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Abstract

We consider the problem of communicating over a classical-quantum (CQ) multiple access channel with classical
state information non-causally available at the transmitters, henceforth referred to as a QMSTx. We undertake a
Shannon-theoretic study and focus on the problem of characterizing inner bounds to the capacity region of a QMSTx.
We propose a new coding scheme based on union coset codes - codes possessing algebraic closure properties and
derive a new inner bound that subsumes the largest known inner bound based on IID random coding. We identify
examples for which the derived inner bound is strictly larger.

I. INTRODUCTION

Consider the scenario depicted in Fig. 1, wherein a pair of distributed transmitters (Txs) are required to
communicate independent classical messages over a classical-quantum (CQ) multiple access channel (MAC). In
addition to the symbols X; and X9 input by Tx 1 and 2 respectively, the quantum state provided to the receiver (Rx)
is governed by a pair of classical jointly distributed random states S1, S2 whose evolution over time is independent
and identically distributed (IID). Specifically, if the channel is in state s1,ss and Txs 1,2 choose input symbols
x1, x2 respectively, then the Rx receives the quantum state pg,z,s,s,- 1X J 1s provided the entire sequence of
realizations of the component S; non-causally, while the Rx remains uninformed of the states. We undertake a
Shannon theoretic study of this quantum channel, henceforth referred to as a QMSTx. Our focus is on the problems
of designing efficient coding schemes and characterizing inner bounds to the capacity region of the QMSTx.

A QMSTx is a CQ MAC with Tx state information. The study of channels with Tx state information has evinced
considerable interest [1]-[5] over the years and has had a large influence on the design of efficient coding schemes
in information theory. The investigation of a point-to-point (PTP) classical channel with Tx state information
(CSTx) (Fig. 2) led Gel’fand and Pinsker [2] to their ingenious technique of partitioning channel codes. This
Gel’fand-Pinsker technique forms a core component of the current known best coding scheme for the classical [6]
and quantum broadcast channels [7], [8] and is also employed in other network scenarios [9]-[11]. In fact, the
Gel’fand-Pinsker technique has found utility even in storage applications with defective memory cells [12]. These
works and their impact motivate our study of the QMSTx. As we shall discuss, QMSTx facilitates the development
of a new unconventional coding scheme. Specifically, we design and analyze a new decoding POVM that yields a
strictly larger inner bound to the capacity region of the QMSTx in comparison to the conventional one.

The Gel’fand-Pinsker technique remains to be the best known technique to exploit Tx state information and is
optimal for communication over both the CSTx and its CQ analogue - the QSTx. See Fig. 2. In regards to the Rx,
since a pair of independent messages need to be communicated over a QMSTX, it is natural to build a simultaneous
(joint) decoding POVM. We are thus led to a natural coding scheme for a QMSTx wherein the two Txs incorporate
Gel’fand-Pinsker’s channel code partitioning technique and the Rx adopts a joint decoding POVM to recover the
messages. The conventional long established approach in information theory is to incorporate these techniques by
building IID random codes, also referred to herein as unstructured (IID) codes. One is thus led to partitioning the
two unstructured IID random codes, building the corresponding joint decoding POVM, analyzing performance to
characterize inner bounds to the capacity region of a QMSTx. The reader is referred to Thm. 1 for a characterization
of this unstructured coding inner bound.
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Fig. 1. A QMSTx wherein two Txs observe jointly distributed
random classical states that evolve IID over time and are required
to communicate independent messages to a Rx.



The focus of our article is to step beyond this conventional use of unstructured codes and design a new coding
scheme for the QMSTx based on union coset codes (UCC) - an ensemble of structured codes possessing algebraic
closure properties. We analyze the information theoretic performance of the proposed structured coding scheme to
derive a new inner bound (Thms. 2, 4) to the capacity region of the QMSTx. The inner bound we characterize
in Thm. 4 subsumes the unstructured coding inner bound. In Sec. III-B and IV-E, we identify non-commutative
examples for which the structured coding scheme strictly outperforms the IID random coding scheme. Specifically,
we demonstrate that the derived inner bound for these examples is strictly larger than that achievable using
unstructured IID random codes. These findings build on our earlier work [13], [14] and maybe viewed as another
step [15], [16] in our pursuit of designing coding schemes based on coset codes for network CQ communication.

We now highlight the import and significance of our contributions. Beginning from Shannon’s work and through
most of the ensuing six decades, information theoretic study has been largely restricted to analyzing unstructured
IID coding schemes. Inspired by an ingenious work of Korner and Marton [17], structured coding schemes have
been designed for several classical multi-terminal channels [14]-[16], [18]-[22] in the last two decades and have
been proven to strictly outperform [4], [18], [22], [23] conventional unstructured IID random coding schemes.
Owing to the dominant influence of IID random codes and the difficulty of performance analysis in the quantum
setting, coding schemes for multi-terminal quantum channels are largely based on unstructured IID random codes.
Our work contributes to the development of structured quantum coding strategies in the CQ setting.

Secondly, the use of coset codes and the role of algebraic closure properties in a QMSTX is unique. Coset codes
have facilitated higher rates in communication scenarios wherein a compressive bi-variate function of the messages or
codewords have to be decoded. For instance, on both the 3—user interference [15], [23] and broadcast channels [22],
coset codes enable efficient decoding of the bi-variate interference. QMSTx is a CQ MAC wherein both messages
need to be decoded and decoding a compressive bi-variate function of either the codewords or the messages can
lead to obfuscation of the messages. Indeed, coset codes have no role in communication over a CQ-MAC without
Tx states. It is therefore natural to question the utility of structured codes in communicating over a QMSTx. As we
illustrate through a self-contained discussion in Sec. III, our findings demonstrate how algebraic closure properties
can be exploited to efficiently sieve relevant information and thereby facilitate enhanced communication over a
QMSTX - a utility that can potentially be exploited in other quantum communication scenarios.

Thirdly, this study enables us to enrich the family of coset codes for CQ communication beyond nested coset
codes (NCC) [15], [16] and partitioned coset codes (PCC) [24] studied recently. As elaborated in [14] and recent
works [25], [26], NCC or PCC based coding schemes for a classical analogue of a QMSTX, i.e., a classical MAC
with states, can be strictly inferior to a UCC based coding scheme. We have taken this cue to propose and design
UCC based coding schemes for communication over CQ channels. As an auxiliary result, we also prove (Thm. 5)
that UCCs achieve capacity of a single Tx version of the QMSTx, henceforth referred to as the QSTx channel.
Lastly, our findings maybe viewed as developing new coding schemes to handle diverse CQ network scenarios
arising in an eventual quantum communication network.

Since the early work of Shannon [1], the study of channels with Tx state information continues [3], [27]-[29]
to evince interest. Recently Anshu, Hayashi and Warsi [30] have studied the problem of secure communication
over fully quantum wiretap channel with Tx state information and obtain error exponents via the technique of
simultaneous pinching. See [31]-[33] for analogous works on classical channels. Using the method of types and
tools developed by Nétzel [34], Boche, Cai and Notzel [5] have proved achievability of the Gel fand-Pinsker inner
bound for the QSTx (Fig. 2). More importantly, their work [5] highlights the difference between the causal and
non-causal availability of state information at the Tx in regards to the single-letterization of the capacity. Our focus
is on designing a new coding scheme and characterizing new single-letter inner bounds. We do not comment on
the optimality of the inner bounds derived herein.

Our presentation is pedagogical. We begin with preliminaries - notation and problem statement - in Sec. II.
Through a self-contained discussion in the context of a carefully chosen example, Sec. III illustrates the main ideas
of our work and the role of algebraic closure in the proposed UCC coding scheme. A general coding scheme for a
QMSTx consists of two layers - unstructured codes and UCC. We first present a simplified coding scheme involving
only the UCC layer in Sec. IV and derive a new inner bound. In Sec. V, we present a larger inner bound that
subsumes the former and comprises of both unstructured and UCC layers. Leveraging techniques in Sec. IV and
V, we prove that UCCs achieve the Gel fand-Pinsker inner bound in Sec. VI. Being a stand-alone section, Sec. VI
assists a reader interested only in the latter and demonstrates the versatility of our proof techniques.



II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement standard notation in QIT, for example as in [35], with the following. For n € N, [n] £ {1,--- ,n}.
F4 denotes a generic finite field of size g, where ¢ is a prime power and @ denotes addition within the finite field
in context. For a,b € Fy, a © b2 aa (—=b), where (—b) € F, is the additive inverse of b € F,. Existence of
finite fields for any prime power can be verified via standard books in Algebra such as [36, Lemma 7.1.4]. For a
Hilbert space H, L(#), P(#) and D(H) denote the collection of linear, positive and density operators acting on #
respectively. We let an underline denote an appropriate aggregation of pairs of objects. For example, U 21U x Us
denotes the Cartesian product for sets, x = (r1,72) € X and 2" = (x,z%). The specific aggregation will be
clear from context. For j € {1,2}, we let 4 denote the complement index, i.e., {j,4} = {1,2}. For an event (set)
A C Q, we let A= Q\ A denote its complement. We abbreviate classical-quantum, point-to-point, independent and
identically distributed, probability mass function, orthonormal basis, spectral decomposition as CQ, PTP, IID, PMF,
ONB, SCD respectively. For a quantum state 6XY € D (Hy ®@ Hy), 6% € D(’H,y) and 0¥ € D(Hy) denote the
component states, i.e, 6% = try (#%Y) and 0¥ = trx(0XY). We let H(X,Y )y = —tr(GXY log(6%Y)), H(X)g =
— tr(6X log(6)) denote the Von Neumann entropy of the joint and component quantum states respectively. We let
H(Y|X)g 2 H(X,Y)g— H(X)g and I(X;Y)s £ H(X)s+ H(Y)s — H(X,Y)s denote the conditional quantum
entropy and quantum mutual information respectively. The notions of typicality, typical projectors and the associated
facts are stated in Appendix A.

Consider a (generic) QMSTx specified through (i) two finite input sets X7, X, (ii) two finite sets S1,Ss of states,
(iii) a PMF pg(-) on S, (iii) a collection (pgs 2 perzasis, € D(Hy) : (z,5) € X x 8) of density operators and

(iv) cost functions «; : X; x S; — [0,00) for j € [2]. The cost function is additive, i.e., having observed the state
sequence s} the cost 1ncurred by sender j in preparing the state ®;_py,s, is F;(27},s7) &1 =Y K (e, St

Reliable commumcatlon on a QMSTx entails identifying a code. Throughout, except for the examples no assumption
is made on the structure of the collection (pzs € D(Hy) : (z,s) € X x S) of density operators.

Definition 1. An (n, M, e, \) OMSTx code consists of two message index sets M; € [2], two encoder maps
ej + [M;] x 8@ — X' and a decoder POVM \ & O = Ay € P(HE™) 1m0 6 My}. The average error

probability of the code is
&le N) _1—M D> D pEE") tr(Ampmsn)-

meM smeS™

where pms = ®p_1pz,s, and (Tj1,- -+, Tjn) = e](m], ™). Average cost incurred by Tx j in transmlttmg m; is
Tj(ej]mj) D oen » Py, (8] )mj(e](mj, s), sj) and the average cost incurred by Tx j is T](CJ) \M | > om, Ti(ejlmy).

The object of interest is the capacity region of a QMSTx defined below. In this article, we focus on characterizing
inner bounds to the capacity region of a QMSTx.

Definition 2. A rate cost quadruple (E, 1) [0, 00)4 is achievable if there exists a sequence of QMSTx codes
(n, M™ e X)) for which hm (™ AW =

n)) <.

hm n 1log./\/l( R;, and hﬁm 75 ( ;

The capacity region € of the QMSTx is the set of all achievable rate-cost vectors and € (1) = {R:(R,T) €¥}.

III. ROLE OF ALGEBRAIC CLOSURE

In this section, we explain how and why structured codes can facilitate enhanced communication over a QMSTx.
We begin by reviewing the best known unstructured coding scheme.

A. Joint Decoding of Unstructured Codes

A QMSTx being a ‘MAC extension’ of a QSTx (Fig. 2) [5], a coding scheme for a QMSTx can be obtained
by combining the Gel’fand-Pinsker technique [2] with a simultaneous decoding POVM of a MAC [37, Thm. 2].
Specifically, Tx j builds a U;j—code (Fig. 4) on an auxiliary set {/;. The U;—code comprising of 2B+ B;)
codewords is partitioned into 2"/ bins. Message m; € [Q"R‘] indexes a bin and Tx j looks for a codeword within
this bin that is jointly typical with the state sequence s7. The chosen codeword, denoted as u] " (my, ;L), and the
state sequence s are mapped to an input sequence in X7". The latter mapping is deterministic, i. e each code comes
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with a deterministic mapping that maps pairs of U;—codewords and state sequences to input ‘codewords’ on A"
The decoder POVM performs simultaneous decoding on the U;, Us—codebooks. Adopting the decoding POVM
proposed in proof of [37, Thm. 2], analyzing the error probability one can derive the inner bound characterized in
Thm. 1. The latter is the largest known inner bound achievable via any unstructured coding scheme. For a proof of
Thm. 1, the reader is referred to proof of Thm. 4 provided in Sec. V, wherein a larger inner bound that subsumes
the one characterized below is proven achievable. In Thm. 1 below, component Y is the received quantum state.

Theorem 1. A rate-cost quadruple (R,7) € A, C [0,00)* is achievable if there exists finite sets Q,U,Us,
PMF pqg on Q, conditional distributions px, u, s, on Xj X Uj for j € [2] such that psqux(s,u,z) =

ps(s)po(q )HJ 1Px,U,1S; o(xj,uj|s5,q) with respect to which
R; < I(U;;Y,U3|Q)y — I(Uj; S51Q) v, E{x;(X;,S;)} <75, Ri+ Re < I(U;Y|Q)y — I(Uy,Us; 51, S2|Q), (1)

for j € [2], where all entropies are computed with respect to the state

TYXSUL 2N " puxq(s, 1,2, 9)pes ® |2 5 w gz s u g )

S5,Z,U,q

Remark 1. We highlight two aspects of the above coding strategy, specifically in regards to the decoding. The
strategy of decoding the pair Uy,Us—of codewords implies that effective communication is happening over the
COMAC (Uy,Uy) — Y channel specified through the collection (0y,4, € D(Hy) : (ui,u2) € Uy X Us) where
Ourus = Dy s PXS|U(Z, 8|U)pys. In contrast to a ‘plain’ QMAC without states, the presence of states Sy, Sa
implies that we reserve multiple pairs (Uy,Us)—of codewords for a single message pair m = (mq, ms). Indeed,
any one of 2" WUuS)H(US)] codeword pairs can be used to communicate the message pair m = (mq, mg).
The second aspect relates to what ‘chunk of the output space’ gets reserved for a message pair m = (my, mg),
colloquially referred to as the ‘fan-out’ of m. Suppose cj(m;) : j = 1,2 is the bin of codewords at Tx j associated
with message mj. The subspace corresponding to the span of the union of the conditional typical projectors ﬂ'gU "
of 6yn 1 u™ € c1(my) X ca(ma), Le.

Fm 2 {lg) € HY" : {g|md; |g) > 0},

has been reserved for a single message pair m. In order to enlarge the capacity region, it is desirable to keep
both the number of codeword pairs reserved for any message pair m small and the dimension of .%;, as least as
possible. Indeed, this would enable pack a larger number of orthonormal fan-outs in the output space H%n

B. Binary Double Dirty MAC

Our discussion for the following example portrays the deficiency of unstructured codes and the role of structure.
Example 1. Let X} = X, = & = S» = {0,1}, ps(s) = ifor every s € S, Hy 2 C2 denote the qubit
space, |vg) = [cosf sinf]? € C? and |vy) = [sinf —cos]’ € C2 For (z,s) € {0,1}, let pr,ays,s, =
v(x1Bxo, 510 82) € D(C?), where (-, -) € D(C?) is provided in Figure 3, ® denotes addition in the binary field
Fo and the cost function rj(x;,s;) = Ly, _1y is the Hamming weight function. For a T € (0, ) what is € (T,7)?

We begin with the § =0 case before discussing the non-commuting 6 € (0, §) case. § = 0 case corresponds to

the classical channel first studied by Philosof and Zamir [4]. The following discussion describes their findings.



Case § = 0 : Since the collection (pgs : (z,s) € {0,1}*) is commuting, we identify this as a classical MAC
with distributed states whose output Y € {0, 1}, inputs X3, X5 € {0,1} and states S, S € {0,1} are related as
Y = X1 ® 51 D Xo B Ss. See Figure 5. Sq, .59 are uniformly distributed and the average Hamming weight of
the inputs is constrained to 7 < % This implies that, having observed the uniformly distributed state sequence
57 € {0,1}", the encoder can input a sequence X' € {0,1}" of average Hamming weight at most 7 < 5. The
latter constraint precludes the Txs from negating the effect of the state. What rate pairs are then achievable?

We first study the best unstructured coding scheme and characterize the corresponding largest known inner bound.
Towards that end, we are required to identify an optimal choice of parameters in Thm. 1 for Ex. 1. Observe that
the effective classical channel of Ex. 1 is a ‘MAC extension’ of a CPSTx whose output Y € {0, 1}, Hamming
cost-constrained input X € {0, 1} and uniformly distributed state S € {0, 1} are related as Y = X @ S. Philosof and
Zamir [4] proved that the best unstructured coding scheme for Ex. 1 is obtained by replicating, at both the Txs, the
capacity achieving scheme for the CPSTx. Specifically, they prove the optimal choice of parameters in Thm. 1 for
Ex. 1 to be binary auxiliary sets Uy = Uz = {0, 1}, py,|s,(1/0) = py,|s,(0[1) = 7 = 1—-py,|5,(0[0) = 1—py, s, (1]1)
and X; =U; @ S; for j € [2].

We now detail the coding scheme corresponding to the above choice to shed light on its deficiency. See Fig. 6.
To communicate at rate R; < hy(7), Tx j randomly partitions the entire set of 2" sequences into 2"E; bins. The
message m; indexes the bin within which the sender looks for a codeword that is within an average Hamming
distance of 7 from the observed state sequence. Since each bin contains on(1=F;) 5 gn(1=hs(7)) sequences chosen
randomly, the sender finds such a codeword with probability that approaches 1 exponentially. Indeed, this can be
proved via a simple second moment method as done in [13, Upper Bound on €3; in Appendix B]. Let U}* denote
the chosen codeword and S7' the observed state sequence. Tx j inputs X' = U @© S on the channel. The choice
of the Uj—codeword guarantees that the Hamming weight constraint is met.

What is the maximum sum rate the above unstructured coding scheme can achieve? Recall that each message
m; of sender j is assigned a bin of U;—codewords, with at least 2"(1=%i) > 2n(1=(7)) codewords. Observe that
the channel relationship ¥ = X @& S; © X2 @ Sz implies that the received vector is Y" = U}* @ UJ'. Fan-out -
the space of received sequences occupied by a single message pair m = (my, ms) - is therefore got by adding all
possible codeword pairs in the two bins indexed by m. Since the codewords in each bin is picked uniformly and
independently without any joint structure, every pair yields with high probability a distinct sum, resulting in the
range of this addition to be of size 272~ F1—F2) > 92n(1=hs(7)) "Since the “fan-out’ of every message pair is of size
at least 22"(1="(7) ' we cannot hope to pack more than 27— fan-outs in the binary output space resulting in
the following fact.

Fact 1. Consider Ex. 1 with average Hamming cost constraint T < % Any rate pair (R1, R2) achievable by

unstructured coding schemes satisfies R1 + Ry < uce{max{0,2hy(7) — 1}} where uce{f(7)} denotes the upper
convex envelope of the function f(1). See [4] for a proof.

We now present a linear coding scheme that can achieve any rate pair (Rp, R2) satisfying Ry + Ro < hy(7).
In the sequel, we provide a more descriptive presentation. In Appendix B, we provide a formal illustration. See
Fig. 6. For simplicity, we describe achievability of the rate pair (h(7),0). Our coding scheme is identical to the
unstructured coding scheme with two key differences. The first key difference is that the bins of each sender’s
codebook are chosen to be cosets of a common linear code. Let Ay denote a linear code of rate 1 — hy(7) whose
cosets can quantize a uniform source to with an average Hamming distortion of 7. In other words, a uniformly and
randomly chosen coset of Ay contains a codeword within an average Hamming distance of 7 of the observed state
sequence with high probability. See [38] or [14] wherein, the existence of linear codes of rate 1 — hy(7) whose
cosets can quantize any uniformly distributed source within a Hamming distance of 7, is proven. We employ cosets
of such a linear code to quantize the two state sequences that are both uniformly distributed. Since sender 2 has
no message to transmit, it is provided with just Ao that serves as its only bin. Sender 1 is provided with all of the
27he(7) cosets of Ao, each of which serves as its bins. The encoding is identical to that for unstructured coding.

We shall now not decode the pair U;, Us—of codewords as done with unstructured IID coding. From the received
vector Y = U @ U3, the decoder has to only figure out which coset of Ay did Tx 1 choose its codeword from.
Indeed, the index of the bin or coset Tx 1 chooses its codeword from is user 1’s message. The bins of user 1’s code
being cosets of linear code Az, from which user 2 picks its codewords, the received sequence Y" = U7* @ Uy is
found in exactly the same coset (or bin) from which user 1 picked its codeword. The Rx can therefore call out the
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Fig. 6. Code on the left depicts User 1’s code and the bin on
the right depicts one bin of User 2’s code. When a bin of User
1’s code is added to a bin of User 2’s code, the rate of resulting
collection of vectors doubles to 2(1 — hy(7)) as depicted by the
long bin on the right.

Fig. 7. User 2 employs a linear code A as its only bin and user 1
employs cosets of A as the bins of its code. When a user 1’s bin is
added to user 2’s only bin, the resulting collection of codewords
is the same coset of the same rate 1 — hy (7).

index of the coset in which it observes the received sequence Y™ as user 1’s message. Let us analyze the achieved

rate. Since the channel is noiseless, sender 1 may employ all cosets of A2 and therefore communicate at rate hy(7)
which is larger than 2hy(7) — 1 for all 7 € (0, 3).

Fact 2. Consider Ex. 1 with average Hamming cost constraint T < % Any rate pair (R1, Ro) satisfying R1+ Ry <

uce{max{0, hy(7)}} where uce{f(r)} denotes the upper convex envelope of the function f(T) is achievable via
the above coset coding strategy.

How is it that we are able to achieve a higher rate? First, our approach of decoding by identifying the coset in
which the received vector Ui @ Uy’ resides is altering the effective CQMAC on which we are communicating. We
are decoding the sum of the codewords chosen by the two Txs, not the pair. Effective communication is therefore
happening over the induced CQMAC (=, € D(Hy) : w € W) wherein

o= Y > ipleﬂsl (ur, z1[51)PU, x4 |5, (U2, T2|82)7 (21 © T2, 51 B 52) L {w—u Bus}
U1,T1,51 U2,T2,52
which, in the # = 0 case with the above choice of parameters is the CQMAC (Zy = |0)0],Z; = |1)(1]). In essence,
we are communicating over the effective channel Uy ® Uz — Y channel. Secondly, note that the number of codeword
pairs associated with any message pair m remains 22"(1=+(7)) Indeed, the rate of each bin - both in this and the
previous unstructured coding schemes - are identical. The key difference is however the size of the chunk of the
output space allocated to any message pair m. Algebraic closure - the property that two cosets of a linear code of
rate (1 — hy(7)) when added yields another coset with the same number 2"(1="(7)) of codewords - ensures that
every message pair has a fan-out of size 2"(1~"(7)) sequences within the {0, 1}™—space.

If we contrast the fan-outs of the linear coding scheme - 27(1=/(7)) _ and the unstructured IID coding scheme
- 2”(2_2}“’(7)), one can account for the difference in the achievable sum rate. Indeed, the linear coding scheme
achieves a rate hy(7) which exceeds the unstructured IID coding sum rate 2h,(7) — 1 by 1 — hy(7) - the difference
in the rates of the two fan-outs.

Going further, observe that exponentially many pairs of codewords from A2 and the coset chosen by sender 1
have the same sum, the Rx cannot disambiguate the pair of codewords chosen by the Txs. It can only disambiguate
the sum U7' @ U3 and not the pair. This implies that the structured coding scheme is forcing the Rx to forgo certain
information that it was able to decode in the unstructured coding scheme. However, the structured coding is cleverly
designed so as to ensure that this forgone information is not of the messages, but of the states S1, .S2. Attempting to
decode the pair of messages by decoding a compressive bivariate function - mod—2 sum - of the chosen codewords,
boost the information rate of the messages while suppressing the amount of information it gathers of the states,
and exploiting algebraic closure to ensure this are therefore the central aspects of the structured coding scheme.

Case § € (0,%) : The arguments in [4] can be used to prove that the optimal choice of parameters in Thm. 1
for this case too is Uy = Uz = {0, 1}, py,is,(110) = py,s,(0[1) = 7 = 1 — py,5,(0]0) = 1 — py, s, (1[1) and
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Fig. 9. Structured coding strategy of decoding into the sum codebook
implies effective communication via the U; & Uz = W —codebook.
Algebraic closure implies only 2" ™#*{B1:52} codewords allocated
for each message pair.

Fig. 8. Unstructured IID coding strategy of decoding the pair of
Ui, Uz—codewords implies communication effectively happens via
Ui x Uy —codebook. 2"(F1+52) codeword pairs are allocated for each
message pair.

X; = U; ® S; where @ denotes addition mod—2. This implies the quantum state corresponding to which we
compute our information quantities is

r(1-7) []l{sl@osz} |1)(1] 4+

O.Y5152X1X2U1U2 _ Z ‘0 15116 82><0 1s11® 52‘ —I—]

& |81 82><81 52’ ® |: |1 016 sy 32><1 01 sy 82|

51,82 4 ]1{51:@152} ’v6><v9|
[ (1;7-) |0 0 s1 82><0 0 s1 82‘ +

TN11@s 1011105 18 s

> Ly 0001+ s [ Yo ]| 11 sl sal
The bound on the sum rate achievable using IID random codes as stated in Thm. 1 is I(U1U2;Y ), — I(U1; S1) o —
I(Uy; S2)s. In Appendix C, we have provided characterization of the component quantum states with respect
to which the above information quantities have to be computed. Referring to the same, it can be verified that
I(UlUg; Y)g — I(Ul; Sl)g — I(UQ; SQ)O— =a—2+ th(’l’) where

2 2

It maybe verified that = 1 if # = 0 indicating the maximum sum rate achievable is a continuous function of 6
as one expects. In Prop. 5, we verify that the linear coding scheme achieves any rate pair satisfying 1 + Ra <
uce{max{0, o« — 1 + hyp(7)}} which strictly subsumes that achievable above.

o = hy((1—27)%sin6) — Eb(\/l — 4e(1 — €)sin20), hy(x) 2 hy (1 + x) and € = 27(1 — 7). 3)

C. Sieving Relevant Information via Algebraic Closure

The key difference between the structured and unstructured coding scheme is the decoding rule. While the
former pins down the pair, the latter only decodes the sum, leaving uncertainty in the pair. Note that, the codeword
u?(mj,s?) chosen by sender j contains, in addition to the message, information about s7. By requiring the
receiver to pin down the pair (uj(mj,s}) : j € [2]) of chosen codewords, the unstructured coding scheme is
forcing the receiver to gather information of the state sequences that is not of value to it. Is there a function of
(u}(myj,s}) : j € [2]) that, while containing information of the pair my,my of messages can also suppress the
amount of information of the pair s7, s} and can the coding scheme enable the Rx decode this function efficiently?
The structured coding scheme is enabling the Rx do this via the mod—2 function. This key difference of decoding
the sum of chosen codewords is coupled with the algebraic closure property of coset codes, thereby compressing
the fan-outs of every message pair and enabling more efficient packing.

From our discussion thus far, we conclude the following. Embedding the desired information - the message pair
m - in a specific compressive bivariate function - the mod—2 sum in the case of Ex. 1 - of the chosen codewords
and building codes, which when operated through this function do not explode in the range of outcomes are the
key reasons we are able to achieve strictly higher throughput. As we discuss in the next section, this phenomenon

can be exploited in a broader class of CQMAC:s.
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by attempting to decode into the sum codebook is depicted on the right.

Fig. 11. Mod—3 addition, i.e, field addition in F3

D. A General Coding Strategy Exploiting the Broader Underlying Theme

The above discussions clearly illustrate the utility of algebraic closure in communication over a QMSTx. For
both the commutative and non-commutative cases of Ex. 1, rates corresponding to uniform distributions on Uy, Us
were sufficient to achieve higher sum rates using coset codes. For a general QMSTX, it is necessary to achieve
rates corresponding to non-uniform distributions on U} ,Us. Codewords of a random linear code are jointly related
and the natural approach of picking its generator matrix uniformly at random will ensure that the codewords are
uniformly distributed. How does one achieve rates corresponding to non-uniform distributions via linear codes? And
are their examples of QMSTx for which such non-uniform distributions can enable communication at strictly larger
rates via coset/linear codes? The rest of our article provides a definitive affirmative answer to this question. We
design union coset codes in Sec. IV specifically aimed at achieving rates corresponding to non-uniform distributions
and characterize a general inner bound in Thms. 2 and 4 that achieve rates corresponding to arbitrary distributions.
Following this, we identify a non-commutative Ex. 2 in Sec. IV-E for which rates achievable via UCCs corresponding
to a non-uniform distributions yield strictly larger rates than those achievable via unstructured IID random codes.

Are the above ideas restricted to finite field additions exploited via coset codes possessing algebraic closure
property? Absolutely not. In fact, on the contrary these point to a richer classical and quantum Shannon theory.
Consider YYU1V2 = 3™ 17, (w1, u2) Sy, @ |ur ug)uy us|, where 8y, 4, is as in Remark 1. Suppose there exists
a finite set WV, a collection (v, € D(Hy) : w € W) and a map f : Uy X Us — W such that dy,,,, = Vf(ur,us)> then
we could extract the message pair (mq, mg) by decoding into the effective YV —codebook. We would then need to
build codes on UJ*,U% that are ‘f—closed’. In other words, when we compute the range of application of f®" on
all pairs of codewords in a pair of bins, we must be able to non-trivially contain the outcome range. See Fig. 9
and 12. This leads us to the code construction challenge of designing f—closed codes.

On the other hand, our current algebraically closed coset codes can serve a broader range of non-linear scenarios.
Consider the logical OR truth table in Fig. 10 and suppose the induced collection (3y, 4, : (u1,u2) € {0,1}?) of
density operators satisfies 0y, v, = 0z,a, Whenever u V ug = 4 V tp. Can we construct codes that are logical OR
V—closed? If one views up,us to live on F3 instead of {0,1} by letting py, (2) = py,(2) = 0, then observe that
one can recover u; \V ug if one recovers u; @3 us. In other words, (u1,u2) — u1 3 us —ug V ug is a Markov chain.
If we can therefore build codes over F3 that are algebraically closed with respect to @3 and let the Rx recover
ternary addition of the pair of chosen codewords, one could potentially outperform IID random coding strategy.
We refer the reader to [23, Ex. 2] where this has been demonstrated albeit in a different communication scenario.

The above discussion and the gains we are able to glean at through simulations for non-linear examples such
as Ex. 2 suggest that we design a broader general coding strategy based on algebraically closed coset codes. This
motivates our findings in Sec. IV and V. Going beyond field addition, one can design coding strategies based on
codes closed under other well structured operations such as group and ring additions to leverage rate gains. We
refer the interested reader to [13] and [14] for pursuits along these paths.



IV. INNER BOUND BASED ON UNION COSET CODES

Building on our discussions in the previous section and particularly Sec. III-D, we present our first main result -
a new inner bound to the capacity of the QMSTx based on union coset codes and provide a proof of achievability.
The coding scheme we propose to prove achievability is a generalization of the one we presented for Ex. 1. Ex. 1
with 6 = 0 and ¢ € (0, 5) serve as commutative and non-commutative examples respectively, for which the inner
bound in Thm. 2 is strictly larger than that proven in Thm. 1. In Sec. IV-E, we present a second non-commutative
example for which the characterized inner bound in Thm. 2 is computationally verified to be strictly larger than

that achievable via unstructured IID random codes (Thm. 1).

Theorem 2. A rate-cost quadruple (R,7) € A. C [0,00)* is achievable if there exists a finite field Vi = Vo =
W = F, and conditional PMFs px v, s, on X; x V; for j € [2] with respect to which

. . . JIU; Y, Us)y — 1 s ULY .
R+ Ry<min{H(V;|Sj)y:j € 2]} —-HVi @ Va|Y )y = mln{ (U ’Uj)EI(U‘(_Lg‘iUQ’ Ul )T: je€ [2]} 4)
35 9]

where all mutual information quantities are computed with respect to the state

TEVWE LN psywx (8,0, w0, 2)pps @z v w s)@ v w 5| where

S$,0,W,T

2
pSlWX(§7 v, w,z)= p§(§)HpXjVj|Sj (l’j, Uj’Sj)]l{w:m@vg} for all (§7 v,w,x) €S XY XWxX.
j=1
Proof. We begin by outlining our techniques and identifying the new elements. The main novelty is in the code
structure we design and the decoding POVM we propose. In Sec. IV-A, we characterize a UCC and describe our
codes. The Gel’fand-Pinsker encoding (Sec. IV-B) is employed by both senders. We decode only the sum codeword
and hence employ a single user decoding POVM (Sec. IV-C). Since we decode into a UCC obtained by adding
two statistically correlated UCCs, our analysis is not a standard one and detailed in Sec. IV-D.

A. Code Structure

The gain in rates for Ex. 1 crucially relied on the bins of both codes being coset shifts of a common linear
code, thereby ensuring that the size of the sum of any pair of bins was contained. We observe that the shifts can
be arbitrary and there are no structural requirement on the union of these cosets. We are thus led to a UCC.

Definition 3. A UCC built over F is specified through a generator matrix g € fq’”” and a map t : ]-"é — Fq of
coset shifts. The collection

c(m) & {v™(a,m) = ag® u(m) : a € .7:5}

forms the bin corresponding to message m € .7-"; and the union Up,c(m) of bins forms the code. We refer to this
code of block-length n and rate % as an (n,k,l,g,1) UCC.

We employ UCCs as the codebook for both senders. The symmetry in Ex. 1 permitted us to design codes of
the same rate for both senders. In general, to enable codes of different rates, we propose a ‘nesting’ of the two
UCCs. Without loss of generality, assume the size of sender 1’s bins is the smaller of the two. We equip user j

T
with UCC (n, kj,1;, g;,¢;) and enforce go = [ng gQT/J . See Fig. 13. This ensures that the bins of user 1’s code
are sub-cosets of the bins of user 2’s code, thus guaranteeing the desirable property mentioned prior to Defn. 3.

Let \; 2 (v} (aj, m;) 2 49, ® 1j(my) : (aj,mj) € V¥ x Vi) denote the codebook of sender j

B. Encoding

Our encoding is identical to that described for unstructured codes in Sec. III-A. See Fig. 4. On observing
message m; € [g'7] and state sequence s”, sender j looks for a codeword in c;j(m;) that is jointly typical with
s7. If it finds at least one, one among these is chosen and denoted v} (m;, s7). If it finds none, v} (m;, s}) is set
to a default codeword in c;j(my;). The pair (s}, v} (m;,s])) is mapped to an input sequence via a ‘fusion map’
[+ 8 x Vi — X' For the sake of the ensuing analysis, we formalize this encoding with some notation.
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Fig. 13. The entire code structure comprising of two codes employed by the Txs and code employed by the Rx is depicted with legends
for the associated terms.

Let a;j(my, s}) 2 > a; L{(v7 (a;,m,),57) €Ty, (ps,v,)} DE the number of available jointly typical codewords and let

{a7 (” a77mJ) S; )eTm(pV S )} if O‘j(mjvsy)zl

£imj.s; ) £ {{Ok i} otherwise ©)

For every pair (mj,s}), aj(m;,s}) is an element chosen from L;(m;,s}). We define v;‘(mj, sj) =
vi(aj(my,s7),m;). A predefined ‘fusion map’ f; : S} x V' — X' is used to map the pair s7,v7(m;, s7) to an
input sequence in X" henceforth denoted z' (m;, s7). A remark on our notation is in order. Our notation involves
multiple objects referenced via a;(-) and/or «(-). This choice is motivated to ensure related objects have similar
notation. We admit this causes some confusion/difficulty. To alleviate this, we have identified the corresponding
rows in Table I with a double * to direct the reader’s attention to the same.

C. Decoding POVM

Consider the UCC (n, ka, 11 412, g2, L) depicted on the top right side of Fig. 13 where ¢, (m) = ¢1(m1) D ra(ma)
for m = (mq,mg) € ]:él X ]-'le. Let w"(a,m) a aga ® t1(mq1) @ ta(m2) denote a generic codeword and let \p
denote this UCC, i.e. the collection (w"(a,m) : (a,my,ma) € [F,?] x [Fi] x [FE]). Suppose for each message
pair m, the collection (w"(a, m):aé€ .7-"52) is a distinct coset. In other words, suppose there is a 1:1 correspondence
between {m : m € [.7:;1] X []:52]} and the collection of cosets of Ar. Then, observe that when codewords from every
distinct pair of cosets are added, the sum falls in a unique coset of Ag. If the Rx correctly identifies in which coset
of this UCC, lies the sum of the two codewords chosen by the Txs, then it can recover the pair of messages. This
motivates our decoding POVM. Since we only need to identify the coset in which the sum of the chosen codewords
lie, we let 7,2 =™ be the 1o —conditional typical projector of ®F_ 10w, (a,m) With respect to the PMF pyy, where

Pw N2
v 2 > u s Pxsw(Z, 8|w)pes  w € W, psxw is as defined in the Thm. statement. As stated in Appendix A-B,
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Symbol

Description

Comment

};—lf log q and %’ log q

User j’s binning rate and information rate respectively.

WLOG assume k2 > k.

7 c ]_-éq xnjrnge i(;egxn
g2 = [g1 g2/

g1, g2 are the generator matrices of user 1,2’s UCCs.
We have assumed WLOG that k2 > k.

The generator matrices are nested to ensure containment of
the sum codewords when bins of users 1 and 2 are added.

7
v Fg — Fq

7 - -
For message m; € Fy', vj(m;) € Fy is the dither
(bias) vector of the coset corresponding to message m;.

Recall that messages indexes bins and each bin of a user’s

code are (random) coset shifts of a common linear code.

v} (az,my) £ ajg; @ 1;(my)

A generic codeword in bin/coset indexed by message m;

A generic codeword in bin/coset ¢;j(m;) defined next.

i (my)

(v} (az,my) 10y € Fy'}

Bin/Coset corresponding to message m;

*¥%  aj(my,s))  kk

# of m;—bin codewords that are jointly typical with s7

Li(my,s7)

Indexes of codewords in c;(m;) jointly typical with s7

If this list is empty, then £;(m;, s} ) 2 0%}

*% aj;(mj,sy)  kx

Index chosen from L;(m;, s7) to communicate
message m; when state sequence is s}

U? (mJ El 5;1)

vy (aj(my, s7),m;)

Vj—codeword chosen to communicate
message 1m; when state sequence is s}

fi o & xVim = A

’Fusion map’

Maps chosen V;—codeword and observed state
sequence to X; —codeword

:E;’ (m.77 5‘777/)

Fi (W5 (my, 87),87) = fi(vf (my, 87),m;)

X j—codeword chosen to communicate
message 1m; when state sequence is s}

Jay
PSXVW = PS151X2Xo Vi VoW

Chosen ‘test channel’ satisfies ps = ps and
Vi1 = V2 =W = F, is finite field of size ¢

Additionally psxvw satisfies
psxvw = psxviw=viev,

ow:weW Zpﬁ‘w(gé\w)pﬁzwew
P > pxs(e,s)pes
(Am :m € [M]) Decodingil);OVM as defined in (32)
(@) Ya,m, (b) 7, (a) 7h, mamemh . (b) m —typical projector of the state y
T = ﬂgé“',':f,‘;'ﬂ) nz2—conditional typical projector of oyn (4,m) With respect to pw
TABLE 1
DESCRIPTION OF ELEMENTS THAT CONSTITUTE THE CODING SCHEME
Own(a,m .
we henceforth let 75,7 = mpo"w™ . We elaborate for clarity. Recall our chosen state YYXWS = gy {YYXVWS1
and let
YXWS __ _ —
THaW=2 = E pw (w)oyw @ [w)w|, where o, = E pxsjw(Z, s|w)pzs has SCD o, = E Ty w (y|w) ’hy|w><hy‘w‘.
weW z,s yey

Tw™ (a,m) __

n
We then have 7972 = o5 = >~ Q) |y, jws () X Py () | 1 (w0 (am)y) €77 (o @)}
yreyr t=1

where py @ 7y |y is the joint PMF with marginal py and conditional PMF 7y ;. We define va,m & bt gk

where ), is the 1, —typical projector of the state = Zlé pxs(z, s)pzs. The decoding POVM is

Am = ZV@,ml,mz Z Ya,m Z’Ya,ml,m and A\ ; 21 — E Am- (6)
&,M2,7hg a &M 7y m

Clearly, the decoding POVM has ¢"** + 1 outcomes {—1,m € [¢"] x [¢"*]}. The Rx declares error if outcome
—1 is observed and declares 12, , 172, if outcome 1h = (1iay, 725) € [¢"] % [¢'2] is observed.

D. Probability of Error Analysis

We employ the random coding technique to prove the existence of a code with the promised rates for which the
error probability falls to O exponentially in the block-length n. Towards that end, observe that our code and the
coding scheme is completely characterized via the following objects : the generator matrices g1, go/1, the collection
(tj(mj) : m; € [¢¥]) of dither/bias vectors specifying the coset shifts, the indices (a;(m;,s?) : (mj, s7) € [¢¥] xS7,

J J
and the final codeword choices (27 (mj,s}) : (my,s}) € [q%] x S}'). Our first step is to characterize the error

J

probability for a generic choice of these objects. In particular, we characterize an upper bound on this error
probability composed of multiple terms. Our second step is to specify a probability distribution on the collection of
codes by specifying a distribution on the aforementioned objects. In our third step, we prove that the expectation

of each of the above mentioned terms falls to 0 exponentially if the rates of the code satisfy (4).



12

An upper bound on the error probability for a generic code : For a generic choice of the aforementioned objects,
the average error probability is

A A
Z ’./\/l| where C ZPS m|3 Pm,sm ®pzl (ma,sT)rxo(m2,85)s, %)

s™

C(mls™) & tr{(T — Ap)pmsn }» T = I, M; = [¢%] and hence |M| = ¢!z, We consider an arbitrary pair
(m1,mg) and henceforth focus our study on ((m). Throughout the rest of our study of ((m), we let

m
ag = aj(mq, st) 0F2=k1 @ ay(ma, s4). With this definition and (32), note that

a

' ag,mmn m am 771 m am 771
aF#ag aEFr2 m#m

and hence, ((m|s") < ¢(m]|s"), where ¢(m|s") 2 tr ([I (ST ES(S+ T)_ﬂ pmén) . )

An > (S+T) 2 S(S+T)"* where S =al a7l and T = Y afizd™at + Y 3 afixlal . (8)

We shall henceforth focus our study on ((m) £ > en Pa(s™)C(m[s™) which serves as an upper bound on ¢(m) in
(7). Towards that end, we split the event corresponding to ((m) into two parts - £ and £ - and analyze the event
corresponding to the two parts separately. Towards defining &, let

|Lj(m, s ?)’ > Lj, my, 8,

e 2 e Tawol} 8 2 { o il )T o | 0 2T C ) e Tontosa} - (0

¥ Y

2
E190 = a {(S] » U (mj, S; ), Z; (m], 5; ) je [2] w”(a@,m)) €T47,3 (psvxw)} and finally £ a ﬂgjl ﬂgﬂ mglﬂ N&1a9,
j=1
where L; = 3 exp{k;jlogq — nlogq + nH(V;|S;)y — 3nns} is a threshold chosen to ensure that there is at least
one jointly typical sequence. Instead of choosing L; = 1, choosing it as above aids our error analysis. This is
evident in Appendix J where we derive an upper bound on £3(m) found in (40). We remark that all Von Neumann
entropies in this proof are evaluated with respect to the joint state TYSYWX gpecified in (5). Since

2 2
E= U?jlugﬂ Uglgluglgz = U]'-le}-jQU-FHlU]:HZ where Fj; 2 gjla]:j2 2 & m?j% )
j=1 Jj=1

2 2 2 2

_ _ 1r..

A A Fi2;

Fio01= I 1| 5j1 ﬂgjg NE121, F1o9 = | 1|5j1ﬂ5j2 N E191N E129 we have 12]lg + 1 < E 1 E 1 (]l}‘ji-i- 5 ) + 1g(12)
J= J= J 1=

With these definitions, we have

2
1r. .
<Z<J )+ Co(m), where (j(m Zps ¢(mls" Z(ﬂfji+ ’;) and {y(m) 2 ) pla(s")¢(mls") L. (13)

=1 s™

Next, in regards to Cg (m), consider ¢(m|s™) defined in (9). Note that since 755 > 0 for every a € .7-"52, we have
S >0, T > 0 are PSD. Moreover S = 7}y, mqrmmhy, < mh Irh, = nf, < I implying I — S is PSD. From the
Hayashi Nagaoka inequality [39], we have

Ga(m) < G3(m) + Ca(m) + (5(m) where Cs(m —2Zps I — b 73l ] pmsn } 1, (14)
m) & 437 ph(s") b { w0 o | Lo and Go(m) 24 Y Yl ytr {mte 7Tl e 1 (15)
s",a#ag sn,aEFE2 M#m

Collating through (13), (14), (15), we have ((m) < Z _1 Gi(m) where the terms in the latter sum are defined
through (13), (14) and (15). We now employ the random coding technique and prove that the average of these
terms, evaluated over the ensemble of codes, falls exponentially to O if the rate conditions stated in the theorem
hold. Towards that end, we now specify the distribution on the ensemble of codes.
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Distribution of the random code : We now specify the probability distribution of the random code with respect to
which we compute the expectation of the five terms mentioned above. Recall that our codes and the coding scheme
are‘ completely ls‘peciﬁed via the objects : gl. € ]—"éflxn, 921 € ]_-(gkz—kl)xn’ Lj(my) € F- Tj c [féj], a;(my, s}) €
Fq 1mj € [F¢],s7 € S} and the collection of final codewords z;(mj, s}) : m; € [F¢'], s} € SF. It therefore
suffices to specify a joint distribution of these objects. The generator matrices G € ]:[fl M Gy € ]:q(krkl)xn, and
the collection (¢;(m;) € Fi' = mj € [¢%]) of dither/bias vectors specifying the coset shifts are mutually independent
and uniformly distributed on the respective range spaces. Given (1, Gip/1 and the collection (1;(m;) € Fj' 1 my €
[¢7]), each of (A;(m;, s7) t (my, ]) € [ 7] x 87') are mutually independent and uniformly distributed in £; (m]7 s7)
as defined in (5). Let V)" (my, 57 ) V"(A (mj, s7), m7) as defined earlier for a generic code. Next, given G1, Gy /1,
the collections (Lj(m]) € Fy c [d9)), (Aj(my, sT) - (mj, sj) € [q%] x S7') and the event V[*(mj,s}) =
v (my, sj) = (vj(mj,s?)l,--- ,Uj(mj,s?)n) :my € [gl],s” 7 € 87, the final codewords (X7 (my,s7) : my €
[¢%], s} € S7') are mutually independent and the probability that the final codeword X7'(my, s7) = a7 (m;, s7) =
(zj(mg, si)1, - xj(my, s5)n) is [[i2) px, v, (25 (my, s5)elvi(my, sT)e, 8jt). Mathematically stated,

G1 = g1,Ga1 = goy1,5(my) = d?(m]) mj € [M], L L
P Aj(mj,S?):aj(mj,Sj) (m], ]) [ ]X'Sn — 1 1 (1)q <1>q X
‘/}(Aj(mjasgb)?‘g?) = v?(mh ]) : (mjv ) [ ] X Sn qkll q(k2_k1)l q" q"
J

J
Xj(my,st) =z (my,s7) : (my,s7) € My x S, j €]

j=1 s my 1 s m; t=1

1 a;i(m;.s™ ™ v (a;(m sy
TTITIT e ST {HHHHpXVS 3 (mg, Sl s} si0) | (16)

where L;(m;, sy) is as defined in (5). We make the following remarks for ease of reference at a later point.

Remark 2. Given G1, G4/, and the collection 1j(mj) : m; € [¢%], Aj(m;, s') is uniformly distributed in L;(my, s7).
Specifically, Aj(mj,s}) is conditionally independent of G2, G5/, and the collection v;(m;) : m; € [¢%] given the
lists Lj(m;,s ]) As a consequence, Aj(mj,s?) is conditionally independent of V['(aj,m;) for any a; given

L; (mj, s), and moreover, Aj(my, s}) is uniformly distributed in the latter list.

In the rest of our proof, we derive upper bounds on (;(mn) =8 {¢j(m)} for j € [5] that decay exponentially to
0, where the expectations in question are with respect to the distribution of the random code.

Upper bound on (;(m),(5(m) : The analysis of both these terms is identical and we let j € [2] denote a
generlc term (j( m). From (13), (9) and the definition of S in (8), we note that S > 0 is PSD and hence

—(S+ T)_f S(S+ T)_% < I implying ¢(m|s") < tr(I - pp,s). Substituting this in the definition of (;(m)
in (13), we obtain (j(m) < > .. ps(s") Z?Zl (]l fji+%). This involves only classical probabilities and our

study of ¢;(m) will therefore closely mimic [13, Upper Bound on ey; in Appendix B]. The proof of the following
propositions are provided in Appendix E.

Proposition 1. If & log 1 > logq — H(V;|Sj)y + 3ns3 for j € [2], then there exists a strictly positive k > 0 such
that for all n suﬁ‘iczenﬂy large ¢, (m) + (o(m) < exp{—nrn3}

To comprehend the above bound, note that codewords of a random UCC are uniformly distributed. In a coset with
¢"* random codewords that are uniformly distributed (Lemma 5), the expected number of codewords that will be
jointly typical with the observed typical state sequence s7 is |15, (V; |s§?)\qk*" whose exponent is lower bounded by
klog g —nlogq+mnH(V;|S;)x —4nn. See Lemma 5. The condition in Proposition 1 guarantees the latter exponent
is positive. This implies that [£;(m;, s7)| will concentrate around exp {k;logg —nlogq +nH(V;|S;)r} = 2L,
and hence the probability that |£;(m;, s;‘)| < L; falls exponentially in n.
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Upper bound on (5(m) : In our analysis steps, we have adopted the convention that, if unspecified, the summation
is over the entire range of the summand.! With this convention, we have

(3(m) =2 ZPE(ﬁn) tr {pm,s - W#I g@mm m/’m s } leg=2 ZPS ) tr {Pm,g" - ng;n [ Pm,sm 7r771] } 1e(17)

<2 Zps )tr { pm,sn — T Pmsn | e + Zpg(ﬁ")upm,y — 7 Pl || Le < Ca1(m) + Ca2(m), (18)
s™ sn

where (31(m) = 29 ZPS - aénz;n] Pm,sm } Lg and (32(m) = 22 ZPS \/tr - 7Tn1 Pm,sm }]lé‘ (19)

In the above, (17) follows from cyclicity of trace, (18) follows from ‘measurement on close states’ [35, Exercise
9.1.8] and (19) follows from [35, Chain of Inequalities 9.205 through to 9.209]. As an informed reader might
have guessed, our analysis of (32(m) is via an analysis analogous to the pinching lemma [35, Property 15.2.7]. In
Appendix F, we have detailed the steps where we have proved that if n; > 4ns, for all n € N sufficiently large,
we have

C32(m) < 2[V[|X||S|exp {—n(m — 4”3)25(TYL574U37 VIIXIIS])} -

Ihis leaves us Wich:}( ) < Cgl( )+2|y|\X||S|exp{ —4773)25(1"YX75,4773, \y||&]|§|)}.Towards analyzing
(31 (m), note that
<31 < 2 Z PS tr{ aégzm] Pm,sm }]lElﬂEsz3 =2 Z Z PS tr{ a’ﬁrﬂpx" }]lElmEsz3
§;7: ale]:(II n’inalej: 1
Wt (127046;;2 w",x a27a€f

A [£; (mw )= Lj,a5(m;, SJ) a’J
=2 L(s™) tr { [T — 7] pan 1 , where E; 2 ¢ v] (ag,my)= vyl (my,sh)= ,(20
Z Z ps(s") {[ | pan.s } EiNE>NF; J (Sglyv;})eTng(psjvj),S;LGT%&(psj)’ (20)

F3 A {w("'(aam):wn,a:al 0%~ l@az} @1)

8™,z 0™ W) €Ty, (Psxvw)

0'772

The difficulty in analyzing (31(m) is the fact that the typical projectors 7y, are with respect to state o, : w € W
and not oy, ¢» on which the decoding POVM is applied. Computing the expectatlon enables us to average over the

choice of x;(m;, s;L) and thereby perform the state. In Appendix G, we prove the following proposition.

Proposition 2. For every n € N sufficiently large, we have E {(31(m)} = (3;(m) < exp {—n [(n2 — 4n3)* — 93] }.

Upper bound on (4(m) : Referring to (4(m) in (15) and leveraging the definition of 4, E5 in (20), we have

<2Z Z ZPS { r]l ng nlpms }ﬂElﬂEzﬂEL

5507 q € F,t 02,0
FA eF,?
o, A [a#a, 0kF2=*1@q
=2 E : § : § :Pg’ tI‘ {7T w:‘]Q 7%/%”@"} Lg,nE.nF, where Fy = { ;fu"l(ﬁ,m)zu”)" 2} (22)
80" € Fgt a2,0
z" " €F?

The key challenge in deriving an upper bound on (,(m) is the fact that, W™ (a,m) is not statistically independent of
the choice (X7'(mj, s7) : j = 1,2). Indeed, V;(my, s7) is a function of the whole bin ¢;(m;) = (V;(a;j,m;) : a; €
[¢"]), and W"(a,m) is an addition of codewords in c1(m1) and cz(m2). The standard proof technique crucially
relies on this statistical independence which does not hold in this case. In Appendix H, we put forth a new sequence
of steps to overcome this challenge and thereby prove the following proposition. As we have discussed in Sec. I,
this new sequence of steps can be adopted in scenarios channel codes with bins such as the CQ broadcast channel
[7]1, [8] among others [23].

"For certain sums wherein the summands range over the entire range we have explicitly stated this range for the sake of clarity/to remind
the reader.
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Proposition 3. For every n € N sufficiently large, we have
k
E{G(m)} = (4(m) < Sexp{ <H(Y)T —HY W)y +logg— HW)y — 993 —m1 — 212 — ;logq> } .

Upper bound on (5(m) : Referring to (5(m) in (15) and leveraging the definition of F4, E5 in (20), we have

O—
< 2 Z Z ZPS { 771 CL 777]’?7T7l7t1pm7§"} ]lElﬂEy’WFs

570" g, e Fyt a2,
TN st e Fo?
=2 Z Z Zpg tl“ {77-771 2)77327.‘.#] 'Olnén} ]1E10E2ﬁF57 where F3 = {wn(&’m) = wn} (23)
50" a e Fyt 2,0
ZhW" st e Fo?
The analysis of (5(m), owing to the statistical independence of W™ (1, 17) and the pair (X7(my,s7) :j=1,2)
whenever m # (m1, mg), is more straightforward. As we observe in the following proposition, exponent in the
bound on (5(m) is smaller than the exponent in the bound on (,(m). Therefore the bound in the following
proposition and influences the rate of the code. The proof of the following proposition in provided in Appendix L

Proposition 4. For every n € N sufficiently large, we have
ko410 +1
E {¢5(m)} = Cs(m) < 8€Xp{ <H(Y)T — H(Y,W)x +logq — 9nz — m — 2n2 — 2711210gq> } (24)

It must be noted that the exponent in the bound (24) features % log ¢ because we have assumed ko > ki. In
general, the last term in the above stated exponent would be max{kl’%}ﬂﬁb log q. Replacing the last term in the
above exponent, we now collate the upper bounds we have derived on (,;(m) : 7 € [5]. Substituting (81), (92), (83),
(101) and (110) and setting 7y = 513, 12 = 413 + %, there exists a strictly positive x > 0 such that for
alln e N sufﬁciently large,

10m3 max{k:l, k‘g} + 1+ 1
) < ) < 16exps—nllogg — HW|Y )y — 2313 — — lo
m) < E: p{ <gq H(WIY)y — 23n3 5.0 o) - gq
2 .
+Zexp {—n <TZ log g — [logq — H(V;|S;)r + 3773]> } exp {—nmyg}. (25)
i=1

Performing a Fourier-Motzkin elimination on the four bounds

ki+l1+1 10 k;

Mlogq <logq— H(W|Y )y —24n3— ¢, ~Llogq >logq — H(V;|Sj)r +4n3 : j = 1,2,(26)
n 5q(0apW7nl) n

we obtain the achievability of the rate pair (R;, R2) satisfying R; + Ry = % logg < min{H(V;|Sj)r : j €

2]} —HWIY)y —24n3 — %. Since 13 > 0 is arbitrary and é,(o, pw, 71) is a positive constant, we can

choose 73 arbitrarily small. This completes proof of achievability of the rate region stated in the theorem. 0

E. Non-Commutative Examples

We now identify examples of non-commutative QMSTx for which the inner bound characterized in Thm. 2 is
strictly larger than that achievable via unstructured IID codes (Thm. 1).

Theorem 3. Consider Ex. 1 and refer to Ay, A. defined in Thms. 1, 2 respectively. There exists 0 € (0,%) for
which A, C A..

Proof. Our proof relies on two facts that can be easily verified. Firstly, the inner bounds .4,, and 4. are continuous
functions of the underlying space of QMSTxs when viewed as functions of the QMSTxs in question. Secondly, let
us recall the inner bounds achievable via unstructured IID random codes and structured coset codes. Specifically,
R defined in [4, Eqn. (30)] or equivalently R(7) defined in [13, Defn. 10] is the inner bounds achievable via
unstructured IID random codes and henceforth denoted B, (7) in this article. Similarly, let B.(7) , characterized
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Fig. 14. Bound uce{max{0,a — 2 4 2hs(7)}} on the sum rate achievable via IID random codes is plotted in blue and the sum rate
uce{max{0, o« — 1 + hy(7)}} achievable via UCC is plotted in red.
as Ry(7), denote the inner bound achievable via structured coset codes for a commutative QMSTx. Through the
characterizations of A, B.(T), Ay, B, (7), it is straight forward to verify that A, reduces to B.(7) and A, reduces
to B, (7) when the QMSTx is commutative. We shall now leverage these two facts in the context of Ex. 1.

For Ex. 1, B, (7) = uce{max{0, 2hy(7) — 1}} and B.(7) = uce{max{0, hy(7)}}. Since B, (7) C B.(7), from
the two facts stated above A, C A, for sufficiently small § € (0, 7). This completes our proof. O

While the above Thm. 3 and proof establishes the sub-optimality of unstructured IID random codes and the strict
improvement of coset codes, the proof relies on a continuity argument. Philosof and Zamir’s proof of sub-optimality
of the unstructured IID random coding strategy is based on an stand-alone proof without appealing to continuity. Can
we identify a non-commutative example and provide another such definitive proof? Unfortunately, this is involved
as one must identify an optimal choice for parameters that saturate .A,, for a chosen non-commutative QMSTx. This
requires an ingenious argument and clever identification of a non-commutative QMSTx. Instead, in the following
we provide a partial solution and prove that for a specific choice of parameters the corresponding inner bound
achievable via structured coset codes is strictly larger than that achievable via unstructured IID random codes.

Proposition 5. Consider Ex.1 for T € (0, %) and 6 = 3. There exists a choice of parameters, for which the inner
bound achievable via UCCs is strictly larger than that achievable via unstructured codes.

Proof. By choosing Vi = V2 = F; the binary field and px,v;|s,(1,1 @ sj]s5) = 7 = 1 — px,v;|s,(0, sjs;) for
sj € {0,1} and j € [2] and evaluating the inner bound in Thm. 2, it can be verified that any rate pair (R;, R2)
satisfying R1 + Ry < uce{max{0,«a — 1 4+ hy(7)}} is achievable where « is as defined in (3). See Fig. 14 for
plots of the rate regions Ry + Ry < uce{max{0,a — 2 + 2hy(7)}} and Ry + R2 < uce{max{0,a — 1+ hy(7)}}
achievable via IID and structured codes respectively to verify the latter is strictly larger. O

Example 2. Let X1 = X, = 8 = S = {0,1}, ps(s) =  for every s € S, p(0) £ 10)0| and p(1) £ |vgXvgl,
where |vg) £ [cosO sin6)T. For (z,s) € {0,1}, let pa,eys,s, = p([21V a2 B[22V 52]), where \/ denotes (binary)
logical OR, @ denotes addition in the binary field F> and the cost function kj(xj,s;) =1 {x,=1} IS the Hamming

weight function. For a T € (0, %) what are the sum rates achievable via unstructured IID and union coset codes?

Owing to the ’non-linear’ relationship between the input symbols s,s and the index of u, it is difficult to
analytically pin down the test channel maximizing the sum rate bound (1) via unstructured IID codes. We therefore
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Fig. 15. Computed sum rates achievable using unstructured IID and Fig. 16. Computed sum rates achievable using unstructured IID and

: : 7 - .
union coset codes are plotted for Ex. 2 for a choice of = 5. @ and 8 ynion coset codes are plotted for Example 2 for a choice of § = 3%.

denote the corresponding sum rates achievable in two cases considered , and B denote the corresponding sum rates achievable in two cases
before convexification. considered before convexification.

resort to computation. In Fig. 15 we have plotted the sum rates achievable via union coset codes and unstructured
codes for a choice of § = %.r. In Fig. 16 we have plotted the sum rates achievable via union coset codes and

unstructured codes for a choice of 0 = %r. The following remark summarizes three important observations.

Remark 3. Firstly, our plots illustrate that union coset codes can enable communication at significantly higher
rates in comparison to rates achievable via unstructured 11D codes. Secondly, our computation reveals that Ex. 2 is
a channel wherein the maximizing test channel distribution is non-uniform. Specifically, for a symmetric Hamming
cost constraint of T € [0, %], the test channel that achieves the maximum sum rate using coset codes for the above
examples is py, x,|s,(0,010) = 1 — py x,15,(1,1]0) = 1 — 27, py, x,|s,(1,0|1) = 1. This illustrates the imports of
our findings in Thm. 2 and 4 that characterize achievable rate regions for all possible test channel distributions.
Thirdly, Fig. 16 illustrates that unstructured IID codes can potentially achieve higher sum rate at Hamming cost
constraints close to % A general coding scheme must therefore incorporate both coding strategies to be able to
achieve maximum possible rates. Our next section is aimed at designing and analyzing a unified coding scheme

that incorporates both UCCs and unstructured IID codes.

FE. The Role of Union Coset Codes

Having detailed the proof, we are at an opportune point to explain the role of UCCs and why we chose the same
over nested coset codes (NCCs). In contrast to unstructured IID random codes, when we impose structure, i.e. seek
codes possessing structure and performing information-theoretic tasks such as packing and covering, we have to
pay a rate penalty. Indeed, if we employed unstructured IID random codes, the covering bound in Prop. 1 would
be ML > [(Vy; 8;)y = H(Vi)y — H(V;|S;)x = logq — H(Vj|S;)r — [logq — H(V;)y]. The first term being
the lower bound in Prop. 1, we denote the excess rate - the term in [-] —parenthesis - required in structured coset
coding as 3; 2 Nlogqg— H (Vj)r]. How are we able to obtain gains over unstructured IID random codes despite of
paying this penalty in covering?

A closer look at the packing bound in Prop. 4 answers this question. For a moment, let us say we had employed
unstructured IID random codes and had found a way to decode the sum of the chosen codewords. In that case
the bound would have been “2 1og¢ < [(W;Y)y = logg — H(W|Y)x — [logqg — H(W)y]. In other words,
unstructured IID random code rate is more constrained that structured coset codes in regards to packing. Some
or whole of the advantage that unstructured IID random codes accrue in covering is lost in packing. Precisely,
max{H(W)y — H(V;)r : j € [2]} is the advantage enjoyed by unstructured IID random codes for not imposing
structure. However, this competes with the losses it suffers due to its insistence of decoding the pair and the
associated effect of not optimally allocating the available limited output space.

The above discussion also alerts the reader to the rate penalties one has to pay for imposing structure. One should
therefore impose structure only in those codes - packing or covering - that are exploited in encoding or decoding.
Here, we are only exploiting the fact that all of the coarser codes are coset shifts of a particular linear code. We are
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not needing that these coset shifts be structured. In other words, we are not requiring that the different coset shifts,
when viewed in totality, form a coset of a linear code. The finer or outer code need not possess algebraic closure
properties. Imposing that would unnecessarily entail a rate penalty. This motivates our choice of UCC over NCC.
We refer the reader to Remark 5 and [13] wherein group based codes entail different rate penalties motivating the
choice of UCC over NCC even more important.

V. ENHANCING IID CODING SCHEMES VIA UCCSs

The UCC based coding scheme can enable efficient decoding of V; @ V5. On a QMSTx wherein the latter function
contains the information of the pair of messages, the UCC coding scheme can outperform the use of unstructured
codes. In general, the information corresponding to the message pair can be embedded in both uni-variate and
bi-variate functions of auxiliary RVs. As our computation for Ex. 2 for the case § = :%T indicates, while UCC
codes outperform IID codes for low cost constraints, the latter can potentially achieve higher rates for large cost
constraints. It must also be noted that since structured coding scheme employs statistically correlated codebooks,
they cannot be employed to decode the pair of codewords. For example, if one considers a simple classical binary
additive MAC Y = XX, without states, it is impossible for the Rx to decode both codewords if both Txs employ
cosets of a common linear code. A general coding scheme for QMSTx must therefore incorporate both unstructured

codes and UCCs. We present the following inner bound that subsumes inner bounds stated in Thms. 1, 2.

Theorem 4. A rate-cost (R,7) € A C [0,00)* quadruple is achievable if there exists finite sets Uy,Us, a finite
field Vi = Vo =W = F, of size q and conditional PMFs py,v. x,|s, : J € [2] with respect to which

R < I(Uy; UsY )y — I(Uy; Sj)y +min{I(V}; V3, U, Y) — I(Vi & Vo; V3 |UY) — I(V;; U5, S5) = j € [2]}

. . 27
R+ Ry < (U3 Y )1 — [(Us )y +min{I(Vys V3, U, Y) — [(Vi @ Vs UY) — I(Vys Uy, 5p) g e (2 37
where the above entropies are evaluated with respect to the state
TAIVWE 2N “psyvwx (s, 4, v,w,2)pes @z w v w s)z w v w s|, (28)
8,U,0,W,2
2
psuvwx (swow.z) = pg(s) prjijj 1s; (T4, 5, ugls; )ﬂ{vf”@:v RS (29)

j=1
for all (s,v,w,z) € S XYV xW x X.

By choosing V; = V2 = ¢, we can recover the inner bound achievable via IID codes in Thm. 1. By choosing
Uy = Us = ¢, we can recover the inner bound in Thm. 2, thus proving that the above inner bound subsumes all
known inner bounds for a general QMSTx.

Proof. We begin with an outline of the code structure, decoding POVMs and the tools/techniques we leverage for
our error probability analysis. As mentioned earlier, our approach is one of amalgamating the unstructured IID
coding scheme with the UCC based coding scheme. A pair of unstructured codes - one for each sender - identical
to that used in a proof of Thm. 1 is designed on auxiliary alphabets U1,Us. Each of these codes is partitioned
into bins to enable the encoder choose codewords jointly typical/compatible with the observed state sequence. A
pair of UCCs - one for each sender - identical in structure to that employed in proof of Thm. 2 is designed on
auxiliary alphabet V = V; = V, = F,. Sender j’s message comprises of two components m;; € [M; ;] and
mjo € [M;a] = }"éj communicated via the U/;— and V;—codebooks respectively.

Our decoding will leverage simultaneous (joint) and successive decoding techniques. The first layer decoding
will employ a joint decoding POVM to decode into the U1, s —codebooks. Following this, a second stage POVM
will decode into the sum UCC codebook analogous to that in proof of Thm. 2.

Our error probability analysis will leverage techniques developed in prior works [37] to handle the complexities of
joint decoding over a 2—user QMAC, successive decoding [40] and codebook with bins. Specifically, the decoding
POVM and the techniques developed in [37] to analyze joint decoding is enhanced with the list decoding technique
proposed in Sec. IV-D to analyze joint decoding into the {/; — U/a—codebooks comprising of bins. The analysis of
the second stage decoding into the sum of the UCCs is identical to that developed in Sec. IV-D.
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A. Code Structure

In contrast to Sec. IV, sender j’s message comprises of two components m;1 € [Mﬂ] and m;s € (M ]2] ]-"q',
communicated via the {/;— and V;—codebooks respectively. We let Rj; A log M“ and R; = Rj1+Rjp for j,i € [2].
To distinguish from an underlme that we have employed to aggregate random Varlables messages, sets across users,
we let a tilde at the bottom to aggregate message components of a single user. We let [Ad;] = [M1] x [Mo]
denote the aggregation of sender j’s message and 1 = (mj1,mj2) for j € [2] denote a generic message of sender
j. As stated in the theorem, U, U> are finite sets and V = V) = V, = F, is a finite field of size ¢. For j € [2],
sender j’s code comprises of an unstructured (IID random) code and a UCC, henceforth referred to as U/;—code
and Vj—code respectively. {/;—code comprises of M ; bins 8;(m;1) : mj1 € [M;1], each of which consists of
Bj codewords. Specifically, the U;— code is (8;(m;1) = (uf(mj1,b;) € U} : b; € [Bj]) : mj1 € [Mj1]) with
uf}(m;1,b;) denoting a generic codeword in bin B;(m;1). Sender j’s V;—code is a UCC code (n,kj,1;,g;,¢;)
comprising of g7 cosets ¢j(mj2) : mja € [Mja] = féj. Specifically, the V;—code is (cj(mj2) = (v} (a;j,m;2) =
a;jg; @ tj(mjo) : aj € Ty mjo € [Mjs]) wherein v (a;j, m;2) denotes a generic codeword in the coset/bin

T
cj(mjg). Just as in proof of Thm. 2, we assume ko > k; without loss of generality and enforce go = {gf gQT/I]

This ensures that the bins of user 1’s UCC V; —code are sub-cosets of the bins of user 2’s UCC Vy—code.
B. Encoding

On observing message m; = (m;1,m;2) and the state sequence s%, encoder j first looks for a codeword in
Bj(m;1) that is jointly typical with s7. If it finds at least one, one among these is chosen and denoted uj (mj1, s7).
Next, the encoder looks for a codeword in the coset c;(m;2) that is jointly typical with the pair (s, u] (mﬂ, 7). 1f
it finds at least one such codeword, one among these is chosen and denoted v} (1, s}). Moreover, let b;(m;1, s})
and a;(m;, s7) denote the index of the chosen codewords u;(m;1, s ]) and vj (mj, s}/) respectively. In other words,
let u} (mj1,b;(mj1, s7)) = uj(mj1,s7) and v} (a;(my, s7), mj2) = vi(my, s}). If any of the above steps returns
no ch01ces a default pair of codewords from the pair 3;(m;1) and cj (mj2) bins is chosen. For the sake of the
ensuing analysis, we formalize this encoding with notation.

Let a1 (myj1, s7) = be the number of available jointly typical codewords in the

Zb { u mleb )7 ?)ET"TS(pUij)}
U;—codebook. Let

{bj s (uf (my1,bs),87) € Ta (PUij)} if aji(my1,s}) > 1

(30)
{0} otherwise, i.e. a;1(m;1, s?) =0.

Lj(mj,s}) & {

Let aja(m;, s}) a Zaj Ly (o s (mg,57)),07 (agm2) 87 )€ (pu,vys;)} be the number of available jointly typical
codeword triplets for a chosen {/;—codeword and

{aj:(u](mjl,b(mﬂ, s7)), v} (aj, mj2), s ])GTns(PUVS)} if ajo(m;, s7) > 1

(3D
{0} otherwise, i.e. aja(m

A
£J2(m]7 ]):{ 0.

]7 ])
For every pair (m;,s}), an element is chosen from Lji(m;,s?) and denoted/defined b;(mj;1,s}). We define
ul(myj, s7) = ulf(mj1,bj(my1,s7)). Next, for the pair (T,gj, s7)), an element is chosen from L;2(my,s”)
and defined/denoted a;(m;, ;L) and® we define o7 (my, ?) = o7 (aj(my, s7), mj2). A predefined ‘fusion map’
fi o 8F x U x VI — X' is used to map the trlplet s, ul(mj1,s7), 07 (my;, s7) to an input sequence in A7’
henceforth denoted 77 (15, s7).

C. Decoding POVMs
A

Having let 1mp; denote the two components of sender j’s message, we let m, =S (mi1,me1) € [M;] =
[M11] x [Ma;] denote the components of the two senders messages indexing the U;—,Us—codebooks and
my £ (mi2,maa) € [My] & [Mig] X [Mag] = Fé“rl? denote the components of the two senders messages

indexing the V;—,Vy—codebooks. As we stated at the beginning of our proof, we employ a simultaneous (joint)
decoding POVM to decode the messages m; indexing the U;—,Us—codebooks. The joint decoding POVM is

*The dependence of a;(m;, s}) on the choice b;(m;1,s}) is implicit and represented through m;1.



20

designed based on [37, Sec. V.B]. Next, a successive decoding POVM recovers the components of m,. Indeed,
recall that the pair of messages is recovered in Sec. IV by decoding into a single sum codebook. Our decoding
POVM is {\/ )‘mlemQ\ml VAm, (my,my) € [M;] x [Mz]} U{A-1, LV )‘mlgflml VAm, 1my € [M,]}. We begin
by specifying the POVM { Am, 1 my € [My], )\_1} of the first stage joint decoder.
A A A i A
Let p = ZQSPXS(x 8)Pzss Ou = Ouguy = Doy SPXS|U(5'3 slu)pg,s and o3, X s PXS|U; (@, 5|u;)pr,s for
J € [2]. We let 7} denote the n— uncondltlonal typlcal projector of u®", 7o' denote the n—conditional typical

projector of oyn é ®t 10w, s Ton denote the n—conditional typical prOJector of o7, = ®t 10'u]t Furthermore,
.7

for j € [2], we let 7rm b, A ﬂ-;;] »ﬁb denote the conditional typical projector of O' " (mgby) = Q0 (m b 7rmv77 b
3 3 31,Yj ——1=

be the conditional typlcal projector of oyn (., by uz (may,bs) = Ote1Cuy (myy,be)rus (m21,b2) With these definitions, we

A _p_1n: om,_1,n2 M
let amlb 7r7747rm11b1 mbﬂ-mu by "' N4>

1
2

1
2
Aml = aﬁl 1b am1 1b am1 )b
m, b b b

and !, Ar- dom )‘71711' Next, we specify the second stage POVM.

Consider the UC?I (Z,]fz,ll + ZQ,QQ,L@) where L@(mg) = Ll(mgl) D L(mQQ) for my = (mgl,mQQ) S Fél X
Fl2 and let w™(a,my) a aga @ t1(ma1) @ t2(mg2) denote its codewords. Referring to Appendix A-B, we let
Wffvn;%a;m) be the n7—conditional typical projector of ®;;dy,(q,m,) With respect to the PMF py,, where 4, 2
> us Pxsw (&, 8|w)pgs + w € W where psxw is the corresponding marginal of psyvwx defined in (28). As

Sum

4,m _ w™ (a,mq) A a,7) 0,m a,7]

stated in Appendix A-B, we henceforth let ma)m, = mpy . > . We define Yam,lm, = Trm Gb o ,,Zzﬂm “b* where
o 7 .

T Gb* is the ng—conditional typical projector of the state oyn (i, b )uz (mar,by) = ®?:1Uu1(m11,b1),,m (mas,by),- With

these definitions, we let

N =

0

m,y|m, é Z 7&7@2 |m, Z 7&,@2 |m, Z 7@7@2‘m1 (32)

@,Mm21,Ma22 a @,M21,Ma22

and 9_1 é I — ng 9m2|m1.

D. Probability of Error Analysis

As in proof of Thm. 2, we employ the random coding technique and begin by identifying the components
that make up our coding scheme, followed by characterizing an upper bound on the error probability com-
prising of multiple terms. The first stage of our coding scheme is completely characterized via the collections
(u?(mjl,bj) € z/{jn : (mjl,bj) S [Mjl] X [BJ]> and (bj(mjl,s?) S [BJ] : (mjl,s?) S [Mjl] X Sjn) for j € [2]
The second stage is completely characterized via the generator matrices g1, go/1, the collection (¢;(m;2) : mjo €
[¢%]) of dither/bias vectors specifying the coset shifts, the indices (aj(mj, s7) + (my, s7) € [M;] x S]"), and the

final codeword choices (x;?(mj, s7) t (my, s7) € [M] x Sj") each for j € 2. For a generic code specified through
these objects, we now characterize an upper bound on the error probability.

An upper bound on the error probability for a generic code : We let [M] £ [M1]x [My] and m £ (1p1,ms) € [M]
denote a generic message pair of the two senders. We remark that m = (1, m2) = (my, m,), where the components
of the first representation are the two sender’s messages and the components of the second representation are the

message pairs indexing the unstructured and UCC codebooks. For a generic choice of the aforementioned objects,
it can be verified using the cyclicity of the trace that the average error probability is

3 Zﬁ |M| wheref ZPS )E(ms™) ZPS C(m|s™), é(m|§n)étr{(I_)\ml)ﬂm,§n}33)

(m|5 ) { I HmQ\m \/ m, Pm,s™ \/ m1} Pm,sm = ®pm1 (m,,s7)ex2(my,,85)es, (34)
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o (M| = M- [Mar] - ¢ hitl: 'We consider an arbitrary pair m = (1, m2) and henceforth focus our
study on &(m) and {(m). We begln with £(m).

An upper bound on £(m) : Since we have fixed an arbitrary pair m = (m;, ms), we henceforth let b; = bj(m;1, s})
and b* 2 (b1,b3). Since ayy,, p > 0 is PSD for every b € [B1] x [Bz], we have

A > (S+T)"28(S+T) 2 where S = U, b = T Tt g om 7r1”172 p: T, and T :ZO‘ﬁub]l{(ml,l;)#(ml,b*)}’

Na"ma1,b7 " my ,b*
b1y

and hence, £(mls") < (mls"), where £(m|s") 2 tr ([T~ (S+T) 73 S(S+T) %] psr) . 39)

Our study of £(m) will henceforth focus on &(m) £ > s Ps(8™)€(m|s"). Analogous to our proof of Thm. 2, we
split the event corresponding to &£(m) into £ and € and analyze the terms corresponding to the these two events
separately. Let &j; = {g” €T (ps)¢ >

Li1(mjr, s?)| > Lj1, |Li2(my, sT)| > Ljo A s ul(mjy, s7)
g2 [ £ )| = Lo [Ealmn )1 > Lo ) o s ff i), ) o
ﬂ{w%mhﬁﬁ%wmammﬂlﬂ nlmy,s7) : j € [2)) € T (PSUY)

2

A sl,u-(m-l,s.),v-(m-,sz), A

E199 = {( J ﬂg?(ﬂgg, S;]l) ]] c [j2] J € T4775 (pSUVX) and finally £ = qgjl ﬂgjg 08121 N&122,
]:

where Lﬂ = %eXp {n <710g7‘18j| — [(Uj; Sj)T — 3%) }, ng = %eXp n (710g7|18'7| — logq + H(Vj’S], Uj)’r - 3?75

We remark that all Von Neumann entropies are evaluated with respect to the state characterized in (28). Since

2 2
U AUE Ugl21 UE122 = U}—lesz U]:121 UF122 where Fj; a Ei1, Fia a Ei1NEja, (36)

2 2 2
.7:121é ﬂ EinNé&jr ﬂglgl,}—mzé ﬂgﬂﬂgﬂ N E121N E122 we have 1:]lg+ 1< ZZ(]I]: + )+ 137)
j=1 j=1 7j=11i=1
With these definitions, we have

2
<Z@ )+ &(m), where &(m Zps )&(mls" )Z@f +]lf”> 3 Zps ¢(m|s™) . (38)

=1

Firstly, in regards to &j(m) : j € [2], with {(m|s") defined in (35), observe that S = ap p+ =
777’36479171’17? b o b an?j p; ™. > 0 is PSD implying {I— (S—i—T)_%S(S—&—T)_%] < I and hence £(m|s™) <

tr(I - pmsn) = 1. We therefore have &j(m) < Z§,,ngzlpg(§") <]lfji+@) for j € [2]. Next, in regards to

@(m) defined through (38) and (35), observe that S > 0,7 > 0 and moreover 0 < S < I is dominated by I.
Leveraging the ‘measurement on close states’ [35, Exercise 9.1.8] and the Hayashi Nagaoka inequality, (m/|s™)
in (35) satisfies

§mls") < T2 e o T s~ P ([T (S+T)ES (SHT) ] m2 o wi;’jj,b;)gifi(mls”),G%
=3

where &3(m|s™) 2 3” T,;Zfb Prm,sn anZbe — Pm,sm 1754(m’5n ) 2 2tr ([T — am, 7] pmsr) . (40)

)= 422“( B3P Tt ) L, b)) (41)

E6(m|s™) —4ZZtr( i BT b P T )1{m21,b2>¢ )} 42)

£7(mls™) A4ZZtr( o BT s P T )n{mm Lot i=12} (43)
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In writing the second inequality in (39), we have leveraged the fact that, when the Hayashi Nagaoka inequality is
applied on the second term of the RHS of the first inequality, the resulting first term is dominated by &4(m|s™) +
%53 (m|s™) via the measurement on close states [35, Exercise 9.1.8]. This, in addition to the presence of the first
term on the RHS of the first inequality explains the factor 3 in the definition of £3(m|s™). The rest of the terms
&(mls™) : i =15,6,---,7 are the other terms that make up the upper bound in the Hayash1 Nagaoka inequality.
We therefore have 52( ) < ZZ 3&(m), where for i € {3,4,---,7}, we have &(m ) & > e P(s™)&i(m[s")Le.
Collating through (38), (39) through (42), we have {(m) < ZZ:1 &(m). We now employ the random coding
technique and prove that the average of these terms, evaluated over the ensemble of codes, falls exponentially to
0 if the rate conditions (27) hold. Towards that end, we specify the distribution on the ensemble of codes.

Distribution of the Random Code : We now specify the probability distribution of the random code
with respect to which we compute the expectation of the eight terms mentioned above. We refer the
reader to Sec. V-D for a list of components in the first and second stage that completely spec-
ify our coding scheme. It therefore suffices to specify a ('oint distribution of the corresponding random

components : <U"(m]1,b ) € UL+ (my1,by) € [My] x [Bj]), Bj(mj1,s?) € [Bj] : (my1, s7) € [M;] x S]") for

j = 1,2, the generator matrices G1,Gojp, the collection (1j(mjo) : mys € [¢%]) of dither/bias
. . . . . l]

vectors specifying the coset shifts, the indices (Aj(mj,sj) (m;,s}) € [M;] x Fy xSJ’-‘), and the fi-

nal codeword choices (X] (my,s7) : (my,s}) € [M] x]-"éj ><SJ’»1> each for 7 = 1,2. The collections

(U] (mj1,b;) € UP : (mj1,b;) € [My] X [Bj]) for j € [2], the generator matrices G'1,Gy/1 and the dither/bias

vectors (tj(mj2) : mjo € []-'éj]) are mutually independent. G € fle",Gg/l € .7-"(’€2
Fq i myz € []:éj | are uniformly distributed on their respective range spaces. The codewords in the collection
(U]’?(mﬂ, bj) € U} = (mj1,b5) € [M;] x [Bj]) for j € [2] are mutually independent and U7 (1, b;) is distributed
with PMF py; - for each (mjl,b ) € [M;] x [B;]. Given all of these objects, the collection of chosen indices
(Bj(mj1,87) : mj1 € [M;],s? € S') are mutually independent and uniformly distributed in L;1(m;1, s7). Next,
given all of the above objects, the collection of chosen indices (A;(my,s}) : (m;,s]) € [M;] x S}') are mutually
independent and uniformly distributed in L;2(m;, s7).

k1) xn and Lj(mjg) S

Remark 4. Given the entire codebooks (U7 (myj1,bj) : (mj1,b;) € [Mj1] X Bj) : j € [2], the collection of indices
(Bj(mj1,87) : (mj1,8]) € [Mj] x S7') are mutually independent and umformly dtstrlbuted in Lj1(mj1, 7). Next,
given the entire codebooks (U} (mj1,bj) : (mj1,b5) € [Mj1] x Bj) : j € [2], the generator matrices G1,Gy)1, the
collection 1j(mjs) : mj2 € [ ] of dither/bias vectors and the collectlon (Bj(myj1,s7)  (mj1,87) € [Mj] x SF),

the indices (Aj(m;j,s}) : (m;,sT) € [M;]xS}) are mutually independent and uniformly distributed in Lja (15, 7).

My, $;
In the rest of our analysis of the first stage decoding, we derive upper bounds on &;(m) £ E{&(m)} : i € [8]
that decay exponentially to 0, where the expectation in question is with respect to the random code.

Upper bound on & (m), &(m) : For a generic j € [2], our discussion following (38) leads us to &; <

Z?Zl <§ji + 51;"), where {;; = Z§n pe(s™)P(Fj;) and &9 = an ps( ")P(F12;) for i € [2]. From classical
typicality (Lemma 1), there exists a x;j; > 0 such that for all n sufficiently large, gﬂ(m) < exp{—nkj1nt}.
Employing standard classical information theoretic analysis as presented in Appendix E, the following proposition
can be proved.

Proposition 6. If B; > I(Uj; S;j)r + 2ns, - ki logg > logq — H(V;|Uj, Sj)x + 3ns, then there exists k12 > 0 such
that for all n sufficiently large 51( )+ 52( ) < exp{—nria}.

Upper bound on &3(m) : Deriving an upper bound on &3(m) will essentially involve using the gentle measurement
lemma for ensembles [35, Lemma 9.4.3]. We provide a proof of the following proposition in Appendix J.

Proposition 7. For every n € N sufficiently large, we have £5(m) < 96 exp { (M - %‘m’) }
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Upper Bound on £4(m) : The analysis of £,(m) is analogous to that of &;(m) and leverages the ‘measurement on
closes states’ [35, Exercise 9.1.8] and gentle measurement lemma for ensemble averages [35, Lemma 9.4.3]. The
proof of the following proposition is fleshed out in Appendix K.

Proposition 8. For every n € N sufficiently large, we have &,(m) < exp {—n (m — 775)2} +
2exp {—% (74 — 775)2} + 2exp {—% (n2 — 775)2}-

Upper Bound on &5(m) : £5(m) corresponds to the error in the first sender’s /3 —message. In Appendix L, we
build on the techniques developed in [37, Proof Of Thm. 2] and prove the following proposition.

Proposition 9. For every n € N sufficiently large, we have

&5(m) < exp{—n (I(Y;U1|Uz)r — 2m — 95 — 13 — Ry — B))} (44)
Upper Bound on &g(m) : £6(m) corresponds to the error in the second sender’s Uy —codebook message. In Appendix
M, we build on the techniques developed in [37, Proof Of Thm. 2] and prove the following proposition.

Proposition 10. For every n € N sufficiently large, we have
Eo(m) < exp{—n (I(Y;U2|Ur)y — 2m — 95 — n3 — R1y — By} (45)

Upper Bound on &-(m) : Our last term in our analysis of ¢ (m) in (33) is &;(m). We study the same now, following
which we proceed to analyzing ((m). &(m) corresponds to the error in the both sender’s U —,Us—codebook
messages. In Appendix N, we build on the techniques developed in [37, Proof Of Thm. 2] and prove the following
proposition.

Proposition 11. For every n € N sufficiently large, we have
&r(m) exp{—n (I(Y;U1,Us)y — 805 — na — 21 — R11 — Roy — By — Ba)} (46)

Propositions 6 through 11 have characterized conditions under which &(m) falls exponentially in n. This concludes
our analysis of {(m) and we now proceed to analyzing ((m).

Upper bound on f (m): From [35, Exercise 9.18], i.e ‘measurement on close states’ and the gentle measurement
lemma, specifically [35, Chain of Inequalities 9.205 through to 9.209], ((m/|s™) as defined in (34) is upper bounded

via
{(ml|s™) < ¢(m]s" +Hpms’ \/>Pms" +2\/tr{ m, ) Pmsn} < C(m]s™) + 24/€(m|s™)

E(m)+5(m) §(m)+((m +2V

M| M|
where ¢(m|s") £ tr {(I = Opym,) Pmsr - C(m) 2D ps(s")¢(mls")

implying

In view of our analysis of {(m) which serves as an upper bound on é (m), we are only required to derive an upper
bound on ((m). In view of our detailed proof of Thm. 2, the similarity of the steps herein and in the interest of
brevity, we omit a detailed analysis. We put forth the following proposition which is straightforward to prove using
the steps developed in the proof of Thm. 2.

Proposition 12. If kﬁfliﬁlz logq < logq—H(W]Y,iUl, Us)y and % log g > log q— H (V;|Uj, Sj)x then there exits
a k¢ > 0 such that for all n € N sufficiently large ((m) < exp{—n#¢}

As was the case in proof of Thm. 2, we have assumed k2 > k. In the general case, the first bound in Proposition
12 has to be replaced by wlogq < logq — H(W|Y,Uy,Us)y. With this, we now collate all our
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findings in Propositions 6 through 12 to conclude the existence of x¢ > 0 such that for all n € N sufficiently large,
£(m) < exp{—nke¢} if, for j € [2]

B; > I(S;;Us)y, %% > logq— H(V;|Uj, Sj)v, Yooy Rjy + By < I(Uy, Us; Y )y + I(U; Ua)r,

(47)
R+ By < I(Uy; U, Y)y, Rot + By < I(Ug; Uy, Y )y, 2kl thidtls 160 4 < log g — H(W|Y, Uy, Us)y.

We substitute ljl% = R; — Rj; for j € [2] and add the two non-negative bounds R;; > 0 and R; — Rj; > 0.
Performing a Fourier Motzkin elimination on the resulting set of bounds yields the rate region stated in (27). This
completes our proof.

O

VI. COMMUNICATING OVER CLASSICAL-QUANTUM CHANNEL WITH RANDOM STATES USING UCCs

We now focus on the PTP CQ channel with classical random states available non-causally at the transmitter,
abbreviated as a QSTx. See Fig. 2. We shall prove that UCCs achieve the Gel fand-Pinsker inner bound [2], [5].
The goal of our presentation in this section is three fold. Firstly, our current proof of achievability of the Gel fand-
Pinsker inner bound for the QSTx provided by Boche, Cai and Nétzel [5] leverage tools from representation theory.
While their findings are novel, the tools they leverage are unfamiliar to mainstream information theorists. It is
therefore of interest to provide simple proofs of these results via conventional information-theoretic tools along
the lines of [2]. Secondly, we intend to present a proof technique that works with both unstructured IID random
codes and structured coset codes. Lastly, the techniques we employ in this section is identical to those employed
for proving Thms. 2 and 4, thereby demonstrating the versatility of the proof techniques developed in this article.

We begin with a formal description of a QSTx. Consider a (generic) QSTx specified through (i) a finite input
set X, (ii) a finite set S of states, (iii) a PMF pg(:) on S, (iii) a collection (p,s € D(H) : (x,s) € X x S) of
density operators and (iv) cost function k : X x S — [0, 00). The cost function is additive, i.e., having observed the
state sequence s” the cost incurred by the sender in preparing the state ®7_ p,s, is F(z", s") 2 LS K@y, 81).
Reliable communication on a QSTx entails identifying a code.

Definition 4. An (n, M, e, \) OSTx code consists of a message index set M, an encoder map e : M x 8" — X"
with codewords denoted (x"(m,s") = (x(m,s"); : 1 <t < n): (m,s") € M x S") and a decoder POVM
A2\, € P(H®") : m € M}. The average error probability of the code is

767 = |M‘ZC ) Wher@C ZPS tI‘ I A ]px (ms”)s”) Pxn (m,sm) s”—®pxms )e,S¢
t=1

meM smesSn

Average cost incurred by the sender in transmitting message m is T(e|m) £ Y e Po(s™)k(e(m, s™),s™) and the
average cost incurred by the sender is T(¢) £ ﬁ > o T(ejm).

The object of interest is the capacity region of a QSTx defined below. In this section, we prove achievability of
the current known largest single-letter inner bounds to the capacity region of a QSTx.

Definition 5. A rate cost quadruple (R 7) € [0,00)? is achievable if there exists a sequence of QSTx codes
(n, MM (™) X)) for which hm ™ AMy =0

lim n~'logM™ = R, and lim (™) < 7.

n—00 n—00
The capacity region € of the QSTx is the set of all achievable rate-cost vectors and €(t) £ {R : (R, ) € €}.

Theorem 5. Consider a QSTx characterized through a finite set S of states, a PMF pg on S modeling the distribution
of the random state, an input set X and a collection of density operators (pys € D(H) : (x,s) € X x S). For
7 >0, R € €(7) if there exists a PMF pspyx|s on S x V x X for which 3, . ps(s)px|s(z|s)k(z,s) < 7 and
R < I(V;Y)y — I(V;S)y where all information quantities are computed with respect to the quantum state

oysxv 2 Z Ps(8)pyx|s(0,2]5)pes @ |s  v)(s x v]. (48)

z,5,V
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\ Symbol [ Description [ Comment |
% log q and % log q Binning rate and information rate respectively.
g€ J-'Lf xn generator matrix of the cosets that form the bins of the code
M=q,[M]=[q] Number of messages, message set
u(m) € Fy dither/bias vector corresponding to message m € [M]
c(m (v" (a;m)=ag@®e(m):me[M)]) Coset/Bin corresponding to message m € [M]
0" (a, m) ag ® (m) € F a generic codeword in c¢(m)
L(m,s") {a € FF:(s",v"(a,m)) € Ty (psv)} List of codewords in ¢(m) jointly typical with state s"
a* =a,, » Index of the chosen codeword v"(a;, jn,s") used to
communicate message m when state sequence is s™
fVxS—=>X *fusion map’ to map chosen codeword
and state sequence to input sequence
z"(m,s") Channel Input sequence chosen to communicate
message m when state sequence is s"
Pm,s™ = Pzn(m,sn),sm ® Pa(m,sm)y Quantum state used to communicate
t=1
message m when state sequence is s"
I D s n Psx(8,T)pzs Average Density operator
Oy Y en Psx|v (8, T|V) pas Average Density operator
T, 1 —Typical projector of p
o2 n2—conditional typical projector of oyn (4,m)
Ya,m ﬂWlZLl ﬂ'g:ﬁ?ﬂ’%
Am > ﬂ/;”;l)*% > Yam(Ds Do yd,fn)*% Operators of decoding POVM
( LAIZTLEZ[/:];W) Decoding POVM
(a) F1, (b) F2, and (c) F3 (@) &1, (b) E1NE2 and (c) E1NE2NE3 Error events at Encoder
Cy(m) Error Event corresponding to quantum state
pm,sn not overlapping substantially with vy,
Cs5(m) Error Event corresponding to quantum state

pm,sn having substantial overlap with s, : 1 # m

TABLE II
DESCRIPTION OF ELEMENTS THAT CONSTITUTE THE CODING SCHEME FOR COMMUNICATION OVER QSTX

Proof. The two new elements in our proof are the code structure (Sec. VI-A). Specifically, we build a union
coset code to communicate over the QSTx. Since the codewords of a random union coset code are not mutually
independent and are uniformly distributed, a standard information theoretic proof is not applicable. We therefore
provide detailed steps in the sequel.

A. Code Structure

Let V = F, be a finite field of size g. Consider a (n, k,[, g, 1) UCC whose codewords are (v"(a,m) 2 ag@i(m) :
(a,m) € V¥ x V!). The message index set M = [¢'] and the bin corresponding to message m is the collection
c(m) 2 (ag ® u(m) : a € V3,). As we describe in the sequel, the encoder observes the state sequence s” € S™ and
chooses a codeword in the bin ¢(m) indexed by the message m € M.

B. Encoding
For every possible pair (m, s™) of message and state sequence, let
A
Oé(m, Sn) = z ]l{(v"(a,m),s")ET;;g(pvs)} 49)
acV*

be the number of codewords in the bin ¢(m) indexed that is jointly typical with the observed state sequence s € S™.
Let

A J{a@(@m),sMeT,,(pvs)}  if a(m,s™) > 1

L(m,s") 240 o (50)

{0"} otherwise, i.e. a(m,s") = 0.
be a list of candidate code words that is available to the encoder for the message, state sequence pair (m, s™). Let
ay, . be chosen from L(m,s") and v™(m, s") = v™(ay, .»,m). A predefined ‘fusion map’ f : S" x V" — A"

is used to map the pair s",v"(m,s™) to an input sequence in X™ henceforth denoted z"(m, s™). On observing
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state sequence s and message m, the encoder chooses z"(m,s") = (x(m,s"); : 1 < t < n), and we define
n

A
Pm,sm = ® px(m,s”)tst'
t=1

C. Decoding POVMs
Consider a PMF pgyx = pspyx|s on S x V x X. Let

H = § pSX S .75 px570v—ZpXS|V x S|U)pa:s have SCD p= Zq |fy <fy‘ and UU—ZTYW(:U‘U) ‘ey\v><ey|v‘
x,s z,s yey yey
respectively, where SCD (as specified in Sec. II) refers to spectral decomposition. Let

0 if o™ & Ty (pv)

Z ®’fyt fyt|]l{y”€Tn }and Ty ’772 A Z é }eyt‘vt><eyt|vt (51)

n nt=1
Ey n eyntzl

]1{(Un7yn)eT#2 (pvryv)} otherwise.

be the unconditional and conditional typical projectors. For (a,m) € V¥ x V!, let 5% a 77;7 ”é“n)

1

2

Yam S 7l aTrl and An 2| Y vamn| D Yam | D Yasn| form € [¢'] and Ay = IF" = Y " A (52)
a,meVrkxPl a€Vk a,meVrkxPL meM

and {\,, : m € M = [¢!], \_1} be the decoding POVM.

D. Error Probability

We employ the random coding technique to prove the existence of a code with the promised rates for which
the error probability falls to 0 exponentially in the block-length n. Towards that end, observe that our code and
the coding scheme is completely characterized via the following objects (i) the generator matrix g € VF*™, (ii)
the map ¢ : V! — V™, (iii) the collection (a¥, . € V¥ : (m,s") € M x 8") and (iv) the collection (z"(m, s") €
X" (m,s™) € M x 8™) of channel input sequences. Our first step is to characterize the error probability for a
generic choice of these objects. In particular, we characterize an upper bound on this error probability composed
of multiple terms. Our second step is to specify a probability distribution on the collection of codes by specifying
a distribution on the aforementioned objects. In our third step, we prove that the expectation of each of the above
mentioned terms falls to 0 exponentially if the rate of the code R satisfies R < I(V;Y )y — I(V;S)y where the
associated entropic quantities are computed with respect to state (48).

An upper bound on the error probability for a specific code : For a generic choice of the aforementioned objects,
the error probability averaged over the messages is

1 R
=?Z<< ) where {(m Zps ¢(mls™) (53)

é(m|sn) étf{(‘[_Am)pm,S"}? pm,&"é ®px(m,s")tst
t=1

where I = 9", M = [¢'] and hence | M| = ¢'. We consider an arbitrary message m € [¢'] and henceforth focus
our study on ¢(m). Throughout the rest of our study of ((m), we let a* 2 ay, s With this definition and (52),
note that

Am > (S + T)_é S(S+ T)_% where S = Yo = Yoz, . m, and T ZZ%,m + Z Zvam (54)

aFa* m#m a

and hence, C(m|s") < ¢(m]|s™), where ¢(m]|s") 2 tr ([I (S+T)ES(S+T)" ] Prsn ) . (55)
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We shall henceforth focus our study on ((m) £ > sn Pg(s™)C(m]s™) which serves as an upper bound on ¢(m) in
(53). Towards that end, we split the event corresponding to ((m) into two parts - £ and £ - and analyze the event
corresponding to the two parts separately. Towards defining &, let

& 2 {Sn € T%S (ps)} , €2 = {]ﬁ(m, Sn)‘ > L, <Sn,vn(m73n)) eTns(pSV)}
&y 2 {(s",v"(m,s"),z"(m,s")) € Ty, (psvx)} and finally £ L2ENENES,

where L £ 2 exp{klogq—nlogq+nH(V|S)y —3nns}. We remark that all Von Neumann entropies in this proof

are evaluated with respect to the joint state Y'Y VWX gpecified in (48). Since

3 3 B B B 3

E = ng = U]:z where JF; a &1, Fs a E1NEq F3 a E1N&ENE;s, we have 1 = ]lg—l-]lg < Z]l]:" + 1¢(56)
i=1 i=1 i=1

With these definitions, we have
) < ZQ )+ Ca(m), where ¢(m Zps C(m|s™) 1z i€ [3] and {4(m Zps C(m|s™)1g.(57)

Next, in regards to (4(m), consider ¢(m/|s™) defined in (55). Note that since 7g7% > 0 for every a € F¥, we have
S = Yarm = TRy, > 0, T > 0 are PSD. Moreover S = 7q- ;n = ﬂﬁlwg B < mp I, = my, < I

implying I — S is PSD. From the Hayashi Nagaoka inequality [39], we have

Ca(m) < Ca(m) + ¢5(m) + Cs(m) where ¢4(m —2ZPS I — 7l w7k | pmsn } 1e, (58)
m) 24 " pB(s")tr{mh Ty (3.0m) Th pm,en } L and Cg(m) £ 42 Zpsn Y {TTt T () T P, L (59)
s",a#a* s",GEFF m#EmM

Collating through (57), (58), (59), we have ((m) < 2?21 ¢i(m) where the terms in the latter sum are defined
through (57), (58) and (59). We now employ the random coding technique and prove that the average of these
terms, evaluated over the ensemble of codes, falls exponentially to O if the rate conditions stated in the theorem
hold. Towards that end, we now specify the distribution on the ensemble of codes.

Distribution of the Random Code : The generator matrix G, the map ¢ and the collection (A%, . € V¥ : (m,s") €
M x 8™) of a random code are distributed with PMF

G =g,u(m)=d"(m):meV al . =alm,s") 1 Lia(m,sm)ec(m,sm)}
" < Xty sty e nc o) =g | T gl | TL T =00

ThGVL mept snesSn

HPX|VS(°T(ma s")elv(a(m, s"),s")e, s¢) | - (60)
t=1

From (60), it can be verified that the generator matrix G and the range of (t(m) : m € V') are mutually independent
and uniformly distributed in the respective range spaces. Moreover, for (m, s") € M x 8" and any a € L(m, s™),
we note that

1

mﬂ{a(m,sn>eam,sn>}, 61)

m,s

P (af, . =a(m,s") |G =g, (u(m) =d"(m):meV)) =

a relation we shall have opportunity to use in our analysis.
In the rest of our proof, we derive upper bounds on (;(m) £ E{¢;(m)} for i € [6] that decay exponentially to
0, where the expectations in question are with respect to the distribution of the random code.

Upper Bound on Ci(m) + (y(m) + (3(m) : From (57), (55) and the definition of S in (54), we note that S > 0
is PSD and hence I — (S+T) 72 S(S+T) "2 < I implying ¢(m|s") < tr(I - pp.s+). Substituting this in the
definition of (;(m) in (57), we obtain (;(m) < > . ps(s™)1#, for i € [3]. This involves only classical probabilities
and our study of ;(m) will therefore closely mimic [13, Upper Bound on e, in Appendix B]. The proof of the
following proposition also follows directly from the proof of Proposition 1 provided in Appendix E.
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Proposition 13. If % > logq — H(V|S)x + 3ns, then there exists a strictly positive 1 > 0 such that for all n
sufficiently large (1 (m) + (o(m) + (5(m) < exp{—nkni}
Upper bound on ,(m) : From (58), we have

=22 REM o {pmsr = M o e = 2 D P bt {pman =T [ pm o ]} e (62)

< 22135 tl“ {pm,s” - 773 nfnpm s"} 1e+ ZPS ‘,Om sm T ﬂnlpm s”ﬂ'n H 1e < C41( ) + C42(m)7 (63)

where (41(m) = 2Zp5 ) tr { Tl 2] pm,sn } 1e and Cu2(m) £ ZZpS \/tr — 7] pmsn Hlg. (64)

In the above, (62) follows from cyclicity of trace, (63) follows from ‘measurement on close states’ [35, Exercise
9.1.8] and (64) follows from [35, Chain of Inequalities 9.205 through to 9.209]. As an informed reader might
have guessed, our analysis of (42(m) is via an analysis analogous to the pinching lemma [35, Property 15.2.7].
In Appendix F, we have derived an upper bound on the analogous term - (32(m) - for the QMSTx that involves
a pair of encoders informed with a pair of classical states. The derivation therein can be employed here to prove
the existence of a ko > 0 such that, for all n € N sufficiently large, (42(m) < exp{—n#ka}. This implies (,(m) <
C41(m) + exp{—nkz} and we are left with (4, (m),5(m) and (5(m). Referring to (64), (59) and in particular the
argument within the trace, we note that the common stumbling block is to characterize the overlap between the
moa? —conditional typical projector of o» and pgn ¢». In Appendix O we develop a sequence of steps to overcome
this common stumbling block. Therein, we prove the following proposition.

Proposition 14. For sufficiently large n € N, we have
_ - k
Car(m) < exp{=n(2[m = m3]” = 5m3)}, (5(m) < exp{—n(logq — H(V|Y)x — ~logq)} and

Co(m) < exp{—n(logq — H(V|Y)y - * 1

We now collate the three bounds on the rates £ o logq, L]og ¢q obtained in Proposition 13 and 14. We have
¢(m) shrinks to 0 exponentially if (i) & »logq > logq — H(V|S)y, (i) & ~logq < logg — H(V|Y)y and (iii)
k” logq <logqg— H(V|Y)r. The second bound being redundant in the face of the third bound, we have proved
that any rate R < H(V|S)y —H(V|Y)y =I(V;Y)y — I(V; S)x is achievable. This completed our proof.  [J

logq)}

Remark 5. Props. 13, 14 specify the covering and packing bounds respectively. Note that if we employ unstructured
IID random codes, the covering bound would be % >I(V;S)y=HWV)y —H(VI|S)y =logqg— H(V|S)y —
logqg— H(V)y] The first term being the lower bound in Prop. 13, we denote the excess rate - the term in
[-] —parenthesis - required in structured coset coding as 3 =5 [logq — H(V)x]. Observe that if we were to employ
unstructured IID random codes, the packing bound would be %logq < IU;Y)y =H(\V)y —HV|Y)y =
logq— H(V|Y)y — . While structured coset codes require an excess rate of [3 for covering, we can pack exactly
q"? times more number of bins and can therefore recover the penalty we pay in covering. Alternatively stated, the
excess rate paid in covering is recovered cent-to-cent via enhanced packing rates. In essence, when we build coset
codes over finite fields, we get structure for free.

It is not clear if structure is free when we build codes that are algebraically closed with respect to operations
on sets with looser structure [13, Sec. VIII]. For example, if we design codes over groups that are algebraically
closed with respect to the group operation, the excess rate we pay in covering is smaller than the rebate we obtain
via packing [13]. We therefore have a cost for structure. Whether this is provably inevitable remains open. As
elaborated in Sec. IV-F, this motivates our design and study of UCC, as against to NCC. We refer the interested
reader to [13], wherein these subtleties are better understood. Specifically [13, Sec. VIII] designs group based
coding strategies for the classical MAC with distributed states.

APPENDIX A
CLASSICAL TYPICALITY AND TYPICAL PROJECTORS: DEFINITIONS AND FACTS

Here we list basic facts from classical and quantum typicality that we have used in our study. The proofs of
these facts can be found in [41] and [35] respectively.



A. Classical Typicality
Suppose A7, ---, X are K finite sets, PX N Px,-Xr 18 @ PMF on X[K] N X1 X -+ x X and X[K]
(X1, ,Xk) denotes a random vector taking values in X[K} with PMF DX, For any S C [K], we let Xs
s» Pxs denote the marginal of Xg = (X;:s5 € 5). ag € Xg, ajx € X, T& € and zf;. € enote
X, ! h inal of Xg 2 (X S Xs, ajg) € Xg)» Tg € Xg dFK] Xﬁqd
ses
generic elements. Let as|re) = ) . re,=as)} an arg|T =) . Tl i=a enote the number o
ic el Let N(as|z%) 2 S0 1y —ag) dN[]f;qA P L ey imag) 9 h ber of
occurrences of ag and a[g) in the sequences z§ and xFK} respectively. For any 7 > 0 and any S C [K], we let

> 1>

Ty (px.) £ T;/(Xs) £ {xs e xy: | TSR ) (as)| < ;’fg;ﬁ;f for all as € Xs} . (65)

For disjoint subsets 5,7 C [K], > 0 and 2% € Xg, we let
Ty (pxsx. |[7) 2 Ty (Xs|ap) £ {2 € X : (28, 2%) € Ty(pxs x,)} (66)
and py,|x, denote the conditional PMF of X given Xr. Specifically, px,|x, (as|ar) a m{gzi((ii’fﬂ whenever

px,(ar) > 0. In order to state the following typicality bounds, we define, for any disjoint subsets S C [K],
T C K],

A . A .
pxs = min {px,(as) : pxs(as) > 0}, pagx, == mm{\/PXT(GT)PXS\XT(GSIGT) t pxsxr(as,ar) > 0}-

Remark 6, Lemmas 1 and 2 can be proved using standard typicality arguments in conjunction with the Hoeffding’s
lemma.

Remark 6. (i) For any S C [K], n > 0, if 2% € T;’(Xs) and ps(as) = 0, then N(as|z’s) = 0.

(ii) Suppose S C R C [K| and T 2 R\ S. For any n > 0, if ' = (2,27) € T;'(Xgr) = T,/ (Xs, S1), then
v € T)(Xs) and 7y € T} (Xr). In other words, sub-components of typical elements are typical.

(iii) For any n > 0, disjoint subsets S C [K|, T C [K] and any x} € X7, T (Xs|2}) C TN Xs).

(iv) Suppose S,T C [K]| are disjoint and z1}. ¢ T}'(Xr), then T} (Xs|27p) = {} is empty.

Lemma 1. (i) For any S C [K] and n > 0, if ¥ € T}}(X5s), then |% logpx, (%) + H(XS)‘ <, or equivalently
exp{—n(H(Xs) +n)} <pk (¢§) < exp{—n(H(Xs) —n)}
(ii) For any S C [K], n > 0 and any n € N, we have

P(Xg ¢ T,/ (Xs)) Zzpﬁs(fﬁg)ﬂ{xnexn\w(x )} < 2| Xs|exp {—W} < 2|X(k)| exp {—W}
shews sSSE A 8 (log [X1]) (log | X1c])
(iii) For any S C [K], n > 0 and any n € N, we have
(1 —2|Xs| exp { —2n1” u, (log | Xxq) ) 72 }) exp {n(H(Xs) — n)} < |T;(Xs)| < exp {n(H(Xs) +n)}-

(log | Xix1])? log (4] X's
2 2,,2
y .“X[K]

(log | Xk |)? log (4] Xs

T D }, we have
S

In particular, if n > max{% log 2, l)} orn > max{% log 2,

exp {n(H(Xs) — 2n)} < |T(Xs)| < exp {n(H(Xs) +n)}.
Lemma 2. Suppose S C [K] and T C [K] are disjoint subsets, 12 > m > 0 and x7 € T (X7).
(i) If (z5,s7) € 1T, (Xs,Xr). Then %logp}ﬂXT(xgm%) + H(Xs|X7)] < m + m2 or equivalently

exp {—n(H(Xs|X7) +m +m)} <P, x, (€§l27]) < exp {—n(H(Xs|X7) —m —n2)}.
(ii) For any n € N, we have

P(X§ ¢ Ty, (Xs|o)|XP = 27) = D pxax (@810 Lo (Xl
rhexy

< 2| &sur| exp {=2n(n2 — m)*0(Pxxrm, | Xix )} < 20X | exp {=2n(12 — m)*0(pxexr, M [ sy ) }

A R, (log Xl —m)?

 (log [Xrq)| + m)2(log | Xy )2

where §(pxsXrs M, \X[K]D ©7
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(iii) For any n € N, we have
(1= 2|Xxp| exp {—2n(n2 — m)?*6(pxex,m, | X(x)) }) exp {n(H(Xs|X7) —m —m2)} < T, (Xsla)|

<exp{n(H(Xs|Xr)+m+mn2)}.

log 4] Xk
7 2(n2—1)20(Px g xp M1, X))

Specifically for n > max{ log 2 }, we have

m—+n2
exp {n(H(Xs|XT) —2m — 2n2)} < [T, (Xs|27)| < exp {n(H (Xs|X7) +m +n2)}.

B. Typical Projectors
Suppose v € D(H) has a spectral decomposition v = >y py(y) |ey)ey| and 7 > 0. We define the
n

(unconditional) n—typical projector of ~ as m, = Z ® ley, ey;|. Our notation has suppressed the
yn €T (py) t=1

dependence of ) on n to reduce clutter. Suppose W is a finite set and (o, € D(H) : w € W) is a collection of

density operators, each with a spectral decomposition o, = 3, oy, gy w (y|w) ‘ fy‘w>< fy|w‘. For a PMF py, on W,

w" = (wy, -+ ,wy) € W", > 0, we define the n—conditional typical projector of o,,» with respect to py as

;&un Z ® ‘fy |w; <fy7|wl

yneyn t=1

{y €Ty (pw gy \w|w™ )} (68)

In defining 77»", . we have employed the alternate notation for the conditional typical subset as stated in (66). Most
often the PMF pw is fixed and clear from context and w™ is a codeword from a codebook requiring additional
indices for its speciﬁcation as in w"(aj,m;). When py is clear from context, in order to reduce clutter we let
T = mywr, and T, m, = F;WTZ:; "’ We define the value of the smallest strictly positive eigen value of 7 as fys

1.€,

77

uvémin{)\ :A>0,7v]v) = A|v),|v) #1]0), the O vector in H} .

For a finite set ¥/, a PMF py, on W and a collection (o, : w € W) of density operators, we define

Hpw o mm{\/ w)po,, : pw(W)pe, > 0,w € W}

The following can be proved using well established typicality arguments and the Hoeffding’s inequality [42, Problem
3.18 b 1.3

Lemma 3. Suppose v € D(H), n > 0 and I € H®" denotes the identity operator; then the following hold.

(T =)o) < 2-dim(H) - exp | e |

(it) exp{—n(H(y) +n)}my < my*"m < exp{-—n(H(y) —n)}m.
(iii) For any n € N,

(1 —2-dim(H) - exp {—W}> exp {n(H(y) —n)} < tr(m)) <exp{n(H(y)+n)}
[log [dim(#)]]? T

[log[dim(#)]]” log (4dim(#))

b we have exp{n(H(y) =20} < wn(r}) <

Specifically, for n > max{% log 2,
exp {n(H(7y) +n)}.

The above facts can be proven using the same sequence of steps as those used in proving [35, Property 15.1.1
- 15.1.3] and using the Hoeffding inequality for concentration. Analogous classical statements are proven in [41].

Lemma 4. Suppose py is a PMF on W - a finite set -, (0, € D(H) : w € W) is a collection of density operators,
ng >m > 0 and I € HE™ denotes the identity operator, then the following hold.

3The bound 26_2”2’“ stated in [42, Problem 3.18b] is incorrect and must be replaced by 2e™ . .
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(i) If w™ ¢ T, (pw), then mo* = =mpu,, = 0.
(i) If w™ € Ty (pw),
tr([I — m? o) = te ([T —mpe”, Jown) < 2|log [dim(H)] | exp {—2n(n2 — m)?8,(o, pw,m)}
P o l0g [dim(H)] — m1)?
(log [dim(H)] + m1)?(log [dim(H)])?

>

where 54(07 pW?ﬁl) =

(iii) If w™ € Ty (pw ), we have

exp{—n( Y pw(w)H(ow) + m + 1)} < g own it < exp{—n( Y pw(w)H(ow) — n — n2) }mg®
wew wew
(iv) If w™ € Ty (pw), for any n € N we have

(1 — 2| log [dim(H)] | exp { —2n(n2 — m)?*é,(0, pw,m) }) exp { ( > pw(w)H(ow) —m — 772) }
weW
< tr(xg7) = tr(ng T _exp{ (pr Uw)+771+772>}.
weW
In particular, for n > max { minz log 2, 2(7721051[)‘?5’:1((:12\]4/:771) } we have

exp { (w pw (w)H (o) — 211 — 2772)} < tr(m?) = tr(mper,) < exp { (w pw (w)H (o) +m1 + 772)} :

APPENDIX B
FORMAL DESCRIPTION OF LINEAR CODING SCHEME FOR EX. 1

We shall describe the achievability of any rate pair (R;, Ro) satisfying R; + Ry < hy(7). Our proof relies on
the existence of a binary linear code of rate 1 — hj(7) whose randomly chosen coset can quantize a uniform binary
source within a Hamming distance of 7.

Code Structure : Let X = {0,1} be the binary field with & denoting mod—2 addition. Let k,[ € [n] be integers
with I 2 n — k. Let g € X" and h € X" be the generator matrix and parity check matrix respectively,
of a linear code A of rate % = 1 — hy(7). We partition the [ rows of h so that hT = [hT hl] into two sub-
matrices with h; € X" X" For j € [2], Tx j holds the collection (c(my;): mj € X™) of 2" cosets with
c(my) 2 fag® mjh; 1 a € X*} for mj € AnF
Encoding : Having observed message M; € X "l and state sequence Sj, Tx j chooses a codeword within c(M})
that is within a Hamming distance nt from Sj. Letaj € X ¥ be such that wy(ajg ® Mjh; & S;) < nt, where
wp (-) denotes Hamming weight. With X; = 2 79 @ M; h @ S; meeting the Hamming cost constraint, Tx j inputs
the same on the channel.

Decoding : Having observed Y = X' @ ST @ X3 & 53 = ajg ® Mih1 ® a59 ® Mahy = (a} & a3) g ® Mh where
M = (My Ms) e X n(Ri+R2) the Rx declares the coset of A\ in which the received vector Y™ lies. Alternatively,
the Rx can compute h7Y"™ = M = (M; M) since h'g =0 and h'h = I},;.

Error Analysis : Since the channel is noiseless, the only source of error is at the Txs. So long as the there exists
a; € X* satisfying wH(a;g @ Mjh; ® Sj) < nt with arbitrarily high probability, the pair of messages can be
communicated to the Rx with arbitrary reliability. This is ensured through the following fact whose proof can be

found in [14] or can also be proven with bare hands via a simple second moment method.

Fact 3. Suppose X = {0,1} is the binary field with & denoting mod—2 addition, T € (0, 2) and wy(z) = x
for x € {0,1} is the Hamming weight function. Suppose k, € N : n > 1 is a sequence of integers with k, < n
satisfying lim,, %” > 1— hy(7) and let l,, = n — ky,. Let S™ € X™ and M,, € X' be uniformly distributed and
independent random vectors. For any € > 0, there exists N. € N, such that for all n > N there exists a linear
code of rate at most %’”‘ + € with generator matrix g € X**™ and a parity check matrix hy, € X'""*" such that

P({3a € X% :wy(ag® Myh,,S™") <T+¢€})>1—e
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APPENDIX C
CHARACTERIZATION OF THE QUANTUM STATES IN EVALUATION OF INFORMATION QUANTITIES FOR EX. 1

Consider Ex. 1 for 6 € (0, 5). In this appendix, we provide characterization of the quantum state in (2) for the
choice Uy = Uy = {0,1}, py,s,(110) = pr,15,(0]1) = 7 =1 — pp,;5,(0[0) = 1 — py,is,(1[1) and X; = U; & S;
for j € [2], where & denotes addition mod—2. The characterizations below enable us compute the information
quantities and thereby quantify the upper bound on the sum rate achievable via IID random codes. The latter is
stated in our discussion prior to Sec. III-C. For the choice of parameters stated earlier, the quantum state in (2) is

gY S5 X Xalis _ 5 r(1—7) [ Ly A
4 1{81_69182} |voXvel

0151 1@©s)01 51 1@32\+]

® [s1 s2)(s1 82| ® { 101@s; so) 101D s; sof

S1,82
><0081 82|+
TN11@s 1@}l 11@s 1@ sy

+ Z [ (#1692 |0X0[ + ]1{sl@sz} Up ><7)9 ” ®[s1 s2)(s1 s2| ©

$1,52

Partial tracing over the appropriate component systems, we have

(1 —171
o192tz — Z (4) (Is1 s2 1@ s1 s2)(s1 s2 1 @ sy so| 4+ [s1 s2 51 1 @ s2)(s1 s2 51 1D s9|)
S1,52
72 (1—17)2
+ Z Z |Sl S9 1® s1 1@82><81 S9 1® sy 1@82‘ + Z T |51 S92 S1 52><Sl S92 S1 82‘ implying

81,52 51,52

o 7(1—7) + 72 7(1—7)+ (1 —1)2
US]UJ:Z# |5 1@ s;)s; L@ s;|+ |55 55)s; 85l

Sj Sj

1— 1—
:g|0 1)(0 1|+%|1 o)1 0|+TT|0 0)(0 0\+TT\1 1)1 1| for j € [2] and

AR e T){ {sl@sz}|1><1l+ﬂ{81@52}|ve><w|} [ls1 1@ s2)s1 1@ 82|+ [1 @ 81 52K1 & 1 5]

+ Z [ {51882} 0)0] +]1{316952} Vp ><U9 ] ® [(1?)2 |51 s2)(s1 82| + TZ2 1@ s1 1Dsa)l®sy 1 @52\]
= 21027 iyt (0 10 11+ 11 031 0]+ 2 ugigugl @ (0 00 0] + 1 11 1)

N [W} [10)X0] & (1000 0] + [1 11 1)) + [o ) o7

(10 1X0 1] + |1 01 oy)} implying

(e 1)1+ (1 =€) [og Xvg]) _ (10 190 1|+ | (e lvg)ve| + (1 =€) OX0]) _ (|0 O)0 O]+ . . .
_ ; |vg Xvg | ®<|‘1(>)<><1l)y>+ AL ; ®<‘|1i<><1’1|>1mplymg

o = <0+ a = 2 o Yo | +  eatool + u - ) loxo|, oV = DY fur o o

u17u2

where € = 27(1 — 7).

APPENDIX D
DISTRIBUTION OF CODEWORDS IN A UNIFORMLY DISTRIBUTED RANDOM UCC

We recall the distribution of the two random UCCs that make up our coding scheme. The generator matrices
G € fle” Gy € ]-'(k2 F1X" and the collection of dither/bias vectors t1(my) 1 my € [¢1], 12(ma) : ma € [¢]
are mutually independent and uniformly distributed on the respective range spaces. We are led to the following.

—ki)xn

Lemma 5. Suppose the generator matrices G1 € ]-'é“lX”,Gz /1 € ]-"ékb and the collection of dither/bias
vectors 11(m1) : m1 € [¢"],12(m2) : ma € [¢%] are mutually independent and uniformly distributed on the



33

respective range spaces. Suppose Go = [Gl Gz/l} , Vilaj,mj) = a;G; & ij(m;j) for aj € ]—fi and W(a,m) &
aGa @ 11(my) ® ta(ma) for a € J’: 2, m; € [ql]. We have the following.

1) For any j = 1,2, any choice of m; € ]:éj, distinct aj,a; € ]:5, ie, aj # aj and any v}, 07 € V', we have

P(ViY(aj,mj) = v}, V](a;,m;) = 07) = q%. In other words, random codewords in any bm/coset c;j(my)
are uniformly dtstrtbuted and pairwise independent.

2) If a = a1 027F @ ay, (v}, 05, w") € T (pyw) where pyw(v,w) = py(vi,v2)Liy—y,@v,), then
P(Vi(aj,m;) = v} : j € [2, W(a,m) = w") = =,

3) If a € Ff» and a # a1 0%~% @ ay, then P(Vj(aj,m;) = v}
choice vY', vy, W™ for any choice of vi,vy,w" € F,

4) If i # m, then for any a; € Fhoqe Fk2 and any choice v, vy, w" € Fi, we have P(Vj(aj,mj) = v :
j € 2, Wn(a,m) = o") = .

5) For j € [2], suppose V; = Fy is the finite ﬁeld of size q, Sj is a finite set and ps,v;, a PS;Pv;|s, is a
joint PMF on S; x Vj. For n > 0, let aj(m;, sj) 2a; L{(s7,vy (a;,m,))€Ton (s, v} Then B{a(my, s7)} >

exp{n (k;logq —nlogq + H(V;|S;) —4n)} for all n suﬁ‘iczently large if s € Tn(pS ) =Ty (ps,)

Proof. Since all associated objects are uniformly distributed and mutually independent, these statements can be
proved via a counting argument. Throughout, we let a1 = (a1, : 1 < r < ki), ag = (a2 : 1 < 5 < ko),
similarly @ = (a5 : 1 < s < kg). The k; rows of g; are g1, : 1 < r < kj and the ko — k; rows of go/1 are
go/14: 1 <t < ko — k1. We now prove the first statement. Since a; # a;, there exists ¢ € {1,2,--- ,k;} such that
aj.i #* dj’i. Note that

P (V;"'(aj,mj):v;) — P( a; G (m;)= “n) —p ((&@a)Gj:@;@v;‘) —p ((di_ai)GJ 1:"7"L@U7L@Zz¢7(&leal)Gj~l>

Vi (a,my;)=07 a;G;Bu;(m;)=07 v (m;)=v}6aG; vj(m;)=v}SaG
_ Gji=(ai—a;)"*(07evrey i(@leal)Gj,l)) _ 1 L
=P < Lj(mj):v;@aéj - Z (k;—1)n Z q2n]]-{gj,i—(&i_ai)1(®;L@U;L921¢i(dl@al)gj»l)} 69)

gj:l# 9j,i,d} Lj(mj):v;?'@agj
1 1 1
where the summation over g; ;, d? in (69) vanishes, because for any choice of g;; : [ =1,---,i—1,0+1,---  k;
the indicator function therein is non-zero for a unique choice of g;; and d7. This proves the first statement and we
now consider the second statement. We have w” = v7 @ v} and a = a3 0%27% @ ay. Observe that

P Vj(aj’mj):v?:je[% —p a1G1®t1 (m1)=v7,a2G2 B2 (ma)=vy -p a1G1®1 (ma)=v],a0G2®ra(mao)=vy
W (a,m)=w" - aG2®t1 (M) Dz (mo)=w" - a1 0F2=F1Pas)Ga®ir (m1)Bia(me)=v] Hoy

- p a1G1®L1 (m1)=v7,a2G2Bt2(m2)=vE - p a1G1 @1 (mq1)=v} - p Ll(ml):U?@ZfilalmGl,m
a1G1®a2G2Bt1 (M) PBra(me)=v]Gvy a2Ga®ia(ma)=vy 12(Mma) =03 O L as G, O 2™ ag iy +5Gayn s

= 2y pdm) X P () y

o k ko—k
916}—;1 xXn 92/1€fék2_k1)xn dy,dy dy=v363 L a2,01,,0> 27" (lz,k1+592/175}

1 1 11
- X 2 gkmqwz—kl)nznqnﬂ{ d=vp —a19:
1

2 J € 2,W™(a,m) = w") = qs%for any

Fkl xn 7_—(’“2*’“1)X dy d"2 d2 =0y @E T;l a2 ,rgi1 -@E ];7 Las k1+s92/1 S}
g1€Sq g2/1€Sq i LTIy ! ! /L

-E X e

- kan g(k2—ko)n a2n  g2n’
glef:l n E.F(kz kl)xg ! 2 ! q q

where the summation over df, dy in (70) vanishes because for any choice of g1, g3/ the indicator 1, is non-zero

for a unique choice of d} and dj. We now prove the third statement. We have a # a; 0F2~k1 @ ay. Either (i) there

exists an i € {1,---,k1} such that a; # a1; ® ag;, or (ii) there exists i € {k; + 1,--- ,ko} such that a; # ag;.
Suppose (i) holds, then
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Wm(a,m)=w" aG2®t1 (M) Do (ma)=w™

<Zr 1a1,-Gh T@Ll(ml) T, Z, =1 as,»G1 7@2 az,k1+sG2/1,s@>
La(ma)=0vy ,ZT 1 6-Gh, r@zg | ak1+sG2/1 b@b1(m1)@b2(m2):w"

—_p (a:6a1;0a2;)G1i=w" OV} OVY ezr¢l(a79al79a27)Gl Lok kl(ak1+sea2,k1+s)G2/l,57
ti(ma)= "@ZT pan, rGl vy La(mo)= "@Z, 162,,G1,0> 2 27’” a2k, +sG2/1,s,

1 1 1
- Z Z k1—1 (ke kl)n Z Z 3n Z Zq(kl—l)n k)nqgﬁ:qﬁWhere (71)

G1rr i 92/1 dy.dy g1, g1rir#L g2/1

P ( j(aj,my) =i JG[Q}) —P (01G1@L1 (m1):U1l,a2G2@L2(m2):v’2"”>
=P

a A gli:(&igau@azi)71(UA}"@U{L@US@ZT#(&r@an@azr)gl,rezfifkl (dk1+s®a2,k1+s)gz/1,s)
L1 (7711):’0?92]:1:1 ai rgi,r, Lz(mz):vSGZfil d2,r91,r92};ifkl a2, k1+592/1,s ’
where the summation over dY,dy, g1; in (71) vanishes because for any choice of g1, : 7 # 4, go/; the indicator 1,
is non-zero for a unique choice of df,d3, g1 ;. Suppose (ii) holds, i.e., there exists i € {k; +1,--- , k2} such that
a; 75 a9;, then
P Vj(ajvmj):U}L:jG[Q] —p a1G1 @Bt (m1)=v],a2G2Bt2(m2) =03
Wm(a,m)=u" aG2®t1 (M) Ba(mo)=w™
- p (Ziﬂ:l a1,»G1,-®t1 (m1)=07, Zr 1a2 »G1 r@ZkQ k1 a2,k1+sG2/1,s€B)
L2 (mz):Ugvzflzl a,Gh,r 6925:1 ak1+éG2/1v-"®”1 (m1)®b2(m2):wn
_p (8:0a2:)Gay1 =" SV QUL S Y FL 1(6r0a1,0a2,)G1,-037 . (Gk, +s0a2,k1 +5)G2/1,5,
t1(ma)=07 @ZT a1, 7G1 r La(ma)=v @Zfl L az,,.Gr, 7@Zk27k1 asz, k1+5G2/1 ss

1 1 1
_ Z Z k:ln gk k;l—l)n Z Z 3n Is= Z Z kln kzl—l)nqﬁ = qﬁ where (72)
g1 go/1,s s;éz dr,dy 9271, g1 go/1,st s;éz

A ) gri=(a; 9(121)71( A"@’U{LQUS@Z (dr901r902r)91.r925¢7¢(@k1+s@a2.k1+s)92/1,5)
11 (M) =P L a1 g1,y L2(M2) =3O L as 101 O 2T as kg 1og2/1.0 '

where the summation over dY,dy, go/1; in (72) vanishes because for any choice of g1 : 7 # 4,g2/15 1 8 # @
the indicator 14 is non-zero for a unique choice of dY,ds3, go /1 ;. Lastly, we prove the fourth and last statement.
Suppose j € [2] such that 7; # m; and 4 € {1,2} \ {j} is the complement index. Then

Vj(az,m;)=v} j€[2] a1G 1@t (m1)=v,a0G2PBta(ma)=vy\ __ t1(mq)= vlealGl,Lz(mz) vEOa>G,
P (MG > P < v B =) = p (MmO "Bl o4t )

1 1 1
- Z Z Z kln ) qn Z qﬁ]l{di‘zv;ﬁ@algl,d;:vgeazgz,} Z Z Z n(ka+1) qﬁ (73)

91 921 dr dy dg dy i =" Sd; Sags 91 921 dn

J

Lastly we prove the fifth statement which, in light of the uniform distribution stated in the first statement, is a plain
computation.

E{a;j(m;,s7)} = ZP ((s7, V}*(aj,my)) € Tan(ps,v;) ZZP M(aj,mg) = 07) Ligreny, (ps v |s))

FAF AN

kj
= ZZ 7 L eTns, vl = g [Tan(psvils))| 2 exp {n (k;log g —nlogg + H(V)|S;) —4m)} (74)

where the last equahty in (74) follows from the uniform distribution of the codewords proven in the first statement
and the inequality follows from bounds on the size of the conditional typical set. O

APPENDIX E
PROOF OF PROPOSITION 1

We are required to derive an upper bound on an ps(s™) 22 (]l_p,,—i—@). For 7,7 € [2], let (j;(m) =
> e Ps(s")1x, and for j € [2], let (j3(m m) 2 > e Ps(s )ZZ 1]12127 where Fj;, Fi; @ j,i € [2] is as
defined in (11), (12) and let (;; = E{C(m)} for i € [3],j € [2], where the expectation is with respect
to the random code. From Lemma 1, we have le < 2|Sj|exp{—nn§y‘29j(2log IS XV x W X &’)—2}. We
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now focus on Zﬂ(m). Recalling £;; and &jo, note that the encoding rule ensures {\L'j(mj,s?)\ > Lj} C

{(s],v] (m;, j)) SHAS (ps,-v,-)}, hence {(sj,fuj (mj, s ])) ¢T (pgjvj)} - {\L’j(mj,s?)\ <Lj}. From this,
it is evident that Fj; C {S € Tn23 (s, ): [L5(my,s7)| < Lj¢. From (11), the preceding definition of &;2
therein, the definitions of £;(mj,s}) and aj(my,s}), we have a;j(mj,s?) < |Lj(m;,s})| and hence Fj2 C
{s € Tt (ps, ), 1£5(my, 57| < L } C {s € T (ps, ), a5 (my, ) < L } Thus,

ij <E {Zﬂ P§(§n)]l{s;‘eTiis (ps;), (m-f”S?KL"} } (75)

and it suffices to derive an upper bound on the RHS of the above inequality. We now compute E{a;(m;, s f ™)} to
unravel its relation to L;. Recall that L; was defined as 3 exp{k;logq — nlogq + nH(V;|S;)r — 3nn3} prior to
(11) and observe that, whenever s} € T L (ps,) » we have

E{a;(m;,s})} = ZP "(az,myj), ) € Ty (ps,v;) ZZ]I{ 52,01 )E Ty (b5, v,) }P( "(aj,my) = v})

= ZZ]I{( V)€ Ty (ps, v, )}P(a]G ® vj(my) = 7 ZZ]I{ (s2,07)€ Ty (P, v2) }Z Z {ajgg@('i =vr}

g]ej__k]>m dﬂe].'n
- Zz]l{(s WI)ET s (ps,v;) }Z Z]l{d”=v ea]g7}qk ngn ZZB{ (s7 01 )ET s (ps, v, )}Z ¢~ n7(76)
a; vy g;EFs kjxn d gJE}—JX
s \Uj n3 (DS, v, T, 3 V Sn
—ZZ { )e (bs;v,)} :qkf| ! (qi| j)‘ > exp{kjlogq—nlogq+nH(V;|S;)y — 3nns}=2L;.(77)

where (i) the summation over d? in (76) vanishes, because for any choice of g; € ]:5 7™ the indicator function
1 {dr=vrea,g,} therein is non-zero for a unique choice of dj and (ii) the inequality in (77) holds so long as

log[4|S XY XWX X|]
7 2(n2—m1)%6(Pv; s, M1, |SX VXWX X|)

n o(.n n E{O‘j(mj?‘sgl)}
Cﬂ {ZPS {s?GTﬁs(Ps ),z (my,s7)<Lj }} = Z ij(Sj )P <aj(mj’sj) < 2>

s}’ET?,% (psj)

n > max 32 log 2

}. For sufficiently large n, we therefore have

E{O‘j(mjasn)} 4Var(aj(my, sT))
S ZPSJ'(S?)P |aj(my, s7) E{O‘J mj,S; }’> 5 - < L
s} €% (ps;) <E {aj(mj7 8?)})

where Var(ayj(m;, 7)) denotes the variance of a;(my,s7) = -, ]l{v (a;,my)€Ty (Vi]sp)}- In writing the above
set of inequalities, we have use the fact that the random codebook is 1ndependent of the observed state and the
Cheybyshev inequality.

In Lemma 5, we have proved that the codewords in any bin c;(m;) = (V]*(a;,m;) : a; € ]-'5 7) are uniformly
distributed and pairwise independent. «;(m;, s;‘) is therefore a sum of ¢*/ pairwise independent indicator random
variables, each of which takes the value 1 with probability ¢~ |75, (Vj[s})|. The variance of a sum of pairwise

independent indicator random variables is dominated by its mean and we therefore have
4Var(aj(my, s7)) 4

(IE {aj(mj, 8?)})2 E {Oéj(mj, s7)

where we have used the lower bound on E { i(mj, s s} )} derived in (77). Substituting (79) in (78) and the earlier

stated bound on (;;(m), we have

5 (78)

} §4exp{—n [Zjlogq— (logq—H(V}ISj)rJr?’m)]}, (79)

_ k;
Zcﬂ ) < 2silexp {2106 IV )+ texp{-n [ togq — o — 1155+ 300 . 60
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We are thus left to bound Cj5(m) 2 E{(;3(m)} on the above, where we recall (j5(m) = 3. ps(s™) X7, Hac
and Fio1, Fio2 are as defined in 12. The analysis of E{}> . ps(s")1r,, } and E{> .. ps(s™)1r,,} are identical to
the analysis of €3 and ¢4 in the proof of [13, Theorem 4]. The analysis of the latter terms are detailed and an upper
bound on the same are derived in [13, Appendix D]. In the interest of not repeating the same, we refer the reader to
[13, Appendix D] which proves the existence of strictly positive x > 0 such that (;5(m) + (y3(m) < exp{—nkn3}.
With this, we conclude

2,2
—Nnnzugs. k- H(V|S)’r+3?73 ~ 92
§ m) < 2|Sjlex : +4ex {—nlo [f—<1— Lt +exp{—nin;3} (81)

C3(m) < 245 p{mog |3||V||W||»c\>2} U log q pi=nks}

APPENDIX F
PROOF OF THM. 2 - BOUND ON (32(m)

Recall (32(m) = 23" .. pg(gn)\/tr {lI = 7}.] pm,s» }Le. We are required to prove tr {[I — ] pp s } falls
exponentially in n under conditions of event £. For (z,s) € X xS, let p; s € D(H) have a spectral decomposition
Pzs = D ey q%XS(y@,g) ‘e§|@><e§|ﬁ| be a spectral decomposition and let p = 3,  pxs(z,s)psz,s have a
spectral decomposition i = >oyey @y (W) [fy) [yl where {[fy) 1y € Y} and {|egizs) : ¥ € Y} for each (z,s) €
X xS, are ONBs that span the Hilbert space H. For (z,5,7,y) € X X S X ¥ x Y, let rxqopy(2,5,7,Yy) 2
pxs(z, s)qY|XS(y|x )| (fy|egles) P Since 30, ey | (fylegies) |7 = 1, it can be verified that (i) 7y gy is a PMF,

(i) the marginal rx s = pxsg, (iii) conditional PMFs Yixs = W|xs TYVIXS = |XS| <fy‘6y|xs> 2 and S
|(f, y‘ey\x5> |2. Moreover,

<fy‘/3:c S fy’Z qY|XS y|$ S ’6y|m s><€y|z s“fy ZQ%ﬁ@’L §)‘ <fy‘€§‘ﬁ> |2 = ZTY7|ﬁ(y)y|£7 §)
yey yeY FEY
= ryixs(lz,s) and ry(y) = > > ryepy(@,s7,9) =Y Y pxs(a, 5)05 s 2 )| {Fy|egias) ?
x,8 yey x,8 gey
fy|ZpXS L8 anxs U1z, 5) |egles Xeglas| 1 fy) = fy|ZpXS z,8)prs [ fy) = (fyl wlfy)
gey
fyIqu ) [ falfal 1) = a5 () (82)

We therefore have T, (pxs) = T, (rxs) and T, (q)l;) = T, (ry) for any n > 0. From Lemma 1(iii), we note that
T,Y|z", s") C T, (T‘y) for any 7 > 0 and 2", s™. Since (27 (m;, s7), s} : j € [2]) € Tuy, (pxs)

{[I 7T ] Pm s”} = Z | <fy”|ﬂm,§” fy"> = Z T?\Ls(yn|$?(mj»8?)75? : .7 = 172)
ygTr (ry) yrgTo (ry)
< D s WG 870,87 5 = L2y, (Vi (my5p),504-1.2))
yneyn
< 2|V||X||S] exp {—n(m — 4n3)*3(ry xs, 43, |V X|IS]) }

if 1 > 4ns, where J(+) is as defined in (67). The last inequality above follows from Lemma 2 (ii). Since the above
bound is invariant to s™ € S", we have

(32(m) = 22135 \/tr {[I = 7] pmsn Y Le < 2AVNXNIS] exp {—n(m — 4n3)?(ryxs, 4ns, [ VI XIIS]) } (83)

APPENDIX G
PROOF OF PROPOSITION 2

We are required to derive an upper bound on (3;(m) = E {(31(m)} and we proceed from (20). Defining,
n __ .n 3 A \% (aj,my)= vy |£j(mj73?)‘ 3A [A (myvs (mJ7S )
e 2= b 2 { e e 2 { S b e e L e A LU e

stta A
g (wn,ahaz,a) ]l{( )ETW?, (ps V) S ETTg( sj )7a:a1 0kz—k1 @a2’(§w,7§n,yn’wn,)€T4n3 (p&w)}’ we haVe
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4
(g1(m) =2 Z Z Z ps(s tr — Togn”] pl"é"} g (wéc%a%a) P (ﬂ g;
i=1

s f'ale}‘ ag,ae]:2

gsn> , Where (85)

w'™ Z‘

T (ﬂg3 gs‘>: (50 P (G N G31G:) P (631G NGE N G3) P (GG NG NGENGY)

notgt\ 2 ,n
pX'|V'S ’UJ’ J) g(u?"’z% 7a£a) pX‘|V‘S( "I}], ])
P g3’gn g s"v 22 ilVis — ,a1,02, Vi, (86)
( 1 §) (w a1 a,a)jll[l |L;(mj, s ])’ PR ]:1_11 1L;(mj, s j)‘
g(gn 01 s ) = pg{ﬂvj Sj($?| i’ J log g—H (V;]5;) T

S | Sy > Hex [n (S5 A gt (@0, 5996 (32 J8)
j=1

where (i) the inequality in (86) follows from the fact that P(Q§ \gén mgfmgg) = m which

is a consequence of the distribution of the random code specified in (16), in particular Remark 2, and
P (gi’ |g§n NGINgin g;’j ) = H?‘:l p?(,-ﬂ/j s, (ac;‘|v ;L) from the distribution of the random code specified in
(16), (ii) the equality in (86) follows from P(G}|Gsn) = 21 that is proven in Lemma 5 in Appendix D, (iii) the
inequalities in (87) follows from |L;(mj, s})| > L; = 5 exp{k: log g —nlogq+ H(V;|Sj) — 3n3} defined prior to
(11). From the law of total probablhty (LOTP) and substituting the upper bound (87) in (85), we have

2 (V515
Con(m 82 Z k1+k2 tr{ I —75"] pan s} G (o e Hexp{ (+3nalc|>gq))}p}j\‘/j75;( wjlvf, 55),(88)
s™,u"

wz}n 16]:k1
= ay,aEFF?
<8 Y pa(s™) tr{[T — 7] pan o} G (22 ) HGXP{ 2% v s, (@ V7 [sT), (89)
s™um wnh,x™ 7j=1
< SZ >t {l = 7] o} G (5 ) exp {9} pys (@, 0", 8",
sm,un W,z
SSZ Yot {lI = T pan s} G (o i) oxp {mms} Dy gy (2, 0", 8", w") (90)

s™ ™ W™

< 8piy(w™) Ztr{[I — o] pan s} Lty (o)} €5 {9} Py gy (27,07, 8™ [w") 1)

< ZSPW ]l{w € Tangy (Pw)} Z pXVS|W(95 o, " w") tr {[I — 7] pgn sn} exp {9nns}
< Z8pw(w ]l{w €T, (pw )} tr {[ 07]2]0 }< p%(wn)log [dlm(H)]
- exp{—n9ns3} " 16~1 exp{—n9n;3}

< 161og [dim(H)] exp {—n [2(772 - 4n3)25q(a, W, 771) — 9773] } ) (92)

where (i) (89) follows from (a) exp {— ( (V;31S;) + 3773)} <Pys, (v}'|s}) whenever s7 € T (ps, ), (s}, v]) €
T, (pgjvj ), (b) the summand in (88) being invariant to a1, a2 and (c) the sum over a € ]-"52 being trivial owing to
the fact that @ = a3 0F2% @ ay, (ii) (90) follows from the chosen PMF psvxw satisfying psxvw (s, z,v,w) =
pm (8,2, V)L {yy—p, @v,} @nd the fact that w™ = v} © vy ensured by the factor G (5:5:6%2”&) which guarantees*
(s™,v" 2™, w") € Ty, (pSXVW) (iii) (91) follows from the indicator function in question being larger than or
equal to the factor G (w an, Cfi a) and lastly the inequality in (92) and the 1nequahty prior to that is a result of the
substantial overlap of the conditional typical projector my,.> with o,,» whenever w™ € Ty, (pw) and 1, > 473 as

stated in Lemma 4.

exp {—2n(nn — 413)20,(0, pw, M) }

18

*In other words, Pvsyx (w"[s",v",2") = L{yn=upavy } and the latter indicator function is evident from the factor G ( fn na).

s"
== 2 w™,a1,

P
%)
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APPENDIX H
PROOF OF PROPOSITION 3

We are required to derive an upper bound on (4(m) = E {¢4(m)} and we proceed from (22). Defining,

aJ7mJ) ’U 4 A 3 — A
g £ {12 W (,m) =" } G =G, :1=2,3 4andg<a an a) {a;éa 0%2751 Bag,s7 €T (ps, ), (70} ) €Ty (s, v,):d L2}

where G? : i € [4] and G are specified in (84), we have

Cq(m) =2 Z Z Z pg ) tr {7r,]1 w’?%rl‘ Pzn s"} (az,aha) (ﬂ g4

an> , Where (93)

ST ok ag,a
AL EF2
() (ﬂ Gl g ) = P (61N G3|Gs) P (G5 ]9s» NG NGy ) P (Gi [g.-ngingings) G (ai’j;ﬁ;)
2 7 '
n ,n pX|V ( |”Uj, ]) 1 pX|V ( |U]’ ])
P(G116s) 9 () TT =222 — (94)
(61162:) 6 (e jHl 1Z5(m;. Sl 613"]1_[1 L
2
4 7 n
— Hexp {nlogq — kjlogq — H(V;|S;) + 3n3} p'x v, s, (@7 [0, 57) 95)
j=1
where (i) the first inequality in (94) follows from the fact that P (G5 |Gs» NGINGS) = m which

is a consequence of the distribution of the random code specified in (16), in particular Remark 2, and
P(Gi|Gs»NGENGINGE) = H?Zl P v,.s, (@} [v}, s7) from the distribution of the random code specified

in (16), (i) the second inequality in (94) follows from P(G{|Gsn) = q%n that is proven in Lemma 5 and

|Lj(my,s7)| > L; = exp{k;logq — nlogq + H(V;|S;) — 3n3} defined prior to (11). From the LOTP and
substituting the upper bound (95) in (93), we have

2
OS2 , s™un —H(V;|S;) n
-/ 82 Z Z k1+k2+n tr {Wm wr 771p§"7§”} g <a27(117@) Hexp {TL <+3773 fog]q pXj‘VJ’:SJ J » S5
s™ j=1

n*

EA e]—‘jz

2
= 82 Z Z k1+k2+n { o Pz 5" Tr??l}g <a27a1:é> H {gnng}p}jvjsj (ng?U?‘S?Qg@

n n
SRC ale]:q az,a€F, 2
& 7w

S qk1+k2+n Z Z Z tI' {7-(;’772 px 8™ 7Tn1} g (az ay a> eXp {gnng}pXVS<§ Qnaﬁn)7
s" 7% a1€]-'q as, ae]—'q
", W"

< k1+k2+nz Z Z tr § 7 Z Pxvs(@”, v, 8")pgn sl o exp {Inns}
wr g, E.Fq az,a€F, k2 stota™

=< k1+k2+nz Z Z tr { Pk p®r el exp {9nms} 97)
wn 016.7:(1 as, aEJ: 72

< WﬁnZ S ST {nZal bexp {—n(H(Y)y — 905 — m)} (98)
wr ale]:q as,a€EFq k2

< MWZ YooY w{apEr e (n(H(Y)r — 905 — m)} (99)

wr a1€.7:q as,6€Fq k2

TL

),
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< qkljczm Z Z Z exp{—n(H(Y )y — HY|W)y —9n3 — 2m —n2)}

WETy, (Pw)ay €FFL as,aeF 2

8
+W Z Z Z 0-exp{n(HY)r —9n3 —m)} (100)

W EW™\ T, (Pw)ay €FAL aq,a€F0?

k
< 8exp {—n <H(Y)T —HY|W)y +logqg— H(W)y — 93 — 2m — 12 — f log Q)} (101)

where (i) (96) follows from the exp{—n (H (V;31S;) + 37”)} Py s, (v7]s}) whenever s7 € T (ps,) and
(s7,07) € Ty, (ps,v;)s (11) (97) follows from p = szpxg(x S)pa,s as defined prior to (32), (iii) (98) follows
from Lemma 3, since 77771 is the typical projector of u@m (iv) (100) follows from the fact stated in Lemma 4 which
states that the conditional typical projector is the zero operator if the conditioning codeword is not typical with the
same parameter, and otherwise, its trace is dominated as specified in Lemma 4, and finally (v) (101) follows from
the bound on the size of the typical set |7}, (pw )| as stated in Lemma 1.

APPENDIX I
PROOF OF PROPOSITION 4

We are required to derive an upper bound on (5(m) = E {¢5(m)} and we proceed from (23). Defining,

A JVi(a;,m; A a
Gy 2 {12(‘%/21((1)7; fﬂ } GP2G3:i=23,4and G (S % ) = ]l{myém,s;‘ET%i(psj),(s}l,v']’-‘)eTna(psjvj):je[ﬂ}

where QE .1 € [4] and Gs» are specified in (84), we have

_22 Z ZPS tr{ﬂ—fh wmz #1/)&"&"} (ﬁmgm) <mg5

gsn> , where

\& \tn
B R,
3

hS

3

m
N

|G ) =G (55) P (91N G3IGsr) P (93 |Go N GT 1G] P (67 |Go N G7 N GE N GF)

2 pn n|yn. gh o
< G (smv"mai) P (G7|Gsn ) HpXj|Vj75j(x.7 v}, s7) < G (smwm ) pr |VJ,5J( Tr,sh)

< (102)
AG (s" v man) 2 k.
= (q?’”) Hexp {n <logq — H(V}|S;) +3n3 — # log q) }p&jvj,sj( z} i, s7) (103)
j=1
where (i) the first inequality in (102) follows from the fact that P (G5 |Gs» NGINGS) = T (W}_ ) Which

is a consequence of the distribution of the random code specified in (16), in particular Remark 2, and
P (Qi ’Q§n N gf N 925 N gg) = nglp?(j“/jvsj (x]\ s ]) from the dlstrlbutlon of the random code specified in
(16), (ii) the second inequality in (102) follows from P(g1 |Gsn) = % that is proven in Lemma 5 in Appendix
D and |£;j(m;,s J)] >Lj =5 exp{k logq — nlogq + H(V;|S;) — 3173} defined prior to (11). From LOTP and
substituting the upper bound (103) in (102), we have
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2
_ W OM2 [ s —H(V;|S;) n s7
82 Z Z k1+k2+n e {m T T e s 1 (m@)HeXP{n (+3773f0gjq P ;.8 (5 107 57,
Jj=1

n k
s" Vo ay€Fgt “2va
"W m;ém eFy?

s") . o\ T 9
<8 > >, ZJMkWU{W 8 pwnswm}g(mm)HeXp{?}pﬁjvj@(x;ﬁvﬂsy)xloét)

s™ " ™ ™ alefl az,a Jj=1
m#m €Fi?

k1+k2+nz Z Z Z Z tr{ﬂU?h Pz sm 7-‘—771}g<7ﬂ7ﬂ> eXp{9’)/”73}p)(VS(2 Q §n),(105)

ST MW" g, e FAT MFM g, G Fi?

k1+/€2+nz Z Ztr Wff;’?zﬂgl Z p%ﬁ(gnaynyﬁn)pg",gnﬂgl eXp{9m73}

wn a1 E.F k1 llg,a EXFCHSt 14
m;ém cFi2

k1+k2+nz Do > w{agal u® b exp {9nns} (106)

e]:kl m#m az,a
E]:

k1+k2+n2 o> D w{mptal bexp{—n (H(Y)r — om-m)} (107)

" g, E]:kl m#m as,d
€F?

mkmz S Y Y e {wir e {0 (HY )y — omon))

Efkl m#m az, IIE]: *2

quﬁiﬁ Yoo > > ep{mnHY)x - HYW)r =9 —m —m)}  (108)

ZD"GT’Q (pW) ay E]'-(?l m#m az,&e]'-(];2

b X X X X ocenloalHT)r o) (109

W eW\ Ty, (Pw) a, €Fy" MFM 0, € Fy?

ko + 11 +1
SSexp{—n (H(Y)r—H(YIW)THogq—H(W)T—9n3—n1—2n2—Wlogq)} (110)

where (i) (104) follows from the exp{—n <H(V\S) %)} < Py, (v (v7|s}) whenever s7 € T (ps,) and
(sj ,v]) € Ty, (ps,v;), (i) (106) follows from p = Zw <Pxs(x,s)pszs as defined prior to (32), (iii) (107) follows
from Lemma 3, since 7%, is the typical projector of u®" @iv) (109) follows from the fact stated in Lemma 4 which
states that the conditional typical projector is the zero operator if the conditioning codeword is not typical with the
same parameter, and otherwise, its trace is dominated as specified in Lemma 4, and finally (v) (110) follows from

the bound on the size of the typical set |7}, (pw )| as stated in Lemma 1.

APPENDIX J
PROOF OF PROPOSITION 7

We are required to derive an upper bound on &3(m) = E {¢3(m)} and we proceed from (40). Let

) =
Gon 2 {S" =5"},G7 2 {Un(mf?fé?fi S} 98 2 it en ) 9 2 { K G ey A1)

g {—x j€[2 } g (” Z): { 2l P ) €T (ps;u,v,),(8) -a“?)GT"gS(PSjUj)}7 we have (112)

sy GTNTs( Ps;)s(s™u" v 2™) €Ty (Psuvx)
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27773 7773
un ParsnTyn — Pgn s

b 3 33 Tl

U bl bzal ,a2

Rt ((4]93

gsn> , where (113)

gsw> G (s"wmw"a") P (G N G3|Gsr) P (G5 |Gsr NG NGS) P (GF |Ger NGTNGENGS)

2 nomoanoom) 2 Pl n n
gp(g1|g§n)g(§n;§n)n PX,10,.v,.8, (T 175 57) G (o ’m)prjm,v;,s( jlug,vf s7p Uj(%m)

=1 |Lj1(myn, 7)1 Ljo(my, 7))~ " =1 LjiLj2
<G ( )ﬁ 4P, v, (T 15 07 8P, (u )eXp{gnn5} (115)
s™um " o
- o @ expin (P58 = I(Uy; Sj)x + H (V1S5 Uj)r)}
2
. 1 29nms5
gg(§ v @)H S8 1B;] pXJ’U],V|S (z,uf, 7 |st exp{ 1 }, (116)
Jj=
. . . . 3 3 3 o 1
where (i) the first inequality in (114) follows from the fact that P (93 |g§n NGy N 9’2) MR CER)]
and p(g§|g§7ng§mg§’mg§) = H] L P o, vs, (271, v7 7). both of which are consequences of
the distribution of the random code (see Remarf< 4 for the former equality), (ii) the second inequal-
ity in (114) follows from (a) P(G}|Gs) = qln HFlpUj( u}) - a consequence of Lemma 5 in

Appendix D, the random U;—,Us—codebooks being mutually independent with the codewords of the
Uj—codebook distributed as p}}j - and (b) |£j1(m]~,s;~l)\ > Lj, |£j2(mj,8?)| > Lj, (iii) the in-
equalities in (115) follows from |Cji(mj,s?)| > Lj = bexp{n (%—I(Uﬁsj)r—%)} and
|Lja(my,s7)| > Liz = Lexpin (10qu — H(V;|U;S;)x —3n5)} defined prior to (36) and finally (iv) (116)
pUJVJSJ(u] U758 )

i ez oy 2 el (H(S;, U, Vi)x s = H(Sj)x —HUj)x + 5 + %)} =
exp{—n (H(Vj|Uj, Si)y — 1(Uj; S5)r + 7Z5>} for (s, u™,v™) satisfying the conditions of G (s u""z"), imply-

follows from the bound
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ing 1 < %exp {n (H(Vj|Uj,Sj)T —I(Uj; Sj)r + 725)}. We have
2 n n297]5
s PX,u, vy, (@5 ug, vf|s§) exp{="}
m <8y YO B ,ﬁ% m e’ = pee |0 G I ST . oam
j=1 j

s™mau” b1,2
v,z ar,a2

ujl, vl|s}) exp{ "2}

2 n
2, n Px,u,v;|s; xw i Y5 1
= 962 Z k1+k2 \/t _”ugm)%",ﬁ"}g(i H 5| , (118)

s™u™ bl,bQ
om x ay,a2

96 exp{ "2
= kﬁiz{zsusji S Pyl a0 N (T = T o )G () (119)
e
96exp{" 915} "
- R | By |32|Z 0, (uy) Z ZPSU1VX|U2 s"ut, 0", 2" |ug) \/tl"{ ’n )Pz s }]l{u pETR (pu )}(120)
" ut by,bs

966Xp{”297’°
< g1+ By || B ZPUQ uy) Z Z ngIM‘Ug@”aU?,Q",&"WQ) tr{(I — ms)ﬂm" s"}n{u seTy (pu }21)

b1,b2 s™uy
ar,as \ vz

96 exp{" 911 773
< q" k2| By || By Z Py, (ug I;bz \/tr{ — o2 }]l{u2 €Ty ()} (122)
ai,az
96 exp{ "%} (3 —1n5)* 2975
S etk B B - <96 —~ . 123
= k1+k2‘61 ‘B ‘ZpUz u2 blzbz\/exp{ 7’L 773 775] )} eXp ( 2 4 ) ( )
ay,a2

where (i) (117) follows from the law of total probability and substituting the upper bound (116) in (113), (ii)
(118) follows from [35, Chain of Inequalities 9.205 through to 9.209], (iii) (119) follows from the Markov chains
X1U0Vp — 851 — S50V X5 and XoUsVe — S — SlU1V1X1 (v) (121) follows from concavity of the square root
function, (vii) (122) follows from definition of o2, given as 02 = Zmn o P S|0, (2™, s"|uly)pan s» and the other
terms under the square root not depending on the Vanables of the summation, (viii) (123) follows from conditional
quantum typicality (Lemma 4) since u3 € T} (pu ).

APPENDIX K
PROOF OF PROPOSITION &

From the definition of & (m|s™) in (41), we have

£4(m) <2 Z Z Zpg(gn) tr ([ — W#47T11L’11727T§:Z71 L2 e } Pzn s”) g Q <ﬁ QE’
i=1

s, u"by,baa1,a2
O A

where G (in%n) ,gz. 11 C [4} and G» are as defined in (111), (112). Substituting the upper bound in (116), we have

Qs%) ,o (124)

(a},uf,v}|s] )exp{"29775}

2 n
w1 _om _1.nm s"u H U;,Vil J0 7
) <16 E E k1+k2 ([I T T Ty My 4] py,g)g(y 5]

s™u” bl,bg
™" a,as

n29 om ) n
= 16 exp{ 2775}2 Z Peryx (8™ u, v ") tr ([I Wﬁﬂriﬁhwuﬁ 771237 :|10wn sn) g L “) (125)

sm un V"™

’)”L29775 2, 0,11 17 2
< 16 exp{ 5 }Zp Z ZpSVX|U st o™ 2™ u" )t ([I oy um an ™, 77 }pm sn) Liurer,, ()}
un

s" wym,xm

nZE) 5 y o 1o
< 16 exp{ 277 }Zp&(g ([I ﬂ#ﬂrin’] Tgn! 7r1;7 W#J UEL) Liurer,, (pu)} (126)
yn,
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where (i) (125) follows from the Markov chains XUV — 57 — SoUs Vo Xo and XoUs Vo — S — S1U71 V1 X, evident
from (28), (ii) (126) follows from ) . Zyn&npgv XIU(g”, o™, 2| u") pgn s = oyn and the fact that the other terms
do not depend on the variable s”,v™, 2™ of the summation. Repeated application of the ‘measurement on close
states’ [35, Exercise 9.1.8] yields

tr ([T—mt P mi me et o ) < tr (T o) + owr — wh ot [, + o

1 1
’u,“ _ 7.[. 7772 O‘unﬂ-u’;]z

1

< tr ([I Wg,ﬁl O'un + 2\/tr — 7T,74 O'un) + 2\/‘51" ([I — 771,772} O—un> (127)

where the inequality in (127) follows from [35, Chain of Inequalities 9.205 through to 9.209]. Substituting the
upper bound (127) into (126), we have &,(m) < 16 exp{Znns} [541( )+ &aa(m) + 543(m)} , where

En(m ZPU (T—mg™ou) Lyrer,, (po)}> Sa2(m ZPU 2\/‘“ — ) 0w ) Lyrer,, (po))

and 543 EPU \/tr ([I - i”h} O'un>11{u "e€Tys (pu)} (128)

Since u" € T (pu ), from the quantum conditional typicality (Lemma 4) and ’pinching’ lemma (Property 15.2.7)
- a version of it is proved from basic principles in Appendix F - we have

s 2
€nn(m) + &ia(m) < ZPU exp{ } ZpU 2exp{ o (1 = 115) } (129)
In regards to a3 (m), following from (128) and using the concavity of the square root function, we have

Si3(m) < QZPU uy ZPU2|U (uz]uy) \/ ([ Wi’"g] Ju")]l{ul €T, (o )}
<2 ZPUI (uy \/ ZPU o, (ug |ug)tr ([I - Wiﬂ%")]l{u?eTMml)} <23 pp, (“’f)\/ tf([f - Wl’ﬂ Uu?)]l{u?ens(pul)}

n n
<2t () exp { =5 (1 = 15)° } Luper, o)) < 20xp {5 (2 = m5)*} (130)

where (130) follows from quantum conditional typicality (Lemma 4) since u} € T, (py, ).Collating (130) and (129),
we have

€4(m) < exp {*n(m - 775)2} +2exp {*g (na — ns)Q} +2exp {*E (n2 — n5)2} : (131)

2

APPENDIX L
PROOF OF PROPOSITION 9

We are required to derive an upper bound on &5(m) = E{¢5(m)} and we proceed from (41). Let
A no_ gn ‘(ajmyz)= vit U (my1,b;)= uy 5 A |LJ1(m117S )>Lj: 5 (M1, S; 7)=B;=b;
G5 ={8" =5"},G1 = { fOr j=1,2, Up (uan )= }792 = {u:ﬂ(m],s >|>Lme21} gs = { Aj(m;,87)=a;: gem}

5 A (7], ) s™u" o™\ A R
g1 = { =7 Je[2] } N¢ (mu,bl,bl) = ]1{(5;'@ V7)€ D (ps;u,v,),87 €Tns (pay ), (87 43 €T ng (psjUj):je[Z],(mu,bl)yé(mu,bl)}’ we have

]
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_ . n/.n m 1,n2 _om 1m2 2,173 27713 stum o ﬂ 5
€5(m) = Z Z Zp§(§ )tr<7r77 Tay Trulu"ﬂ-ul Tna Ty P ,sm Ty g 111,b1,b gi

g5n> where (132)

iﬁiﬁi %1?’@ %1:222 -
! 4
g(;;ftb;t;)za(ﬂ G 6o | = (152 P (61 6016) P62 6681 62) (62l 6 2 1)
i=1
2 P, 0,.v;,5, (5 05 05 87)
g |gﬂ (s ™ v) 35 V5:95 (133)
( 11¥s mlhbl jI;[l |£]1 msji,S )|‘£j2(mja )|
AL ARPTERY y L SR i) (134
g Ma1,b1,by i Lj1Ljs
9
_ g(sn un, Un)p (@ )H 44" D% v, v, s, (5 [ug, o)y 87 () )eXP{ ES } (135)
— 111,b1,b1) £Us j=1 q”“ﬂf exp{n (% - (Uj7Sj)T + H(‘/}‘SJ7 UJ)T>}
. 2971175
< g(fmubvb) H 7B |B| AP v, vys, (@ uf g |S-)exp{ 1 } (136)
where (i) (133) follows from the fact that (a) conditioned on the entire codebooks, Bj(mji,s7) = Bj and

Aj(mj, s}) is uniformly distributed in £j1(m;1, sj») and Lj2(my;, 7). and in particular conditionally 1ndependent
of the realization of the codebooks (See Remark 4), which 1mp11es that P (G} G- NGINGING]) =
CamGmep W © P(G116-nGINGNG) = TlLaw s, @ s7). )
(134) follows from the facts that (a) the U;—,Us—codebooks are mutually independent and the
codewords in the Ufj—codebook are mutually independent with distribution p’ﬁj, (b) two codewords
in the two V;—,V»,—UCC codes are pairwise independent (Lemma 5) and uniformly distributed in

the F; ambient space and () |Lj(mj1,s7)] > Ljp = jexp {n (% — I(Uj; Sj)r — 52) }

\Ejg(mj,s?)] > Ljs = %exp {n (logiJLB"‘ —logq+ H(V}|S;,Uj)r —3775)}, @)  (135)

follows from above definitions of Lji,Lj2, and (v) (136) follows rom the bound

PG v (uJ 758 ") 5

W > exp{ n( (S],U],V)T+775—H(Sj)T—H(Uj)r+%+%)} =

exp{—n ( H(V;|U;, Sj)x — I(Uj; Sj)r 7n5>} for (s",u",v") satisfying the conditions of g(jnlfbfbl),

implying 1 < ;;Vfﬁf)pﬂs’ o) <p {n (H 51U 51 — I(U3 S;)x + ) | Substituting the upper bound (136)

in (132) and noting that Q’(mn Bb ) T pUz)}, we have

] )i (m ST e ) G () 2

5 m é 1 1 2 1 11, 17 1 x u ,/U S
<) D Z B, ] T x5 5 B B 11wk (05505155

) pEUlM|U2(§na uy,v", £"|U3)P7(}1(ﬁ?)]1{ug E€Tus (P, )}
gk k| By || Ba| exp{ —8nms}

LWL woLme_om _Lme_p 273 2,77
< E pUQ(UQ)E E E tr(ﬂ'mﬂ'u oy Wi T T Par sn Ty
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T n n n n n 7 AT
2’,7>pSU1VX|U2(S U, U, L |“2)pU1(“1)]1{u£‘€T%s(pU )}

- 0 2 t ( N 177372 0-73717, 17’:]2 K 2:73 ¢ 31
2 S U b
ot g
< Zp& (uy) Z Z Z tr <7r7’7‘47ri’£727r2f7;2 wi’nzwﬁ4 [71'27373 02n71'2’773’Dp%}l(fﬂf)]l{ugep775 (p0,)} exp{8nns} (138)
g T
17 , .
<exp{-n (H(YU2)T - 72775 - 773> } ZPUZ Uy Z Z Ztr ( ™, u;?%":?lgwlﬂ%g‘l [ﬂi’fﬂ) pg, (af)  (139)
17
— exp{—n (H(YUQ)T - % — 5 — Ry — Bl> }Zm (u}) Ztr( oM |n [ Mttt 2o u"D o (47)(140)
17775 1
< exp{—n (H(YUQ)T - M- Ry — Bl>}ZPU2 uy Ztr ( o )pUl( n) (141)
17’1’}5 7771
= exp{—n{H(Y|U2)r — —= —n3 — R — }ZPU2 (uz) Ztr< >IDU1 (ay) ]1{ (anu) }+]1{ (@ un) } :
&7 (pu) €Ty (pu)

where (i) (137) follows since terms in the summand are invariant to the choice of a; € ]—"(f 7 and b; € B, for j € 2],
(ii) (138) follows from Zsﬂ - ngIVXIU(s" ul, v, 2| uf) pgn s = a2n, (iii) (139) follows from quantum

condltlonal typicality (Lemma 4) which states that [77 o2 L7r2 ”3} < exp{—n(H(Y|Uz)y — 213 — 775)}7T P since

Tn?ra (pu, ), (iv) (140) follows from cyclicity of trace and the fact that the terms in the summand are 1nvar1ant to

mn € [My1] and by € [By], (v) (141) follows from 7 ;Z727rﬁ7‘47r3;"37r7’7‘477u’”2 < I. Since (af,uy) ¢ T, (py) implies

Wg%l? = 0 from Lemma 4, we have

- ]‘7775 0'2 1

§5 <exp{-n <H(Y|U2)T Ty n3 — Ri1 — >}ZPU uy Ztr( ; )ZOU1 (U1)]1{(u uz) Ty (pu)}

< HY[Us)r — H(Y|Uy, Un)r — 21 — 201 R m(u)ph (@0)1 2

<exp{-n |U2)y — H(Y U1, Us)y — 211 — 9 ns—Ri1— By };HPUQ u2>pU1 (ay {(ﬁ;L,ug)eT,';Ll(pé}? )
. . 17ns

<expq—n ([(U;Uz)y + I1(Y;Ui|Uz)y — 511 — ?—773—311 — By ¢, (143)

where (142) follows from tr (77"’ "1> < exp{n(H(Y|U1,U2)r — 2m1)} whenever (4f,u3) € T} (py) as stated in
Lemma 4 and (143) follows from the fact that |1} (py)| < exp {n[S(U1,Us2)y +ml}, and (a7, uy) € T} (pu)
implies that py, (4}') < exp{—n[H(U1) —m]} and py,(uhy) < exp{—n[H (U2) — m]}.

APPENDIX M
PROOF OF PROPOSITION 10

We now derive an upper bound on £4(m) = E {&(m)}, starting from the definition of £(m) in (42). As in
[37], our technique for this term is different from that used for analyzing & (m) motivating us to provide a detailed
sequence of steps. Let

A no_ gn " (ajmy2)= vy U"(mjl,b- [Lj1(mju,s7)|>Lja B(ths) Bj=b;
Gon 2 (8" =567 & (W e b 08 2 e e 98 2 (R L |

6 A (77, ) 5™ ™0 ba\ A
g, = { =a7 J€[2} } ¢ <ag7m21,62> =1 (s7ur W) ET s (ps, v, v,) (87 ul ) ETns (ps,v;) , we have
{S?ET%& (ps;):d€(2],(ut 03 ) €Ty, (pUlUQ) (mmvbz)?ﬁ(mzhbz)}

4
7 _ n/.n w, _Lme_om _1n2_p 2,73 2,m3 ™ u" o be ﬂ 6
Em)= > D pils )tr(ﬂn Tup Tupay Tuy T Tuy Preosm Ty )g (a;‘,mzl,bg Pl 19

=1

g3n> , Where (144)
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u2 7’l”I'Lf_)1

4
§n 72“’ 72” ’b2 6
g (a;zmm,i)z)P(ﬂ Gi

gsn>= (L2 ) P (98N G81Gs-) P (G5 |Ge 0168 N GE) P (G5 |G N GE N GE N GE)

b = P, ju,v,,s, (2514 07 53)
g |g " (9 " 2) 32Y525 J J i (145
( 119s u2,m2172 ]1_[1| ]1 m]b j)HﬁJZ(mJ’ J)‘
2
_ Pt (008, () g a3 T Pl v, (%5 145 05 55) (146)
2 5 hanba) 1L Ljr Lo
9
<Q§Uvb 4qpx|UVS( |u],], )pU( )eXp{ ”775} 147
< (ag,mm,im) uy H g R exp{n (=20 — I(U;; Sj)r + H(V;1S;, Uj)r)} -

IN

5™, u™v",bo exp{ nI(Ul,UQ)T} 29m75
g (u27m217b2)pU2|U1 (u2|u1) H k |B |exp{ 3nm }4pX,,U V1S5 (.T u ) Uj |S )exp 4 ,(148)
Jj=

where (i) (145) follows from the fact that (a) conditioned on the entire codebooks, B;(m;, ;l) = B* and
Aj(mj, s}) is uniformly distributed in £j1(m;1, sj») and Lj2(my, s7), and in particular conditionally 1ndependent
of the reahzatlon of the codebooks (See Remark 4), which 1mp11es that P(% Gsn N GY ﬂQQ ngy) =

2 ..
ComepiTamen a4 ® P(G2|0-n61ngNGs) = Ilioiwk, s, (@, o) s7). ()
(146) follows from the facts that (a) the U;—,Us—codebooks are mutually independent and the
codewords in the Ufj—codebook are mutually independent with distribution p’ﬁj, (b) two codewords
in the two V;—,V»,—UCC codes are pairwise independent (Lemma 5) and uniformly distributed in

the F; ambient space and () |Lji(mji,s7)] > Ljp = jexp {n (% — I(Uj; Sj)r — 52) }
\Ejg(mj,s?)] > Ljs = %exp {n (IOLJLB"‘ —logq+ H(V}|S;,Uj)r —3775)}, i) (147

follows from above definitions of  Lji,Lj2, and (iv) (148) follows from the bounds
U, v, s, (U5 v7,sT) _ s
p—pi, [CATAGH > exp{—n (H(S;,U;, Vi)t +n5 - H(Sj)r - HUjr + % + %)} =

exp{on (HU0,)1 ~ 10517+ 7)) and 50 oslolltoh o (41 ) s

n7 '"‘,bz . . pr iV ]( 77’”_778;‘1) 5

the conditions of G (ugumi 32), implying 1 < ;U(Z)WGXP {n( (Vj‘UjaSj)T_I(UﬁSj)T%-%)}
Py, o, (U85 ) exp{—n(I(U1;Uz)x)}

and 1 < = s, () exp{—3mm}

g (§ S ’ynle) is justified by the fact that the operator 7,.", = 0 whenever {(uf,u%) ¢ T (pv,uv,)}. The positive

Ul 121 ,b2

. The inclusion of the event {(uf,4y) € T} (py,u,)} in the definition of

terms in the summand of 56( ) therefore remain unaltered Before we substitute the bound (148) in (144), we
make the following observations. Note that if (u},4%) ¢ Ty, (pv), Lemma 4 guarantees the operator 7., = 0.

For (uf,4}) € Ty, (pu), the commutativity of oy a5 and m:"

Ty S oy Sexp{n(H (Y U)r+6m)} moy vy oup,ag Ty ay = exp{n(H (YIU)r + 6m) }y/Tug,ag Moy g Top g /Ot i
=exp{n (H(Y|U)y +6m)} /Ouraz u’"LQ Vouray <exp{n (H(Y|Ur,U2)y 4+ 6m1)} \/Ourag I\ /Tur ay
=exp {n (H(Y|U1,U2)y 4+ 6m1)} 0ur az- (149)

Now substituting the upper bound (148) in (144), we have

and Lemma 4 ensure

n(en oz o e g o 20 2,13 5™ u" v ba
pS(S ) (7['77477'“.” Ty L7T n Ty, T ul P s Tyn g Ul ,Ma1,ba

_ - "
§e(m) < Zu:n Z Z exp{nI U17U2)}[pU2|U(“2|“1)] Uexp{—n8ns — 3m71}qk1+k2‘BlHBZ‘jl_[lejUjles w] 7U]7Uj |8 )

1
=_m b
n'n 150 bth

L ,ag.
1,72 1me _p_2,m3 2,m3
pU2|Ulu2\u1)tr€rn47run Oup oy Tyn T, Tyn Prr,sn T TL)]I{(u",a")eT, (pg)}
< Z Z Z Y _ . kl‘li’k’;B HB ngVX(§n7Qn7 anﬂﬁo)
smun Z) ai,as EXp{ n ( ‘Ul’ UQ)T (Ula UQ)T + 9771 + 8775)}@1 | 1” 2|
" E” b1,b2
= = u

2
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n_1me 1 17772 H 7773
(7-‘-7747-‘- J n7T ﬂ—n4 uz ,Oz" snﬂ— >]1{u1 eT}l(pUI)}

Z Z Z ZGXP{ n( Y|U1’U2)T— (Ul,U2)+9771+8775)}qk1+k2151|\3 ’pSUVX

n j ane
s™ut T b bl b2
1,02

Z Z tr( ’73720—1 Wl,’zhﬂ?l?l ’nngP:r" 8"7T2773737T?74) ]l{ul €Ty, ()} o, (s, u", v", ™) 5
— ——p s u" "z (152)
(e~ exp{—n (H(Y|U1,Us)y — I(U1;Us) + 91 + 8n5)} 98X

(s",u", v",@d5))

tr ( Lin gt 720, 2 M) L e, )} S5PL—nI (U1 Ua)}
— exp{—n (H(Y|Ur,Uz)y — H(Y|U1)y + 10m1 + 12 + 815 + Ro1 + B

)}ngVX(§7L7yn’ynjgn)(153)

ng
1\

2,773 1me _p2m3 n n ,n ,n ,.n
([ Ty Ty | Pansr ) Pauyx (8™ w0, 2"

- 154
szu: vzx: exp{—n (—=I1(Y,U1;U2)y + ™1 +n2 + 815 + Ra1 + Ba)} (154)
Z Z tr Ipz" 5" pSUV)((S u”,v", z") exp {n (n2 + Ro1 + B2)} (155)

exp{—n (=1(Y,U;Uz)r + T + 815)}

Z ZpSUVXS ,u,v", x") exp {n (Ra1 + B2)}
g on exp{n I YU]_,UQ)T m —87]5—772)}

where (i) (150) follows from substituting the upper bound (149) and the Markov chains X U1 V] — 51 — SoUs Vo X
and XoUsVy — 57 — S1U1 V1 Xq, (i) (151) follows from Zug p?]zwl (a5 |ul)ouray = U}ﬂf and the fact that
none of the other terms in (151) depend on af, (iii) (152) follows from cyclicity of the trace and the
fact that none of the terms in the summand thereln depend on ml,é, ai,as,by,bs, (iv) (153) follows from
wl’"zal 771’772 < exp{-n(HY|U)y —m — 772)}7r «” which holds since u} € T, (py,) (Lemma 4) (v) (154)
follows from cyclicity of the trace, (vi) (155) follows from the operator dominance 7r2;f73 ﬂ#ﬂi’ﬁ? T, 5’7’3 < I and

finally (vii) (156) from tr(pgns-) = 1.

< exp{—n(I(Y,Ur; U2)y —Tm —n2—8ns — Ra1 — B2} 56)

APPENDIX N
PROOF OF PROPOSITION 11

We now derive an upper bound on & (m) starting from (43). Let Let
_ " (aj,my2)=v], UR (mya,by ) =uf 7 A [L£j1(mj1,87)|> L 7 A [ Bj(mji,s7)=DB;=b,
G 2{S" =5"},6] £ { Ur (g1 by )it fOT 1,2 },% = {|L12(m”s )|>LJ2JG[2]} 03 = {Aj(z@j,s;-‘)zaj:jep]}

7TA X} (fjv ') s"utb) A R
g4 - { _117 ]6[2] } 7g(y”,@179> - ﬂ{(s;’7u )GT"?o (ps U.; VJ) S GTTS( ) ( n ")GT ns (psjUj)»(mjl7bj)§é(mj1,b]‘)1j=172}’ we haVe

Jvi =

= 1, 1 1 2, 2, s™u™b 7
Y L (AL

) , where(157)

iﬁﬁi ﬁlé% Zi:zg
b - b
92 )P (ﬂ 7 g) =0 s) P (67N GEIGw) P (5162 06T NGF) P (67 (G 01 6T NGE N )
P (G7|Gs-) (ub)ﬁ P, v,v,,8, 5 195 V5 57)
) VLS, (158)
1‘ ol ™,y b |,C]1 mj1, S )||»C]2(m]7 )|

_ py, (ut)pg, (ug)py, (41)pp, (Ug)g<sn,u”,g> H pXj|Uj,Vj,sj( jluj, v s5)

s 159
g2 o™y ,b e Lj1Ljo (159)
44"V 0, v, s, @0 07 S () exp { 25 |
s™ u b ~ X]‘U,,V_;,S .7 j ] U
Sg( )p (@), (@) [ o5 (160)
ur ) PO (017 (0) q"ths exp{n (224 — I(U;3 8;)y + H(Vj1S;,Uj)v)}

j=1
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2
b . 1 29115
< g(j ::L b) P, (@ ?)]{ULQ(UEL)HM4p}j,U],V7|Sj(‘T?7U;'L7Uﬁs?)eXp{ 1 }7 (161)
j=1
where (i) (158) follows from the fact that (a) conditioned on the entire codebooks, B;(mj;i,s ?) = B* and

Aj(my,s7) is uniformly distributed in Lj1(my1, sj») and Lj2(m;, s7), and in particular conditionally 1ndependent
of the realization of the codebooks (See Remark 4), which implies that P (G5|Gs» NGINGINGT) =
CamGmep @ © P(6116,n6INGINGT) = TlLawk s, (@1 s7). G
(159) follows from the facts that (a) the U;—,Us—codebooks are mutually independent and the
codewords in the Ufj—codebook are mutually independent with distribution pf;, (b) two codewords
in the two V;—,V»,—UCC codes are pairwise independent (Lemma 5) and uniformly distributed in

the Fj' ambient space and (c) [Lji1(mj1,s7)] > Ljy = 1 exp {n (% — I(Uj; Sj)r — 3;”) },
\ﬁjg(mj,s?)] > Ljs = %exp {n (% —logq+ H(V}|S;,Uj)r —3775)}, (i)  (160)
follows from above definitions of Lji,Lj, and (v) (161) follows rom the bound

U;V;S (u_] T 5”) 2 2
WW > exp{—n (H(Sijja‘/})T+U5_H(SJ)T_H(UJ)T+%+%)} =

exp{—n ( H(V;|U;,Sj)x — I(Uj; Sj)r + %)} for (s",u",v"™) satisfying the conditions of g(jfi%), implying
pU]V]SJ( 55 ,S?) o

I< mexp{ ( (551U, Vi)r = 1(Uj; 55)

that g(s ;LI b) <1, we have

725) } Substituting (161) into (157) and recognizing

<y Y Zpg( ") tr (b w2 g, g P

S 22 2 el )] exp{ b B |82 HPXUV\S zjsuph v 195)
%n’%n m177 bi’b; ! 2 ]:
= 1= ﬁ;’,ﬁ;’ )

17772 07771 1?772 I ’773 2}773 ~
Pg( ") tr (77774 ap Tarap Tap TmaTuy Per,sn Ty pU1 (u

exp{—n (815 + R11 + Ro1 + Bl + B2)}[Pn (a3)]~

2
H PX,u, v, xj,uj,v]]s )(162)

Lnz,_om _1n2_p 2,773 27773
tI‘(ﬂ'mﬂ'u Wulumrun s Ty P ,sn Tyn

< U IS K s ut, v " u 63
<> pp (@)pi, (@3)pu, (u Q)Znglg\UQ(f v 2" uy) xp{—n ( 8n5+R11+R21+B1+32)} )

ar,al uy s™,ut
oMY Al

< Z ZpUl at)pi, (43 ), (uz tr( @ u’772 Znésﬂiﬁ%#z; 37’?302 7r2”73>exp{n (815 +R11+Ro1+ B1 + Bofjl 64)
’lLl ,u2 ’LL2

< 0> g (af)pg, (as )puz(uz)tr< T T e T o ) exp{n (815 + Ri1 + Ra1 + By + Ba)}  (165)
ay,ay uy

= Z Z:JDU1 1)pu, (43)pu, (ug )tr ( ;n27rg’mn71’n2775405 n Ty ) exp{n (815 + R11 + Ro1 + B1 + B2)} (166)
ul 7u2 u2

— A1 n Lna_om 1772 ®n,_i

= Z po, (41)pp, (4 2)“( ar Tarag Tan Tpabt 7f774> exp{n (8n5 + R11 + Ra1 + B1 + Ba)} (167)
ap,ay

< (@) P (3 br (b7 b e {n(8ns +ms+ Ryt + Roy + B+ Bo — H(Y)y)}  (168)

= pp, (@7)pp, (g )tr Tan Tanay Tap Tng) EXPU(ST)5 T T4 11 21 1 2 T
"Tllv’a2

where (i) (162) follows from the fact the terms in the earlier summand are invariant with ay, as, b1, be, M, é (i1)
(163) follows from Markov chains XV U} — S1 — 52U2V2X2 and XoVoUs — Sy — S1U1 V1 X4, (i) (164) follows
from 3 yn yn o Py, v v ut, v , U ) pyngn = 02n, (iv) (165) follows from the commutativity of 7r2’77d
and JQL implying T, ;37"02 7r2’77" = \/077171'2’737371'2’173\/>n = ﬁ ’"3\/> < \/J»I\/O'»n = 02., (v) (166)
follows from cychclty of trace, (vi) (167) follows from ), » DU, (uh) a n = @™, (vii) (168) follows from quantum
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conditional typicality Lemma 4 which states the operator inequality 7, u®"mh, < exp{—n(H (Y )y — na)}h,.
Proceeding further, we have

E prr, (47 )pir, (1) tr( u’nfig [W1;7727r#4 i’nzb exp{n (875 +n4 + R11 + Ro1 + B1+ Ba — H(Y)y)}

ZpUl 1;1 Pt (ug)tr( Ty 1)) exp{n (815 + 1 + Ru + Rot + B+ By — H(Y)x)} (169)
ngl (a8) tr( o )]1 ((a3a8)€Ty. (s} ©XP{N (875 + 7a + Ruy + Ry + By + By — H(Y)}(170)
21;3; (a7 )pr,(Us) L g meTn (poy0,)}XP{N (815 + 14 + 2m + Ru1 + Ror + Bi+Bo—H(Y )y + H(Y|U))}171)
ggjip{—n (L(Y;U1U2)x + I(Ur; U2)y — 805 —na — 5m — Ri1 — Ro1 — By — Ba)} (172)

where (i) (169) follows from cyclicity of trace, (ii) (169) follows from 711’"27# 711’772 < I, (ii1) the inclusion of

the indicator 1y(a ag)ety, (pu,o,)} 18 Justified by the fact that Tonny = 0 if (u?,ﬁg) ¢ T (pu,v,), thereby not
altering the positive terms in the summand, (iv) (171) follows from the quantum condltlonal typicality Lemma 4

which states that tr 7r"737;n <tr <7r”n ”;) < exp{n(H(Y|U1,Uz)r + 2m)} whenever (a7, uy) € T (pv,u,) and

775:22 = 0if (af,a3) ¢ T, (pu,vs)-

APPENDIX O
QSTX : PROOF OF PROPOSITION 14

We begin by defining a common set of objects and relations that we shall leverage in the sequel. Suppose
Gon 2 {S" = 5"},G1 2 {V"(a,m) = v"},Go 2 {|L(m, s")| > L}, Gs 2 {AL, o = a},Gs & {X"(msm)=a"} (173)
G(5",07) 2 (e (), (o ) ) then Pl @07, SR (5™)G (5", 07) < ey (a7 exp{m (05 )
We begin with (,;(m) = E{C41(m)} as defined through (64). Let G} 2 @G, for i € [4]. We have
Ca1(m) =2 Z ZPS o] pansn} G (s07) P (G NGy NG5 N Gi| Gen) , where (175)

™o T e Pk
G(s"o") P(Gf NG NG5 NGHIGsr) = G (s"o") P(GI N G3|Gsn ) P (G5 |Gor NG NG5 )P (G4 |Gs» NGL NG5 N G5J176)
<G (s"o") P (G1|Gsn ) |1L(m, 8”)|_1p7}<|v7s(m"|v", s") =G (s"wm) ¢ "|L(m, s”)|_1p}‘<|vjs(a:”|v", s™) (77)
4

<g (S"W”) qianlp%V’S(x"W", s") < q—ng (s",v") exp{n (logQ*H(V‘S)+3W3*§10gl1)}p&|v’5([£n|vn, s") (178)
< 4G(s",v") exp{bnnz — klog ¢}’ v s (", v"[s"), (179)
where (i) the inequality in (177) follows from the fact that P (G5 |Gs» N G{ N G3) = m as argued in (61) and
P (Gi|Gs» NGING3NGS) = pyg(z"v", s") from the distribution of the random code specified in (60), (ii)
the equality in (177) follows from P(G; \QS ) = qln that is proven in Lemma 5 in Appendix D, (iii) the inequalities
in (178) follows from |£(m, s")| > L = 1 exp{klogq—nlogq+ H(V|S) — 33} defined prior to (56) and finally
(iv) (179) follows from exp {—n (H(V|S) 3"‘”’)} < leS( v"[s™) whenever s" € T (ps), (s",v") € Ty, (psv ),

the latter conditions being ensured by the factor G(s™,v™). Substituting (179) into (175), we have

Cu(m) < SZ D e {[T — 70" pan wn} G(s™, 0™) exp {Bnms} pRys (2™, 0", ™), (180)
< ngv e, pv}eXp{5nn3}Ztr — o] pam s } P (€, 8™ 0™) - (181)

87 (V) L pymer, (py )} Py (" )1Og [dim(H)]
< n3 (Pv _ O’T,—Lng < |4 _ _ 2
< poy tr {[I — 7% gy} < 16T exp{—nbma] exp {—2n(n2 — n3)%8,(c, pv, m) §182)

< 16 log [dim(H)] exp {—n [2(n2 — 13)*6,(0, pv,m) — 53] } -
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where (i) (180) follows from the fact that terms in the summand in (175), after substituting (179), are invariant to
a € V¥, (ii) (181) follows from the indicator function in question being larger than or equal to the factor G (s”,v"),
and lastly (iii) the second inequality in (182) is a result of the substantial overlap of the conditional typical projector
Ton"” with oy» whenever v™ € Thy, (py) and 72 > 13 as stated in Lemma 4.

The next term we analyze is (5(m) = E{(5(m)} as deﬁned in (59). We refer to (173) and let g5 = G, for
i = 23,4, G} 26N {V™(@a,m) = "}, G(s",v",a a) 2 g(s",v "M {a4q)- With these definitions, it can be
verified that

m)=2 )" YD pE(s") tr {mh aT Tl pyn on } G (smwmad) P(GF N GE N GE NG| Gar). (183)

st ot 0" ae VR aeVk

From Lemma 5, we have P(G}|Gsn) = qln. Substituting this, recognizing G? 2 g, for i = 2,3,4 and following a
sequence of steps analogous to (176) - (179), we have

G (s",v”,a,&) P (Qir’ N Qg’ N gg,? N g;i’\ an) < 4q7" exp{bnns — klog q}p}7V|S(x", v™|s™). (184)

Substituting (184) into (183) and recognizing that the terms in the summand do not depend on a,a € V*, we have

Ztr{wv;fh prvsx V", 8™ pgn sn }exp{5nn3}<2tr{7r;ﬁz7ru ®n }exp{5n773}(185)

omn s"onx” on

Ztr {x3n y } exp{—n(H (Y )y —5n3 —m)} < Ei]qn Z tr {m2" I} exp {n(H(Y)y — 5n3 — m)} (186)

ﬁn

8 k
Zexp{ n(HY)y — H(Y|V)y —5n3 —n1 — 2m2)} + in ZO-exp{n(H(Y)T— 5ng— m — 2n2)4187)
U ETIQ(pV) o W"\Tnz(pV)
<8exp{—n(H(Y)r — HY|V)y +logq— H(V)y — 5n3 —m — 2m2) + klogq} (188)

where (i) (185) follows from =) pxs(z,s)ps,s as defined prior to (32), (ii) (186) follows from Lemma 3(ii),
since 7, is the typical projector of u’®" (iii) (187) follows from Lemma 4 (i) and the upper bound in Lemma 4,
and finally (v) (188) follows from the bound on the size of the typical set |1}, (py )| as stated in Lemma 1.

We now derive an upper bound on our last term (g(m) = E{(s(m)} as defined in (59). Our analysis will be
very similar to the one presented above for C5(m). We refer to (173) and let G8 £ G, for i = 2,3,4, G0 &
G N{V™(a,m) = 0"}, G(s™, 0", m,m) 2 G(s™, V") L g2y With these definitions, it can be verified that

m)=2 )" 33" N pa(s”) tr {mh 7l ak pan o0 } G (sm0mman) P(GY N GS N G§ N GY| o). (189)

™™, 0" aeVF acVk meV!

From Lemma 5, we have P(Qﬂgsn) = qn- Substituting this, recognizing gﬁ’ G; for ¢ = 2,3,4 and following a
sequence of steps analogous to (176) - (179), we have

G (smomman) P (GY NGS NGSNGE|Gsn) < 4" exp{5nns — klog 4} vis(a™, v"]s"). (190)

Substituting (190) into (189) and recognizing that the terms are invariant to a,a € VF and 7 € M, we have

8 k+1 o o
q Ztr{w ey ZpXVS ™ " ") pgn g }exp{5m73}<q2tr{7r Wy ®”7T7’;1}exp{5mq:],?1)

S’UZ‘

on

k+l

Z:tlr{Tr‘”72 1}exp{—n( (Y)y —5n3 —m )}

oI yexp{—n(H(Y )y — 513 — n}92)

8 k+l
< M S exp{-n (I(U; Y )y — 503 — m — 2m2)} Y)r —5n3 —m — 2m2)} (193)
{)nETUQ (pV) vneWn\Tu (pV)
<8exp{-—n(H(Y)r —H(Y|V)y +logqg— H(V)y — 513 —n1 — 2n2) + klog q + llog ¢} (194)

where (i) (191) follows from p = Zx s Pxs(x,s)ps,s as defined prior to (32), (i) (192) follows from Lemma 3(ii),
since 7, is the typical projector of p®™ (iii) (193) follows from Lemma 4 (i) and the upper bound in Lemma 4,
and finally (v) (194) follows from the bound on the size of the typical set |1}, (py )| as stated in Lemma 1.
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