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Abstract—Pilot contamination (PC) arises when the pilot
sequences assigned to user equipments (UEs) are not mutually
orthogonal, eventually due to their reuse. In this work, we
propose a novel expectation propagation (EP)-based joint chan-
nel estimation and data detection (JCD) algorithm specifically
designed to mitigate the effects of PC in the uplink of cell-free
massive multiple-input multiple-output (CF-MaMIMO) systems.
This modified bilinear-EP algorithm is distributed, scalable,
demonstrates strong robustness to PC, and outperforms state-of-
the-art Bayesian learning algorithms. Through a comprehensive
performance evaluation, we assess the performance of Bayesian
learning algorithms for different pilot sequences and observe that
the use of non-orthogonal pilots can lead to better performance
compared to shared orthogonal sequences. Motivated by this
analysis, we introduce a new metric to quantify PC at the UE
level. We show that the performance of the considered algorithms
degrades monotonically with respect to this metric, providing a
valuable theoretical and practical tool for understanding and
managing PC via iterative JCD algorithms.

Index Terms—Cell-free massive MIMO, pilot contamination,
joint channel estimation and data detection, expectation propa-
gation, non-orthogonal pilot sequences.

I. INTRODUCTION

Distributed multiple-input multiple-output (MIMO) commu-
nications, particularly in the form of cell-free massive MIMO
(CF-MaMIMO) networks, are expected to play a key role
in advancing next-generation mobile communication systems
by enabling high-rate and energy-efficient communication
everywhere in the coverage area [1]–[3]. In this network
architecture, a large number of spatially distributed access
points (APs) are communicating with a smaller number of
user equipments (UEs). One major challenge in practical
CF-MaMIMO networks is pilot contamination (PC), which
arises from the use of non-orthogonal pilot sequences for
channel estimation and deteriorates the overall system perfor-
mance. In real-world networks, the use of non-orthogonal pilot
sequences is necessary due to the potentially large number
of UEs in the network. Ensuring orthogonality would require
prohibitively long pilot sequences, reducing spectral efficiency
and throughput per user. Furthermore, unlike centralized
MaMIMO, channel hardening and favorable propagation typ-
ically do not hold in CF-MaMIMO [4]–[7], which precludes
the use of existing pilot decontamination methods proposed
for centralized MaMIMO, e.g., [8]–[12]. Even though PC
has been shown not to represent a fundamental limitation
for centralized and CF-MaMIMO systems [13], [14], it still
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remains a significant practical challenge, especially in scalable
CF-MaMIMO systems with a limited number of APs and AP
antennas. This motivates the development of new effective,
efficient, and distributed pilot decontamination schemes ca-
pable of leveraging other degrees of freedom beyond those
considered in [13] and [14], which rely primarily on pilot
symbols and channel statistics. These additional methods are
presented below.

An efficient approach to mitigate PC is through optimized
pilot assignment schemes because strong PC arises when UEs
in close proximity utilize the same pilot sequence. In [1], the
authors propose a greedy pilot assignment scheme based on
minimizing PC for the user with the lowest rate. Here, the
PC for a given UE is quantified by the average interference
power after projecting the received pilot signal onto the pilot
sequence used by the given UE. In [15], a K-means and a
user-group-based pilot assignment scheme are presented where
the distances between all UEs and APs and their serving
relationships are utilized to assign the pilot sequences. An
alternative strategy to alleviate PC leverages joint channel
estimation and data detection (JCD). The authors in [16]
developed a JCD scheme based on forward backward splitting
which exploits the sparsity of CF-MaMIMO channels and
employs non-orthogonal pilot sequences. Bayesian learning
methods have also been explored in the literature for JCD.
In [17], a distributed semi-blind JCD message-passing algo-
rithm has been presented for CF-MaMIMO networks which
applies expectation propagation (EP) on a factor graph. A
similar approach for grant-free CF-MaMIMO has been pre-
sented in [18]. The authors in [19] proposed a semi-blind
JCD algorithm based on Bethe free energy optimization which
combines variational Bayes (VB) and EP referred shortly to
as VB-EP throughout this paper.

In this work, we propose a novel JCD algorithm based
on EP, specifically designed to enhance robustness against
PC in CF-MaMIMO systems. The algorithm builds upon the
bilinear-EP algorithm presented in [17] and incorporates a
modified scheduling and message passing for bilinear structure
to effectively exploit the inherent structure of the received
data signals and suppress the impact of PC. We evaluate
the proposed method against state-of-the-art Bayesian learning
algorithms and demonstrate superior detection and estimation
performance, particularly under severe PC. This thorough
analysis of PC was not conducted in prior work. Our anal-



ysis further considers both contamination caused by non-
orthogonal sequences and by the reuse of identical orthogonal
sequences, revealing that Bayesian methods exhibit greater
robustness when non-orthogonal pilots with low correlation are
used. This insight motivates the introduction of a novel metric
tailored to quantify PC and assess its impact on iterative JCD
algorithms.

Notation: (·)T and (·)H are the transpose and the conjugate
transpose operator, respectively. δ(·) and 1(·) denote the Dirac
delta and the indicator function, respectively. CN (x|µ,C) rep-
resents the circularly-symmetric multivariate complex Gaus-
sian distribution of a complex-valued vector x with mean
µ and covariance matrix C. π(x) denotes the categorical
distribution of a discrete random variable x. The notation
x ∼ p indicates that the random variable x follows the
distribution p. The message sent from the factor node Ψα to
the variable node xβ in a factor graph is denoted as mΨα;xβ

and consists of parameters of a distribution in the exponential
family which are denoted with the same subscript of the
message, e.g., mean µΨα;xβ

and covariance matrix CΨα;xβ

for a Gaussian distribution or probability values πΨα;xβ
for a

categorical distribution. The same holds for variable-to-factor
messages mxβ ;Ψα

.

II. SYSTEM MODEL

We consider the uplink of a CF-MaMIMO network con-
sisting of L geographically distributed N -antenna APs and K
synchronized single-antenna UEs. All APs are connected to
a central processing unit (CPU) via fronthaul links to share
information. During the channel coherence time of T channel
uses, the received signal Y∈CLN×T at all the APs is given
by

Y = HX+N (1)

where H = [HT
1 · · ·HT

L]
T∈CLN×K is the channel matrix and

Hl = [hl,1 · · ·hl,K ] ∈ CN×K denotes the channel between
AP l and all UEs; X = [x1 · · ·xK ]T ∈CK×T is the transmit
symbol matrix and xk∈CT×1 represents the transmit sequence
of UE k; and N ∈ CLN×T is the matrix of additive white
Gaussian noise (AWGN) with independent and identically
distributed (i.i.d.) elements n ∼ CN

(
n|0, σ2

n

)
. The channels

are assumed to be constant during the channel coherence time.
We assume block Rayleigh fading channels between UE k and
AP l, i.e., hl,k ∼ phl,k

(hl,k) = CN (hl,k|0,Ξl,k) where Ξl,k

is the channel correlation matrix with the large-scale fading
coefficient (LSFC) ξl,k = 1

N tr{Ξl,k}. The transmit symbol
matrix consists of a pilot part Xp ∈ CK×Tp and a data part
Xd ∈ XK×Td , i.e., X = [Xp Xd], with Tp + Td = T and
X being the transmit data symbol constellation of cardinality
M = |X |. The average transmit symbol power is given by
σ2
x = E

{
|xkt|2

}
. A similar decomposition in pilot and data

part applies to the receive matrix, i.e., Y = [Yp Yd] with
received pilots Yp ∈CL×Tp and received data Yd ∈CL×Td .
Furthermore, we assume that the pilot length is smaller than
the number of UEs, Tp < K, since in practice the number of
UEs can be very large and, thus, it is not practical to assign

orthogonal pilot sequences to the UEs. This gives rise to the
PC effect.

III. PROBLEM FORMULATION

Due to PC, channel estimation based solely on pilot se-
quences typically presents severely degraded performance. An
effective strategy to mitigate the impact of PC is to leverage
not only the pilot sequences but also the detected data symbols
to iteratively refine both channel estimation and data detection.
In this context, the receiver’s task is to jointly estimate the
channel matrix H and the user data matrix Xd. The maximum
a posteriori (MAP) estimator is given by

(Ĥ, X̂d) = argmax
H,Xd

pAPP(H,Xd), (2)

with the a posteriori probability (APP) distribution
pAPP(H,Xd) which can be factorized by applying Bayes’
theorem,

pAPP(H,Xd) = pH,Xd|Y,Xp(H,Xd|Y,Xp)

∝ pY |H,X(Y|H,X) · pH(H) · pX(X). (3)

Solving the inference problem in (2) is computationally
intractable due to the high dimensionality of the involved
variables. To address this challenge, we employ Bayesian
learning techniques to obtain tractable approximations of the
MAP estimates.

IV. BILINEAR-EP ALGORITHM

In this section, we propose a novel JCD algorithm with
enhanced performance under PC. It builds upon the bilinear-
EP algorithm introduced in [17] for distributed semi-blind
JCD in CF-MaMIMO systems. Unlike the baseline, our ap-
proach incorporates knowledge and observations of the pilot
sequences in the message-passing procedure. In the following,
we present the underlying factorization and message-passing
steps, and refer to [17] for general details on bilinear-EP and
message derivations.

A. Factor Graph Representation

In order to solve the MAP problem in (2), the auxiliary
variables zl,kt := hl,kxkt ∀l, k, t are introduced and stored in
the array Z. The APP distribution with respect to the channel,
data, and auxiliary variables can be factorized as follows,

pAPP(H,Xd,Z) ∝
L∏

l=1

K∏

k=1

T∏

t=1

[
p(yl,t|zl,1t, ..., zl,Kt)

· p(zl,kt|hl,k, xkt) · p̃hl,k
(hl,k) · px(xkt)

]
,

(4)

where the independence of channel vectors for different APs
and UEs as well as the independence of data symbols for
different UEs and time indices is exploited. The probability
distribution p̃hl,k

(hl,k) represents modified channel informa-
tion compared to the prior information phl,k

(hl,k). How to
obtain this modified information will be explained in the
following. The factor graph representing the APP distribu-
tion (4) is shown in Fig. 1. It comprises variable nodes (circles)
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Fig. 1. Factor graph for bilinear-EP with T := Tp + 1. The numbered red
dashed arrows show the message update scheduling according to Algorithm 1.

and factor nodes (rectangles), organized according to their
implementation at the CPU and the APs. Each factor node
corresponds to one of the following probability distributions,

Ψyl,t
:= p(yl,t|zl,1t, ..., zl,Kt) = CN

(
yl,t

∣∣∣
K∑

k=1

zl,kt, σ
2
nIN

)
,

Ψzl,kt
:= p(zl,kt|hl,k, xkt) = δ(zl,kt − hl,kxkt),

Ψhl,k
:= p̃hl,k

(hl,k) = CN
(
hl,k

∣∣µ̃hl,k
, C̃hl,k

)
,

Ψxkt
:= px(xkt) =

{
1xkt=xp

kt
for t ≤ Tp

1
M 1xkt∈X for t > Tp

.

Here, p̃hl,k
(hl,k) represents the modified prior channel distri-

bution obtained solely from processing the pilot sequences.
In this work, we employ the minimum mean squared error
(MMSE) estimator which can be applied independently for
each AP without loss of optimality. The resulting estimates are
denoted by µ̃hl,k

with corresponding error covariance matrix
C̃hl,k

given by [20]

µ̃hl,k
=
[
Fvec{Yp

l }
]
ik,1

, (5)

C̃hl,k
=
[(

IKN − FX̃p
)
Ξl

]
ik,ik

, (6)

where F = ΞlX̃
pH(X̃pΞlX̃

pH + σ2
nINTp

)−1, X̃p = XpT ⊗
IN , and Ξl = blkdiag(Ξl,1, . . . ,Ξl,K). The operator vec{·}
denotes vectorization, [·]i,j extracts elements located at rows
and columns specified by the indices i and j, respectively, of
the matrix in the square brackets, ik = (k − 1)N + 1 : kN
represents the index range corresponding to UE k, and the
function blkdiag(·) constructs a block diagonal matrix from
its arguments.

The key modification of the proposed approach compared
to the bilinear-EP algorithm in [17] lies in the inclusion
of pilot symbols within the factor graph and, hence, within
the message-passing procedure. The corresponding message
update rules are detailed in the following section.

B. Message Updates and Scheduling

The bilinear-EP algorithm models the variables xkt with
categorical distributions, while zl,kt and hl,k are modeled as
multivariate complex Gaussian distributions. Accordingly, EP
message-passing update rules are applied to the factor graph in
Fig. 1. We present the message scheduling and the final update
rules. Detailed derivations can be found in [17]. Note that the
mean vector µ and the covariance matrix C of a Gaussian
random variable are equivalently represented by the natural
parameters γ=C−1µ and Λ=C−1. In the following, we will
interchangeably use both these representations without explic-
itly stating the transformation, i.e., if µΨα;xβ

and CΨα;xβ
are

computed, then γΨα;xβ
and ΛΨα;xβ

are automatically given
and vice versa.

The message initialization is performed as follows: pa-
rameters describing the messagesmΨhl,k

;hl,k
,mhl,k;Ψzl,kt

, and
mΨzl,kt

;zl,kt
∀k, l, t are initialized per Algorithm 1. All other

messages are initialized in an uninformative way.
The messages mΨyl,t

;zl,kt
∀k, l, t are updated first, in which

each AP performs interference cancellation on the received
signal using the current knowledge of the auxiliary variables
zl,kt,

µΨyl,t
;zl,kt

= yl,t −
∑

k′ ̸=k

µΨz
l,k′t ;zl,k′t

, (7)

CΨyl,t
;zl,kt

= σ2
nIN +

∑

k′ ̸=k

CΨz
l,k′t ;zl,k′t . (8)

The updated information on the variables zl,kt at each AP
l is used to refine the local beliefs on the data symbols xkt,
which are subsequently shared with the CPU. This is done by
updating the message mΨzl,kt

;xkt
∀k, l, t > Tp,

πΨzl,kt
;xkt

(xkt) ∝ θ(xkt), (9)

with

θ(xkt) = CN (0|µΨyl,t
;zl,kt

− µhl,k;Ψzl,kt
xkt,

CΨyl,t
;zl,kt

+Chl,k;Ψzl,kt
|xkt|2).

Next, the messages mxkt;Ψzl,kt
∀k, l, t > Tp are updated

by aggregating the data symbol beliefs from all APs at the
CPU, which then sends the following refined beliefs back to
the APs,

πxkt;Ψzl,kt
(xkt) ∝

∏

l′ ̸=l

πΨz
l′,kt

;xkt
(xkt). (10)

The updated beliefs on the symbols xkt at each AP are
then used to refine the channel estimates hl,k. This refinement



is achieved through the update of the message mΨzl,kt
;hl,k

∀k, l, t, given by

ΛΨzl,kt
;hl,k

= Λ̂1l,kt
−Λhl,k;Ψzl,kt

, (11)

γΨzl,kt
;hl,k

= γ̂1l,kt
− γhl,k;Ψzl,kt

, (12)

with µ̂1l,kt
=

µ̌l,kt(x
p
kt)

xp
kt

, Ĉ1l,kt
=

Čl,kt(x
p
kt)

|xp
kt|2

for t ≤ Tp and

µ̂1l,kt
=

1

Zl,kt

∑

xkt∈X
πxkt;Ψzl,kt

(xkt) ·
θ(xkt)

xkt
· µ̌l,kt(xkt),

Ĉ1l,kt
=

1

Zl,kt

∑

xkt∈X
πxkt;Ψzl,kt

(xkt) ·
θ(xkt)

|xkt|2
·
(
Čl,kt(xkt)

+ µ̌l,kt(xkt) · µ̌H
l,kt(xkt)

)
− µ̂l,ktµ̂

H
l,kt,

for t > Tp with

Zl,kt =
∑

xkt∈X
πxkt;Ψzl,kt

(xkt) · θ(xkt),

Λ̌l,kt(xkt) = ΛΨyl,t
;zl,kt

+Λhl,k;Ψzl,kt
|xkt|−2,

γ̌l,kt(xkt) = γΨyl,t
;zl,kt

+ γhl,k;Ψzl,kt

xkt

|xkt|2
.

Then, the messages mhl,k;Ψzl,kt
∀k, l, t are updated yielding

new estimates of hl,k by combining the information acquired
across all time slots with the prior channel information,

Λhl,k;Ψzl,kt
= ΛΨhl,k

;hl,k
+
∑

t′ ̸=t

ΛΨz
l,kt′ ;hl,k

, (13)

γhl,k;Ψzl,kt
= γΨhl,k

;hl,k
+
∑

t′ ̸=t

γΨz
l,kt′ ;hl,k

. (14)

The messages mΨzl,kt
;zl,kt

∀k, l, t are updated last in an
EP iteration, generating refined estimates of the variables zl,kt
which are then utilized for interference cancellation in the next
iteration,

ΛΨzl,kt
;zl,kt

= Λ̂2l,kt
−ΛΨyl,t

;zl,kt
, (15)

γΨzl,kt
;zl,kt

= γ̂2l,kt
− γΨyl,t

;zl,kt
, (16)

with µ̂2l,kt
= µ̌l,kt(x

p
kt), Ĉ2l,kt

=Čl,kt(x
p
kt) for t ≤ Tp and

µ̂2l,kt
=

1

Zl,kt

∑

xkt∈X
πxkt;Ψzl,kt

(xkt) · θ(xkt) · µ̌l,kt(xkt),

Ĉ2l,kt
=

1

Zl,kt

∑

xkt∈X
πxkt;Ψzl,kt

(xkt) · θ(xkt) ·
(
Čl,kt(xkt)

+ µ̌l,kt(xkt) · µ̌H
l,kt(xkt)

)
− µ̂1l,kt

µ̂H
1l,kt

,

for t > Tp with Zl,kt, Λ̌l,kt(xkt), and γ̌l,kt(xkt) as given
before.

The modified bilinear-EP algorithm is summarized in Al-
gorithm 1. Compared to the EP algorithm presented in [17],
it contains additional and augmented message updates. To
be more precise, the updates of the messages mΨyl,t

;zl,kt
,

mΨzl,kt
;hl,k

, mhl,k;Ψzl,kt
, and mΨzl,kt

;zl,kt
are now also con-

sidered for t ≤ Tp i.e., for the pilot part as well. Furthermore,
the update of the message mhl,k;Ψzl,kt

is enhanced by taking
into account the additional information from t ≤ Tp.

Algorithm 1 Modified Bilinear-EP Algorithm
Input: Pilot matrix Xp, transmit power σ2

x, received signal
Y, noise variance σ2

n, prior distribution p̃hl,k
(hl,k) ≡

(µ̃hl,k
, C̃hl,k

).
Output: Estimated channels ĥl,k and data x̂d

kt.
1: ∀k, l, t: Initialize all messages uninformatively except

µΨhl,k
;hl,k

= µhl,k;Ψzl,kt
= µ̃hl,k

,

CΨhl,k
;hl,k

= Chl,k;Ψzl,kt
= C̃hl,k

,

µΨzl,kt
;zl,kt

=

{
µ̃hl,k

xp
kt for t ≤ Tp

0 for t > Tp
,

CΨzl,kt
;zl,kt

=

{
C̃hl,k

|xp
kt|2 for t ≤ Tp(

C̃hl,k
++µ̃hl,k

µ̃H
hl,k

)
σ2
x for t > Tp

.

2: for i = 1 to imax do
3: ∀k, l, t: Update mΨyl,t

;zl,kt
via (7), (8).

4: ∀k, l, t > Tp: Update mΨzl,kt
;xkt

via (9).
5: ∀k, l, t > Tp: Update mxkt;Ψzl,kt

via (10).
6: ∀k, l, t: Update mΨzl,kt

;hl,k
via (11), (12).

7: ∀k, l, t: Update mhl,k;Ψzl,kt
via (13), (14).

8: ∀k, l, t: Update mΨzl,kt
;zl,kt

via (15), (16).
9: return ĥl,k calculated via (17) ∀k, l.

10: return x̂d
kt calculated via (18) ∀k, t.

After performing the final EP iteration, the channel and data
estimates are computed as follows,

ĥl,k = Λ̂−1
hl,k

γ̂hl,k
, (17)

x̂d
kt = argmax

xd
kt∈X

p̂xkt
(xd

kt), (18)

with

Λ̂hl,k
= ΛΨhl,k

;hl,k
+

T∑

t=1

ΛΨzl,kt
;hl,k

, (19)

γ̂hl,k
= γΨhl,k

;hl,k
+

T∑

t=1

γΨzl,kt
;hl,k

, (20)

and the approximated posterior data distribution

p̂xkt
(xd

kt) ∝
L∏

l=1

πΨzl,kt
;xkt

(xd
kt). (21)

We note that damping is applied to factor-to-variable mes-
sages using a damping parameter η ∈ [0, 1] to improve the
stability of the bilinear-EP algorithm [17], i.e., each updated
parameter is computed as a convex combination of its previous
and newly computed values. Furthermore, the parameters of
the messages mΨzl,kt

;hl,k
and mΨzl,kt

;zl,kt
in line 6 and

8 of Algorithm 1 are updated only if the corresponding
covariance/precision matrices obtained by (11) and (15), re-
spectively, are symmetric positive definite. Otherwise, the
parameters from the previous iteration are retained.

V. QUANTIFYING PILOT CONTAMINATION

In this section, we introduce a metric to quantify PC in
CF-MaMIMO networks. The level of PC is influenced by



the choice of the pilot matrix Xp and the resulting corre-
lations between pilot sequences. Mutual coherence, which
measures the similarity between pilot sequences, was used
in [21] for pilot design to mitigate PC. However, due to
the distributed architecture of CF-MaMIMO, user signals can
often be separated spatially, especially when the users are far
apart, resulting in negligible interference. Therefore, the spatial
power profiles of all UEs, captured by the LSFCs ξl,k, are also
critical for characterizing PC. This motivates us to develop
a new PC metric which is particularly suited for JCD in
distributed systems. Inspired by the normalized mean squared
error (NMSE) of the pilot-based MMSE channel estimator, we
define the PC metric ck for UE k as

ck = min
l

[(
diag(ξl,1, . . . , ξl,K)

−1
+XpXpHσ−2

n

)−1
]

k,k

ξl,k
,

(22)
where diag(·) denotes a diagonal matrix with its inputs on the
main diagonal. The rationale for taking the minimum value
over all APs is that a strong, low-contamination link to any
single AP is sufficient for reliable channel estimation and
successful data detection. This reliable information can be used
to cancel the interference caused by the corresponding UE and,
hence, iteratively remove PC. This concept was formalized
in [22] where sufficient and necessary conditions for semi-
blind identifiability were established.

VI. NUMERICAL RESULTS

In this section, we present Monte Carlo simulation results
for the modified bilinear-EP algorithm and several state-of-the-
art benchmark algorithms. We consider a network spanning an
area of 400× 400m2 comprising L = 16 single-antenna APs,
i.e., N = 1, placed on a regular grid at coordinates {(50 + i·
100, 50+j·100)m | i, j∈{0, 1, 2, 3}} and placed at a height of
10m. A total of K = 8 UEs are placed uniformly at random
ground locations and transmit Tp = 4 pilot symbols and Td ∈
{10, 30} 4-quadrature amplitude modulation (QAM) uncoded
data symbols. The values of K and Tp are chosen such that PC
occurs and the complexity of the simulations is not too high. In
practice, longer channel coherence times allow for an increase
in the number of pilot symbols Tp but also for an increase in
the number of UEs K, especially when the number of AP
antennas LN is increased as well, such that PC still occurs
in these more practical cases and needs to be mitigated. We
consider two different choices of pilot sequences, referred to
as Hadamard and discrete Fourier transform (DFT) pilots. For
Hadamard pilots, Tp orthogonal Hadamard pilot sequences are
considered and shared among the K UEs. For DFT pilots, the
pilot matrix Xp is obtained by truncating a K×K DFT matrix
to the first Tp columns, resulting in non-orthogonal sequences.
Hence, in our simulations, the set of Hadamard pilots consists
of four orthogonal pilot sequences, each of which is shared
between two users. In contrast, the set of DFT pilots consists of
eight unique but non-orthogonal pilot sequences. The receiver
noise power at each AP is set to σ2

n = −96 dBm. The LSFCs
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Fig. 2. CDF of ck for different pilot sequences.

are obtained using the 3GPP urban microcell model which
incorporates correlated shadow fading [23].

The first set of results pertains to the PC metric introduced
in (22) and evaluated over 105 indenpedent large-scale fading
realizations. The cumulative distribution function (CDF) of the
PC metric ck is illustrated in Fig. 2. It can be observed that
the non-orthogonal DFT pilots result in lower PC than the
orthogonal Hadamard pilots which are reused among the UEs.

In the following, we show the channel estimation and data
detection performance in terms of the NMSE of the channel
estimates and the symbol error rate (SER). We compare the
proposed modified bilinear-EP algorithm with the bilinear-EP
algorithm in [17], the VB-EP algorithm presented in [19],
and different MMSE estimators. For channel estimation, we
consider the pilot-based MMSE estimator and the genie-aided
MMSE estimator with perfect knowledge of the transmitted
data symbols. For symbol detection, we employ the centralized
MMSE MIMO detector with channel state information (CSI)
obtained by the pilot-based MMSE estimator and with perfect
CSI. Note that the MMSE detector with pilot-based CSI
serves as an upper performance bound for any linear detection
scheme with imperfect CSI, including those proposed in [14]
and [23]. Both of the bilinear-EP algorithms execute 20
iterations for JCD, whereas the VB-EP algorithm runs for 40
iterations. All iterative algorithms use a damping parameter
of η = 0.5. In the following figures, solid and dashed lines
distinguish between different pilot sequences or data lengths,
while colors and markers indicate the respective algorithms.

The next set of results present the NMSE and the SER
as functions of the UE transmit power σ2

x. The NMSE of
the channel matrix estimate Ĥ is defined as NMSE :=
E
{

||H−Ĥ||2F
||H||2F

}
, and the SER is obtained by averaging across

all UEs, i.e., SER := E
{∑

k

∑
t 1xd

kt ̸=x̂d
kt
/(KTd)

}
. The

expectation operator in both definitions is computed with
respect to the channel realizations. In our simulation re-
sults, the performance is obtained by averaging 104 block
transmissions where each block transmission corresponds to
an independent realization of the UE positions. The SER
results are shown in Fig. 3. It can be observed that the
proposed bilinear-EP algorithm outperforms the linear MMSE
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Fig. 3. SER versus transmit power.
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detector as well as the bilinear-EP algorithm in [17] and the
VB-EP algorithm in [19]. Systems adopting non-orthogonal
DFT pilots show significantly better performance compared
to those using orthogonal Hadamard pilots. Additionally, the
performance gain from increasing the number of data symbols
from Td = 10 to Td = 30 is more pronounced for DFT
pilots. The VB-EP algorithm, being designed for orthogonal
pilots, is not applicable to systems adopting the proposed
DFT pilots. The proposed bilinear-EP algorithm offers greater
flexibility in the design of pilot sequences, which represents an
additional advantage. Fig. 4 illustrates the NMSE performance
as a function of the transmit power for the same settings
discussed above. The proposed bilinear-EP algorithm, when
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Fig. 5. NMSE versus iterations for Td = 10 and σ2
x = 16 dBm.
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Fig. 6. CDF of SERk for σ2
x = 16 dBm.

used with non-orthogonal DFT pilot sequences, closely ap-
proaches the performance of the genie-aided MMSE estimator,
a bound which is not attained with orthogonal Hadamard
pilot sequences. Fig. 5 shows the convergence behavior of
the iterative algorithms. The bilinear-EP algorithm converges
significantly faster than the VB-EP algorithm. As the bilinear-
EP algorithm is executed for only 20 iterations, the result for
iteration number 20 is extended to all following iterations to
enable direct comparison with the benchmark algorithms.

For the following set of results, the UE transmit power
is fixed to σ2

x = 16 dBm and the performance is as-
sessed in terms of the CDFs of the NMSE and the SER
per user, i.e., NMSEk := E

{
||hk−ĥk||2

||hk||2
}

and SERk :=

E
{∑

t 1xd
kt ̸=x̂d

kt
/Td

}
. Here, 1000 independent realizations of

the UE positions are considered which results in 1000 ·K =
8000 data points for the CDF. For each UE positioning real-
ization, the performance is averaged over 1000 independent
block transmissions, accounting for small-scale fading and
noise realizations. The corresponding results are illustrated in
Figs. 6 and 7. The CDFs show that the proposed modified
bilinear-EP algorithm outperforms the benchmark schemes.
Furthermore, the algorithms applied to systems utilizing non-
orthogonal DFT pilots show greater performance gains from
increased data lengths, especially when considering the 95%-
likely performance.

For the final set of results, the exact same setup as before
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is used with the UE-based performance metrics now evaluated
as a function of the PC metric ck. The results are averaged
over UEs experiencing a similar level of PC quantified by
ck. Fig. 8 presents the corresponding results for the SER.
It can be observed that as ck increases, the performance
degrades which validates ck as an appropriate PC metric.
Combined with the observations from Fig. 2, it explains the
superior average performance of DFT pilots over Hadamard
pilots in previous results. Furthermore, the proposed algorithm
consistently achieves the best performance for a given level of
PC. These results further show that the JCD schemes applied
to systems using DFT pilots are more effective at mitigating
PC for a given level of PC ck.

VII. CONCLUSION

In this work, we proposed a novel JCD algorithm based
on EP, designed to improve robustness against PC in
CF-MaMIMO systems. The algorithm extended the bilinear-
EP method in [17] and achieved improved channel estimation
and data detection performance, particularly under severe PC
and for systems using non-orthogonal pilot sequences. It con-
sistently outperformed optimal linear detectors in [14] and [23]
and state-of-the-art JCD algorithms. We also compared sys-
tems employing orthogonal and non-orthogonal pilots and
showed that non-orthogonal sequences provided significant
performance gains. Finally, we introduced a new metric to

quantify the impact of PC on iterative JCD algorithms and
demonstrated its relevance and consistency.
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