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Decentralized Semantic Communication and
Cooperative Tracking Control for a UAV Swarm

over Wireless MIMO Fading Channels
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Abstract—Conventional communication strategies in UAV
swarms often lead to excessive bandwidth consumption and
energy overhead due to frequent exchange of control signals.
Inspired by the semantic communication paradigm—which em-
phasizes transmitting only task-relevant information—we pro-
pose a cooperative semantic communication-control framework
that selectively transmits the most informative control data. This
approach significantly reduces communication burden and power
consumption while maintaining accurate swarm coordination.
Specifically, we consider a UAV swarm composed of one leader
and multiple followers, interconnected through unreliable MIMO
wireless channels. We first develop a dynamic model that captures
both inter-UAV interactions and MIMO channel imperfections.
Incorporating power costs, we formulate the joint communication
and cooperative tracking control problem as a drift-plus-penalty
optimization. A closed-form decentralized solution is then de-
rived, adapting to tracking errors and local channel conditions.
Using Lyapunov drift analysis, we establish sufficient conditions
for swarm stability. Numerical simulations demonstrate that the
proposed scheme substantially outperforms existing methods in
both tracking accuracy and communication efficiency.

Index Terms—UAV tracking control, semantic communication,
decentralized control, MIMO channels, Lyapunov drift analysis.

I. INTRODUCTION

Cooperative tracking control for UAV swarms has garnered
substantial interest across both the industrial and academic
realms, owing to its broad applications in fields such as
surveillance and agricultural monitoring [1], [2]. A typical
UAV swarm, comprising a group of follower UAVs and a
leader controller UAV, is depicted in Fig. 1(a). The leader UAV
monitors the real-time states of the follower UAVs—including
their position, speed, and angular velocity—and intermittently
generates tracking control signals that are transmitted to the
follower UAVs via an unreliable wireless network. Upon
reception of these control directives, the follower UAVs adjust
their states to conform to predetermined target profiles. The
wireless network connecting the follower UAVs and the leader
UAV is susceptible to a myriad of impairments, such as signal
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(a) Typical architecture of a UAV swarm. (b) Methodology of the proposed scheme.

Fig. 1: Illustration of the UAV swarm system.

fading and channel noise, which has the potential to markedly
degrade the tracking control efficacy of a UAV swarm.

Designing effective tracking controllers for UAV swarms
operating over wireless networks presents significant chal-
lenges, due to the stochastic, time-varying, and unreliable
nature of real-world channels. Most prior studies simplify the
problem by assuming static communication conditions. For
example, classical control techniques such as pole placement
and Proportional-Integral-Derivative (PID) controllers have
been widely studied under the stable channel assumption [2]–
[6]. While they are intuitive and easy to deploy, they often rely
on heuristic parameter tuning and lack theoretical guarantees
for stability and performance under dynamic network condi-
tions. To overcome these limitations, linear optimal tracking
controllers based on Generalized Algebraic Riccati Equation
(GARE) have been developed [7], [8]. These methods optimize
control gains through the solution of Linear Quadratic Regu-
lator (LQR) problem, balancing tracking accuracy and control
effort. However, such approaches typically assume perfect
communication, ignoring the effects of packet loss, fading, or
interference. In practical scenarios, UAV swarms must coordi-
nate over dynamic wireless links that exhibit random fading,
interference, and potentially time-varying topology. Applying
controllers designed for idealized conditions in these settings
can lead to suboptimal or even unstable behavior. Several re-
cent efforts have begun to consider unreliable communication,
but many rely on oversimplified models. For instance, some
works [1], [9] employ finite-state erasure models to simulate
packet loss, while others [10], [11] account for occasional
communication failures without modeling realistic fading pro-
cesses. Other approaches [12]–[14] address bounded commu-
nication delays through pre-characterized latency bounds, yet
they still neglect the stochastic nature of wireless fading. As a
result, designing tracking controllers that explicitly incorporate
time-varying channel dynamics remains an open issue.

In addition to control accuracy, communication efficiency



2

TABLE I: Comparison with Representative Prior Work.

Ref. Channel Model Control Law Communication
Trigger Law

Control or Communication
Triggering Law Adapt to Channel

Stability under
Random Fading Channels

[3] Static Pole Placement N/A N/A No
[4]–[6] Static PID N/A N/A No
[7], [8] Static LQR (Riccati) N/A N/A No

[9]–[11] Packet Dropout Heuristic Linear Law N/A Adapt to Channel ON-OFF
Realization No

[12]–[14] Static delay Consensus Law N/A Adapt to Static Delay Model No
[15]–[18] Resource Constrained Scheduling-based Rate-Aware Adapt to Channel Statistics N/A
[19]–[24] Static State-Dependent State-Triggered No No

Ours MIMO Random Fading Lyapunov-based Semantic (State+Channel) Triggered Adapt Time-varying Channel Realization Yes

is also a key consideration in UAV swarm operations. Several
studies [15]–[18] optimize UAV trajectories and scheduling
under power or delay constraints, but focus primarily on
throughput or delay rather than control stability. For example,
[15], [16] address mobile relaying, while [17], [18] explore
joint trajectory and link optimization. These works, however,
do not account for real-time channel impact on control. To
improve efficiency in control-communication systems, [19]
proposes a periodic policy, but fixed schedules can be wasteful
or too slow. The emerging field of semantic communica-
tions offers a promising alternative by transmitting only task-
relevant or semantically meaningful information [25]–[27].
In the context of swarm control, this motivates selective
communication policies that prioritize control updates with the
greatest impact on task performance. State-dependent semantic
communication strategies [20]–[23] attempt to reduce commu-
nication load by triggering transmissions based on tracking
error thresholds. However, these methods often overlook real-
time wireless channel conditions. Recently, [24] proposed an
event-triggered distributed model predictive control framework
for multi-UAV systems, demonstrating the benefits of adap-
tive communication under constrained settings. However, the
adopted communication model assumes static channels and
fails to capture the statistical dynamics of fading.

Given these limitations, it is essential to explore state-
and channel-dependent communication and control strategies
that can adapt to realistic time-varying wireless environments.
To the best of our knowledge, this is the first work to
tackle this challenge by proposing a decentralized semantic
communication and cooperative tracking control framework
for a UAV swarm over wireless MIMO fading channels. The
key distinctions between our approach and representative prior
works are summarized in Table I. The main contributions
are summarized as follows: i) Semantic Communication
over MIMO Fading Channels: We introduce an efficient
communication strategy that considers both power cost and
tracking stability. The resulting policy has a semantic struc-
ture, adapting to real-time tracking errors and local channel
conditions. ii) Semantic Tracking Control under Wireless
Fading: To avoid solving complex Bellman equations [28],
we develop a low-complexity control algorithm that minimizes
Lyapunov drift based on UAV states and local CSI, which is
semantically structured and fully decentralized. iii) Closed-
form Stability Guarantee: Using Lyapunov analysis, we
derive a closed-form sufficient condition for tracking stability
under proposed semantic communication and control policy.

TABLE II: Main Notations & Definitions

Notation Definition / Physical Meaning
x(t) Global system state of the UAV swarm at timeslot t
xm(t) System state of UAV m at timeslot t
r(t) Target UAV state at timeslot t
um(t) Remote tracking control signal for UAV m at timeslot t
ûm(t) Received tracking control signal at UAV m and timeslot t
Hm(t) MIMO channel matrix between the leader and the m-th follower UAV

δm(t)
Activation indicator for communication between the leader and the
m-th follower UAV

Amm Internal transition matrix for UAV m

A Global transition matrix
Bm Actuation matrix for UAV m

B̂m m-th block of the global actuation matrix
Σ(t) Global tracking error covariance
γ Communication price or regularization constant
M Number of follower UAVs
Nt, Nr Number of transmit and receive antennas

II. SYSTEM MODEL

A. Dynamic Model

A typical UAV swarm comprises M ∈ Z+ geographically
distributed follower UAVs and a leader UAV, interconnected
through an unreliable wireless network, as shown in Fig. 1.
We assume that the leader UAV and the follower UAVs are
equipped with Nt transmission antennas and Nr receiving
antennas, respectively. The physical process for each m-th
follower UAV is described by a set of first-order coupled
equations as:

xm(t+ 1) = Ammxm(t) +Bmûm(t) +w(t),m ∈ {1, 2, ...,M} ,
(1)

where xm(t) = [pm,x(t), pm,y(t), pm,z(t), vm,x(t), vm,y(t),
vm,z(t), am,x(t), am,y(t), am,z(t)]

T ∈ R9×1 is the state of
the m-th follower UAV. pm,n(t) ∈ R, vm,n(t) ∈ R and
am,n(t) ∈ R are the position, speed, and angular speed of m-th
UAV at positive n-th direction, respectively. Amm ∈ R9×9 and
Bm ∈ R9×Nr are the internal transition matrix and actuation
matrix for m-th follower UAV, respectively. ûm(t) ∈ RNr×1

is the received tracking control signal at m-th follower UAV.
wm(t) ∼ N (0,Wm) is the additive plant noise at m-th
follower UAV with finite covariance matrix Wm ∈ S9.

By aggregation, the UAV swarm follows the dynamics as:

x(t+ 1) = Ax(t) +

M∑
m=1

B̂mûm(t) + ŵ(t), (2)

where x(t) = [xT
1 (t), ...,x

T
M (t)]T ∈ R9M×1 is the global state

for the UAV swarm, ŵ(t) ∼ N (09M×1,Diag(W1, ...,WM ))
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is the global additive plant noise. A =

 A11 · · · A1M

.

.

.

.

.

.

.

.

.

AM1 · · · AMM

 ∈

R9M×9M is the global transition matrix, where Am,n char-
acterizes the dynamic relationship between m-th and n-th
follower UAVs. B̂m = [0Nr×(9m−9),B

T
m,0Nr×(9M−9m)]

T ∈
R9M×Nr is the m-th global actuation matrix1.

B. Wireless Communication Model
The leader UAV observes the states x(t) of the follower

UAVs via the depth-of-field (DOF) camera [29], and generates
remote tracking control signal um(t) ∈ RNt×1 for each
m-th follower UAV. The signal um(t) ∈ RNt×1 will be
conveyed to the m-th follower UAV over wireless MIMO
fading channels. At each m-th follower UAV, the received
signal ûm(t) ∈ RNr×1 is given by:

ûm(t) = δm(t)Hm(t)um(t) + vm(t), 1 ≤ m ≤ M, (3)

where δm(t) ∈ {0, 1} is the communication variable that indi-
cates the communication activity between the leader UAV and
m-th follower UAV. vm(t) ∼ N (0Nr×1,1Nr

) is the additive
channel noise at m-th follower UAV. Hm(t) ∈ RNr×Nt is
the wireless MIMO channel fading between the leader UAV
and the m-th follower UAV. It remains constant within each
timeslot and is i.i.d. over follower UAVs and timeslots, and
each element of Hm(t) follows a Gaussian distribution with
zero mean and unit variance 2.

C. Performance Metric
Let the target state r(t) ∈ R9M×1 evolve according to

r(t+ 1) = Gr(t), (4)

where G ∈ R9M×9M is the target transition matrix. The
primary objective for the leader UAV is to drive the state x(t)
to track the target profile r(t) ∈ R9M×1 by designing the
control signals {um(t)}. Specifically, we have the following
definition on the tracking stability of the UAV swarm.

Definition 1: (Tracking Stability of the UAV Swarm) The
UAV swarm is tracking stable if

lim sup
T→∞

1

T

T∑
t=1

Ew(t),{vm(t),δm(t),Hm(t)}
{
∥x(t)− r(t)∥2

}
< ∞.

(5)
Our notion of tracking stability follows standard definitions

in stochastic control and queueing theory (e.g., Section III-C
in [31]), where stability is characterized by the bounded time-
averaged cost lim supT→∞

1
T

∑T−1
t=0 E[Q(t)] < ∞. In our

setting, Q(t) = ∥x(t)−r(t)∥2 measures the per-stage tracking
error, and Definition 1 ensures its long-term boundedness,
aligning with practical swarm tracking requirements.

1Throughout the paper, 0a, 0a×b, Ia, and Ia×b denote an a × a matrix
where all elements are zero, an a× b matrix with all zero elements, an a×a
identity matrix and an a× b matrix where all elements are one, respectively.

2 Our modeling assumes that the MIMO channel matrix Hm(t) follows
i.i.d. Gaussian fading across time and UAVs, reflecting the block fading
effect [30] and spatial separation in UAV swarms. This standard assumption
ensures analytical tractability and serves as a performance baseline. In
practice, spatial and temporal channel correlations may arise due to UAV
mobility and shared environments. Extending the model to incorporate such
correlations is a promising direction for future work.

III. PROBLEM FORMULATION AND PROPOSED METHOD

A. Definition and Motivation of the Lyapunov Function

Lyapunov theory offers a systematic way to analyze sys-
tem stability by defining a scalar function that measures
the deviation from equilibrium. If this function decreases
over time, stability is ensured. In our case, we define the
Lyapunov function based on the tracking error covariance
Σ(t) = (x(t) − r(t))(x(t) − r(t))T as L(Σ(t)) = Tr(Σ(t)).
Through our design, stability of the Lyapunov function directly
implies tracking stability for the UAV swarm.

B. Definition and Motivation of the Lyapunov Drift

To analyze tracking stability, we examine the one-step
expected change in the Lyapunov function—known as the
Lyapunov drift—defined as:

Γ(Σ(t)) = E[L(Σ(t+ 1))− L(Σ(t))|Σ(t)]. (6)

A negative Lyapunov drift implies that the UAV swarm main-
tains bounded tracking error over time. To derive an explicit
expression for the drift, we substitute the system dynamics
from (2)–(4), the Lyapunov function L(Σ(t)), and the state-
feedback control law um(t) = −Km(t)(x(t)− r(t)) into the
drift definition in (6). The resulting closed-form expression is
presented in Theorem 1.

Theorem 1: (Lyapunov Drift Upper Bound) Let the sin-
gular value decomposition (SVD) of A and G be A =
U1Π1V

T
1 and G = U2Π2V

T
2 , respectively, where Ui ∈

R9M×9M and Vi ∈ R9M×9M are unitary matrices, and
Πi = Diag(πi,1, ..., πi,9M ) ∈ S9M . Define πm =
π2,m1|π1,m|>|π2,m|+π1,m1|π2,m|>|π1,m|, where 1{A} ∈ {0, 1}
is an indicator function that equals 1 if and only if the
event A holds true. Let Π = Diag(π1, ..., π9M ) ∈ S9M and
α = 2max

{
∥A∥2, ∥G∥2

}
. The Lyapunov drift in Eq. (6)

admits the following upper bound:

Γ(Σ(t)) ≤ Tr(W)− Tr(Σ(t)) + αTr(Σ(t))− E[2
M∑

m=1

Tr(δm(t)

BmHm(t)Km(t)Σ(t)Π) +

M∑
m=1

Mδm(t)Tr(Σ(t)(BmHm(t)

Km(t))T (BmHm(t)Km(t)))|Σ(t)] +
M∑

m=1

Tr(BmBT
m). (7)

Proof: See Appendix A in the online material [32].
As shown in Theorem 1, the Lyapunov drift

depends on the communication variables {δm(t)}
and control gains {Km(t)}. The term αTr(Σ(t)) +
E[
∑M

m=1 δm(t) Tr(Σ(t)(BmHm(t)Km(t))T (BmHm(t)Km(t)
))|Σ(t)] contributes positively to the drift and
may destabilize the system, while the terms
−E[2

∑M
m=1 Tr(δm(t)BmHm(t)Km(t)Σ(t)Π)|Σ(t)] −

Tr(Σ(t)) induce negative drift and promote stability. We
therefore jointly optimize {δm(t)} and {Km(t)} to minimize
the drift and enhance tracking performance.

C. Problem Formulation

We define the communication cost for each follower UAV
as δm(t)(Pon + γ Tr(Km(t)KT

m(t))), where Pon denotes a
fixed activation cost, and the second term captures the dynamic
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power cost associated with signal transmission and control
execution. Considering both the communication cost and the
tracking stability objective and noting that the decision vari-
ables {δm(t),Km(t)} are decoupled across UAVs in Eq. (7),
we formulate a decentralized communication-control problem
for each follower UAV.

Problem 1: (Decentralized Lyapunov Optimization for the
UAV Swarm) For a given Σ(t) and Hm(t), the communication
solution δ∗m(t) and the control solution K∗

m(t) for the m-th
follower UAV can be obtained by solving the problem below.

min
δm(t),Km(t)

− 2δm(t) Tr(Hm(t)Km(t)Σ(t)Π) +Mδm(t)

Tr(Σ(t)(Hm(t)Km(t))T (Hm(t)Km(t))) + δm(t)

(Pon + γ Tr(Km(t)KT
m(t)))

s.t. δm(t) ∈ {0, 1} . (8)

where γ ≥ 0 is the communication price among the UAVs and
Pon ≥ 0 is the activation power consumption for UAVs.

Although Problem 1 is a convex optimization problem, it
is still challenging to obtain a closed-form solution due to the
integer constraints.

Remark: (UAV Power Modeling Choice) Comprehensive
UAV power models, such as in [33], emphasize flying power
as the dominant energy cost, influenced by velocity, trajectory,
and flight mode. In contrast, our model focuses on commu-
nication and control energy, which are directly affected by
the proposed decision policies. While flying power is not
explicitly modeled, the control gain Km(t) indirectly impacts
UAV dynamics and thus influences energy consumption.

D. Decentralized Semantic Solution

The structure of the objective function in Problem 1 reveals
key insights into communication and control strategies. As a
mixed-integer optimization involving binary variables δm(t) ∈
{0, 1} and continuous variables Km(t), it naturally lends itself
to a primal decomposition approach. Fixing δm(t) renders
the problem convex in Km(t). By analyzing the optimality
conditions under δm(t) = 0 and δm(t) = 1, we derive
a closed-form and threshold-based communication policy as
follows.

Consider the SVD of δm(t)BmHm(t) ∈ R9M×Nr

be δm(t)BmHm(t) = TT
1,m(t)Ξ1,m(t)S1,m(t), where

T1,m(t) ∈ R9M×9M and S1,m(t) ∈ RNr×Nr

are unitary matrices, and Ξ1,m(t) ∈ R9M×Nr

is a rectangular matrix containing the singular
values

{
σm,1(t), ...σm,Rank(δm(t)BmHm(t))(t)

}
. Define

Σm(t) = TT
1,m(t)Σ(t)T1,m(t) and ζm(t) = TT

1,m(t)
Diag((σm,1(t))

−2, (σm,2(t))
−2, ..., (σm,Rank(δm(t)BmHm(t))(t)

)−2, 0, ..., 0)T1,m(t) ∈ R9M×9M . The dynamic
communication and control solutions to Problem 1 are
then encapsulated in the following Theorem 2.

Theorem 2: (Semantic Solution) The communication and
tracking control solution to Problem 1 is given as follows.

• Inactive Mode: If

Pon ≥ Tr(ΠΣm(t)(MΣ(t) + γζm(t))†ΣT
m(t)ΠT ), (9)

then δ∗m(t) = 0,K∗
m(t) = 09M×Nr

.

• Operative Mode: If

Pon < Tr(ΠΣm(t)(MΣ(t)+ γζm(t))†ΣT
m(t)ΠT ), (10)

then δ∗i (t) = 1 and

K∗
m(t) = VT

m(t)Ξ†
m(t)Um(t)ΠΣ(t)(MΣ(t) + γζm(t))†. (11)

Proof: See Appendix B in the online material [32].
The optimal solutions δ∗m(t) and K∗

m(t) in Theorem 2
exhibit a decentralized semantic structure. Control signals are
transmitted only when the tracking error ∥Σ(t)∥ is large or
the channel gain ∥Hm(t)∥ is favorable, with K∗

m(t) adapting
accordingly. This ensures communication occurs only when
the semantic utility—quantified by the expected impact on
tracking under current channel conditions—outweighs the
cost. While the mechanism reduces communication overhead,
it is driven by a Lyapunov-based objective prioritizing stability
and performance. Resource efficiency is thus an outcome of
task-driven and semantically meaningful decision-making.

E. Algorithm Design

We summarize the decentralized semantic communication
and tracking control algorithm in the following Algorithm 1
and Fig. 1(b).

Algorithm 1 Semantic Communication and Tracking Control
over MIMO Fading Channels
Step 1 (Information Exchange): At each timeslot t, each follower
UAV m broadcasts its state xm(t) ∈ R9×1 to the leader UAV.
The leader broadcasts a common pilot matrix T ∈ RNt×Nt to all
followers.
Step 2 (Channel Estimation and Feedback): Each follower m
estimates the channel as Ĥm(t) from the received pilot Yp

m(t) =
Hm(t)T+Vp(t), where Vp(t) ∼ N (0, INr ), and feeds back Ĥm(t)
to the leader.
Step 3 (Semantic Policy Generation): The leader computes the
optimal triggering decisions {δ∗m(t)} via Theorem 2. For each
δ∗m(t) = 1, it computes u∗

m(t) = −K∗
m(t)x(t) and transmits it

through the MIMO channel.
Step 4 (Execution): Each follower UAV updates its state using the
received signal ûm(t) according to (1). Increment t and return to
Step 1.

The total computational complexity across all M follower
UAVs consists of three main components. First, performing
SVD on a 9M × Nr matrix incurs a cost of O(M2N2

r ) in
total. Second, both communication triggering and control gain
computation require O(M3) per UAV, resulting in a combined
complexity of O(M4). Therefore, the overall computational
complexity is O(M2N2

r +M4).

F. Sufficient Condition for Tracking Stability

The sufficient condition for tracking stability can be ob-
tained by analyzing the criteria for the negative Lyapunov
drift in (7) under the proposed scheme. This is formally
summarized in the following Theorem.

Theorem 3: (Sufficient Condition for Tracking Stability)
Let the SVD of δm(t)BmHm(t)HT

m(t)BT
m ∈ R9M×9M be

δm(t)BmHm(t)HT
m(t)BT

m = T2,m(t)Ξ2,m(t)S2,m(t), where



5

T2,m(t) ∈ R9M×9M and T2,m(t) ∈ RNr×Nr are unitary
matrices. Let Mm(t) ∈ R9M×9M be the mask matrix for
Ξ2,m(t) satisfying Mm(t)⊙ Ξ2,m(t) = Ξ2,m(t). Then, if

∥19M − 1

M

M∑
m=1

Mm(t)∥ <
1

α
, (12)

the UAV swarm is tracking stable, i.e.,
lim supT→∞

1
T

∑T
t=1 E[∥x(t)− r(t)∥2] < ∞.

Proof: See Appendix C in the online material [32].

IV. NUMERICAL RESULTS

A. Experiment Setup & Baselines

In this section, we evaluate the performance benefits of
the proposed algorithm. Specifically, we compare our scheme
against the following baselines:

• Baseline 1 (Periodic Communication + PID Control):
The control signal is um(t) = Km,p(x(t) − r(t)) +
Km,i

∑t
i=0(x(i)− r(i))+Km,d(∆x(t)−∆r(t)), where

the PID gains are tuned offline. Communication is trig-
gered periodically. ∆(·) denotes the time difference op-
erator.

• Baseline 2 (State-Triggered Communication + PID Con-
trol): The control law is the same as in Baseline 1, but
communication is triggered only if ∥x(t)−r(t)−xl(t)+
rl(t)∥2 > σ∥x(t)− r(t)∥2, where xl(t) and rl(t) are the
state and reference at the last transmission.

• Baseline 3 (State-Triggered Communication + GARE
Control): The triggering solution is the same as that in
Baseline 2. The control signal is um(t) = Km,g(x(t)−
r(t)), where Km,g is an offline solution to the GARE
under static channels Hm(t) = 1Nr×Nt

.
The three baselines illustrate a clear performance progres-

sion: Baseline 1 lacks adaptation in both communication and
control; Baseline 2 improves communication via adaptive
triggering but uses fixed control; Baseline 3 further enhances
control with a GARE controller, yet both communication and
control remain channel-insensitive.

Let Amm ∈ R9×9 and Bm ∈ R9×9 be randomly
drawn from a standard Gaussian distribution. For any m ∈
{1, . . . ,M}, we set Am,n = Amm if n = (m mod M) + 1,
and Am,n = 09 otherwise. The process noise wm(t) follows
N (09, 10

−5I9). σm = m, and the periodic triggering interval
is ⌈M/2⌉. Initial states are set as x(0) = [1, . . . , 1]T and
r(0) = [100, . . . , 100]T . Pon = γ = 0.5. The global target ma-
trix Gk ∈ R9M×9M alternates periodically: G(t) = 1.05 I9M
if t mod 6 < 3, and 0.95 I9M otherwise.

B. Performance Comparison & Analysis

1) Impact of Number of UAVs: Fig. 2(a) shows that tracking
becomes increasingly challenging with more follower UAVs.
Our proposed method achieves the lowest averaged tracking
error cost in (5) by adapting to both dynamics and channel
conditions. In contrast, Baseline 1 uses periodic communica-
tion and fixed PID control, ignoring state and channel varia-
tions. Baseline 2 introduces state-triggered communication but
retains fixed control. Baseline 3 improves control via GARE-
based gains but remains channel-unaware. While performance

(a) Tracking error v.s. number of UAVs
(Nt = 12, power = 8 dBW).

(b) Tracking error v.s. transmission power
(M = 5, Nt = 12).

(c) Tracking error v.s. number of antennas
(M = 5, 8 dBW).

(d) Tracking error v.s. number of antennas
(Rayleigh, M = 5, 8 dBW).

Fig. 2: Averaged tracking error cost under different UAV system parameters.
Each point averages the tracking cost over T = 104 timeslots and 100 Monte
Carlo runs. Error bars denote the sample standard deviation, indicating the
statistical variation (68.27% confidence).

Fig. 3: Ablation study on total cost v.s. number of follower UAVs. All
simulation configurations are consistent with those used in Fig. 2(a).

improves from Baseline 1 to 3, all are outperformed by our
fully adaptive scheme.

2) Impact of Averaged Transmission Power at leader UAV:
Fig. 2(b) shows the average tracking error versus the leader
UAV’s transmission power. As power increases, all schemes
benefit from improved signal to noise ratios (SNR) and
tracking performance. Notably, our proposed method achieves
stable tracking with significantly lower power, highlighting its
superior efficiency compared to the baselines.

3) Impact of Number of Transmission Antennas: Fig. 2(c)
presents the average tracking error cost in (5) plotted against
the number of transmission antennas Nt. The results indicate
that an increase in Nt leads to a reduction in tracking error
cost for all schemes, as the expanded communication resources
enhance the overall system performance. Our proposed scheme
excels over the baseline schemes by dynamically adjusting the
communication and control strategies in response to real-time
plant and channel state realizations.

4) Robustness Performance: Fig. 2(d) presents the average
tracking error under Rayleigh fading channels as a function
of the number of transmit antennas Nt, where each entry
of Hm(t) follows a Rayleigh distribution with scale 3. Our
scheme consistently outperforms all baselines, demonstrating
strong robustness to non-Gaussian fading. This advantage
stems from its adaptive design, in which both communication
triggering and control gains dynamically respond to instanta-
neous channel conditions. In contrast, baseline methods rely on
fixed policies and exhibit degraded performance under time-
varying channels.



6

5) Ablation Study: To evaluate key design choices, we com-
pare the total cost lim supT→∞

1
T

∑T−1
t=0 (E[∥x(t)− r(t)∥2] +∑

m E[δm(t)(Pon+γ Tr(Km(t)K⊤
m(t)))]) under four variants:

(i) without MIMO modeling (fixed Hm), (ii) without semantic
triggering (always transmit), (iii) triggered only by state error
(ignoring channel), and (iv) the proposed scheme. Fig. 3
demonstrates that removing either component results in a
higher total cost—stemming from system instability when
MIMO modeling is omitted, or from inefficient communica-
tion when semantic triggering or channel-awareness is absent.
This underscores the advantage of jointly optimizing control
and communication.

V. CONCLUSIONS

In this work, we propose a novel framework for decentral-
ized semantic communication and cooperative tracking control
in UAV swarms over wireless MIMO fading channels. Unlike
prior studies that assume static or idealized channels, we for-
mulate a power-aware drift-plus-penalty problem that jointly
captures tracking performance and communication cost, and
derive a closed-form, threshold-based solution that preserves
a semantic structure—communication and control decisions
are driven by task relevance and local channel conditions.
Furthermore, we establish a closed-form Lyapunov-based sta-
bility condition, offering analytical performance guarantees.
Numerical evaluations show that our method significantly out-
performs existing approaches in both accuracy and efficiency.
Future work will extend the framework to more realistic
scenarios with non-iid Gaussian fading, partial CSI, dynamic
uncertainties, and explicit flying power models, enabling a
more comprehensive evaluation of the proposed semantic-
aware control strategy in practical UAV swarm applications.
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