆
{
|Lj1(mj1, s

n
j )| ≥ Lj1, |Lj2(m˜ j , s

n
j )| ≥ Lj2

(snj , u
n
j (mj1, s

n
j ), v

n
j (m˜ j , s

n
j ))∈Tη5

(pSjUjVj
)

}
, E121=∆

{(
snj , u

n
j (mj1, s

n
j ),

vnj (m˜ j , s
n
j ) : j ∈ [2]

)
∈ T2η5

(pSUV )

}
E122 =∆

{(
snj , u

n
j (mj1, s

n
j ), v

n
j (m˜ j , s

n
j ),

xnj (m˜ j , s
n
j ) : j ∈ [2]

)
∈ T4η5

(pSUV X)

}
and finally E =∆

2⋂
j=1

Ej1∩Ej2
⋂

E121∩E122,

where Lj1 =
1
2 exp

{
n
(
log |Bj |

n − I(Uj ;Sj)Υ − 3η5

2

)}
, Lj2 =

1
2 exp

{
n
(
log |Bj |

n − log q +H(Vj |Sj , Uj)Υ − 3η5

)}
.

We remark that all Von Neumann entropies are evaluated with respect to the state characterized in (28). Since

E =

2⋃
j=1

Ej1∪Ej2

⋃
E121∪E122 =

2⋃
j=1

Fj1∪Fj2

⋃
F121∪F122 where Fj1 =

∆ Ej1,Fj2 =
∆ Ej1 ∩ Ej2, (36)

F121=
∆

2⋂
j=1

Ej1∩Ej2 ∩ E121,F122=
∆

2⋂
j=1

Ej1∩Ej2 ∩ E121∩ E122 we have 1=1E + 1E ≤
2∑

j=1

2∑
i=1

(
1Fji

+
1F12i

2

)
+ 1E(37)

With these definitions, we have

ξ(m) ≤
2∑

j=1

ξj(m)+ ξ̃2(m), where ξj(m)=∆
∑
sn

pnS(s
n)ξ(m|sn)

2∑
i=1

(
1Fji

+
1F12i

2

)
, ξ̃2(m) =∆

∑
sn

pnS(s
n)ξ(m|sn)1E . (38)

Firstly, in regards to ξj(m) : j ∈ [2], with ξ(m|sn) defined in (35), observe that S = αm1,b
∗ =

πµ
η4π

1,η2

m11,b∗1
πσ,η1

m,b˜∗πj,η2

m11,b∗1
πµ
η4 ≥ 0 is PSD implying

[
I − (S + T )−

1

2S(S + T )−
1

2

]
≤ I and hence ξ(m|sn) ≤

tr
(
I · ρm,sn

)
= 1. We therefore have ξj(m) ≤

∑
sn
∑2

i=1p
n
S(s

n)
(
1Fji

+
1F12i

2

)
for j ∈ [2]. Next, in regards to

ξ̃2(m) defined through (38) and (35), observe that S ≥ 0, T ≥ 0 and moreover 0 ≤ S ≤ I is dominated by I .
Leveraging the ‘measurement on close states’ [35, Exercise 9.1.8] and the Hayashi Nagaoka inequality, ξ(m|sn)
in (35) satisfies

ξ(m|sn)≤
∥∥∥π2,η3

m21,b∗2
ρm,snπ

2,η3

m21,b∗2
−ρm,sn

∥∥∥
1
+ tr

([
I−(S+T )−

1

2S (S+T )−
1

2

]
π2,η3

m21,b∗2
ρm,snπ

2,η3

m21,b∗2

)
≤

7∑
i=3

ξi(m|sn),(39)

where ξ3(m|sn) =∆ 3
∥∥∥π2,η3

m21,b∗2
ρm,snπ

2,η3

m21,b∗2
− ρm,sn

∥∥∥
1
, ξ4(m|sn) =∆ 2 tr

([
I − αm1,b

∗
]
ρm,sn

)
, (40)

ξ5(m|sn) =∆ 4
∑
m̂1

∑
b̂

tr
(
αm̂1,b̂

π2,η3

m21,b∗2
ρm,snπ

2,η3

m21,b∗2

)
1{(m̂11,b̂1 )̸=(m11,b∗1)}, (41)

ξ6(m|sn) =∆ 4
∑
m̂1

∑
b̂

tr
(
αm̂1,b̂

π2,η3

m21,b∗2
ρm,snπ

2,η3

m21,b∗2

)
1{(m̂21,b̂2 )̸=(m21,b∗2)}, (42)

ξ7(m|sn) =∆ 4
∑
m̂1

∑
b̂

tr
(
αm̂1,b̂

π2,η3

m21,b∗2
ρm,snπ

2,η3

m21,b∗2

)
1{(m̂j1,b̂j) ̸=(mj1,b∗j ):j=1,2} (43)
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In writing the second inequality in (39), we have leveraged the fact that, when the Hayashi Nagaoka inequality is
applied on the second term of the RHS of the first inequality, the resulting first term is dominated by ξ4(m|sn) +
2
3ξ3(m|sn) via the measurement on close states [35, Exercise 9.1.8]. This, in addition to the presence of the first
term on the RHS of the first inequality explains the factor 3 in the definition of ξ3(m|sn). The rest of the terms
ξi(m|sn) : i = 5, 6, · · · , 7 are the other terms that make up the upper bound in the Hayashi Nagaoka inequality.
We therefore have ξ̃2(m) ≤

∑7
i=3 ξi(m), where for i ∈ {3, 4, · · · , 7}, we have ξi(m) =∆

∑
sn p

n
S(s

n)ξi(m|sn)1E .
Collating through (38), (39) through (42), we have ξ(m) ≤

∑7
i=1 ξi(m). We now employ the random coding

technique and prove that the average of these terms, evaluated over the ensemble of codes, falls exponentially to
0 if the rate conditions (27) hold. Towards that end, we specify the distribution on the ensemble of codes.

Distribution of the Random Code : We now specify the probability distribution of the random code
with respect to which we compute the expectation of the eight terms mentioned above. We refer the
reader to Sec. V-D for a list of components in the first and second stage that completely spec-
ify our coding scheme. It therefore suffices to specify a joint distribution of the corresponding random
components :

(
Un
j (mj1, bj) ∈ Un

j : (mj1, bj) ∈ [Mj ]× [Bj ]
)

,
(
Bj(mj1, s

n
j ) ∈ [Bj ] : (mj1, s

n
j ) ∈ [Mj ]× Sn

j

)
for

j = 1, 2, the generator matrices G1, G2/1, the collection (ιj(mj2) : mj2 ∈ [qlj ]) of dither/bias

vectors specifying the coset shifts, the indices
(
Aj(m˜ j , s

n
j ) : (mj , s

n
j ) ∈ [Mj ]×F lj

q × Sn
j

)
, and the fi-

nal codeword choices
(
Xn

j (mj , s
n
j ) : (mj , s

n
j ) ∈ [Mj ]×F lj

q × Sn
j

)
each for j = 1, 2. The collections(

Un
j (mj1, bj) ∈ Un

j : (mj1, bj) ∈ [Mj ]× [Bj ]
)

for j ∈ [2], the generator matrices G1, G2/1 and the dither/bias

vectors (ιj(mj2) : mj2 ∈ [F lj
q ]) are mutually independent. G1 ∈ Fk1×n

q , G2/1 ∈ F (k2−k1)×n
q and ιj(mj2) ∈

Fn
q : mj2 ∈ [F lj

q ] are uniformly distributed on their respective range spaces. The codewords in the collection(
Un
j (mj1, bj) ∈ Un

j : (mj1, bj) ∈ [Mj ]× [Bj ]
)

for j ∈ [2] are mutually independent and Un
j (mj1, bj) is distributed

with PMF pnUj
for each (mj1, bj) ∈ [Mj ] × [Bj ]. Given all of these objects, the collection of chosen indices

(Bj(mj1, s
n
j ) : mj1 ∈ [Mj ], s

n
j ∈ Sn

j ) are mutually independent and uniformly distributed in Lj1(mj1, s
n
j ). Next,

given all of the above objects, the collection of chosen indices (Aj(m˜ j , s
n
j ) : (mj , s

n
j ) ∈ [Mj ]×Sn

j ) are mutually
independent and uniformly distributed in Lj2(m˜ j , s

n
j ).

Remark 4. Given the entire codebooks (Un
j (mj1, bj) : (mj1, bj) ∈ [Mj1]× Bj) : j ∈ [2], the collection of indices

(Bj(mj1, s
n
j ) : (mj1, s

n
j ) ∈ [Mj1]×Sn

j ) are mutually independent and uniformly distributed in Lj1(mj1, s
n
j ). Next,

given the entire codebooks (Un
j (mj1, bj) : (mj1, bj) ∈ [Mj1]× Bj) : j ∈ [2], the generator matrices G1, G2/1, the

collection ιj(mj2) : mj2 ∈ [qlj ] of dither/bias vectors and the collection (Bj(mj1, s
n
j ) : (mj1, s

n
j ) ∈ [Mj1]× Sn

j ),
the indices (Aj(m˜ j , s

n
j ) : (mj , s

n
j ) ∈ [Mj ]×Sn

j ) are mutually independent and uniformly distributed in Lj2(m˜ j , s
n
j ).

In the rest of our analysis of the first stage decoding, we derive upper bounds on ξi(m) =∆ E{ξi(m)} : i ∈ [8]
that decay exponentially to 0, where the expectation in question is with respect to the random code.

Upper bound on ξ1(m), ξ2(m) : For a generic j ∈ [2], our discussion following (38) leads us to ξj ≤∑2
i=1

(
ξji +

ξ12i
2

)
, where ξji =

∑
sn p

n
S(s

n)P (Fji) and ξ12i =
∑

sn p
n
S(s

n)P (F12i) for i ∈ [2]. From classical

typicality (Lemma 1), there exists a κj1 > 0 such that for all n sufficiently large, ξj1(m) ≤ exp{−nκj1η
2
5}.

Employing standard classical information theoretic analysis as presented in Appendix E, the following proposition
can be proved.

Proposition 6. If Bj > I(Uj ;Sj)Υ + 2η5, kj

n log q > log q −H(Vj |Uj , Sj)Υ + 3η5, then there exists κ12 > 0 such
that for all n sufficiently large ξ1(m) + ξ2(m) ≤ exp {−nκ12}.

Upper bound on ξ3(m) : Deriving an upper bound on ξ3(m) will essentially involve using the gentle measurement
lemma for ensembles [35, Lemma 9.4.3]. We provide a proof of the following proposition in Appendix J.

Proposition 7. For every n ∈ N sufficiently large, we have ξ3(m) ≤ 96 exp
{
−n
(
(η3−η5)2

2 − 29η5

4

)}
.
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Upper Bound on ξ4(m) : The analysis of ξ4(m) is analogous to that of ξ4(m) and leverages the ‘measurement on
closes states’ [35, Exercise 9.1.8] and gentle measurement lemma for ensemble averages [35, Lemma 9.4.3]. The
proof of the following proposition is fleshed out in Appendix K.

Proposition 8. For every n ∈ N sufficiently large, we have ξ4(m) ≤ exp
{
−n (η1 − η5)

2
}

+

2 exp
{
−n

2 (η4 − η5)
2
}
+ 2 exp

{
−n

2 (η2 − η5)
2
}

.

Upper Bound on ξ5(m) : ξ5(m) corresponds to the error in the first sender’s U1−message. In Appendix L, we
build on the techniques developed in [37, Proof Of Thm. 2] and prove the following proposition.

Proposition 9. For every n ∈ N sufficiently large, we have

ξ5(m) ≤ exp {−n (I(Y ;U1|U2)Υ − 2η1 − 9η5 − η3 −R11 −B1)} (44)

Upper Bound on ξ6(m) : ξ6(m) corresponds to the error in the second sender’s U2−codebook message. In Appendix
M, we build on the techniques developed in [37, Proof Of Thm. 2] and prove the following proposition.

Proposition 10. For every n ∈ N sufficiently large, we have

ξ6(m) ≤ exp {−n (I(Y ;U2|U1)Υ − 2η1 − 9η5 − η3 −R11 −B1)} (45)

Upper Bound on ξ7(m) : Our last term in our analysis of ξ̂(m) in (33) is ξ7(m). We study the same now, following
which we proceed to analyzing ζ̂(m). ξ7(m) corresponds to the error in the both sender’s U1−,U2−codebook
messages. In Appendix N, we build on the techniques developed in [37, Proof Of Thm. 2] and prove the following
proposition.

Proposition 11. For every n ∈ N sufficiently large, we have

ξ7(m) exp{−n (I(Y ;U1, U2)Υ − 8η5 − η4 − 2η1 −R11 −R21 −B1 −B2)} (46)

Propositions 6 through 11 have characterized conditions under which ξ(m) falls exponentially in n. This concludes
our analysis of ξ(m) and we now proceed to analyzing ζ̂(m).

Upper bound on ζ̂(m): From [35, Exercise 9.18], i.e ‘measurement on close states’ and the gentle measurement
lemma, specifically [35, Chain of Inequalities 9.205 through to 9.209], ζ̂(m|sn) as defined in (34) is upper bounded
via

ζ̂(m|sn)≤ ζ(m|sn)+
∥∥∥ρm,sn−

√
λm1

ρm,sn

√
λm1

∥∥∥
1
≤ ζ(m|sn)+ 2

√
tr
{(
I−λm1

)
ρm,sn

}
≤ ζ(m|sn) + 2

√
ξ̂(m|sn)

implying
ξ̂(m)+ζ̂(m)

|M|
≤

ξ̂(m)+ζ(m)+2

√
ξ̂(m)

|M|
where ζ(m|sn) =∆ tr

{(
I − θm2|m1

)
ρm,sn

}
, ζ(m) =∆

∑
sn

pS(s
n)ζ(m|sn)

In view of our analysis of ξ(m) which serves as an upper bound on ξ̂(m), we are only required to derive an upper
bound on ζ(m). In view of our detailed proof of Thm. 2, the similarity of the steps herein and in the interest of
brevity, we omit a detailed analysis. We put forth the following proposition which is straightforward to prove using
the steps developed in the proof of Thm. 2.

Proposition 12. If k2+l1+l2
n log q < log q−H(W |Y, U1, U2)Υ and kj

n log q > log q−H(Vj |Uj , Sj)Υ then there exits
a κζ > 0 such that for all n ∈ N sufficiently large ζ(m) ≤ exp{−nκζ}

As was the case in proof of Thm. 2, we have assumed k2 ≥ k1. In the general case, the first bound in Proposition
12 has to be replaced by max{k1,k2}+l1+l2

n log q < log q − H(W |Y, U1, U2)Υ. With this, we now collate all our
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findings in Propositions 6 through 12 to conclude the existence of κξ > 0 such that for all n ∈ N sufficiently large,
ξ̂(m) < exp{−nκξ} if, for j ∈ [2]

Bj > I(Sj ;Uj)Υ,
kj log q

n > log q −H(Vj |Uj , Sj)Υ,
∑2

j=1Rj1 +Bj < I(U1, U2;Y )Υ + I(U1;U2)Υ,

R11 +B1 < I(U1;U2, Y )Υ, R21 +B2 < I(U2;U1, Y )Υ,
max{k1,k2}+l1+l2

n log q < log q −H(W |Y,U1, U2)Υ.
(47)

We substitute lj log q
n = Rj − Rj1 for j ∈ [2] and add the two non-negative bounds Rj1 > 0 and Rj − Rj1 > 0.

Performing a Fourier Motzkin elimination on the resulting set of bounds yields the rate region stated in (27). This
completes our proof.

VI. COMMUNICATING OVER CLASSICAL-QUANTUM CHANNEL WITH RANDOM STATES USING UCCS

We now focus on the PTP CQ channel with classical random states available non-causally at the transmitter,
abbreviated as a QSTx. See Fig. 2. We shall prove that UCCs achieve the Gel’fand-Pinsker inner bound [2], [5].
The goal of our presentation in this section is three fold. Firstly, our current proof of achievability of the Gel’fand-
Pinsker inner bound for the QSTx provided by Boche, Cai and Nötzel [5] leverage tools from representation theory.
While their findings are novel, the tools they leverage are unfamiliar to mainstream information theorists. It is
therefore of interest to provide simple proofs of these results via conventional information-theoretic tools along
the lines of [2]. Secondly, we intend to present a proof technique that works with both unstructured IID random
codes and structured coset codes. Lastly, the techniques we employ in this section is identical to those employed
for proving Thms. 2 and 4, thereby demonstrating the versatility of the proof techniques developed in this article.

We begin with a formal description of a QSTx. Consider a (generic) QSTx specified through (i) a finite input
set X , (ii) a finite set S of states, (iii) a PMF pS(·) on S, (iii) a collection (ρxs ∈ D(H) : (x, s) ∈ X × S) of
density operators and (iv) cost function κ : X ×S → [0,∞). The cost function is additive, i.e., having observed the
state sequence sn the cost incurred by the sender in preparing the state ⊗n

t=1ρxtst is κ(xn, sn) =∆ 1
n

∑n
t=1 κ(xt, st).

Reliable communication on a QSTx entails identifying a code.

Definition 4. An (n,M, e, λ) QSTx code consists of a message index set M, an encoder map e : M×Sn → X n

with codewords denoted (xn(m, sn) = (x(m, sn)t : 1 ≤ t ≤ n) : (m, sn) ∈ M × Sn) and a decoder POVM
λ =∆ {λm ∈ P(H⊗n) : m ∈ M}. The average error probability of the code is

ξ(e, λ) =∆
1

|M|
∑
m∈M

ζ̂(m), where ζ̂(m) =∆
∑

sn∈Sn

pnS(s
n) tr

(
[I − λm] ρxn(m,sn),sn

)
, ρxn(m,sn),sn =

n⊗
t=1

ρx(m,sn)t,st .

Average cost incurred by the sender in transmitting message m is τ(e|m) =∆
∑

sn p
n
S(s

n)κ(e(m, sn), sn) and the
average cost incurred by the sender is τ(e) =∆ 1

|M|
∑

m τ(e|m).

The object of interest is the capacity region of a QSTx defined below. In this section, we prove achievability of
the current known largest single-letter inner bounds to the capacity region of a QSTx.

Definition 5. A rate-cost quadruple (R, τ) ∈ [0,∞)2 is achievable if there exists a sequence of QSTx codes
(n,M(n), e(n), λ(n)) for which lim

n→∞
ξ(e(n), λ(n)) = 0,

lim
n→∞

n−1 logM(n) = R, and lim
n→∞

τ(e(n)) ≤ τ.

The capacity region C of the QSTx is the set of all achievable rate-cost vectors and C (τ) =∆ {R : (R, τ) ∈ C }.

Theorem 5. Consider a QSTx characterized through a finite set S of states, a PMF pS on S modeling the distribution
of the random state, an input set X and a collection of density operators (ρxs ∈ D(H) : (x, s) ∈ X × S). For
τ > 0, R ∈ C (τ) if there exists a PMF pSpV X|S on S × V × X for which

∑
x,s pS(s)pX|S(x|s)κ(x, s) ≤ τ and

R < I(V ;Y )Υ − I(V ;S)Υ where all information quantities are computed with respect to the quantum state

σY SXV =∆
∑
x,s,v

pS(s)pV X|S(v, x|s)ρxs ⊗ |s x v⟩⟨s x v| . (48)
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Symbol Description Comment
k
n
log q and l

n
log q Binning rate and information rate respectively.

g ∈ Fk×n
q generator matrix of the cosets that form the bins of the code

M = ql, [M] = [ql] Number of messages, message set
ι(m) ∈ Fn

q dither/bias vector corresponding to message m ∈ [M]
c(m) (vn(a,m)=ag⊕ι(m):m∈[M]) Coset/Bin corresponding to message m ∈ [M]

vn(a,m) ag ⊕ ι(m) ∈ Fn
q a generic codeword in c(m)

L(m, sn) {a ∈ Fk
q : (sn, vn(a,m)) ∈ Tη3(pSV )} List of codewords in c(m) jointly typical with state sn

a∗ = a∗
m,sn Index of the chosen codeword vn(a∗

m,sn , s
n) used to

communicate message m when state sequence is sn

f : V × S → X ’fusion map’ to map chosen codeword
and state sequence to input sequence

xn(m, sn) Channel Input sequence chosen to communicate
message m when state sequence is sn

ρm,sn = ρxn(m,sn),sn

n⊗
t=1

ρx(m,sn)t Quantum state used to communicate

message m when state sequence is sn

µ
∑

s,x pSX(s, x)ρxs Average Density operator
σv

∑
s,x pSX|V (s, x|v)ρxs Average Density operator

πµ
η1 η1−Typical projector of µ

πσ,η2
a,m η2−conditional typical projector of σvn(a,m)

γa,m πµ
η1π

σ,η2
a,m πµ

η1

λm (
∑

â

∑
m̂ γâ,m̂)−

1
2
∑

γa,m(
∑

â

∑
m̂ γâ,m̂)−

1
2 Operators of decoding POVM(

λm:m∈[M],
λ−1=I−

∑
m λm

)
Decoding POVM

(a) F1, (b) F2, and (c) F3 (a) E1, (b) E1 ∩ E2, and (c) E1 ∩ E2 ∩ E3 Error events at Encoder

ζ4(m) Error Event corresponding to quantum state
ρm,sn not overlapping substantially with γm

ζ5(m) Error Event corresponding to quantum state
ρm,sn having substantial overlap with γm̂ : m̂ ̸= m

TABLE II
DESCRIPTION OF ELEMENTS THAT CONSTITUTE THE CODING SCHEME FOR COMMUNICATION OVER QSTX

Proof. The two new elements in our proof are the code structure (Sec. VI-A). Specifically, we build a union
coset code to communicate over the QSTx. Since the codewords of a random union coset code are not mutually
independent and are uniformly distributed, a standard information theoretic proof is not applicable. We therefore
provide detailed steps in the sequel.

A. Code Structure

Let V = Fq be a finite field of size q. Consider a (n, k, l, g, ι) UCC whose codewords are (vn(a,m) =∆ ag⊕ι(m) :
(a,m) ∈ Vk × V l). The message index set M = [ql] and the bin corresponding to message m is the collection
c(m) =∆ (ag ⊕ ι(m) : a ∈ Vk). As we describe in the sequel, the encoder observes the state sequence sn ∈ Sn and
chooses a codeword in the bin c(m) indexed by the message m ∈ M.

B. Encoding

For every possible pair (m, sn) of message and state sequence, let

α(m, sn) =∆
∑
a∈Vk

1{(vn(a,m),sn)∈Tn
η3

(pV S)} (49)

be the number of codewords in the bin c(m) indexed that is jointly typical with the observed state sequence sn ∈ Sn.
Let

L(m, sn) =∆

{
{a:(vn(a,m),sn)∈Tη3 (pV S)} if α(m, sn) ≥ 1

{0k} otherwise, i.e. α(m, sn) = 0.
(50)

be a list of candidate code words that is available to the encoder for the message, state sequence pair (m, sn). Let
a∗m,sn be chosen from L(m, sn) and vn(m, sn) =∆ vn(a∗m,sn ,m). A predefined ‘fusion map’ f : Sn × Vn → X n

is used to map the pair sn, vn(m, sn) to an input sequence in X n henceforth denoted xn(m, sn). On observing
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state sequence sn and message m, the encoder chooses xn(m, sn) = (x(m, sn)t : 1 ≤ t ≤ n), and we define

ρm,sn =∆
n⊗

t=1

ρx(m,sn)tst .

C. Decoding POVMs

Consider a PMF pSV X = pSpV X|S on S × V × X . Let

µ =∆
∑
x,s

pSX(s, x)ρxs, σv=
∆
∑
x,s

pXS|V (x, s|v)ρxs have SCD µ=
∑
y∈Y

q(y) |fy⟩⟨fy| and σv=
∑
y∈Y

rY |V (y|v)
∣∣ey|v〉〈ey|v∣∣

respectively, where SCD (as specified in Sec. II) refers to spectral decomposition. Let

πµ
η1
=∆
∑

yn∈Yn

n⊗
t=1

|fyt
⟩⟨fyt

|1{yn∈Tn
η1

(q)} and πσ,η2

vn =∆


0 if vn /∈ Tn

η2
(pV )∑

yn∈Yn

n⊗
t=1

∣∣eyt|vt

〉〈
eyt|vt

∣∣1{(vn,yn)∈Tn
η2

(pV rY |V )} otherwise. (51)

be the unconditional and conditional typical projectors. For (a,m) ∈ Vk × V l, let πσ,η2
a,m =∆ πσ,η2

vn(a,m)

γa,m =∆ πµ
η1
πσ,η2
a,mπµ

η1
and λm=∆

 ∑
â,m̂∈Vk×Vl

γâ,m̂

− 1

2∑
a∈Vk

γa,m

 ∑
â,m̂∈Vk×Vl

γâ,m̂

− 1

2

for m ∈ [ql] and λ−1 = I⊗n
H −

∑
m∈M

λm (52)

and {λm : m ∈ M = [ql], λ−1} be the decoding POVM.

D. Error Probability

We employ the random coding technique to prove the existence of a code with the promised rates for which
the error probability falls to 0 exponentially in the block-length n. Towards that end, observe that our code and
the coding scheme is completely characterized via the following objects (i) the generator matrix g ∈ Vk×n, (ii)
the map ι : V l → Vn, (iii) the collection (a∗m,sn ∈ Vk : (m, sn) ∈ M× Sn) and (iv) the collection (xn(m, sn) ∈
X n : (m, sn) ∈ M× Sn) of channel input sequences. Our first step is to characterize the error probability for a
generic choice of these objects. In particular, we characterize an upper bound on this error probability composed
of multiple terms. Our second step is to specify a probability distribution on the collection of codes by specifying
a distribution on the aforementioned objects. In our third step, we prove that the expectation of each of the above
mentioned terms falls to 0 exponentially if the rate of the code R satisfies R < I(V ;Y )Υ − I(V ;S)Υ where the
associated entropic quantities are computed with respect to state (48).

An upper bound on the error probability for a specific code : For a generic choice of the aforementioned objects,
the error probability averaged over the messages is

ξ(e, λ) =
1

ql

∑
m

ζ̂(m)where ζ̂(m) =∆
∑
sn

pnS(s
n)ζ̂(m|sn) (53)

ζ̂(m|sn)=∆ tr{(I−λm)ρm,sn}, ρm,sn=
∆

n⊗
t=1

ρx(m,sn)tst

where I = I⊗n, M = [ql] and hence |M| = ql. We consider an arbitrary message m ∈ [ql] and henceforth focus
our study on ζ̂(m). Throughout the rest of our study of ζ̂(m), we let a∗ =∆ a∗m,sn . With this definition and (52),
note that

λm ≥ (S + T )−
1

2 S (S + T )−
1

2 where S = γa∗,m = γa∗
m,sn

,m, and T =
∑
a̸=a∗

γa,m +
∑
m̂ ̸=m

∑
a

γa,m̂ (54)

and hence, ζ̂(m|sn) ≤ ζ(m|sn), where ζ(m|sn) =∆ tr
([

I − (S + T )−
1

2 S (S + T )−
1

2

]
ρm,sn

)
. (55)
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We shall henceforth focus our study on ζ(m) =∆
∑

sn p
n
S(s

n)ζ(m|sn) which serves as an upper bound on ζ̂(m) in
(53). Towards that end, we split the event corresponding to ζ(m) into two parts - E and E - and analyze the event
corresponding to the two parts separately. Towards defining E , let

E1 =∆
{
sn ∈ T η3

2
(pS)

}
, E2 =∆ {|L(m, sn)| ≥ L, (sn, vn(m, sn))∈Tη3

(pSV )}

E3 =∆
{(

sn, vn(m, sn), xn(m, sn)
)
∈ T2η3

(pSV X)
}

and finally E =∆ E1 ∩ E2 ∩ E3,

where L =∆ 1
2 exp{k log q−n log q+nH(V |S)Υ− 3nη3}. We remark that all Von Neumann entropies in this proof

are evaluated with respect to the joint state ΥY SVWX specified in (48). Since

E =

3⋃
i=1

E i =

3⋃
i=1

Fi where F1 =
∆ E1,F2 =

∆ E1 ∩ E2,F3 =
∆ E1 ∩ E2 ∩ E3, we have 1 = 1E + 1E ≤

3∑
i=1

1Fi
+ 1E (56)

With these definitions, we have

ζ(m) ≤
3∑

i=1

ζi(m)+ ζ̃4(m), where ζi(m)=∆
∑
sn

pnS(s
n)ζ(m|sn)1Fi

: i ∈ [3] and ζ̃4(m) =∆
∑
sn

pnS(s
n)ζ(m|sn)1E . (57)

Next, in regards to ζ̃4(m), consider ζ(m|sn) defined in (55). Note that since πσ,η2
a,m ≥ 0 for every a ∈ Fk

q , we have
S = γa∗,m = πµ

η1π
σ,η2

a∗,mπµ
η1 ≥ 0, T ≥ 0 are PSD. Moreover S = γa∗,m = πµ

η1π
σ,η2

a∗,mπµ
η1 ≤ πµ

η1Iπ
µ
η1 = πµ

η1 ≤ I
implying I − S is PSD. From the Hayashi Nagaoka inequality [39], we have

ζ̃4(m) ≤ ζ4(m) + ζ5(m) + ζ6(m) where ζ4(m) =∆ 2
∑
sn

pnS(s
n) tr

{[
I − πµ

η1
πσ,η2

a∗,mπµ
η1

]
ρm,sn

}
1E , (58)

ζ5(m) =∆ 4
∑

sn,â̸=a∗

pnS(s
n)tr

{
πµ
η1
πvn(â,m)π

µ
η1
ρm,sn

}
1E and ζ6(m) =∆ 4

∑
sn,â∈Fk

q

∑
m̸̂=m

psn(s
n)tr

{
πµ
η1
πvn(â,m)π

µ
η1
ρm,sn

}
1E (59)

Collating through (57), (58), (59), we have ζ(m) ≤
∑6

i=1 ζi(m) where the terms in the latter sum are defined
through (57), (58) and (59). We now employ the random coding technique and prove that the average of these
terms, evaluated over the ensemble of codes, falls exponentially to 0 if the rate conditions stated in the theorem
hold. Towards that end, we now specify the distribution on the ensemble of codes.

Distribution of the Random Code : The generator matrix G, the map ι and the collection (A∗
m,sn ∈ Vk : (m, sn) ∈

M× Sn) of a random code are distributed with PMF

P

(
G = g, ι(m̃) = dn(m̃) : m̃ ∈ V l, a∗m,sn = a(m, sn)
Xn(m, sn) = xn(m, sn) : (m, sn) ∈ M× Sn

)
=

1

qkn

[ ∏
m̃∈Vl

1

qn

]
·

[ ∏
m∈Vl

∏
sn∈Sn

1{a(m,sn)∈L(m,sn)}

|L(m, sn)|
n∏

t=1

pX|V S(x(m, sn)t|v(a(m, sn), sn)t, st)

]
. (60)

From (60), it can be verified that the generator matrix G and the range of (ι(m) : m ∈ V l) are mutually independent
and uniformly distributed in the respective range spaces. Moreover, for (m, sn) ∈ M×Sn and any a ∈ L(m, sn),
we note that

P
(
a∗m,sn = a(m, sn)

∣∣G = g, (ι(m̃) = dn(m̃) : m̃ ∈ V l)
)
=

1

|L(m, sn)|
1{a(m,sn)∈L(m,sn)}, (61)

a relation we shall have opportunity to use in our analysis.
In the rest of our proof, we derive upper bounds on ζi(m) =∆ E {ζi(m)} for i ∈ [6] that decay exponentially to

0, where the expectations in question are with respect to the distribution of the random code.

Upper Bound on ζ1(m) + ζ2(m) + ζ3(m) : From (57), (55) and the definition of S in (54), we note that S ≥ 0

is PSD and hence I − (S + T )−
1

2 S (S + T )−
1

2 ≤ I implying ζ(m|sn) ≤ tr(I · ρm,sn). Substituting this in the
definition of ζi(m) in (57), we obtain ζi(m) ≤

∑
sn pS(s

n)1Fi
for i ∈ [3]. This involves only classical probabilities

and our study of ζi(m) will therefore closely mimic [13, Upper Bound on ϵ2j in Appendix B]. The proof of the
following proposition also follows directly from the proof of Proposition 1 provided in Appendix E.
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Proposition 13. If k log q
n > log q−H(V |S)Υ + 3η3, then there exists a strictly positive κ1 > 0 such that for all n

sufficiently large ζ1(m) + ζ2(m) + ζ3(m) ≤ exp{−nκη23}

Upper bound on ζ4(m) : From (58), we have

ζ4(m) = 2
∑
sn

pnS(s
n) tr

{
ρm,sn − πµ

η1
πσ,η2

a∗,mπµ
η1
ρm,sn

}
1E = 2

∑
sn

pnS(s
n) tr

{
ρm,sn − πσ,η2

a∗,m

[
πµ
η1
ρm,snπ

µ
η1

]}
1E (62)

≤ 2
∑
sn

pnS(s
n) tr

{
ρm,sn − πσ,η2

a∗,mρm,sn
}
1E +

∑
sn

pnS(s
n)
∥∥ρm,sn − πµ

η1
ρm,snπ

µ
η1

∥∥
1
1E ≤ ζ41(m) + ζ42(m), (63)

where ζ41(m) =∆ 2
∑
sn

pnS(s
n) tr

{[
I − πσ,η2

a∗,m

]
ρm,sn

}
1E and ζ42(m) =∆ 2

∑
sn

pnS(s
n)
√

tr {[I − πµ
η1 ] ρm,sn}1E . (64)

In the above, (62) follows from cyclicity of trace, (63) follows from ‘measurement on close states’ [35, Exercise
9.1.8] and (64) follows from [35, Chain of Inequalities 9.205 through to 9.209]. As an informed reader might
have guessed, our analysis of ζ42(m) is via an analysis analogous to the pinching lemma [35, Property 15.2.7].
In Appendix F, we have derived an upper bound on the analogous term - ζ32(m) - for the QMSTx that involves
a pair of encoders informed with a pair of classical states. The derivation therein can be employed here to prove
the existence of a κ2 > 0 such that, for all n ∈ N sufficiently large, ζ42(m) ≤ exp{−nκ2}. This implies ζ4(m) ≤
ζ41(m) + exp{−nκ2} and we are left with ζ41(m), ζ5(m) and ζ5(m). Referring to (64), (59) and in particular the
argument within the trace, we note that the common stumbling block is to characterize the overlap between the
πσ,η2

vn −conditional typical projector of σvn and ρxn,sn . In Appendix O we develop a sequence of steps to overcome
this common stumbling block. Therein, we prove the following proposition.

Proposition 14. For sufficiently large n ∈ N, we have

ζ41(m) ≤ exp{−n(2[η2 − η3]
2 − 5η3)}, ζ5(m) ≤ exp{−n(log q −H(V |Y )Υ − k

n
log q)} and

ζ6(m) ≤ exp{−n(log q −H(V |Y )Υ − k + l

n
log q)}

We now collate the three bounds on the rates k
n log q, l

n log q obtained in Proposition 13 and 14. We have
ζ(m) shrinks to 0 exponentially if (i) k

n log q > log q − H(V |S)Υ, (ii) k
n log q < log q − H(V |Y )Υ and (iii)

k+l
n log q < log q −H(V |Y )Υ. The second bound being redundant in the face of the third bound, we have proved

that any rate R < H(V |S)Υ −H(V |Y )Υ = I(V ;Y )Υ − I(V ;S)Υ is achievable. This completed our proof.

Remark 5. Props. 13, 14 specify the covering and packing bounds respectively. Note that if we employ unstructured
IID random codes, the covering bound would be k log q

n > I(V ;S)Υ = H(V )Υ −H(V |S)Υ = log q−H(V |S)Υ −
[log q −H(V )Υ] The first term being the lower bound in Prop. 13, we denote the excess rate - the term in
[·]−parenthesis - required in structured coset coding as β =∆ [log q −H(V )Υ]. Observe that if we were to employ
unstructured IID random codes, the packing bound would be k+l

n log q < I(U ;Y )Υ = H(V )Υ − H(V |Y )Υ =
log q−H(V |Y )Υ − β. While structured coset codes require an excess rate of β for covering, we can pack exactly
qnβ times more number of bins and can therefore recover the penalty we pay in covering. Alternatively stated, the
excess rate paid in covering is recovered cent-to-cent via enhanced packing rates. In essence, when we build coset
codes over finite fields, we get structure for free.

It is not clear if structure is free when we build codes that are algebraically closed with respect to operations
on sets with looser structure [13, Sec. VIII]. For example, if we design codes over groups that are algebraically
closed with respect to the group operation, the excess rate we pay in covering is smaller than the rebate we obtain
via packing [13]. We therefore have a cost for structure. Whether this is provably inevitable remains open. As
elaborated in Sec. IV-F, this motivates our design and study of UCC, as against to NCC. We refer the interested
reader to [13], wherein these subtleties are better understood. Specifically [13, Sec. VIII] designs group based
coding strategies for the classical MAC with distributed states.

APPENDIX A
CLASSICAL TYPICALITY AND TYPICAL PROJECTORS: DEFINITIONS AND FACTS

Here we list basic facts from classical and quantum typicality that we have used in our study. The proofs of
these facts can be found in [41] and [35] respectively.
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A. Classical Typicality

Suppose X1, · · · ,XK are K finite sets, pX[K]
=∆ pX1···XK

is a PMF on X[K] =
∆ X1 × · · · × XK and X[K] =

∆

(X1, · · · , XK) denotes a random vector taking values in X[K] with PMF pX[K]
. For any S ⊆ [K], we let XS =∆

ą

s∈S
Xs, pXS

denote the marginal of XS =∆ (Xs : s ∈ S). aS ∈ XS , a[K] ∈ X[K], xnS ∈ X n
S and xn[K] ∈ X n

[K] denote

generic elements. Let N(aS |xnS) =
∆ ∑n

i=1 1{xS,i=aS} and N(a[K]|xn[K]) =
∆ ∑n

i=1 1{x[K],i=a[K]} denote the number of
occurrences of aS and a[K] in the sequences xnS and xn[K] respectively. For any η > 0 and any S ⊆ [K], we let

Tn
η (pXS

) =∆ Tn
η (XS) =

∆

{
xnS ∈ X n

S :

∣∣∣∣N(aS |xnS)
n

− pXS
(aS)

∣∣∣∣ ≤ ηpXS
(aS)

log |X[K]|
for all aS ∈ XS

}
. (65)

For disjoint subsets S, T ⊆ [K], η > 0 and xnS ∈ X n
S , we let

Tn
η (pXSXT

|xnT ) =
∆ Tn

η (XS |xnT ) =
∆ {xnS ∈ X n

S : (xnS , x
n
T ) ∈ Tη(pXS ,XT

)} (66)

and pXS |XT
denote the conditional PMF of XS given XT . Specifically, pXS |XT

(aS |aT ) =∆
pXSXT

(aS ,aT )

pXT
(aT )

whenever
pXT

(aT ) > 0. In order to state the following typicality bounds, we define, for any disjoint subsets S ⊆ [K],
T ⊆ [K],

µXS
=∆ min {pXS

(aS) : pXS
(aS) > 0} , µXS |XT

==∆ min
{√

pXT
(aT )pXS |XT

(aS |aT ) : pXSXT
(aS , aT ) > 0

}
.

Remark 6, Lemmas 1 and 2 can be proved using standard typicality arguments in conjunction with the Hoeffding’s
lemma.

Remark 6. (i) For any S ⊆ [K], η > 0, if xnS ∈ Tn
η (XS) and pS(aS) = 0, then N(aS |xnS) = 0.

(ii) Suppose S ⊆ R ⊆ [K] and T =∆ R \ S. For any η > 0, if xnR = (xnS , x
n
T ) ∈ Tn

η (XR) = Tn
η (XS , ST ), then

xnS ∈ Tn
η (XS) and xnT ∈ Tn

η (XT ). In other words, sub-components of typical elements are typical.
(iii) For any η > 0, disjoint subsets S ⊆ [K], T ⊆ [K] and any xnT ∈ X n

T , Tn
η (XS |xnT ) ⊆ Tn

η (XS).
(iv) Suppose S, T ⊆ [K] are disjoint and xnT /∈ Tn

η (XT ), then Tn
η (XS |xnT ) = {} is empty.

Lemma 1. (i) For any S ⊆ [K] and η > 0, if xnS ∈ Tn
η (XS), then

∣∣ 1
n log pXS

(xnS) +H(XS)
∣∣ ≤ η, or equivalently

exp {−n(H(XS) + η)} ≤ pnXS
(xnS) ≤ exp {−n(H(XS)− η)}.

(ii) For any S ⊆ [K], η > 0 and any n ∈ N, we have

P (Xn
S /∈ Tn

η (XS)) =
∑

xn
S∈Xn

S

pnXS
(xnS)1{xn

S∈Xn
S \Tn

η (XS)} ≤ 2|XS | exp

{
−

2nη2µ2
XS

)

(log |X[K]|)2

}
≤ 2|X[K]| exp

{
−

2nη2µ2
X[K]

)

(log |X[K]|)2

}
(iii) For any S ⊆ [K], η > 0 and any n ∈ N, we have

(1− 2|XS | exp
{
−2nη2µ2

XS
(log |X[K]|)−2

}
) exp {n(H(XS)− η)} ≤ |Tn

η (XS)| ≤ exp {n(H(XS) + η)} .

In particular, if n ≥ max{ 1
η log 2,

(log |X[K]|)2 log(4|XS |)
2η2µ2

X[K]

} or n ≥ max{ 1
η log 2,

(log |X[K]|)2 log(4|XS |)
2η2µ2

XS

}, we have

exp {n(H(XS)− 2η)} ≤ |Tn
η (XS)| ≤ exp {n(H(XS) + η)} .

Lemma 2. Suppose S ⊆ [K] and T ⊆ [K] are disjoint subsets, η2 > η1 > 0 and xnT ∈ Tn
η1
(XT ).

(i) If (xnS , s
n
T ) ∈ Tn

η2
(XS , XT ). Then

∣∣∣ 1n log pnXS |XT
(xnS |xnT ) +H(XS |XT )

∣∣∣ ≤ η1 + η2 or equivalently
exp {−n(H(XS |XT ) + η1 + η2)} ≤ pnXS |XT

(xnS |xnT ) ≤ exp {−n(H(XS |XT )− η1 − η2)}.
(ii) For any n ∈ N, we have

P (Xn
S /∈ Tn

η2
(XS |xnT )|Xn

T = xnt ) =
∑

xn
S∈Xn

S

pXS |XT
(xnS |xnT )1{xn

S∈XS\Tn
η2

(XS |xn
T )}

≤ 2|XS∪T | exp
{
−2n(η2 − η1)

2δ(pXSXT
, η1, |X[K]|)

}
≤ 2|X[K]| exp

{
−2n(η2 − η1)

2δ(pXSXT
, η1, |X[K]|)

}
where δ(pXSXT

, η1, |X[K]|) =∆
µ2
XS |XT

(log |X[K]| − η1)
2

(log |X[K]|+ η1)2(log |X[K]|)2
. (67)
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(iii) For any n ∈ N, we have(
1− 2|X[K]| exp

{
−2n(η2 − η1)

2δ(pXSXT
, η1, |X[K]|)

})
exp {n(H(XS |XT )− η1 − η2)} ≤ |Tη2

(XS |xnT )|
≤ exp {n(H(XS |XT ) + η1 + η2)} .

Specifically for n ≥ max
{

1
η1+η2

log 2,
log 4|X[K]|

2(η2−η1)2δ(pXSXT
,η1,|X[K]|)

}
, we have

exp {n(H(XS |XT )− 2η1 − 2η2)} ≤ |Tη2
(XS |xnT )| ≤ exp {n(H(XS |XT ) + η1 + η2)} .

B. Typical Projectors

Suppose γ ∈ D(H) has a spectral decomposition γ =
∑

y∈Y pY (y) |ey⟩⟨ey| and η > 0. We define the

(unconditional) η−typical projector of γ as πγ
η =∆

∑
yn∈Tn

η (pY )

n⊗
t=1

|eyi
⟩⟨eyi

|. Our notation has suppressed the

dependence of πγ
η on n to reduce clutter. Suppose W is a finite set and (σw ∈ D(H) : w ∈ W) is a collection of

density operators, each with a spectral decomposition σw =
∑

y∈Y qY |W (y|w)
∣∣fy|w〉〈fy|w∣∣. For a PMF pW on W ,

wn = (w1, · · · , wn) ∈ Wn, η > 0, we define the η−conditional typical projector of σwn with respect to pW as

πσwn

pW ,η =∆
∑

yn∈Yn

n⊗
t=1

∣∣fyi|wi

〉〈
fyi|wi

∣∣1{yn∈Tn
η (pW qY |W |wn)}. (68)

In defining πσwn

pW ,η, we have employed the alternate notation for the conditional typical subset as stated in (66). Most
often the PMF pW is fixed and clear from context and wn is a codeword from a codebook requiring additional
indices for its specification as in wn(aj ,mj). When pW is clear from context, in order to reduce clutter we let
πσ,η
wn = πσwn

pW ,η and πσ,η
aj ,mj = π

σwn(aj,mj)

pW ,η . We define the value of the smallest strictly positive eigen value of γ as µγ ,
i.e,

µγ =∆ min {λ : λ > 0, γ |v⟩ = λ |v⟩ , |v⟩ ≠ |0⟩ , the 0 vector in H} .

For a finite set W , a PMF pW on W and a collection (σw : w ∈ W) of density operators, we define

µpW ,σ =∆ min
{√

pW (w)µσw
: pW (w)µσw

> 0, w ∈ W
}
.

The following can be proved using well established typicality arguments and the Hoeffding’s inequality [42, Problem
3.18 b ].3.

Lemma 3. Suppose γ ∈ D(H), η > 0 and I ∈ H⊗n denotes the identity operator, then the following hold.

(i) tr([I − πγ
η ]ρ⊗n) ≤ 2 · dim(H) · exp

{
− 2nη2µ2

γ

[log[dim(H)]]
2

}
.

(ii) exp{−n(H(γ) + η)}πγ
η ≤ πγ

ηγ⊗nπγ
η ≤ exp{−n(H(γ)− η)}πγ

η .
(iii) For any n ∈ N,(

1− 2 · dim(H) · exp

{
−

2nη2µ2
γ

[log [dim(H)]]2

})
exp {n(H(γ)− η)} ≤ tr

(
πγ
η

)
≤ exp {n(H(γ) + η)}

Specifically, for n ≥ max{ 1
η log 2,

[log[dim(H)]]
2
log(4dim(H))

2η2µ2
γ

}, we have exp {n(H(γ)− 2η)} ≤ tr(πγ
η ) ≤

exp {n(H(γ) + η)}.

The above facts can be proven using the same sequence of steps as those used in proving [35, Property 15.1.1
- 15.1.3] and using the Hoeffding inequality for concentration. Analogous classical statements are proven in [41].

Lemma 4. Suppose pW is a PMF on W - a finite set -, (σw ∈ D(H) : w ∈ W) is a collection of density operators,
η2 > η1 > 0 and I ∈ H⊗n denotes the identity operator, then the following hold.

3The bound 2e−2η2k stated in [42, Problem 3.18b] is incorrect and must be replaced by 2e−
2η2

k .
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(i) If wn /∈ Tn
η2
(pW ), then πσ,η2

wn = πσwn

pW ,η2
= 0.

(ii) If wn ∈ Tn
η1
(pW ),

tr([I − πσ,η2

wn ]σwn) = tr
([
I − πσwn

pW ,η2

]
σwn

)
≤ 2| log [dim(H)] | exp

{
−2n(η2 − η1)

2δq(σ, pW , η1)
}

where δq(σ, pW , η1) =∆
µ2
pW ,σ(log [dim(H)]− η1)

2

(log [dim(H)] + η1)2(log [dim(H)])2

(iii) If wn ∈ Tn
η1
(pW ), we have

exp{−n(
∑
w∈W

pW (w)H(σw) + η1 + η2)}πσ,η2

wn ≤ πσ,η2

wn σwnπσ,η2

wn ≤ exp{−n(
∑
w∈W

pW (w)H(σw)− η1 − η2)}πσ,η2

wn

(iv) If wn ∈ Tn
η1
(pW ), for any n ∈ N we have

(1− 2| log [dim(H)] | exp
{
−2n(η2 − η1)

2δq(σ, pW , η1)
}
) exp

{
n

(∑
w∈W

pW (w)H(σw)− η1 − η2

)}

≤ tr(πσ,η2

wn ) = tr
(
πσwn

pW ,η2

)
≤ exp

{
n

(∑
w∈W

pW (w)H(σw) + η1 + η2

)}
.

In particular, for n ≥ max

{
1

η1+η2
log 2,

log[dim(H)]
2(η2−η1)2δq(σ,pW ,η1)

}
, we have

exp

{
n

(∑
w∈W

pW (w)H(σw)− 2η1 − 2η2

)}
≤ tr(πσ,η2

wn ) = tr
(
πσwn

pW ,η2

)
≤ exp

{
n

(∑
w∈W

pW (w)H(σw) + η1 + η2

)}
.

APPENDIX B
FORMAL DESCRIPTION OF LINEAR CODING SCHEME FOR EX. 1

We shall describe the achievability of any rate pair (R1, R2) satisfying R1 + R2 < hb(τ). Our proof relies on
the existence of a binary linear code of rate 1−hb(τ) whose randomly chosen coset can quantize a uniform binary
source within a Hamming distance of τ .

Code Structure : Let X = {0, 1} be the binary field with ⊕ denoting mod−2 addition. Let k, l ∈ [n] be integers
with l =∆ n − k. Let g ∈ X k×n and h ∈ X l×n be the generator matrix and parity check matrix respectively,
of a linear code λ of rate k

n = 1 − hb(τ). We partition the l rows of h so that hT = [hT1 hT2 ] into two sub-
matrices with hj ∈ X nRj×n. For j ∈ [2], Tx j holds the collection

(
c(mj) : mj ∈ X nRj

)
of 2nRj cosets with

c(mj) =
∆ {ag ⊕mjhj : a ∈ X k} for mj ∈ X nRj .

Encoding : Having observed message Mj ∈ X nRj and state sequence Sj , Tx j chooses a codeword within c(Mj)
that is within a Hamming distance nτ from Sj . Let a∗j ∈ X k be such that wH(a∗jg ⊕ Mjhj ⊕ Sj) ≤ nτ , where
wH(·) denotes Hamming weight. With Xj =

∆ a∗jg ⊕Mjhj ⊕ Sj meeting the Hamming cost constraint, Tx j inputs
the same on the channel.

Decoding : Having observed Y n = Xn
1 ⊕Sn

1 ⊕Xn
2 ⊕Sn

2 = a∗1g⊕M1h1⊕ a∗2g⊕M2h2 = (a∗1 ⊕ a∗2) g⊕Mh where
M = (M1 M2) ∈ X n(R1+R2), the Rx declares the coset of λ in which the received vector Y n lies. Alternatively,
the Rx can compute hTY n = M = (M1 M2) since hT g = 0 and hTh = Il×l.

Error Analysis : Since the channel is noiseless, the only source of error is at the Txs. So long as the there exists
a∗j ∈ X k satisfying wH(a∗jg ⊕ Mjhj ⊕ Sj) ≤ nτ with arbitrarily high probability, the pair of messages can be
communicated to the Rx with arbitrary reliability. This is ensured through the following fact whose proof can be
found in [14] or can also be proven with bare hands via a simple second moment method.

Fact 3. Suppose X = {0, 1} is the binary field with ⊕ denoting mod−2 addition, τ ∈ (0, 12) and wH(x) = x
for x ∈ {0, 1} is the Hamming weight function. Suppose kn ∈ N : n ≥ 1 is a sequence of integers with kn < n
satisfying limn→∞

kn

n > 1− hb(τ) and let ln = n− kn. Let Sn ∈ X n and Mn ∈ X ln be uniformly distributed and
independent random vectors. For any ϵ > 0, there exists Nϵ ∈ N, such that for all n ≥ Nϵ there exists a linear
code of rate at most kn

n + ϵ with generator matrix g ∈ X kn×n and a parity check matrix hn ∈ X ln×n such that

P ({∃a ∈ X kn : wH(ag ⊕Mnhn, S
n) < τ + ϵ}) ≥ 1− ϵ.
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APPENDIX C
CHARACTERIZATION OF THE QUANTUM STATES IN EVALUATION OF INFORMATION QUANTITIES FOR EX. 1

Consider Ex. 1 for θ ∈ (0, π2 ). In this appendix, we provide characterization of the quantum state in (2) for the
choice U1 = U2 = {0, 1}, pUj |Sj

(1|0) = pUj |Sj
(0|1) = τ = 1 − pUj |Sj

(0|0) = 1 − pUj |Sj
(1|1) and Xj = Uj ⊕ Sj

for j ∈ [2], where ⊕ denotes addition mod−2. The characterizations below enable us compute the information
quantities and thereby quantify the upper bound on the sum rate achievable via IID random codes. The latter is
stated in our discussion prior to Sec. III-C. For the choice of parameters stated earlier, the quantum state in (2) is

σY S1S2X1X2U1U2 =
∑
s1,s2

τ(1−τ)

4

[
1{s1⊕s2

=0 } |1⟩⟨1|+
1{s1⊕s2

=1 } |vθ⟩⟨vθ|

]
⊗ |s1 s2⟩⟨s1 s2| ⊗

[
|0 1 s1 1⊕ s2⟩⟨0 1 s1 1⊕ s2|+
|1 0 1⊕ s1 s2⟩⟨1 0 1⊕ s1 s2|

]

+
∑
s1,s2

[
1{s1⊕s2

=0 } |0⟩⟨0|+ 1{s1⊕s2
=1 }

∣∣∣v⊥θ 〉〈v⊥θ ∣∣∣]⊗ |s1 s2⟩⟨s1 s2| ⊗

[
(1−τ)2

4 |0 0 s1 s2⟩⟨0 0 s1 s2|+
τ2

4 |1 1 1⊕ s1 1⊕ s2⟩⟨1 1 1⊕ s1 1⊕ s2|

]
.

Partial tracing over the appropriate component systems, we have

σS1S2U1U2 =
∑
s1,s2

τ(1− τ)

4
(|s1 s2 1⊕ s1 s2⟩⟨s1 s2 1⊕ s1 s2|+ |s1 s2 s1 1⊕ s2⟩⟨s1 s2 s1 1⊕ s2|)

+
∑
s1,s2

τ2

4
|s1 s2 1⊗ s1 1⊕ s2⟩⟨s1 s2 1⊗ s1 1⊕ s2|+

∑
s1,s2

(1− τ)2

4
|s1 s2 s1 s2⟩⟨s1 s2 s1 s2| implying

σSjUj =
∑
sj

τ(1− τ) + τ2

2
|sj 1⊕ sj⟩⟨sj 1⊕ sj |+

∑
sj

τ(1− τ) + (1− τ)2

2
|sj sj⟩⟨sj sj |

=
τ

2
|0 1⟩⟨0 1|+ τ

2
|1 0⟩⟨1 0|+ 1− τ

2
|0 0⟩⟨0 0|+ 1− τ

2
|1 1⟩⟨1 1| for j ∈ [2] and

σY U1U2 =
∑
s1,s2

τ(1−τ)

4

[
1{s1⊕s2

=0 } |1⟩⟨1|+ 1{s1⊕s2
=1 } |vθ⟩⟨vθ|

]
⊗
[
|s1 1⊕ s2⟩⟨s1 1⊕ s2|+ |1⊕ s1 s2⟩⟨1⊕ s1 s2|

]
+
∑
s1,s2

[
1{s1⊕s2

=0 } |0⟩⟨0|+ 1{s1⊕s2
=1 }

∣∣∣v⊥θ 〉〈v⊥θ ∣∣∣]⊗ [ (1−τ)2

4 |s1 s2⟩⟨s1 s2|+ τ2

4 |1⊕ s1 1⊕ s2⟩⟨1⊕ s1 1⊕ s2|
]

=
2τ(1− τ)

4
|1⟩⟨1| ⊗ (|0 1⟩⟨0 1|+ |1 0⟩⟨1 0|) + 2τ(1− τ)

4
|vθ⟩⟨vθ| ⊗ (|0 0⟩⟨0 0|+ |1 1⟩⟨1 1|)

+

[
(1− τ)2 + τ2

4

] [
|0⟩⟨0| ⊗ (|0 0⟩⟨0 0|+ |1 1⟩⟨1 1|) +

∣∣∣v⊥θ 〉〈v⊥θ ∣∣∣ (|0 1⟩⟨0 1|+ |1 0⟩⟨1 0|)
]

implying

=

(
ϵ |1⟩⟨1|+ (1− ϵ)

∣∣v⊥θ 〉〈v⊥θ ∣∣)
4

⊗
(
|0 1⟩⟨0 1|+
|1 0⟩⟨1 0|

)
+

(ϵ |vθ⟩⟨vθ|+ (1− ϵ) |0⟩⟨0|)
4

⊗
(
|0 0⟩⟨0 0|+
|1 1⟩⟨1 1|

)
implying

σY =
ϵ

2
|1⟩⟨1|+ (1− ϵ)

2

∣∣∣v⊥θ 〉〈v⊥θ ∣∣∣+ ϵ

2
|vθ⟩⟨vθ|+

(1− ϵ)

2
|0⟩⟨0| , σU1U2 =

1

4

∑
u1,u2

|u1 u2⟩⟨u1 u2|

where ϵ = 2τ(1− τ).

APPENDIX D
DISTRIBUTION OF CODEWORDS IN A UNIFORMLY DISTRIBUTED RANDOM UCC

We recall the distribution of the two random UCCs that make up our coding scheme. The generator matrices
G1 ∈ Fk1×n

q , G2/1 ∈ F (k2−k1)×n
q and the collection of dither/bias vectors ι1(m1) : m1 ∈ [ql1 ], ι2(m2) : m2 ∈ [ql2 ]

are mutually independent and uniformly distributed on the respective range spaces. We are led to the following.

Lemma 5. Suppose the generator matrices G1 ∈ Fk1×n
q , G2/1 ∈ F (k2−k1)×n

q and the collection of dither/bias
vectors ι1(m1) : m1 ∈ [ql1 ], ι2(m2) : m2 ∈ [ql2 ] are mutually independent and uniformly distributed on the
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respective range spaces. Suppose G2 =
[
GT

1 GT
2/1

]T
, Vj(aj ,mj) = ajGj ⊕ ij(mj) for aj ∈ Fkj

q and Wn(a,m) =∆

aG2 ⊕ ι1(m1)⊕ ι2(m2) for a ∈ Fk2
q , mj ∈ [qlj ]. We have the following.

1) For any j = 1, 2, any choice of mj ∈ F lj
q , distinct aj , âj ∈ Fkj

q , i.e., aj ̸= âj and any vnj , v̂
n
j ∈ Vn

j , we have
P (V n

j (aj ,mj) = vnj , V
n
j (âj ,mj) = v̂nj ) =

1
q2n . In other words, random codewords in any bin/coset cj(mj)

are uniformly distributed and pairwise independent.
2) If a = a1 0k2−k1 ⊕ a2, (vn1 , v

n
2 , w

n) ∈ Tn
η (pVW ) where pVW (v, w) = pV (v1, v2)1{w=v1⊕v2}, then

P (Vj(aj ,mj) = vnj : j ∈ [2],Wn(a,m) = wn) = 1
q2n ,

3) If â ∈ Fk2
q and â ̸= a1 0k2−k1 ⊕ a2, then P (Vj(aj ,mj) = vnj : j ∈ [2],Wn(â,m) = ŵn) = 1

q3n for any
choice vn1 , v

n
2 , ŵ

n for any choice of vn1 , v
n
2 , w

n ∈ Fn
q ,

4) If m̂ ̸= m, then for any aj ∈ Fkj
q , â ∈ Fk2

q and any choice vn1 , v
n
2 , w

n ∈ Fn
q , we have P (Vj(aj ,mj) = vnj :

j ∈ [2],Wn(â, m̂) = ŵn) = 1
q3n .

5) For j ∈ [2], suppose Vj = Fq is the finite field of size q, Sj is a finite set and pSjVj
=∆ pSj

pVj |Sj
is a

joint PMF on Sj ×Vj . For η > 0, let αj(mj , s
n
j ) =

∆ ∑
aj
1{(snj ,V n

j (aj ,mj))∈T2η(pSjVj
)}. Then E{αj(mj , s

n
j )} ≥

exp{n (kj log q − n log q +H(Vj |Sj)− 4η)} for all n sufficiently large if snj ∈ Tn
η (pSj

) = Tn
η (pSj

)

Proof. Since all associated objects are uniformly distributed and mutually independent, these statements can be
proved via a counting argument. Throughout, we let a1 = (a1,r : 1 ≤ r ≤ k1), a2 = (a2,s : 1 ≤ s ≤ k2),
similarly â = (âs : 1 ≤ s ≤ k2). The k1 rows of g1 are g1,r : 1 ≤ r ≤ k1 and the k2 − k1 rows of g2/1 are
g2/1,t : 1 ≤ t ≤ k2 − k1. We now prove the first statement. Since aj ̸= âj , there exists i ∈ {1, 2, · · · , kj} such that
aj,i ̸= âj,i. Note that

P
(
V n
j (aj ,mj)=vn

j

V n
j (âj ,mj)=v̂n

j

)
= P

(
ajGj⊕ιj(mj)=vn

j

âjGj⊕ιj(mj)=v̂n
j

)
= P

(
(â⊖a)Gj=v̂n

j ⊖vn
j

ιj(mj)=vn
j ⊖aGj

)
= P

(
(âi−ai)Gj,i=v̂n

j ⊖vn
j ⊖

∑
l ̸=i(âl⊖al)Gj,l

ιj(mj)=vn
j ⊖aGj

)
= P

(
Gj,i=(âi−ai)−1(v̂n

j ⊖vn
j ⊖

∑
l ̸=i(âl⊖al)Gj,l)

ιj(mj)=vn
j ⊖aGj

)
=
∑

gj,l:l ̸=i

1

q(kj−1)n

∑
gj,i,dn

j

1

q2n
1{

gj,i=(âi−ai)−1(v̂n
j ⊖vn

j ⊖
∑

l ̸=i(âl⊖al)gj,l)
ιj(mj)=vn

j ⊖agj

} (69)

=
∑

gj,l:l ̸=i

1

q(kj−1)n

1

q2n
=

1

q2n
,

where the summation over gj,i, dnj in (69) vanishes, because for any choice of gj,l : l = 1, · · · , i− 1, i+ 1, · · · , kj
the indicator function therein is non-zero for a unique choice of gj,i and dnj . This proves the first statement and we
now consider the second statement. We have wn = vn1 ⊕ vn2 and a = a1 0k2−k1 ⊕ a2. Observe that

P
(
Vj(aj ,mj)=vn

j :j∈[2]
Wn(a,m)=wn

)
= P

(
a1G1⊕ι1(m1)=vn

1 ,a2G2⊕ι2(m2)=vn
2

aG2⊕ι1(m1)⊕ι2(m2)=wn

)
= P

(
a1G1⊕ι1(m1)=vn

1 ,a2G2⊕ι2(m2)=vn
2

[a1 0k2−k1⊕a2]G2⊕ι1(m1)⊕ι2(m2)=vn
1 ⊕vn

2

)
= P

(
a1G1⊕ι1(m1)=vn

1 ,a2G2⊕ι2(m2)=vn
2

a1G1⊕a2G2⊕ι1(m1)⊕ι2(m2)=vn
1 ⊕vn

2

)
= P

(
a1G1⊕ι1(m1)=vn

1

a2G2⊕ι2(m2)=vn
2

)
= P

(
ι1(m1)=vn

1 ⊖
∑k1

r=1 a1,rG1,r,

ι2(m2)=vn
2 ⊖

∑k1
r=1 a2,rG1,r⊖

∑k2−k1
s=1 a2,k1+sG2/1,s

)
=

∑
g1∈Fk1×n

q

∑
g2/1∈F(k2−k1)×n

q

P
(

G1=g1,
G2/1=g2/1

) ∑
dn
1 ,d

n
2

P
(
ι1(m1)=dn

1 ,
ι2(m2)=dn

2

)
1{

dn
1=vn

1 −a1g1
dn
2=vn

2 ⊖
∑k1

r=1 a2,rg1,r⊖
∑k2−k1

s=1 a2,k1+sg2/1,s

}

=
∑

g1∈Fk1×n
q

∑
g2/1∈F(k2−k1)×n

q

1

qk1n

1

q(k2−k1)n

∑
dn
1 ,d

n
2

1

qn
1

qn
1{

dn
1=vn

1 −a1g1
dn
2=vn

2 ⊖
∑k1

r=1 a2,rg1,r⊖
∑k2−k1

s=1 a2,k1+sg2/1,s

} (70)

=
∑

g1∈Fk1×n
q

∑
g2/1∈F(k2−k1)×n

q

1

qk1n

1

q(k2−k1)n

1

q2n
=

1

q2n
,

where the summation over dn1 , d
n
2 in (70) vanishes because for any choice of g1, g2/1 the indicator 1α is non-zero

for a unique choice of dn1 and dn2 . We now prove the third statement. We have â ̸= a1 0k2−k1 ⊕ a2. Either (i) there
exists an i ∈ {1, · · · , k1} such that âi ̸= a1i ⊕ a2i, or (ii) there exists i ∈ {k1 + 1, · · · , k2} such that âi ̸= a2i.
Suppose (i) holds, then
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P
(
Vj(aj ,mj)=vn

j :j∈[2]
Wn(â,m)=ŵn

)
= P

(
a1G1⊕ι1(m1)=vn

1 ,a2G2⊕ι2(m2)=vn
2

âG2⊕ι1(m1)⊕ι2(m2)=ŵn

)
= P

(∑k1
r=1 a1,rG1,r⊕ι1(m1)=vn

1 ,
∑k1

r=1 a2,rG1,r⊕
∑k2−k1

s=1 a2,k1+sG2/1,s⊕
ι2(m2)=vn

2 ,
∑k1

r=1 ârG1,r⊕
∑k2−k1

s=1 âk1+sG2/1,s⊕ι1(m1)⊕ι2(m2)=ŵn

)
= P

(
(âi⊖a1i⊖a2i)G1i=ŵn⊖vn

1 ⊖vn
2 ⊖

∑
r ̸=i(âr⊖a1r⊖a2r)G1,r⊖

∑k2−k1
s=1 (âk1+s⊖a2,k1+s)G2/1,s,

ι1(m1)=vn
1 ⊖

∑k1
r=1 a1,rG1,r, ι2(m2)=vn

2 ⊖
∑k1

r=1 a2,rG1,r⊖
∑k2−k1

s=1 a2,k1+sG2/1,s,

)
=
∑

g1r:r ̸=i

∑
g2/1

1

q(k1−1)n

1

q(k2−k1)n

∑
dn
1 ,d

n
2

∑
g1,i

1

q3n
1α =

∑
g1r:r ̸=i

∑
g2/1

1

q(k1−1)n

1

q(k2−k1)n

1

q3n
=

1

q3n
where (71)

α =∆
{

g1i=(âi⊖a1i⊖a2i)−1(ŵn⊖vn
1 ⊖vn

2 ⊖
∑

r ̸=i(âr⊖a1r⊖a2r)g1,r⊖
∑k2−k1

s=1 (âk1+s⊖a2,k1+s)g2/1,s)
ι1(m1)=vn

1 ⊖
∑k1

r=1 a1,rg1,r, ι2(m2)=vn
2 ⊖

∑k1
r=1 a2,rg1,r⊖

∑k2−k1
s=1 a2,k1+sg2/1,s

}
,

where the summation over dn1 , d
n
2 , g1,i in (71) vanishes because for any choice of g1,r : r ̸= i, g2/1 the indicator 1α

is non-zero for a unique choice of dn1 , d
n
2 , g1,i. Suppose (ii) holds, i.e., there exists i ∈ {k1 + 1, · · · , k2} such that

âi ̸= a2i, then

P
(
Vj(aj ,mj)=vn

j :j∈[2]
Wn(â,m)=ŵn

)
= P

(
a1G1⊕ι1(m1)=vn

1 ,a2G2⊕ι2(m2)=vn
2

âG2⊕ι1(m1)⊕ι2(m2)=ŵn

)
= P

(∑k1
r=1 a1,rG1,r⊕ι1(m1)=vn

1 ,
∑k1

r=1 a2,rG1,r⊕
∑k2−k1

s=1 a2,k1+sG2/1,s⊕
ι2(m2)=vn

2 ,
∑k1

r=1 ârG1,r⊕
∑k2−k1

s=1 âk1+sG2/1,s⊕ι1(m1)⊕ι2(m2)=ŵn

)
= P

(
(âi⊖a2i)G2/1,i=ŵn⊖vn

1 ⊖vn
2 ⊖

∑k1
r=1(âr⊖a1r⊖a2r)G1,r⊖

∑
s ̸=i(âk1+s⊖a2,k1+s)G2/1,s,

ι1(m1)=vn
1 ⊖

∑k1
r=1 a1,rG1,r, ι2(m2)=vn

2 ⊖
∑k1

r=1 a2,rG1,r⊖
∑k2−k1

s=1 a2,k1+sG2/1,s,

)
=
∑
g1

∑
g2/1,s:s̸=i

1

qk1n

1

q(k2−k1−1)n

∑
dn
1 ,d

n
2

∑
g2/1,i

1

q3n
1β =

∑
g1

∑
g2/1,s:s ̸=i

1

qk1n

1

q(k2−k1−1)n

1

q3n
=

1

q3n
where (72)

β =∆
{

g1i=(âi⊖a2i)−1(ŵn⊖vn
1 ⊖vn

2 ⊖
∑k1

r=1(âr⊖a1r⊖a2r)g1,r⊖
∑

s ̸=i(âk1+s⊖a2,k1+s)g2/1,s)
ι1(m1)=vn

1 ⊖
∑k1

r=1 a1,rg1,r, ι2(m2)=vn
2 ⊖

∑k1
r=1 a2,rg1,r⊖

∑k2−k1
s=1 a2,k1+sg2/1,s

}
.

where the summation over dn1 , d
n
2 , g2/1,i in (72) vanishes because for any choice of g1 : r ̸= i, g2/1,s : s ̸= i

the indicator 1β is non-zero for a unique choice of dn1 , d
n
2 , g2/1,i. Lastly, we prove the fourth and last statement.

Suppose j ∈ [2] such that m̂j ̸= mj and j ∈ {1, 2} \ {j} is the complement index. Then

P
(
Vj(aj ,mj)=vn

j :j∈[2]
Wn(â,m̂)=ŵn

)
= P

(
a1G1⊕ι1(m1)=vn

1 ,a2G2⊕ι2(m2)=vn
2

âG2⊕ιj(m̂j)⊕ιj(m̂j)=ŵn

)
= P

(
ι1(m1)=vn

1 ⊖a1G1,ι2(m2)=vn
2 ⊖a2G2,

ιj(m̂j)=ŵn⊖ιj(m̂j)⊖âG2

)
=
∑
g1

∑
g2/1

∑
d̂n
j

1

qk1n

1

qn(k2−k1)

1

qn

∑
dn
1 ,d

n
2 ,d̂

n
j

1

q3n
1{

dn
1=vn

1 ⊖a1g1,dn
2=vn

2 ⊖a2g2,

d̂n
j =ŵn⊖dn

j ⊖âg2

} =
∑
g1

∑
g2/1

∑
d̂n
j

1

qn(k2+1)

1

q3n
=

1

q3n
. (73)

Lastly we prove the fifth statement which, in light of the uniform distribution stated in the first statement, is a plain
computation.

E{αj(mj , s
n
j )} =

∑
aj

P
(
(snj , V

n
j (aj ,mj)) ∈ T2η(pSjVj

)
)
=
∑
aj

∑
vn
j

P
(
V n
j (aj ,mj) = vnj

)
1{vn

j ∈T2η(pSjVj
|snj )}

=
∑
aj

∑
vn
j

1

qn
1{vn

j ∈T2η(pSjVj
|snj )} =

qkj

qn
∣∣T2η(pSjVj

|snj )
∣∣ ≥ exp {n (kj log q − n log q +H(Vj |Sj)− 4η)} (74)

where the last equality in (74) follows from the uniform distribution of the codewords proven in the first statement
and the inequality follows from bounds on the size of the conditional typical set.

APPENDIX E
PROOF OF PROPOSITION 1

We are required to derive an upper bound on
∑

sn pS(s
n)
∑2

i=1

(
1Fji

+
1F12i

2

)
. For i, j ∈ [2], let ζji(m) =∆∑

sn pS(s
n)1Fji

and for j ∈ [2], let ζj3(m) =∆
∑

sn pS(s
n)
∑2

i=1
1F12i

2 where Fji,F12i : j, i ∈ [2] is as
defined in (11), (12) and let ζji = E {ζji(m)} for i ∈ [3], j ∈ [2], where the expectation is with respect

to the random code. From Lemma 1, we have ζj1 ≤ 2|Sj | exp
{
−nη23µ

2
Sj
(2 log |S × V ×W ×X|)−2

}
. We
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now focus on ζj2(m). Recalling Ej1 and Ej2, note that the encoding rule ensures
{
|Lj(mj , s

n
j )| ≥ Lj

}
⊆{

(snj , v
n
j (mj , s

n
j )) ∈ Tn

η3
(pSjVj

)
}

, hence
{
(snj , v

n
j (mj , s

n
j )) /∈ Tn

η3
(pSjVj

)
}

⊆
{
|Lj(mj , s

n
j )| < Lj

}
. From this,

it is evident that Fj2 ⊆
{
snj ∈ Tn

η3
2

(pSj
), |Lj(mj , s

n
j )| < Lj

}
. From (11), the preceding definition of Ej2

therein, the definitions of Lj(mj , s
n
j ) and αj(mj , s

n
j ), we have αj(mj , s

n
j ) ≤ |Lj(mj , s

n
j )| and hence Fj2 ⊆{

snj ∈ Tn
η3
2

(pSj
), |Lj(mj , s

n
j )| < Lj

}
⊆
{
snj ∈ Tn

η3
2

(pSj
), αj(mj , s

n
j ) < Lj

}
. Thus,

ζj2 ≤ E

{∑
sn

pS(s
n)1{

snj ∈Tn
η3
2

(pSj
),αj(mj ,snj )<Lj

}
}

(75)

and it suffices to derive an upper bound on the RHS of the above inequality. We now compute E{αj(mj , s
n
j )} to

unravel its relation to Lj . Recall that Lj was defined as 1
2 exp{kj log q − n log q + nH(Vj |Sj)Υ − 3nη3} prior to

(11) and observe that, whenever snj ∈ T η3
2
(pSj

) , we have

E{αj(mj , s
n
j )} =

∑
aj

P ((V n
j (aj ,mj), s

n
j ) ∈ Tn

η3
(pSjVj

)) =
∑
aj

∑
vn
j

1{(snj ,vn
j )∈Tη3

(pSjVj
)}P (V n

j (aj ,mj) = vnj )

=
∑
aj

∑
vn
j

1{(snj ,vn
j )∈Tη3 (pSjVj

)}P (ajGj ⊕ ιj(mj) = vnj )=
∑
aj

∑
vn
j

1{(snj ,vn
j )∈Tη3 (pSjVj

)}
∑

gj∈F
kj×n
q

∑
dn
j ∈Fn

q

1{ajgj⊕dn
j =vn

j }
qkjn · qn

=
∑
aj

∑
vn
j

1{(snj ,vn
j )∈Tη3

(pSjVj
)}
∑

gj∈F
kj×n
q

∑
dn
j

1{dn
j =vn

j ⊖ajgj}
1

qkjn

1

qn
=
∑
aj

∑
vn
j

1{(snj ,vn
j )∈Tη3

(pSjVj
)}
∑

gj∈F
kj×n
q

1

qkjn

1

qn
(76)

=
∑
aj

∑
vn
j

1{(snj ,vn
j )∈Tη3

(pSjVj
)}

qn
= qkj

|Tη3
(Vj |snj )|
qn

≥ exp{kj log q − n log q + nH(Vj |Sj)Υ − 3nη3}= 2Lj . (77)

where (i) the summation over dnj in (76) vanishes, because for any choice of gj ∈ Fkj×n
q the indicator function

1{dn
j =vn

j ⊖ajgj} therein is non-zero for a unique choice of dnj and (ii) the inequality in (77) holds so long as

n ≥ max
{

2
3η3

log 2, log[4|S×V×W×X|]
2(η2−η1)2δ(pVjSj

,η1,|S×V×W×X|)

}
. For sufficiently large n, we therefore have

ζj2(m) = E

{∑
sn

pS(s
n)1{

snj ∈Tn
η3
2

(pSj
),αj(mj ,snj )<Lj

}
}

≤
∑

snj ∈Tn
η3
2

(pSj
)

pnSj
(snj )P

(
αj(mj , s

n
j ) <

E{αj(mj , s
n
j )}

2

)

≤
∑

snj ∈Tn
η3
2

(pSj
)

pSj
(snj )P

|αj(mj , s
n
j )− E

{
αj(mj , s

n
j )
}
| >

E
{
αj(mj , s

n
j )
}

2

 ≤
4Var(αj(mj , s

n
j ))(

E
{
αj(mj , snj )

})2 (78)

where Var(αj(mj , s
n
j )) denotes the variance of αj(mj , s

n
j ) =

∑
aj
1{V n

j (aj ,mj)∈Tn
η3

(Vj |snj )}. In writing the above
set of inequalities, we have use the fact that the random codebook is independent of the observed state and the
Cheybyshev inequality.

In Lemma 5, we have proved that the codewords in any bin cj(mj) = (V n
j (aj ,mj) : aj ∈ Fkj

q ) are uniformly
distributed and pairwise independent. αj(mj , s

n
j ) is therefore a sum of qkj pairwise independent indicator random

variables, each of which takes the value 1 with probability q−n|Tη3
(Vj |snj )|. The variance of a sum of pairwise

independent indicator random variables is dominated by its mean and we therefore have
4Var(αj(mj , s

n
j ))(

E
{
αj(mj , snj )

})2 ≤ 4

E
{
αj(mj , snj )

} ≤ 4 exp

{
−n

[
kj
n

log q − (log q −H(Vj |Sj)Υ + 3η3)

]}
, (79)

where we have used the lower bound on E
{
αj(mj , s

n
j )
}

derived in (77). Substituting (79) in (78) and the earlier

stated bound on ζj1(m), we have
2∑

i=1

ζji(m) ≤ 2|Sj |exp
{
−nη23µ

2
Sj
(2 log |S||V||W||X |)−2

}
+ 4 exp

{
−n

[
kj
n

log q − (log q −H(Vj |Sj)Υ+ 3η3)

]}
. (80)
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We are thus left to bound ζj3(m) =∆ E{ζj3(m)} on the above, where we recall ζj3(m) =
∑

sn pS(s
n)
∑2

i=1
1F12i

2
and F121,F122 are as defined in 12. The analysis of E{

∑
sn pS(s

n)1F121
} and E{

∑
sn pS(s

n)1F122
} are identical to

the analysis of ϵ3 and ϵ4 in the proof of [13, Theorem 4]. The analysis of the latter terms are detailed and an upper
bound on the same are derived in [13, Appendix D]. In the interest of not repeating the same, we refer the reader to
[13, Appendix D] which proves the existence of strictly positive κ > 0 such that ζ13(m)+ζ23(m) ≤ exp{−nκη23}.
With this, we conclude
2∑

j=1

ζj(m)≤ 2|Sj |exp

{
−nη23µ

2
Sj

(2 log |S||V||W||X |)2

}
+4 exp

{
−n log q

[
kj
n
−
(
1−H(Vj |Sj)Υ + 3η3

log q

)]}
+exp{−nκ̃η23} (81)

APPENDIX F
PROOF OF THM. 2 - BOUND ON ζ32(m)

Recall ζ32(m) = 2
∑

sn p
n
S(s

n)
√

tr
{
[I − πµ

η1 ] ρm,sn
}
1E . We are required to prove tr

{
[I − πµ

η1 ] ρm,sn
}

falls
exponentially in n under conditions of event E . For (x, s) ∈ X ×S, let ρx,s ∈ D(H) have a spectral decomposition
ρxs =

∑
y∈Y qρ

Y |XS
(y|x, s)

∣∣ey|xs〉〈ey|xs∣∣ be a spectral decomposition and let µ =
∑

x,s pXS(x, s)ρx,s have a
spectral decomposition µ =

∑
y∈Y qµY (y) |fy⟩⟨fy| where {|fy⟩ : y ∈ Y} and {

∣∣ey|xs〉 : y ∈ Y} for each (x, s) ∈
X × S, are ONBs that span the Hilbert space H. For (x, s, y, y) ∈ X × S × Y × Y , let rXSY Y (x, s, y, y) =∆

pXS(x, s)q
ρ

Y |XS
(y|x, s)|

〈
fy
∣∣ey|xs〉 |2. Since

∑
y∈Y |

〈
fy
∣∣ey|xs〉 |2 = 1, it can be verified that (i) rXSY Y is a PMF,

(ii) the marginal rXS = pXS , (iii) conditional PMFs rY |XS = qY |XS , rY Y |XS = qY |XS |
〈
fy
∣∣ey|xs〉 |2 and rY |Y XS =

|
〈
fy
∣∣ey|xs〉 |2. Moreover,

⟨fy|ρx,s|fy⟩ = ⟨fy|
∑
y∈Y

qρ
Y |XS

(y|x, s)
∣∣ey|x,s〉〈ey|x,s∣∣|fy⟩ =∑

y∈Y
qρ
Y |XS

(y|x, s)|
〈
fy
∣∣ey|xs〉 |2 =∑

y∈Y
rY Y |XS(y, y|x, s)

= rY |XS(y|x, s) and rY (y) =
∑
x,s

∑
y∈Y

rXSY Y (x, s, y, y) =
∑
x,s

∑
y∈Y

pXS(x, s)q
ρ

Y |XS
(y|x, s)|

〈
fy
∣∣ey|xs〉 |2

= ⟨fy|
∑
x,s

pXS(x, s)
∑
y∈Y

qρ
Y |XS

(y|x, s)
∣∣ey|xs〉〈ey|xs∣∣ |fy⟩ = ⟨fy|

∑
x,s

pXS(x, s)ρx,s |fy⟩ = ⟨fy|µ |fy⟩

= ⟨fy|
∑
ỹ

qµY (ỹ) |fỹ⟩⟨fỹ| |fy⟩ = qµY (y). (82)

We therefore have Tη(pXS) = Tη(rXS) and Tη(q
µ
Y ) = Tη(rY ) for any η > 0. From Lemma 1(iii), we note that

Tη(Y |xn, sn) ⊆ Tη(rY ) for any η > 0 and xn, sn. Since (xnj (mj , s
n
j ), s

n
j : j ∈ [2]) ∈ T4η3

(pXS)

tr
{[

I − πµ
η1

]
ρm,sn

}
=

∑
yn /∈Tn

η1
(rY )

| ⟨fyn |ρm,sn |fyn⟩ | =
∑

yn /∈Tn
η1

(rY )

rnY |XS(y
n|xnj (mj , s

n
j ), s

n
j : j = 1, 2)

≤
∑

yn∈Yn

rnY |XS(y
n|xnj (mj , s

n
j ), s

n
j : j = 1, 2)1{yn∈Yn\Tη1 (Y |xn

j (mj ,snj ),s
n
j :j=1,2)}

≤ 2|Y||X ||S| exp
{
−n(η1 − 4η3)

2δ(rY XS , 4η3, |Y||X ||S|)
}

if η1 > 4η3, where δ(·) is as defined in (67). The last inequality above follows from Lemma 2 (ii). Since the above
bound is invariant to sn ∈ Sn, we have

ζ32(m) = 2
∑
sn

pnS(s
n)
√

tr
{
[I − πµ

η1 ] ρm,sn
}
1E ≤ 2|Y||X ||S| exp

{
−n(η1 − 4η3)

2δ(rY XS , 4η3, |Y||X ||S|)
}

(83)

APPENDIX G
PROOF OF PROPOSITION 2

We are required to derive an upper bound on ζ31(m) = E {ζ31(m)} and we proceed from (20). Defining,

Gsn =∆ {Sn = sn} ,G3
1 =∆

{
V n
j (aj ,mj)=vn

j

:j∈[2],Wn(a,m)=wn

}
,G3

2 =∆
{
|Lj(mj ,snj )|
≥Lj :j∈[2]

}
,G3

3 =∆
{
Aj(mj ,snj )

=aj :j∈[2]

}
,G3

4 =∆
{
Xn

j (mj ,snj )

=xn
j :j∈[2]

}
(84)

G
( sn,vn,xn

wn,a1,a2,a

)
=∆ 1{

(snj ,v
n
j )∈Tη3

(pSjVj
),snj ∈T η3

2
(psj

),a=a1 0k2−k1⊕a2,(sn,xnvn,wn)∈T4η3
(pSXV W )

}, we have
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ζ31(m) = 2
∑
sn,vn

wn,xn

∑
a1∈Fk1

q

∑
a2,a∈Fk2

q

pnS(s
n) tr

{
[I − πσ,η2

wn ] ρxn,sn
}
G
( sn,vn,xn

wn,a1,a2,a

)
P

(
4⋂

i=1

G3
i

∣∣∣∣∣Gsn

)
, where (85)

G
( sn,vn,xn

wn,a1,a2,a

)
P

(
4⋂

i=1

G3
i

∣∣∣∣∣Gsn

)
= G

( sn,vn,xn

wn,a1,a2,a

)
P
(
G3
1 ∩ G3

2 |Gsn
)
P
(
G3
3

∣∣Gsn ∩ G3
1 ∩ G3

2

)
P
(
G3
4

∣∣Gsn ∩ G3
1 ∩ G3

2 ∩ G3
3

)
≤ P

(
G3
1 |Gsn

)
G
( sn,vn,xn

wn,a1,a2,a

) 2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )

|Lj(mj , snj )|
=

G
( sn,vn,xn

wn,a1,a2,a

)
q2n

2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )

|Lj(mj , snj )|
(86)

≤
G
( sn,vn,xn

wn,a1,a2,a

)
q2n

2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )
Lj

≤ 4

q2n

2∏
j=1

exp
{
n
(
log q−H(Vj |Sj)

+3η3−
kj

n
log q

)}
pnXj |Vj ,Sj

(xnj |vnj , snj )G
( sn,vn,xn

wn,a1,a2,a

)
(87)

where (i) the inequality in (86) follows from the fact that P
(
G3
3

∣∣Gsn ∩ G3
1 ∩ G3

2

)
= 1

|Lj(mj ,snj )|
which

is a consequence of the distribution of the random code specified in (16), in particular Remark 2, and
P
(
G3
4

∣∣Gsn ∩ G3
1 ∩ G3

2 ∩ G3
3

)
=
∏2

j=1 p
n
Xj |Vj ,Sj

(xnj |vnj , snj ) from the distribution of the random code specified in
(16), (ii) the equality in (86) follows from P (G3

1 |Gsn) =
1

q2n that is proven in Lemma 5 in Appendix D, (iii) the
inequalities in (87) follows from |Lj(mj , s

n
j )| ≥ Lj =

1
2 exp{kj log q− n log q+H(Vj |Sj)− 3η3} defined prior to

(11). From the law of total probability (LOTP) and substituting the upper bound (87) in (85), we have

ζ31(m)= 8
∑
sn,vn

wn,xn

∑
a1∈Fk1

q

a2,a∈Fk2
q

pnS(s
n)

qk1+k2
tr
{
[I − πσ,η2

wn ] ρxn,sn
}
G
( sn,vn,xn

wn,a1,a2,a

) 2∏
j=1

exp
{
n
(
−H(Vj |Sj)
+3η3 log q

)}
pnXj |Vj ,Sj

(xnj |vnj , snj ),(88)

≤ 8
∑
sn,vn

∑
wn,xn

pnS(s
n) tr

{
[I − πσ,η2

wn ] ρxn,sn
}
G
( sn,vn,xn

wn,a1,a2,a

) 2∏
j=1

exp { 9nη3
2 } pnXjVj |Sj

(xnj , v
n
j |snj ), (89)

≤ 8
∑
sn,vn

∑
wn,xn

tr
{
[I − πσ,η2

wn ] ρxn,sn
}
G
( sn,vn,xn

wn,a1,a2,a

)
exp {9nη3} pnXV S(x

n, vn, sn),

≤ 8
∑
sn,vn

∑
wn,xn

tr
{
[I − πσ,η2

wn ] ρxn,sn
}
G
( sn,vn,xn

wn,a1,a2,a

)
exp {9nη3} pnXV SW (xn, vn, sn, wn) (90)

≤
∑
wn

8pnW (wn)
∑

sn,vn,xn

tr
{
[I − πσ,η2

wn ] ρxn,sn
}
1{wn∈T4η3 (pW )} exp {9nη3} pnXV S|W (xn, vn, sn|wn) (91)

≤
∑
wn

8pnW (wn)1{wn∈T4η3 (pW )}
∑

sn,vn,xn

pnXV S|W (xn, vn, sn|wn) tr
{
[I − πσ,η2

wn ] ρxn,sn
}
exp {9nη3}

≤
∑
wn

8pnW(wn)1{wn∈T4η3
(pW )}

exp{−n9η3}
tr{[I − πσ,η2

wn ]σwn}≤
∑
wn

pnW (wn)log [dim(H)]

16−1 exp{−n9η3}
exp

{
−2n(η2 − 4η3)

2δq(σ, pW , η1)
}

≤ 16 log [dim(H)] exp
{
−n
[
2(η2 − 4η3)

2δq(σ, pW , η1)− 9η3
]}

. (92)

where (i) (89) follows from (a) exp
{
−n
(
H(Vj |Sj) +

3η3

2

)}
≤ pnVj |Sj

(vnj |snj ) whenever snj ∈ T η3
2
(pSj

), (snj , v
n
j ) ∈

Tη3
(pSjVj

), (b) the summand in (88) being invariant to a1, a2 and (c) the sum over a ∈ Fk2
q being trivial owing to

the fact that a = a1 0
k2−k1 ⊕ a2, (ii) (90) follows from the chosen PMF pSV XW satisfying pSXVW (s, x, v, w) =

pSXV (s, x, v)1{w=v1⊕v2} and the fact that wn = vn1 ⊕ vn2 ensured by the factor G
( sn,vn,xn

wn,a1,a2,a

)
which guarantees4

(sn, vn, xn, wn) ∈ T4η3
(pSXVW ), (iii) (91) follows from the indicator function in question being larger than or

equal to the factor G
( sn,vn,xn

wn,a1,a2,a

)
, and lastly the inequality in (92) and the inequality prior to that is a result of the

substantial overlap of the conditional typical projector πσ,η2

wn with σwn whenever wn ∈ T4η3
(pW ) and η2 > 4η3 as

stated in Lemma 4.

4In other words, pnW |SV X(wn|sn, vn, xn) = 1{wn=vn
1 ⊕vn

2
} and the latter indicator function is evident from the factor G

(
sn,vn,xn

wn,a1,a2,a

)
.
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APPENDIX H
PROOF OF PROPOSITION 3

We are required to derive an upper bound on ζ4(m) = E {ζ4(m)} and we proceed from (22). Defining,

G4
1 =∆

{
V n
j (aj ,mj)=vn

j :j=

1,2, Wn(â,m)=ŵn

}
,G4

i =∆ G3
i : i = 2, 3, 4 and G

(
sn,vn

a2,a1,â

)
=∆ 1{â̸=a1 0k2−k1⊕a2,snj ∈T η3

2
(psj

),(snj ,v
n
j )∈Tη3

(pSjVj
):j∈[2]}

where G3
i : i ∈ [4] and Gsn are specified in (84), we have

ζ4(m) = 2
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

∑
a2,â

∈Fk2
q

pnS(s
n) tr

{
πµ
η1
πσ,η2

ŵn πµ
η1
ρxn,sn

}
G
(

sn,vn

a2,a1,â

)
P

(
4⋂

i=1

G4
i

∣∣∣∣∣Gsn

)
, where (93)

G
(

sn,vn

a2,a1,â

)
P

(
4⋂

i=1

G4
i

∣∣∣∣∣Gsn

)
= P

(
G4
1 ∩ G4

2 |Gsn
)
P
(
G4
3

∣∣Gsn ∩ G4
1 ∩ G4

2

)
P
(
G4
4 |Gsn∩G4

1∩G4
2∩G4

3

)
G
(

sn,vn

a2,a1,â

)
≤ P

(
G4
1 |Gsn

)
G
(

sn,vn

a2,a1,â

) 2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )

|Lj(mj , snj )|
≤ 1

q3n

2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )
Lj

(94)

=
4

q3n

2∏
j=1

exp {n log q − kj log q −H(Vj |Sj) + 3η3} pnXj |Vj ,Sj
(xnj |vnj , snj ) (95)

where (i) the first inequality in (94) follows from the fact that P
(
G4
3

∣∣Gsn ∩ G4
1 ∩ G4

2

)
= 1

|Lj(mj ,snj )|
which

is a consequence of the distribution of the random code specified in (16), in particular Remark 2, and
P
(
G4
4

∣∣Gsn ∩ G4
1 ∩ G4

2 ∩ G4
3

)
=
∏2

j=1 p
n
Xj |Vj ,Sj

(xnj |vnj , snj ) from the distribution of the random code specified
in (16), (ii) the second inequality in (94) follows from P (G4

1 |Gsn) = 1
q3n that is proven in Lemma 5 and

|Lj(mj , s
n
j )| ≥ Lj = 1

2 exp{kj log q − n log q + H(Vj |Sj) − 3η3} defined prior to (11). From the LOTP and
substituting the upper bound (95) in (93), we have

ζ4(m) = 8
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

∑
a2,â

∈Fk2
q

pnS(s
n)

qk1+k2+n
tr
{
πµ
η1
πσ,η2

ŵn πµ
η1
ρxn,sn

}
G
(

sn,vn

a2,a1,â

) 2∏
j=1

exp
{
n
(
−H(Vj |Sj)
+3η3 log q

)}
pnXj |Vj ,Sj

(xnj |vnj , snj ),

≤ 8
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

pnS(s
n)

qk1+k2+n
tr
{
πσ,η2

ŵn πµ
η1
ρxn,snπ

µ
η1

}
G
(

sn,vn

a2,a1,â

) 2∏
j=1

exp

{
9nη3
2

}
pnXjVj |Sj

(xnj , v
n
j |snj )(96)

≤ 8

qk1+k2+n

∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

tr
{
πσ,η2

ŵn πµ
η1
ρxn,snπ

µ
η1

}
G
(

sn,vn

a2,a1,â

)
exp {9nη3} pnXV S(x

n, vn, sn),

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

tr

πσ,η2

ŵn πµ
η1

∑
sn,vnxn

pnXV S(x
n, vn, sn)ρxn,snπ

µ
η1

 exp {9nη3}

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

tr
{
πσ,η2

ŵn πµ
η1
µ⊗nπµ

η1

}
exp {9nη3} (97)

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

tr
{
πσ,η2

ŵn πµ
η1

}
exp {−n(H(Y )Υ − 9η3 − η1)} (98)

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

tr
{
πσ,η2

ŵn I
}
exp {n(H(Y )Υ − 9η3 − η1)} (99)
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≤ 8

qk1+k2+n

∑
ŵn∈Tη2

(pW )

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

exp {−n (H(Y )Υ −H(Y |W )Υ − 9η3 − 2η1 − η2)}

+
8

qk1+k2+n

∑
ŵn∈Wn\Tη2

(pW )

∑
a1∈Fk1

q

∑
a2,â∈Fk2

q

0 · exp {n(H(Y )Υ − 9η3 − η1)} (100)

≤ 8 exp

{
−n

(
H(Y )Υ −H(Y |W )Υ + log q −H(W )Υ − 9η3 − 2η1 − η2 −

k2
n

log q

)}
(101)

where (i) (96) follows from the exp
{
−n
(
H(Vj |Sj) +

3η3

2

)}
≤ pnVj |Sj

(vnj |snj ) whenever snj ∈ T η3
2
(pSj

) and
(snj , v

n
j ) ∈ Tη3

(pSjVj
), (ii) (97) follows from µ =

∑
x,s pXS(x, s)ρx,s as defined prior to (32), (iii) (98) follows

from Lemma 3, since πµ
η1 is the typical projector of µ⊗n (iv) (100) follows from the fact stated in Lemma 4 which

states that the conditional typical projector is the zero operator if the conditioning codeword is not typical with the
same parameter, and otherwise, its trace is dominated as specified in Lemma 4, and finally (v) (101) follows from
the bound on the size of the typical set |Tη2

(pW )| as stated in Lemma 1.

APPENDIX I
PROOF OF PROPOSITION 4

We are required to derive an upper bound on ζ5(m) = E {ζ5(m)} and we proceed from (23). Defining,

G5
1 =∆

{
V n
j (aj ,mj)=vn

j :j=

1,2, Wn(â,m̂)=ŵn

}
,G5

i =∆ G3
i : i = 2, 3, 4 and G

(
sn,vn

m,m̂

)
=∆ 1{m̂ ̸=m,snj ∈T η3

2
(psj

),(snj ,v
n
j )∈Tη3

(pSjVj
):j∈[2]}

where G3
i : i ∈ [4] and Gsn are specified in (84), we have

ζ5(m) = 2
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

m̸̂=m

∑
a2,â

∈Fk2
q

pnS(s
n) tr

{
πµ
η1
πσ,η2

ŵn πµ
η1
ρxn,sn

}
G
(
sn,vn

m,m̂

)
P

(
4⋂

i=1

G5
i

∣∣∣∣∣Gsn

)
, where

G
(
sn,vn

m,m̂

)
P

(
4⋂

i=1

G5
i

∣∣∣∣∣Gsn

)
= G

(
sn,vn

m,m̂

)
P
(
G5
1 ∩ G5

2 |Gsn
)
P
(
G5
3

∣∣Gsn ∩ G5
1 ∩ G5

2

)
P
(
G5
4

∣∣Gsn ∩ G5
1 ∩ G5

2 ∩ G5
3

)
≤ G

(
sn,vn,m,m̂

)
P
(
G5
1 |Gsn

) 2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )

|Lj(mj , snj )|
≤

G
(
sn,vn,m,m̂

)
q3n

2∏
j=1

pnXj |Vj ,Sj
(xnj |vnj , snj )
Lj

(102)

=
4G
(
sn,vn,m,m̂

)
q3n

2∏
j=1

exp

{
n

(
log q −H(Vj |Sj) + 3η3 −

kj
n

log q

)}
pnXj |Vj ,Sj

(xnj |vnj , snj ) (103)

where (i) the first inequality in (102) follows from the fact that P
(
G5
3

∣∣Gsn ∩ G5
1 ∩ G5

2

)
= 1

|Lj(mj ,snj )|
which

is a consequence of the distribution of the random code specified in (16), in particular Remark 2, and
P
(
G5
4

∣∣Gsn ∩ G5
1 ∩ G5

2 ∩ G5
3

)
=
∏2

j=1 p
n
Xj |Vj ,Sj

(xnj |vnj , snj ) from the distribution of the random code specified in
(16), (ii) the second inequality in (102) follows from P (G5

1 |Gsn) = 1
q3n that is proven in Lemma 5 in Appendix

D and |Lj(mj , s
n
j )| ≥ Lj = 1

2 exp{kj log q − n log q + H(Vj |Sj) − 3η3} defined prior to (11). From LOTP and
substituting the upper bound (103) in (102), we have



40

ζ5(m) = 8
∑
sn,vn

xn,ŵn

∑
a1∈Fk1

q

m̂ ̸=m

∑
a2,â

∈Fk2
q

pnS(s
n)

qk1+k2+n
tr
{
πµ
η1
πσ,η2

ŵn πµ
η1
ρxn,sn

}
G
(
sn,vn

m,m̂

) 2∏
j=1

exp
{
n
(
−H(Vj |Sj)
+3η3 log q

)}
pnXj |Vj ,Sj

(xnj |vnj , snj ),

≤ 8
∑
sn,vn

∑
xn,ŵn

∑
a1∈Fk1

q

m̸̂=m

∑
a2,â

∈Fk2
q

pnS(s
n)

qk1+k2+n
tr
{
πσ,η2

ŵn πµ
η1
ρxn,snπ

µ
η1

}
G
(
sn,vn

m,m̂

) 2∏
j=1

exp

{
9nη3
2

}
pnXjVj |Sj

(xnj , v
n
j |snj ),(104)

≤ 8

qk1+k2+n

∑
sn,vn

∑
xn,ŵn

∑
a1∈Fk1

q

∑
m̸̂=m

∑
a2,â∈Fk2

q

tr
{
πσ,η2

ŵn πµ
η1
ρxn,snπ

µ
η1

}
G
(
sn,vn

m,m̂

)
exp {9nη3} pnXV S(x

n, vn, sn),(105)

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

m̂ ̸=m

∑
a2,â

∈Fk2
q

tr

πσ,η2

ŵn πµ
η1

∑
sn,vn,xn

pnXV S(x
n, vn, sn)ρxn,snπ

µ
η1

 exp {9nη3}

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
m̸̂=m

∑
a2,â

∈Fk2
q

tr
{
πσ,η2

ŵn πµ
η1
µ⊗nπµ

η1

}
exp {9nη3} (106)

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
m̸̂=m

∑
a2,â

∈Fk2
q

tr
{
πσ,η2

ŵn πµ
η1

}
exp {−n (H(Y )Υ − 9η3−η1)} (107)

≤ 8

qk1+k2+n

∑
ŵn

∑
a1∈Fk1

q

∑
m̸̂=m

∑
a2,â∈Fk2

q

tr
{
πσ,η2

ŵn I
}
exp {−n (H(Y )Υ − 9η3−η1)}

≤ 8

qk1+k2+n

∑
ŵn∈Tη2

(pW )

∑
a1∈Fk1

q

∑
m̸̂=m

∑
a2,â∈Fk2

q

exp {−n (H(Y )Υ −H(Y |W )Υ − 9η3 − η1 − η2)} (108)

+
8

qk1+k2+n

∑
ŵn∈Wn\Tη2

(pW )

∑
a1∈Fk1

q

∑
m̂ ̸=m

∑
a2,â∈Fk2

q

0 · exp {−n (H(Y )Υ − 9η3−η1)} (109)

≤ 8 exp

{
−n

(
H(Y )Υ −H(Y |W )Υ + log q −H(W )Υ − 9η3 − η1 − 2η2 −

k2 + l1 + l2
n

log q

)}
(110)

where (i) (104) follows from the exp
{
−n
(
H(Vj |Sj) +

3η3

2

)}
≤ pnVj |Sj

(vnj |snj ) whenever snj ∈ T η3
2
(pSj

) and
(snj , v

n
j ) ∈ Tη3

(pSjVj
), (ii) (106) follows from µ =

∑
x,s pXS(x, s)ρx,s as defined prior to (32), (iii) (107) follows

from Lemma 3, since πµ
η1 is the typical projector of µ⊗n (iv) (109) follows from the fact stated in Lemma 4 which

states that the conditional typical projector is the zero operator if the conditioning codeword is not typical with the
same parameter, and otherwise, its trace is dominated as specified in Lemma 4, and finally (v) (110) follows from
the bound on the size of the typical set |Tη2

(pW )| as stated in Lemma 1.

APPENDIX J
PROOF OF PROPOSITION 7

We are required to derive an upper bound on ξ3(m) = E {ξ3(m)} and we proceed from (40). Let

Gsn =∆ {Sn = sn} ,G3
1 =∆

{
V n
j (aj ,mj2)=vn

j

Un
j (mj1,bj)=un

j :j∈[2]

}
,G3

2 =∆
{ |Lj1(mj1,snj )|≥Lj1

|Lj2(m˜j ,snj )|≥Lj2:j∈[2]

}
,G3

3 =∆
{
Bj(mj1,snj )=B∗

j =bj
Aj(m˜j ,snj )=aj :j∈[2]

}
,(111)

G3
4 =∆

{
Xn

j (mj ,s
n
j )

=xn
j :j∈[2]

}
,G
(sn,un

vn,xn

)
=∆ 1{

(snj ,u
n
j ,v

n
j )∈Tη5 (pSjUjVj

),(snj ,u
n
j )∈T η5

2
(pSjUj

)

snj ∈T η5
4
(psj

),(sn,unvn,xn)∈T4η5 (pSUV X)

}, we have (112)
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ξ3(m) = 3
∑
sn,un

vn,xn

∑
b1,b2

∑
a1,a2

pnS(s
n)
∥∥∥π2,η3

un
2
ρxn,snπ

2,η3

un
2

− ρxn,sn

∥∥∥
1
G
(sn,un

vn,xn

)
P

(
4⋂

i=1

G3
i

∣∣∣∣∣Gsn

)
, where (113)

G
(
sn,un,vn,xn

)
P

(
4⋂

i=1

G3
i

∣∣∣∣∣Gsn

)
= G

(
sn,un,vn,xn

)
P
(
G3
1 ∩ G3

2 |Gsn
)
P
(
G3
3

∣∣Gsn ∩ G3
1 ∩ G3

2

)
P
(
G3
4

∣∣Gsn ∩ G3
1 ∩ G3

2 ∩ G3
3

)
≤ P

(
G3
1 |Gsn

)
G
(sn,un

vn,xn

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

|Lj1(mj1, snj )||Lj2(m˜ j , snj )|
≤

G
(
sn,un,vn,xn

)
q2n

2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )pnUj

(unj )

Lj1Lj2
(114)

≤ G
(
sn,un,vn,xn

) 2∏
j=1

4qnpnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )pnUj

(unj ) exp
{

9nη5

2

}
qn+kj exp{n ( log |Bj |

n
− I(Uj ;Sj)Υ +H(Vj |Sj , Uj)Υ)}

(115)

≤ G
(
sn,un,vn,xn

) 2∏
j=1

1

qkj |Bj |
4pnXj ,Uj ,Vj |Sj

(xnj , u
n
j , v

n
j |snj ) exp

{
29nη5

4

}
, (116)

where (i) the first inequality in (114) follows from the fact that P
(
G3
3

∣∣Gsn ∩ G3
1 ∩ G3

2

)
= 1

|Lj1(mj ,snj )||Lj2(m˜j ,snj )|
and P

(
G3
4

∣∣Gsn ∩ G3
1 ∩ G3

2 ∩ G3
3

)
=

∏2
j=1 p

n
Xj |UjVjSj

(xnj |unj , vnj , snj ), both of which are consequences of
the distribution of the random code (see Remark 4 for the former equality), (ii) the second inequal-
ity in (114) follows from (a) P (G3

1 |Gsn) = 1
q2n
∏2

j=1 p
n
Uj
(unj ) - a consequence of Lemma 5 in

Appendix D, the random U1−,U2−codebooks being mutually independent with the codewords of the
Uj−codebook distributed as pnUj

- and (b) |Lj1(mj , s
n
j )| ≥ Lj1, |Lj2(m˜ j , s

n
j )| ≥ Lj2, (iii) the in-

equalities in (115) follows from |Lj1(mj , s
n
j )| ≥ Lj1 = 1

2 exp{n
(
log |Bj |

n − I(Uj ;Sj)Υ − 3η5

2

)
} and

|Lj2(m˜ j , s
n
j )| ≥ Lj2 = 1

2 exp{n
(
log qkj

n −H(Vj |UjSj)Υ − 3η5

)
} defined prior to (36) and finally (iv) (116)

follows from the bound
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
≥ exp{−n

(
H(Sj , Uj , Vj)Υ + η5 −H(Sj)Υ −H(Uj)Υ + η5

2 + η5

4

)
} =

exp{−n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)
} for (sn, un, vn) satisfying the conditions of G

(
sn,un,vn,xn

)
, imply-
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ing 1 ≤
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
exp

{
n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)}
. We have

ξ3(m) ≤ 48
∑
sn,un

vn,xn

∑
b1,b2
a1,a2

pnS(s
n)

qk1+k2

∥∥∥π2,η3

un
2
ρxn,snπ

2,η3

un
2

− ρxn,sn

∥∥∥
1
G
(sn,un

vn,xn

) 2∏
j=1

pnXjUj ,Vj |Sj
(xnj , u

n
j , v

n
j |snj ) exp{

n29η5

4 }
|Bj |

, (117)

≤ 96
∑
sn,un

vn,xn

∑
b1,b2
a1,a2

pnS(s
n)

qk1+k2

√
tr{(I − π2,η3

un
2
)ρxn,sn}G

(sn,un

vn,xn

) 2∏
j=1

pnXjUj ,Vj |Sj
(xnj , u

n
j , v

n
j |snj ) exp{

n29η5

4 }
|Bj |

, (118)

≤
96 exp{n29η5

4 }
qk1+k2 |B1||B2|

∑
sn,un

vn,xn

∑
b1,b2
a1,a2

pnSUV X(sn, un, vn, xn)
√

tr{(I − π2,η3

un
2
)ρxn,sn}G

(
sn,un,vn,xn

)
(119)

=
96 exp{n29η5

4 }
qk1+k2 |B1||B2|

∑
un
2

pnU2
(un2 )

∑
sn,un
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vn,xn

∑
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a1,a2

pnSU1V X|U2
(sn, un1 , v

n, xn|un2 )
√

tr{(I − π2,η3

un
2
)ρxn,sn}1{un
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η5

(pU )}(120)

≤
96 exp{n29η5

4 }
qk1+k2 |B1||B2|

∑
un
2

pnU2
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√√√√∑
sn,un

1
vn,xn

pnSU1V X|U2
(sn, un1 , v

n, xn|un2 ) tr{(I − π2,η3

un
2
)ρxn,sn}1{un

2∈Tn
η5

(pU )}(121)

≤
96 exp{n29η5

4 }
qk1+k2 |B1||B2|

∑
un
2

pnU2
(un2 )

∑
b1,b2
a1,a2

√
tr{(I − π2,η3

un
2
)σ2

un
2
}1{un

2∈Tn
η5

(pU )} (122)

≤
96 exp{n29η5

4 }
qk1+k2 |B1||B2|

∑
un
2

pnU2
(un2 )

∑
b1,b2
a1,a2

√
exp{−n([η3 − η5]2)} ≤ 96 exp

{
−n(

(η3 − η5)
2

2
− 29η5

4
)

}
. (123)

where (i) (117) follows from the law of total probability and substituting the upper bound (116) in (113), (ii)
(118) follows from [35, Chain of Inequalities 9.205 through to 9.209], (iii) (119) follows from the Markov chains
X1U1V1 − S1 − S2U2V2X2 and X2U2V2 − S1 − S1U1V1X1 (v) (121) follows from concavity of the square root
function, (vii) (122) follows from definition of σ2

un
2

given as σ2
un
2
=
∑

xn,sn p
n
XS|U2

(xn, sn|un2 )ρxn,sn and the other
terms under the square root not depending on the variables of the summation, (viii) (123) follows from conditional
quantum typicality (Lemma 4) since un2 ∈ Tn

η5
(pU ).

APPENDIX K
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From the definition of ξ4(m|sn) in (41), we have

ξ4(m) ≤ 2
∑
sn,un

vn,xn

∑
b1,b2

∑
a1,a2

pnS(s
n) tr

([
I − πµ

η4
π1,η2

un
1
πσ,η1

un π1,η2

un
1
πµ
η4

]
ρxn,sn

)
G
(sn,un

vn,xn

)
P

(
4⋂

i=1

G3
i

∣∣∣∣∣Gsn

)
, (124)

where G
(sn,un

vn,xn

)
,G3

i : i ∈ [4] and Gsn are as defined in (111), (112). Substituting the upper bound in (116), we have

ξ4(m) ≤ 16
∑
sn,un

xn,vn

∑
b1,b2
a1,a2

pnS(s
n)

qk1+k2
tr
([
I−πµ

η4
π1,η2

un
1
πσ,η1

un π1,η2

un
1
πµ
η4

]
ρxnsn

)
G
(sn,un

vn,xn

) 2∏
j=1

pnXjUj ,Vj |Sj
(xnj , u

n
j , v

n
j |snj ) exp{

n29η5

4 }
|Bj |

= 16 exp{n29η5
2

}
∑
sn,un

∑
vn,xn

pnSUV X(sn, un, vn, xn) tr
([

I − πµ
η4
π1,η2

un
1
πσ,η1

un π1,η2

un
1
πµ
η4

]
ρxn,sn

)
G
(sn,un

vn,xn

)
(125)

≤ 16 exp{n29η5
2

}
∑
un

pnU (u
n)
∑
sn

∑
vn,xn

pnSV X|U (s
n, vn, xn|un)tr

([
I−πµ

η4
π1,η2

un
1
πσ,η1

un π1,η2

un
1
πµ
η4

]
ρxn,sn

)
1{un∈Tη5

(pU )}

≤ 16 exp{n29η5
2

}
∑
un

pnU (u
n)tr

([
I−πµ

η4
π1,η2

un
1
πσ,η1

un π1,η2

un
1
πµ
η4

]
σun

)
1{un∈Tη5 (pU )} (126)



43

where (i) (125) follows from the Markov chains X1U1V1−S1−S2U2V2X2 and X2U2V2−S1−S1U1V1X1 evident
from (28), (ii) (126) follows from

∑
sn
∑

vn,xnpnSV X|U (s
n, vn, xn|un)ρxn,sn = σun and the fact that the other terms

do not depend on the variable sn, vn, xn of the summation. Repeated application of the ‘measurement on close
states’ [35, Exercise 9.1.8] yields

tr
([
I−πµ

η4
π1,η2

un
1
πσ,η1

un π1,η2

un
1
πµ
η4

]
σun

)
≤ tr

([
I−πσ,η1

un

]
σun

)
+
∥∥σun − πµ

η4
σunπµ

η4

∥∥
1
+
∥∥∥σun − π1,η2

un
1
σunπ1,η2

un
1

∥∥∥
1

≤ tr
([
I−πσ,η1

un

]
σun

)
+ 2
√

tr
(
[I − πµ

η4 ]σun

)
+ 2

√
tr
([

I − π1,η2

un
1

]
σun

)
(127)

where the inequality in (127) follows from [35, Chain of Inequalities 9.205 through to 9.209]. Substituting the
upper bound (127) into (126), we have ξ4(m) ≤ 16 exp{29

4 nη5}
[
ξ̃41(m) + ξ̃42(m) + ξ̃43(m)

]
, where

ξ̃41(m) =
∑
un

pnU (u
n) tr

([
I−πσ,η1

un

]
σun

)
1{un∈Tη5

(pU )}, ξ̃42(m) =
∑
un

pnU (u
n)2
√

tr
(
[I − πµ

η4 ]σun

)
1{un∈Tη5

(pU )}

and ξ̃43(m) =
∑
un

pnU (u
n)2

√
tr
([

I − π1,η2

un
1

]
σun

)
1{un∈Tη5 (pU )}. (128)

Since un ∈ Tn
η5
(pU ), from the quantum conditional typicality (Lemma 4) and ’pinching’ lemma (Property 15.2.7)

- a version of it is proved from basic principles in Appendix F - we have

ξ̃41(m) + ξ̃42(m) ≤
∑
un

pnU (u
n) exp

{
−n (η1 − η5)

2
}
+
∑
un

pnU (u
n)2 exp

{
−n

2
(η4 − η5)

2
}
. (129)

In regards to ξ̃43(m), following from (128) and using the concavity of the square root function, we have

ξ̃43(m) ≤ 2
∑
un
1

pnU1
(un1 )

∑
un
2

pnU2|U1
(un2 |un1 )2

√
tr
([

I − π1,η2

un
1

]
σun

)
1{un

1∈Tη5
(pU1

)}

≤ 2
∑
un
1

pnU1
(un1 )

√∑
un
2

pnU2|U1
(un2 |un1 )tr

([
I − π1,η2

un
1

]
σun

)
1{un

1∈Tη5 (pU1 )}≤ 2
∑
un
1

pnU1
(un1 )

√
tr
([
I − π1,η2

un
1

]
σun

1

)
1{un

1∈Tη5
(pU1

)}

≤ 2
∑
un
1

pnU1
(un1 ) exp

{
−n

2
(η2 − η5)

2
}
1{un

1∈Tη5
(pU1

)} ≤ 2 exp
{
−n

2
(η2 − η5)

2
}

(130)

where (130) follows from quantum conditional typicality (Lemma 4) since un1 ∈ Tη5
(pU1

).Collating (130) and (129),
we have

ξ4(m) ≤ exp
{
−n (η1 − η5)

2
}
+ 2 exp

{
−n

2
(η4 − η5)

2
}
+ 2 exp

{
−n

2
(η2 − η5)

2
}
. (131)

APPENDIX L
PROOF OF PROPOSITION 9

We are required to derive an upper bound on ξ5(m) = E{ξ5(m)} and we proceed from (41). Let

Gsn =∆ {Sn = sn} ,G5
1 =∆

{
V n
j (aj ,mj2)=vn

j ,U
n
j (mj1,bj)=un

j

for j=1,2, Un
1 (m̂11,b̂1)=ûn

1

}
,G5

2 =∆
{ |Lj1(mj1,snj )|≥Lj1

|Lj2(m˜j ,snj )|≥Lj2:j∈[2]

}
,G5

3 =∆
{
Bj(mj1,snj )=B∗

j =bj
Aj(m˜j ,snj )=aj :j∈[2]

}
,

G5
4 =∆

{
Xn

j (mj ,s
n
j )

=xn
j :j∈[2]

}
,G
(
sn,un,vn

m̂11,b̂1,b1

)
=∆ 1{

(snj ,u
n
j ,v

n
j )∈Tη5

(pSjUjVj
),snj ∈T η5

4
(psj

),(snj ,u
n
j )∈T η5

2
(pSjUj

):j∈[2],(m̂11,b̂1 )̸=(m11,b1)
}, we have
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ξ5(m)=
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
1

∑
a1,a2

b1,b2

pnS(s
n) tr

(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 u

n
2
π1,η2

ûn
1
πµ
η4
π2,η3

un
2
ρxn,snπ

2,η3

un
2

)
G
(
sn,un,vn

m̂11,b̂1,b1

)
P

(
4⋂

i=1

G5
i

∣∣∣∣∣Gsn

)
, where (132)

G
(
sn,un,vn

m̂11,b̂1,b1

)
P

(
4⋂

i=1

G5
i

∣∣∣∣∣Gsn

)
= G

(
sn,un,vn

m̂11,b̂1,b1

)
P
(
G5
1 ∩ G5

2 |Gsn
)
P
(
G5
3

∣∣Gsn ∩ G5
1 ∩ G5

2

)
P
(
G5
4

∣∣Gsn ∩ G5
1 ∩ G5

2 ∩ G5
3

)
≤ P

(
G5
1 |Gsn

)
G
(
sn,un,vn

m̂11,b̂1,b1

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

|Lj1(mj1, snj )||Lj2(m˜ j , snj )|
(133)

=
pnU1

(un1 )p
n
U2
(un2 )p

n
U1
(ûn1 )

q2n
G
(
sn,un,vn

m̂11,b̂1,b1

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

Lj1Lj2
(134)

≤ G
(
sn,un,vn

m̂11,b̂1,b1

)
pnU1

(ûn1 )

2∏
j=1

4qnpnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )pnUj

(unj ) exp
{

9nη5

2

}
qn+kj exp{n ( log |Bj |

n
− I(Uj ;Sj)Υ +H(Vj |Sj , Uj)Υ)}

(135)

≤ G
(
sn,un,vn

m̂11,b̂1,b1

)
pnU1

(ûn1 )

2∏
j=1

1

qkj |Bj |
4pnXj ,Uj ,Vj |Sj

(xnj , u
n
j , v

n
j |snj ) exp

{
29nη5

4

}
, (136)

where (i) (133) follows from the fact that (a) conditioned on the entire codebooks, Bj(mj1, s
n
j ) = B∗

j and
Aj(m˜ j , s

n
j ) is uniformly distributed in Lj1(mj1, sjn) and Lj2(m˜ j , s

n
j ), and in particular conditionally independent

of the realization of the codebooks (See Remark 4), which implies that P
(
G5
3

∣∣Gsn ∩ G5
1 ∩ G5

2 ∩ G5
3

)
=

1
|Lj1(mj1,snj )||Lj2(m˜j ,snj )|

and (b) P
(
G5
4

∣∣Gsn ∩ G5
1 ∩ G5

2 ∩ G5
3

)
=

∏2
j=1 p

n
Xj |UjVjSj

(xnj |unj , vnj , snj ), (ii)
(134) follows from the facts that (a) the U1−,U2−codebooks are mutually independent and the
codewords in the Uj−codebook are mutually independent with distribution pnUj

, (b) two codewords
in the two V1−,V2−UCC codes are pairwise independent (Lemma 5) and uniformly distributed in
the Fn

q ambient space and (c) |Lj1(mj1, s
n
j )| ≥ Lj1 = 1

2 exp
{
n
(
log |Bj |

n − I(Uj ;Sj)Υ − 3η5

2

)}
,

|Lj2(m˜ j , s
n
j )| ≥ Lj2 = 1

2 exp
{
n
(
log |Bj |

n − log q +H(Vj |Sj , Uj)Υ − 3η5

)}
, (iii) (135)

follows from above definitions of Lj1, Lj2, and (iv) (136) follows from the bound
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
≥ exp{−n

(
H(Sj , Uj , Vj)Υ + η5 −H(Sj)Υ −H(Uj)Υ + η5

2 + η5

4

)
} =

exp{−n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)
} for (sn, un, vn) satisfying the conditions of G

(
sn,un,vn

m̂11,b̂1,b1

)
,

implying 1 ≤
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
exp

{
n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)}
. Substituting the upper bound (136)

in (132) and noting that G
(
sn,un,vn

m̂11,b̂1,b1

)
≤ 1{

un
2∈T η5

2
(pU2

)
}, we have

ξ5(m) ≤
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
1

∑
a1,a2

b1,b2

pnS(s
n) tr

(
πµ
η4π

1,η2

ûn
1
πσ,η1

ûn
1 u

n
2
π1,η2

ûn
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
G
(
sn,un,vn

m̂11,b̂1,b1

)
[pnU1

(ûn1 )]
−1 exp{−n8η5}qk1+k2 |B1||B2|

2∏
j=1

pnXjUjVj |Sj
(xnj , u

n
j , v

n
j |snj )

≤
∑
un
2

pnU2
(un2 )

∑
sn,un

1
vn,xn

∑
m̂1,b̂
ûn
1

∑
a1,a2

b1,b2

tr
(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 u

n
2
π1,η2

ûn
1
πµ
η4
π2,η3

un
2
ρxn,snπ

2,η3

un
2

)pnSU1V X|U2
(sn, un1 , v

n, xn|un2 )pnU1
(ûn1 )1{un

2∈T η5
2
(pU2 )}

qk1+k2 |B1||B2| exp{−8nη5}
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=
∑
un
2

pnU2
(un2 )

∑
sn,un

1
vn,xn

∑
m̂1,b̂
ûn
1

tr
(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 u

n
2
π1,η2

ûn
1
πµ
η4
π2,η3

un
2
ρxn,snπ

2,η3

un
2

)pnSU1V X|U2
(sn, un1 , v

n, xn|un2 )pnU1
(ûn1 )1{un

2∈T η5
2
(pU2 )}

exp{−8nη5}
(137)

≤
∑
un
2

pnU2
(un2 )

∑
m̂1

∑
b̂

∑
ûn
1

tr
(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 u

n
2
π1,η2

ûn
1
πµ
η4

[
π2,η3

un
2
σ2
un
2
π2,η3

un
2

])
pnU1

(ûn1 )1{un
2∈T η5

2
(pU2

)} exp{8nη5} (138)

≤ exp{−n

(
H(Y |U2)Υ − 17η5

2
− η3

)
}
∑
un
2

pnU2
(un2 )

∑
m̂1

∑
b̂

∑
ûn
1

tr
(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 u

n
2
π1,η2

ûn
1
πµ
η4
[π2,η3

un
2
]
)
pnU1

(ûn1 ) (139)

= exp{−n

(
H(Y |U2)Υ − 17η5

2
− η3 −R11 −B1

)
}
∑
un
2

pnU2
(un2 )

∑
ûn
1

tr
(
πσ,η1

ûn
1 u

n
2

[
π1,η2

ûn
1
πµ
η4
π2,η3

un
2
πµ
η4
π1,η2

ûn
1

])
pnU1

(ûn1 )(140)

≤ exp{−n

(
H(Y |U2)Υ − 17η5

2
− η3 −R11 −B1

)
}
∑
un
2

pnU2
(un2 )

∑
ûn
1

tr
(
πσ,η1

ûn
1 u

n
2
[I]
)
pnU1

(ûn1 ) (141)

= exp{−n

(
H(Y |U2)Υ − 17η5

2
− η3 −R11 −B1

)
}
∑
un
2

pnU2
(un2 )

∑
ûn
1

tr
(
πσ,η1

ûn
1 u

n
2

)
pnU1

(ûn1 )

(
1{

(ûn
1 ,u

n
2 )

/∈Tn
η1

(pU )

}+1{
(ûn

1 ,u
n
2 )

∈Tn
η1

(pU )

}
)
,

where (i) (137) follows since terms in the summand are invariant to the choice of aj ∈ Fkj
q and bj ∈ Bj for j ∈ [2],

(ii) (138) follows from
∑

sn,un
1 ,v

n,xn pnSU1V X|U2
(sn, un1 , v

n, xn|un2 )ρxn,sn = σ2
un
2
, (iii) (139) follows from quantum

conditional typicality (Lemma 4) which states that
[
π2,η3

un
2
σ2
un
2
π2,η3

un
2

]
≤ exp{−n(H(Y |U2)Υ − 2η3 − η5)}π2,η3

un
2

since
un2 ∈ T η5

2
(pU2

), (iv) (140) follows from cyclicity of trace and the fact that the terms in the summand are invariant to
m̂11 ∈ [M11] and b1 ∈ [B1], (v) (141) follows from π1,η2

ûn
1
πµ
η4π

2,η3

un
2
πµ
η4π

1,η2

ûn
1

≤ I . Since (ûn1 , u
n
2 ) /∈ Tn

η1
(pU ) implies

πσ,η1

ûn
1 u

n
2
= 0 from Lemma 4, we have

ξ5 ≤ exp{−n

(
H(Y |U2)Υ − 17η5

2
− η3 −R11 −B1

)
}
∑
un
2

pnU2
(un2 )

∑
ûn
1

tr
(
πσ,2η1

ûn
1 u

n
2

)
pnU1

(ûn1 )1{(ûn
1 ,u

n
2 )∈Tn

η1
(pU )}

≤ exp{−n

(
H(Y |U2)Υ −H(Y |U1, U2)Υ − 2η1 −

17η5
2

− η3−R11−B1

)
}
∑
un
2 ,û

n
1

pnU2
(un2 )p

n
U1
(ûn1 )1{(ûn

1 ,u
n
2 )∈Tn

η1
(pU )}(142)

≤ exp

{
−n

(
I(U1;U2)Υ + I(Y ;U1|U2)Υ − 5η1 −

17η5
2

− η3 −R11 −B1

)}
, (143)

where (142) follows from tr
(
πσ,2η1

ûn
1 u

n
2

)
≤ exp {n(H(Y |U1, U2)Υ − 2η1)} whenever (ûn1 , u

n
2 ) ∈ Tn

η1
(pU ) as stated in

Lemma 4 and (143) follows from the fact that |Tn
η1
(pU )| ≤ exp {n[S(U1, U2)Υ + η1]}, and (ûn1 , u

n
2 ) ∈ Tn

η1
(pU )

implies that pU1
(ûn1 ) ≤ exp{−n[H(U1)− η1]} and pU2

(un2 ) ≤ exp{−n[H(U2)− η1]}.

APPENDIX M
PROOF OF PROPOSITION 10

We now derive an upper bound on ξ6(m) = E {ξ6(m)}, starting from the definition of ξ6(m) in (42). As in
[37], our technique for this term is different from that used for analyzing ξ5(m) motivating us to provide a detailed
sequence of steps. Let

Gsn =∆ {Sn = sn} ,G6
1 =∆

{
V n
j (aj ,mj2)=vn

j ,U
n
j (mj1,bj)=un

j

for j=1,2, Un
2 (m̂21,b̂2)=ûn

2

}
,G6

2 =∆
{ |Lj1(mj1,snj )|≥Lj1

|Lj2(m˜j ,snj )|≥Lj2:j∈[2]

}
,G6

3 =∆
{
Bj(mj1,snj )=B∗

j =bj
Aj(m˜j ,snj )=aj :j∈[2]

}
,

G6
4 =∆

{
Xn

j (mj ,s
n
j )

=xn
j :j∈[2]

}
,G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
=∆ 1{

(snj ,u
n
j ,v

n
j )∈Tη5

(pSjUjVj
),(snj ,u

n
j )∈T η5

2
(pSjUj

)

snj ∈T η5
4
(psj

):j∈[2],(un
1 ,û

n
2 )∈Tn

η1
(pU1U2

),(m̂21,b̂2) ̸=(m21,b2)

}, we have

ξ6(m)=
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
2

∑
a1,a2

b1,b2

pnS(s
n)tr

(
πµ
η4
π1,η2

un
1
πσ,η1

un
1 û

n
2
π1,η2

un
1
πµ
η4
π2,η3

un
2
ρxn,snπ

2,η3

un
2

)
G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
P

(
4⋂

i=1

G6
i

∣∣∣∣∣Gsn

)
, where (144)
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G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
P

(
4⋂

i=1

G6
i

∣∣∣∣∣Gsn

)
= G

(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
P
(
G6
1 ∩ G6

2 |Gsn
)
P
(
G6
3

∣∣Gsn ∩ G6
1 ∩ G6

2

)
P
(
G6
4

∣∣Gsn ∩ G6
1 ∩ G6

2 ∩ G6
3

)
≤ P

(
G6
1 |Gsn

)
G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

|Lj1(mj1, snj )||Lj2(m˜ j , snj )|
(145)

=
pnU1

(un1 )p
n
U2
(un2 )p

n
U2
(ûn2 )

q2n
G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

Lj1Lj2
(146)

≤ G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
pnU2

(ûn2 )

2∏
j=1

4qnpnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )pnUj

(unj ) exp
{

9nη5

2

}
qn+kj exp{n ( log |Bj |

n
− I(Uj ;Sj)Υ +H(Vj |Sj , Uj)Υ)}

(147)

≤ G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
pnU2|U1

(ûn2 |un1 )
2∏

j=1

exp{−nI(U1;U2)Υ}
qkj |Bj | exp{−3nη1}

4pnXj ,Uj ,Vj |Sj
(xnj , u

n
j , v

n
j |snj ) exp

{
29nη5

4

}
,(148)

where (i) (145) follows from the fact that (a) conditioned on the entire codebooks, Bj(mj1, s
n
j ) = B∗

j and
Aj(m˜ j , s

n
j ) is uniformly distributed in Lj1(mj1, sjn) and Lj2(m˜ j , s

n
j ), and in particular conditionally independent

of the realization of the codebooks (See Remark 4), which implies that P
(
G6
3

∣∣Gsn ∩ G6
1 ∩ G6

2 ∩ G6
3

)
=

1
|Lj1(mj1,snj )||Lj2(m˜j ,snj )|

and (b) P
(
G6
4

∣∣Gsn ∩ G6
1 ∩ G6

2 ∩ G6
3

)
=

∏2
j=1 p

n
Xj |UjVjSj

(xnj |unj , vnj , snj ), (ii)
(146) follows from the facts that (a) the U1−,U2−codebooks are mutually independent and the
codewords in the Uj−codebook are mutually independent with distribution pnUj

, (b) two codewords
in the two V1−,V2−UCC codes are pairwise independent (Lemma 5) and uniformly distributed in
the Fn

q ambient space and (c) |Lj1(mj1, s
n
j )| ≥ Lj1 = 1

2 exp
{
n
(
log |Bj |

n − I(Uj ;Sj)Υ − 3η5

2

)}
,

|Lj2(m˜ j , s
n
j )| ≥ Lj2 = 1

2 exp
{
n
(
log |Bj |

n − log q +H(Vj |Sj , Uj)Υ − 3η5

)}
, (iii) (147)

follows from above definitions of Lj1, Lj2, and (iv) (148) follows from the bounds
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
≥ exp{−n

(
H(Sj , Uj , Vj)Υ + η5 −H(Sj)Υ −H(Uj)Υ + η5

2 + η5

4

)
} =

exp{−n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)
} and

pn
U1Û2

(un
1 ,û

n
2 )

pn
U2

(ûn
2 )p

n
U1

(un
1 )

≥ exp{n(I(U1;U2)Υ)}
exp{3nη1} for (sn, un, vn) satisfying

the conditions of G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
, implying 1 ≤

pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
exp

{
n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)}
and 1 ≤

pn
U1Û2

(un
1 ,û

n
2 ) exp{−n(I(U1;U2)Υ)}

pn
U2

(ûn
2 )p

n
U1

(un
1 ) exp{−3nη1} . The inclusion of the event {(un1 , ûn2 ) ∈ Tn

η1
(pU1U2

)} in the definition of

G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
is justified by the fact that the operator πσ,η1

un
1 û

n
2
= 0 whenever {(un1 , ûn2 ) /∈ Tn

η1
(pU1U2

)}. The positive

terms in the summand of ξ6(m) therefore remain unaltered. Before we substitute the bound (148) in (144), we
make the following observations. Note that if (un1 , û

n
2 ) /∈ Tη1

(pU ), Lemma 4 guarantees the operator πσ,η1

un
1 ,û

n
2
= 0.

For (un1 , û
n
2 ) ∈ Tη1

(pU ), the commutativity of σun
1 ,û

n
2

and πσ,η1

un
1 ,û

n
2

and Lemma 4 ensure

πσ,η1

un
1 ,û

n
2
≤πσ,2η1

un
1 ,û

n
2
≤exp{n(H(Y |U)Υ+6η1)}πσ,2η1

un
1 ,û

n
2
σun

1 ,û
n
2
πσ,2η1

un
1 ,û

n
2
= exp{n(H(Y |U)Υ + 6η1)}

√
σun

1 ,û
n
2
πσ,η1

un
1 ,û

n
2
πσ,η1

un
1 ,û

n
2

√
σun

1 ,û
n
2

= exp {n (H(Y |U)Υ + 6η1)}
√
σun

1 ,û
n
2
πσ,η1

un
1 ,û

n
2

√
σun

1 ,û
n
2
≤ exp {n (H(Y |U1, U2)Υ + 6η1)}

√
σun

1 ,û
n
2
I
√
σun

1 ,û
n
2

= exp {n (H(Y |U1, U2)Υ + 6η1)}σun
1 ,û

n
2
. (149)

Now substituting the upper bound (148) in (144), we have

ξ6(m) ≤
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
2

∑
a1,a2

b1,b2

pnS(s
n) tr

(
πµ
η4π

1,η2

un
1
πσ,η1

un
1 û

n
2
π1,η2

un
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
G
(
sn,un,vn,b2
ûn
2 ,m̂21,b̂2

)
exp{nI(U1;U2)}[pnU2|U1

(ûn2 |un1 )]−1 exp{−n8η5 − 3nη1}qk1+k2 |B1||B2|

2∏
j=1

pnXjUjVj |Sj
(xnj , u

n
j , v

n
j |snj )

≤
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
2

∑
a1,a2

b1,b2

pnU2|U1
(ûn2 |un1 )tr

(
πµ
η4π

1,η2

un
1
σun

1 ,û
n
2
π1,η2

un
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
1{(un

1 ,û
n
2 )∈Tη1

(pU )}
exp{−n (H(Y |U1, U2)Υ − I(U1;U2)Υ + 9η1 + 8η5)}qk1+k2 |B1||B2|

pnSUV X(sn, un, vn, xn)(150)
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≤
∑
sn,un

∑
vn,xn

∑
m̂1,b̂

∑
a1,a2

b1,b2

tr
(
πµ
η4π

1,η2

un
1
σ1
un
1
π1,η2

un
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
1{un

1∈Tη1 (pU1 )}
exp{−n (H(Y |U1, U2)Υ − I(U1;U2) + 9η1 + 8η5)}qk1+k2 |B1||B2|

pnSUV X(sn, un, vn, xn)(151)

=
∑
sn,un

∑
vn,xn

tr
(
π1,η2

un
1
σ1
un
1
π1,η2

un
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2
πµ
η4

)
1{un

1∈Tη1
(pU1

)}
exp{−n (H(Y |U1, U2)Υ − I(U1;U2) + 9η1 + 8η5)}

pnSUV X(sn, un, vn, xn) (152)

≤
∑
sn,un

∑
vn,xn

tr
(
π1,η2

un
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2
πµ
η4

)
1{un

1∈Tη1
(pU1

)} exp{−nI(U1;U2)}

exp{−n (H(Y |U1, U2)Υ −H(Y |U1)Υ + 10η1 + η2 + 8η5 +R21 +B2)}
pnSUV X(sn, un, vn, xn)(153)

=
∑
sn,un

∑
vn,xn

tr
([

π2,η3

un
2
πµ
η4π

1,η2

un
1
πµ
η4π

2,η3

un
2

]
ρxn,sn

)
pnSUV X(sn, un, vn, xn)

exp{−n (−I(Y,U1;U2)Υ + 7η1 + η2 + 8η5 +R21 +B2)}
(154)

≤
∑
sn,un

∑
vn,xn

tr
(
Iρxn,sn

)
pnSUV X(sn, un, vn, xn) exp {n (η2 +R21 +B2)}

exp{−n (−I(Y,U1;U2)Υ + 7η1 + 8η5)}
(155)

≤
∑
sn,un

∑
vn,xn

pnSUV X(sn, un, vn, xn) exp {n (R21 +B2)}
exp{n(I(Y, U1;U2)Υ−7η1 − 8η5 − η2)}

≤ exp{−n(I(Y,U1;U2)Υ−7η1−η2−8η5−R21−B2)}(156)

where (i) (150) follows from substituting the upper bound (149) and the Markov chains X1U1V1−S1−S2U2V2X2

and X2U2V2 − S1 − S1U1V1X1, (ii) (151) follows from
∑

ûn
2
pnU2|U1

(ûn2 |un1 )σun
1 û

n
2

= σ1
un
1

and the fact that
none of the other terms in (151) depend on ûn2 , (iii) (152) follows from cyclicity of the trace and the
fact that none of the terms in the summand therein depend on m̂1, b̂, a1, a2, b1, b2, (iv) (153) follows from
π1,η2

un
1
σ1
un
1
π1,η2

un
1

≤ exp {−n (H(Y |U1)Υ − η1 − η2)}π1,η2

un
1

which holds since un1 ∈ Tη1
(pU1

) (Lemma 4) (v) (154)
follows from cyclicity of the trace, (vi) (155) follows from the operator dominance π2,η3

un
2
πµ
η4π

1,η2

un
1
πµ
η4π

2,η3

un
2

≤ I and
finally (vii) (156) from tr

(
ρxnsn

)
= 1.

APPENDIX N
PROOF OF PROPOSITION 11

We now derive an upper bound on ξ7(m) starting from (43). Let Let

Gsn =∆ {Sn = sn} ,G7
1 =∆

{
V n
j (aj ,mj2)=vn

j ,U
n
j (mj1,bj)=un

j

Un
j (m̂j1,b̂j)=ûn

j for j=1,2

}
,G7

2 =∆
{ |Lj1(mj1,snj )|≥Lj1

|Lj2(m˜j ,snj )|≥Lj2:j∈[2]

}
,G7

3 =∆
{
Bj(mj1,snj )=B∗

j =bj
Aj(m˜j ,snj )=aj :j∈[2]

}
,

G7
4 =∆

{
Xn

j (mj ,s
n
j )

=xn
j :j∈[2]

}
,G
(
sn,un,b

vn,m̂1,b̂

)
=∆ 1{

(snj ,u
n
j ,v

n
j )∈Tη5

(pSjUjVj
),snj ∈T η5

4
(psj

),(snj ,u
n
j )∈T η5

2
(pSjUj

),(m̂j1,b̂j )̸=(mj1,bj):j=1,2
}, we have

ξ7(m)=
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
1 ,û

n
2

∑
a1,a2

b1,b2

pnS(s
n)tr

(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4
π2,η3

un
2
ρxn,snπ

2,η3

un
2

)
G
(
sn,un,b

vn,m̂1,b̂

)
P

(
4⋂

i=1

G7
i

∣∣∣∣∣Gsn

)
, where(157)

G
(
sn,un,b

vn,m̂1,b̂

)
P

(
4⋂

i=1

G7
i

∣∣∣∣∣Gsn

)
= G

(
sn,un,b

vn,m̂1,b̂

)
P
(
G7
1 ∩ G7

2 |Gsn
)
P
(
G6
3

∣∣Gsn ∩ G7
1 ∩ G7

2

)
P
(
G7
4

∣∣Gsn ∩ G7
1 ∩ G7

2 ∩ G7
3

)
≤ P

(
G7
1 |Gsn

)
G
(
sn,un,b

vn,m̂1,b̂

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

|Lj1(mj1, snj )||Lj2(m˜ j , snj )|
(158)

=
pnU1

(un1 )p
n
U2
(un2 )p

n
U1
(ûn1 )p

n
U2
(ûn2 )

q2n
G
(
sn,un,b

vn,m̂1,b̂

) 2∏
j=1

pnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )

Lj1Lj2
(159)

≤ G
(
sn,un,b

vn,m̂1,b̂

)
pnU1

(ûn1 )p
n
U2
(ûn2 )

2∏
j=1

4qnpnXj |Uj ,Vj ,Sj
(xnj |unj , vnj , snj )pnUj

(unj ) exp
{

9nη5

2

}
qn+kj exp{n ( log |Bj |

n
− I(Uj ;Sj)Υ +H(Vj |Sj , Uj)Υ)}

(160)
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≤ G
(
sn,un,b

vn,m̂1,b̂

)
pnU1

(ûn1 )p
n
U2
(ûn2 )

2∏
j=1

1

qkj |Bj |
4pnXj ,Uj ,Vj |Sj

(xnj , u
n
j , v

n
j |snj ) exp

{
29nη5

4

}
, (161)

where (i) (158) follows from the fact that (a) conditioned on the entire codebooks, Bj(mj1, s
n
j ) = B∗

j and
Aj(m˜ j , s

n
j ) is uniformly distributed in Lj1(mj1, sjn) and Lj2(m˜ j , s

n
j ), and in particular conditionally independent

of the realization of the codebooks (See Remark 4), which implies that P
(
G7
3

∣∣Gsn ∩ G7
1 ∩ G7

2 ∩ G7
3

)
=

1
|Lj1(mj1,snj )||Lj2(m˜j ,snj )|

and (b) P
(
G7
4

∣∣Gsn ∩ G7
1 ∩ G7

2 ∩ G7
3

)
=

∏2
j=1 p

n
Xj |UjVjSj

(xnj |unj , vnj , snj ), (ii)
(159) follows from the facts that (a) the U1−,U2−codebooks are mutually independent and the
codewords in the Uj−codebook are mutually independent with distribution pnUj

, (b) two codewords
in the two V1−,V2−UCC codes are pairwise independent (Lemma 5) and uniformly distributed in
the Fn

q ambient space and (c) |Lj1(mj1, s
n
j )| ≥ Lj1 = 1

2 exp
{
n
(
log |Bj |

n − I(Uj ;Sj)Υ − 3η5

2

)}
,

|Lj2(m˜ j , s
n
j )| ≥ Lj2 = 1

2 exp
{
n
(
log |Bj |

n − log q +H(Vj |Sj , Uj)Υ − 3η5

)}
, (iii) (160)

follows from above definitions of Lj1, Lj2, and (iv) (161) follows from the bound
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
≥ exp{−n

(
H(Sj , Uj , Vj)Υ + η5 −H(Sj)Υ −H(Uj)Υ + η5

2 + η5

4

)
} =

exp{−n
(
H(Vj |Uj , Sj)Υ − I(Uj ;Sj)Υ + 7η5

4

)
} for (sn, un, vn) satisfying the conditions of G

(
sn,un,b

vn,m̂1,b̂

)
, implying

1 ≤
pn
UjVjSj

(un
j ,v

n
j ,s

n
j )

pn
Uj

(un
j )p

n
Sj

(snj )
exp

{
n
(
H(Sj |Uj , Vj)Υ − I(Uj ;Sj)Υ + 7η5

4

)}
. Substituting (161) into (157) and recognizing

that G
(
sn,un,b

vn,m̂1,b̂

)
≤ 1, we have

ξ7(m) ≤
∑
sn,un

vn,xn

∑
m̂1,b̂
ûn
1 ,û

n
2

∑
a1,a2

b1,b2

pnS(s
n) tr

(
πµ
η4π

1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
[pnU1

(ûn1 )p
n
U2
(ûn2 )]

−1 exp{−n8η5}qk1+k2 |B1||B2|

2∏
j=1

pnXjUjVj |Sj
(xnj , u

n
j , v

n
j |snj )

≤
∑
sn,un

∑
vn,xn

∑
ûn
1 ,û

n
2

pnS(s
n) tr

(
πµ
η4π

1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
pnU1

(ûn1 )

exp{−n (8η5 +R11 +R21 +B1 +B2)}[pnU2
(ûn2 )]

−1

2∏
j=1

pnXjUjVj |Sj
(xnj , u

n
j , v

n
j |snj )(162)

≤
∑
ûn
1 ,û

n
2

∑
un
2

pnU1
(ûn1 )p

n
U2
(ûn2 )pU2

(un2 )
∑
sn,un

1
vn,xn

pnSU1V X|U2
(sn, un1 , v

n, xn|un2 )
tr
(
πµ
η4π

1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4π

2,η3

un
2
ρxn,snπ

2,η3

un
2

)
exp{−n (8η5 +R11 +R21 +B1 +B2)}

(163)

≤
∑
ûn
1 ,û

n
2

∑
un
2

pnU1
(ûn1 )p

n
U2
(ûn2 )pU2

(un2 )tr
(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4
π2,η3

un
2
σ2
un
2
π2,η3

un
2

)
exp{n (8η5+R11+R21+B1+B2)}(164)

≤
∑
ûn
1 ,û

n
2

∑
un
2

pnU1
(ûn1 )p

n
U2
(ûn2 )pU2

(un2 )tr
(
πµ
η4
π1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4
σ2
un
2

)
exp{n (8η5 +R11 +R21 +B1 +B2)} (165)

=
∑
ûn
1 ,û

n
2

∑
un
2

pnU1
(ûn1 )p

n
U2
(ûn2 )pU2

(un2 )tr
(
π1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4
σ2
un
2
πµ
η4

)
exp{n (8η5 +R11 +R21 +B1 +B2)} (166)

=
∑
ûn
1 ,û

n
2

pnU1
(ûn1 )p

n
U2
(ûn2 )tr

(
π1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4
µ⊗nπµ

η4

)
exp{n (8η5 +R11 +R21 +B1 +B2)} (167)

≤
∑
ûn
1 ,û

n
2

pnU1
(ûn1 )p

n
U2
(ûn2 )tr

(
π1,η2

ûn
1
πσ,η1

ûn
1 û

n
2
π1,η2

ûn
1
πµ
η4

)
exp{n (8η5 + η4 +R11 +R21 +B1 +B2 −H(Y )Υ)} (168)

where (i) (162) follows from the fact the terms in the earlier summand are invariant with a1, a2, b1, b2, m̂1, b̂, (ii)
(163) follows from Markov chains X1V1U1 − S1 − S2U2V2X2 and X2V2U2 − S2 − S1U1V1X1, (iii) (164) follows
from

∑
sn,un

1 ,v
n,xn pnSU1V X|U2

(sn, un1 , v
n, xn|un2 )ρxnsn = σ2

un
2
, (iv) (165) follows from the commutativity of π2,η3

un
2

and σ2
un
2

implying π2,η3

un
2
σ2
un
2
π2,η3

un
2

=
√

σ2
un
2
π2,η3

un
2
π2,η3

un
2

√
σ2
un
2
=
√

σ2
un
2
π2,η3

un
2

√
σ2
un
2
≤
√

σ2
un
2
I
√

σ2
un
2
= σ2

un
2
, (v) (166)

follows from cyclicity of trace, (vi) (167) follows from
∑

un
2
pU2

(un2 )σ
2
un
2
= µ⊗n, (vii) (168) follows from quantum
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conditional typicality Lemma 4 which states the operator inequality πµ
η4µ

⊗nπµ
η4 ≤ exp{−n(H(Y )Υ − η4)}πµ

η4 .
Proceeding further, we have

ξ7(m) ≤
∑
ûn
1 ,û

n
2

pnU1
(ûn1 )p

n
U2
(ûn2 )tr

(
πσ,η1

ûn
1 û

n
2

[
π1,η2

ûn
1
πµ
η4
π1,η2

ûn
1

])
exp{n (8η5 + η4 +R11 +R21 +B1 +B2 −H(Y )Υ)}

≤
∑
ûn
1 ,û

n
2

pnU1
(ûn1 )p

n
U2
(ûn2 )tr

(
πσ,η1

ûn
1 û

n
2
[I]
)
exp{n (8η5 + η4 +R11 +R21 +B1 +B2 −H(Y )Υ)} (169)

≤
∑
ûn
1 ,û

n
2

pnU1
(ûn1 )p

n
U2
(ûn2 )tr

(
πσ,η1

ûn
1 û

n
2

)
1{(ûn

1 ,û
n
2 )∈Tn

η1
(pU1U2

)} exp{n (8η5 + η4 +R11 +R21 +B1 +B2 −H(Y )Υ)}(170)

≤
∑
ûn
1 ,û

n
2

pnU1
(ûn1 )p

n
U2
(ûn2 )1{(ûn)∈Tn

η1
(pU1U2

)}exp{n (8η5 + η4 + 2η1 +R11 +R21 +B1+B2−H(Y )Υ+H(Y |U))}(171)

≤ exp{−n (I(Y ;U1U2)Υ + I(U1;U2)Υ − 8η5 − η4 − 5η1 −R11 −R21 −B1 −B2)} (172)

where (i) (169) follows from cyclicity of trace, (ii) (169) follows from π1,η2

ûn
1
πµ
η4π

1,η2

ûn
1

≤ I , (iii) the inclusion of
the indicator 1{(ûn

1 ,û
n
2 )∈Tn

η1
(pU1U2

)} is justified by the fact that πσ,η1

ûn
1 û

n
2
= 0 if (ûn1 , û

n
2 ) /∈ Tn

η1
(pU1U2

), thereby not
altering the positive terms in the summand, (iv) (171) follows from the quantum conditional typicality Lemma 4
which states that tr

(
πσ,η1

ûn
1 û

n
2

)
≤ tr

(
πσ,2η1

ûn
1 û

n
2

)
≤ exp{n(H(Y |U1, U2)Υ + 2η1)} whenever (ûn1 , û

n
2 ) ∈ Tn

η1
(pU1U2

) and
πσ,η1

ûn
1 û

n
2
= 0 if (ûn1 , û

n
2 ) /∈ Tn

η1
(pU1U2

).

APPENDIX O
QSTX : PROOF OF PROPOSITION 14

We begin by defining a common set of objects and relations that we shall leverage in the sequel. Suppose

Gsn =∆ {Sn = sn} ,G1 =
∆ {V n(a,m) = vn} ,G2 =

∆ {|L(m, sn)| ≥ L} ,G3 =
∆ {A∗

m,sn = a
}
,G4 =

∆ {Xn(m,sn)=xn} (173)

G(sn, vn) =∆ 1{sn∈T η3
2
(pS),(sn,vn)∈Tη3

(pSV )}, then pnX|V S(x
n|vn, sn)pnS(sn)G(sn, vn)≤ pnXV S(x

n,vn,sn) exp
{
n
(
H(V |S)
+2η3

)}
.(174)

We begin with ζ41(m) = E{ζ41(m)} as defined through (64). Let G4
i =∆ Gi for i ∈ [4]. We have

ζ41(m) = 2
∑

sn,vn,xn

∑
a∈Vk

pnS(s
n) tr {[I − πσ,η2

vn ] ρxn,sn} G
(
sn,vn

)
P
(
G4
1 ∩ G4

2 ∩ G4
3 ∩ G4

4

∣∣Gsn
)
, where (175)

G
(
sn,vn

)
P
(
G4
1 ∩ G4

2 ∩ G4
3 ∩ G4

4 |Gsn
)
= G

(
sn,vn

)
P
(
G4
1 ∩ G4

2 |Gsn
)
P
(
G4
3

∣∣Gsn ∩ G4
1 ∩ G4

2

)
P
(
G4
4

∣∣Gsn ∩ G4
1 ∩ G4

2 ∩ G4
3

)
(176)

≤ G
(
sn,vn

)
P
(
G4
1 |Gsn

)
|L(m, sn)|−1pnX|V,S(x

n|vn, sn) = G
(
sn,vn

)
q−n|L(m, sn)|−1pnX|V,S(x

n|vn, sn) (177)

≤ G
(
sn,vn

)
q−nL−1pnX|V,S(x

n|vn, sn) ≤ 4

qn
G
(
sn,vn

)
exp {n (log q−H(V |S)+3η3− k

n
log q)} pnX|V,S(x

n|vn, sn) (178)

≤ 4G(sn, vn) exp{5nη3 − k log q}pnX,V |S(x
n, vn|sn), (179)

where (i) the inequality in (177) follows from the fact that P
(
G4
3

∣∣Gsn ∩ G4
1 ∩ G4

2

)
= 1

|L(m,sn)| as argued in (61) and
P
(
G4
4

∣∣Gsn ∩ G4
1 ∩ G4

2 ∩ G4
3

)
= pnX|V,S(x

n|vn, sn) from the distribution of the random code specified in (60), (ii)
the equality in (177) follows from P (G4

1 |Gsn) =
1
qn that is proven in Lemma 5 in Appendix D, (iii) the inequalities

in (178) follows from |L(m, sn)| ≥ L = 1
2 exp{k log q−n log q+H(V |S)− 3η3} defined prior to (56) and finally

(iv) (179) follows from exp
{
−n
(
H(V |S) + 3η3

2

)}
≤ pnV |S(v

n|sn) whenever sn ∈ T η3
2
(pS), (sn, vn) ∈ Tη3

(pSV ),
the latter conditions being ensured by the factor G(sn, vn). Substituting (179) into (175), we have

ζ41(m) ≤ 8
∑
sn,vn

∑
xn

tr {[I − πσ,η2

vn ] ρxn,sn} G(sn, vn) exp {5nη3} pnXV S(x
n, vn, sn), (180)

≤
∑
vn

8pnV (v
n)1{vn∈Tη3

(pV )} exp {5nη3}
∑
sn,xn

tr {[I − πσ,η2

vn ] ρxn,sn} pnXS|V (x
n, sn|vn) (181)

≤
∑
vn

8pnV (v
n)1{vn∈Tη3

(pV )}

exp{−n5η3}
tr {[I − πσ,η2

vn ]σvn} ≤
∑
vn

pnV (v
n) log [dim(H)]

16−1 exp{−n5η3}
exp

{
−2n(η2 − η3)

2δq(σ, pV , η1)
}
(182)

≤ 16 log [dim(H)] exp
{
−n
[
2(η2 − η3)

2δq(σ, pV , η1)− 5η3
]}

.
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where (i) (180) follows from the fact that terms in the summand in (175), after substituting (179), are invariant to
a ∈ Vk, (ii) (181) follows from the indicator function in question being larger than or equal to the factor G

(
sn,vn

)
,

and lastly (iii) the second inequality in (182) is a result of the substantial overlap of the conditional typical projector
πσ,η2

vn with σvn whenever vn ∈ T2η3
(pV ) and η2 > η3 as stated in Lemma 4.

The next term we analyze is ζ5(m) = E{ζ5(m)} as defined in (59). We refer to (173) and let G5
i =∆ Gi for

i = 2, 3, 4, G5
1 =∆ G1 ∩ {V n(â,m) = v̂n}, G(sn, vn, a, â) =∆ G(sn, vn)1{â̸=a}. With these definitions, it can be

verified that

ζ5(m) = 2
∑

sn,vn,v̂n

∑
a∈Vk

∑
â∈Vk

pnS(s
n) tr

{
πµ
η1
πσ,η2

v̂n πµ
η1
ρxn,sn

}
G
(
sn,vn,a,â

)
P (G5

1 ∩ G5
2 ∩ G5

3 ∩ G5
4

∣∣Gsn). (183)

From Lemma 5, we have P (G5
1 |Gsn) =

1
q2n . Substituting this, recognizing G5

i =∆ Gi for i = 2, 3, 4 and following a
sequence of steps analogous to (176) - (179), we have

G
(
sn,vn,a,â

)
P
(
G5
1 ∩ G5

2 ∩ G5
3 ∩ G5

4

∣∣Gsn
)
≤ 4q−n exp{5nη3 − k log q}pnX,V |S(x

n, vn|sn). (184)

Substituting (184) into (183) and recognizing that the terms in the summand do not depend on a, â ∈ Vk, we have

ζ5(m)≤ 8qk

qn

∑
v̂n

tr

{
πσ,η2

v̂n πµ
η1

∑
sn,vnxn

pnXV S(x
n, vn, sn)ρxn,snπ

µ
η1

}
exp{5nη3}≤

8qk

qn

∑
v̂n

tr
{
πσ,η2

v̂n πµ
η1
µ⊗nπµ

η1

}
exp{5nη3}(185)

≤ 8qk

qn

∑
v̂n

tr
{
πσ,η2

v̂n πµ
η1

}
exp{−n(H(Y )Υ − 5η3 − η1)} ≤ 8qk

qn

∑
v̂n

tr
{
πσ,η2

v̂n I
}
exp {n(H(Y )Υ − 5η3 − η1)} (186)

≤ 8qk

qn

∑
v̂n∈Tη2 (pV )

exp{−n(H(Y )Υ −H(Y |V )Υ − 5η3 − η1 − 2η2)}+
8qk

qn

∑
v̂n∈Wn\Tη2 (pV )

0·exp{n(H(Y )Υ− 5η3− η1− 2η2)}(187)

≤ 8 exp {−n(H(Y )Υ −H(Y |V )Υ + log q −H(V )Υ − 5η3 − η1 − 2η2) + k log q} (188)

where (i) (185) follows from µ =
∑

x,s pXS(x, s)ρx,s as defined prior to (32), (ii) (186) follows from Lemma 3(ii),
since πµ

η1 is the typical projector of µ⊗n (iii) (187) follows from Lemma 4 (i) and the upper bound in Lemma 4,
and finally (v) (188) follows from the bound on the size of the typical set |Tη2

(pV )| as stated in Lemma 1.
We now derive an upper bound on our last term ζ6(m) = E{ζ6(m)} as defined in (59). Our analysis will be

very similar to the one presented above for ζ5(m). We refer to (173) and let G6
i =∆ Gi for i = 2, 3, 4, G6

1 =∆

G1 ∩ {V n(â, m̂) = v̂n}, G(sn, vn,m, m̂) =∆ G(sn, vn)1{m̂ ̸=m}. With these definitions, it can be verified that

ζ6(m) = 2
∑

sn,vn,v̂n

∑
a∈Vk

∑
â∈Vk

∑
m̂∈Vl

pnS(s
n) tr

{
πµ
η1
πσ,η2

v̂n πµ
η1
ρxn,sn

}
G
(
sn,vn,m,m̂

)
P (G6

1 ∩ G6
2 ∩ G6

3 ∩ G6
4

∣∣Gsn). (189)

From Lemma 5, we have P (G6
1 |Gsn) =

1
q2n . Substituting this, recognizing G6

i =∆ Gi for i = 2, 3, 4 and following a
sequence of steps analogous to (176) - (179), we have

G
(
sn,vn,m,m̂

)
P
(
G6
1 ∩ G6

2 ∩ G6
3 ∩ G6

4

∣∣Gsn
)
≤ 4q−n exp{5nη3 − k log q}pnX,V |S(x

n, vn|sn). (190)

Substituting (190) into (189) and recognizing that the terms are invariant to a, â ∈ Vk and m̂ ∈ M, we have

ζ5(m) ≤ 8qk+l

qn

∑
v̂n

tr

{
πσ,η2

v̂n πµ
η1

∑
sn,vnxn

pnXV S(x
n, vn, sn)ρxn,snπ

µ
η1

}
exp {5nη3}≤

8qk+l

qn

∑
v̂n

tr
{
πσ,η2

v̂n πµ
η1
µ⊗nπµ

η1

}
exp{5nη3}(191)

≤ 8qk+l

qn

∑
v̂n

tr
{
πσ,η2

v̂n πµ
η1

}
exp {−n(H(Y )Υ − 5η3 − η1)}≤

8qk+l

qn

∑
v̂n

tr
{
πσ,η2

v̂n I
}
exp{−n(H(Y )Υ − 5η3 − η1)}(192)

≤ 8qk+l

qn

∑
v̂n∈Tη2

(pV )

exp{−n (I(U ;Y )Υ − 5η3 − η1 − 2η2)}+
8qk+l

qn

∑
v̂n∈Wn\Tη2

(pV )

0·exp{−n(H(Y )Υ − 5η3 − η1 − 2η2)} (193)

≤ 8 exp {−n(H(Y )Υ −H(Y |V )Υ + log q −H(V )Υ − 5η3 − η1 − 2η2) + k log q + l log q} (194)

where (i) (191) follows from µ =
∑

x,s pXS(x, s)ρx,s as defined prior to (32), (ii) (192) follows from Lemma 3(ii),
since πµ

η1 is the typical projector of µ⊗n (iii) (193) follows from Lemma 4 (i) and the upper bound in Lemma 4,
and finally (v) (194) follows from the bound on the size of the typical set |Tη2

(pV )| as stated in Lemma 1.



51

REFERENCES

[1] C. E. Shannon, “Channels with side information at the transmitter,” IBM Journal of Research and Development, vol. 2, no. 4, pp.
289–293, 1958.

[2] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random parameters,” Probs. of Ctrl. and Info. Th., vol. 9, no. 1, pp. 19–31,
1980.

[3] M. Costa, “Writing on dirty paper (corresp.),” IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 439–441, 1983.
[4] T. Philosof and R. Zamir, “On the loss of single-letter characterization: The dirty multiple access channel,” IEEE Trans. on Info. Th.,

vol. 55, pp. 2442–2454, June 2009.
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