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The growing integration of artificial intelligence (AI) into wireless communication systems is driving a shift
toward semantic communication, an emerging paradigm that prioritizes the exchange of meaning over raw
data. However, semantic communication systems face major challenges when deployed across diverse and
unseen domains due to variations in language, context, and channel conditions. This survey provides a
comprehensive overview of Domain Generalization (DG) as a key enabler for improving the robustness and
adaptability of Al-enabled semantic communication. We explore the types of domain shifts and review the
latest DG techniques applicable to semantic communication. Additionally, the paper discusses architectural
considerations and real world applications across varied wireless scenarios. Unlike prior works, this survey
brings together DG strategies specifically within the context of semantic communication, identifying open
challenges and future research directions such as scalable adaptation, resource efficient deployment, and
resilience in dynamic environments. It aims to serve as a timely resource for researchers and practitioners

working to develop reliable, generalizable communication systems for next generation networks.

1. Introduction

The evolution of wireless networks from 1G to 6G represents an
impressive journey through technological progress, driven by an ever
growing demand for faster, more intelligent, and context aware com-
munication systems. It commenced with first generation (1G) networks,
which introduced mobile communication through basic voice calls with
limited mobility. Subsequent generations, such as 2G and 3G, brought
digital voice and data transmission capabilities, significantly expanding
mobile communication possibilities. With the advent of 4G, mobile
networks experienced a transformative leap, facilitating high speed
data access, widespread internet usage, and app driven interactions.
The emergence of 5G elevated connectivity further, delivering ultra
fast data rates, exceptionally low latency, and supporting extensive IoT
deployments [1]. Now, standing at the threshold of the 6G era, we
anticipate groundbreaking advancements such as terahertz communi-
cation, real time immersive applications, and the deep integration of
artificial intelligence (AI) to enable semantic communication which is
a paradigm shift that focuses on transmitting the intended meaning
rather than raw data [2,3]. This evolution signals a transition from
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merely connecting devices to enabling intelligent, adaptive, and seman-
tically rich interactions. Fig. 1 illustrates this evolutionary trajectory
from early mobile communication to the envisioned capabilities of 6G
networks [4].

The continuous pursuit of increased bandwidth and reduced latency
remains a cornerstone of current 5G networks and the forthcoming 6G,
reflecting the need for more intelligent and efficient communication
mechanisms. Modern digital services, such as high definition video
streaming, cloud gaming, real time augmented reality (AR), and large
scale Internet of Things (IoT) applications, impose unprecedented de-
mands on network capacity and responsiveness [5]. While traditional
communication systems rely on transmitting raw data, this approach
becomes increasingly unsustainable as data volumes grow exponen-
tially. The anticipated 6G architecture aims to address these challenges
through technologies such as edge computing and network slicing,
which optimize data routing and processing to minimize latency [6].
However, to achieve truly scalable and efficient communication, a fun-
damental shift is required in how information is transmitted. Semantic
communication (SemCom) meets this need by focusing on the trans-
mission of meaningful information rather than raw symbols, thereby
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Fig. 1. Evolution of wireless networks.

reducing the amount of data that must be sent without sacrificing the
integrity of the intended message. By enabling the receiver to infer
the original meaning with fewer bits, SemCom significantly alleviates
bandwidth pressure and shortens transmission times. In doing so, it not
only enhances spectral and energy efficiency but also lays the founda-
tion for a more responsive, context aware, and scalable communication
framework critical for the demands of future 6G systems [7].

To fulfill the full potential of semantic communication within 6G
networks, integrating artificial intelligence into communication designs
becomes imperative [8]. While traditional wireless networks excel at
transmitting vast volumes of data, they fall short in interpreting and
contextualizing the transmitted content. This limitation becomes more
pronounced with the emergence of 6G, where the need for intelligent,
adaptive, and context aware communication systems intensifies [9]. Al-
enabled semantic communication aligns naturally with this evolution,
enabling systems to not only transmit but also understand and act on
the semantic content of data. By embedding contextual awareness and
cognitive reasoning into communication processes, Al-driven SemCom
systems are positioned to meet the unique demands of 6G where ap-
plications extend beyond mere data exchange to include personalized,
real time, and meaningful information interactions [10].

Within the landscape of 6G and semantic communication, domain
generalization (DG) emerges as a critical challenge. Wireless communi-
cation networks in the 6G era will operate in dynamic and constantly
evolving environments, requiring Al models to adapt effectively across
diverse and unpredictable scenarios [11]. Domain generalization ad-
dresses the need for Al models to maintain their performance despite
domain shifts caused by changes in network conditions, contexts, and
operational scenarios. The adaptability provided by domain general-
ization significantly impacts the reliability and performance quality
of semantic communication systems. Techniques that facilitate knowl-
edge transfer across various domains are essential to ensure consistent
Al performance in the heterogeneous environments envisioned for
6G [12].

Domain generalization thus represents a transformative capabil-
ity for Al-enabled semantic communication systems. Just as experi-
enced travelers adapt to new countries using insights from past ex-
periences, Al models leveraging domain generalization can seamlessly
adapt across diverse network conditions, from dense urban environ-
ments rich with data to remote areas with limited information availabil-
ity. These capabilities foster resilient, versatile, and reliable communi-
cation systems capable of interpreting and conveying complex mean-
ings clearly and effectively across varying contexts [13]. Ultimately,
domain generalization promises to evolve communication networks
into sophisticated ecosystems capable of maintaining robust, context
aware interactions, significantly enhancing connectivity and interaction
depth across global communication platforms [14].

The motivation behind this survey stems from the pressing need
to address a fundamental challenge in Al-enabled semantic communi-
cation: ensuring consistent performance across diverse, dynamic, and
previously unseen environments. As 6G networks evolve to support
complex and heterogeneous communication scenarios, traditional Al
models struggle to maintain generalization beyond their training do-
mains. Domain Generalization (DG) offers a promising direction by
equipping models with the ability to adapt to new contexts without
explicit retraining or prior exposure. Despite its critical role, the ap-
plication of DG in semantic communication remains underexplored,
with limited efforts to consolidate current techniques, challenges, and
use cases in a unified framework. This work aims to fill that gap by
presenting a structured overview of DG strategies, analyzing their ap-
plicability in semantic communication systems, and highlighting future
directions that can guide the design of more adaptable and robust 6G
communication infrastructures.

1.1. Contributions and paper organization

To the best of our knowledge, this paper presents the first compre-
hensive survey that specifically investigates the role of Domain Gener-
alization (DG) in semantic communication. The major contributions of
this work are outlined as follows:

» Focused Analysis of Domain Generalization in Semantic Com-
munication: This paper highlights the pivotal role of domain gen-
eralization in ensuring that Al-enabled semantic communication
systems maintain robust performance across diverse and previ-
ously unseen domains. We explore how DG addresses the chal-
lenge of domain shifts and supports adaptability in real-world,
heterogeneous communication environments.

Survey of State of the Art DG Techniques: We provide a
structured overview of recent advancements in DG, particularly
within the context of semantic communication. Our survey cat-
egorizes and analyzes techniques such as data augmentation,
meta-learning, adversarial training, and robust optimization in
terms of their relevance and applicability to communication
systems.

Identification of Application Scenarios and Challenges: We
present several real world use cases that benefit from DG-
enhanced semantic communication and outline the practical chal-
lenges associated with deploying DG models in dynamic, resource
constrained, or low data environments.

Roadmap for Future Research: Based on the gaps identified in
existing literature, we propose promising directions for future re-
search. These include improving DG efficiency, minimizing train-
ing overhead, and enhancing generalization across multimodal
and multilingual communication scenarios.
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For the reader’s convenience, the main abbreviations used in this
paper are listed in Table 1, and the paper’s structure is illustrated in
Fig. 2.

By the end of this survey, readers will gain a comprehensive under-
standing of how domain generalization contributes to building robust,
adaptive, and scalable semantic communication systems ultimately
supporting the development of resilient 6G wireless networks.

1.2. Foundations of semantic communication and the role of Al

Semantic communication represents a significant evolution in the
realm of communication theory, addressing critical limitations inherent
in traditional communication methodologies grounded in Shannon’s
classical information theory. Shannon’s information theory primarily
focuses on the technical aspects of data transmission, emphasizing
accurate and efficient delivery of bits over communication channels.
While revolutionary in ensuring reliable data transmission through
advanced encoding and decoding techniques, such as CDMA, OFDM,
and MIMO [15,16], Shannon’s framework predominantly measures
communication effectiveness in terms of bit level accuracy, leaving
the meaningful interpretation and context of transmitted data largely
unaddressed [17].

Weaver, recognizing these critical gaps in Shannon’s theory, pro-
posed a complementary communication model in 1949, which artic-
ulated the significance of semantic interpretation in effective commu-
nication [18]. Weaver introduced three distinct communication levels:
technical, semantic, and efficacy, as depicted in Fig. 3 [19]. The techni-
cal level corresponds directly with Shannon’s model, emphasizing the
accurate transmission of signals and bits across communication chan-
nels. However, Weaver argued that successful communication requires
not only accurate transmission but also precise understanding at the

semantic level, where the meaning and context of transmitted messages
are comprehensively interpreted. The efficacy level further encom-
passes the practical impact and usefulness of the received message on
the receiver.

To mathematically illustrate the bandwidth efficiency achieved
through semantic communication compared to Shannon’s traditional
approach, consider the following formulation. Let B, denote the band-
width used to transmit a full message of size N bits:

B, x N. (€8]

Semantic communication, by contrast, only transmits essential se-
mantic content. The required bandwidth B, can be represented as:

B, < aN, (2)

where 0 < a < 1 is the fraction of semantically essential information.
The bandwidth saving .S achieved is:

s=2_5 3)
B,

This reflects the proportionate bandwidth reduction achieved
through semantic communication, with « indicating the efficiency of
semantic content compression. Thus, the mathematical representation
simplifies the concept and does not capture the complexity of semantic
encoding and decoding processes. Still, it illustrates the fundamental
principle of how focusing on transmitting meaning rather than raw
data can lead to more efficient use of bandwidth. The Fig. 4 illustrates
the conceptual difference between conventional communication and
semantic communication, demonstrating how semantic communication
enables intelligent and context aware interactions that result in lower
bandwidth utilization. In conventional communication systems, a trans-
mitted message such as “The weather today is very hot” would typically

=1-a.
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Table 1
List of common acronyms.
Acronym Description
Al Artificial Intelligence
AR Augmented Reality
AWGN Additive White Gaussian Noise
BERT Bidirectional Encoder Representations from Transformers
BLEU Bilingual Evaluation Understudy Score
CIFAR-10 Canadian Institute For Advanced Research 10-class Dataset
COCO Common Objects in Context
CSI Channel State Information
DAEL Domain Adaptive Ensemble Learning
DANN Domain Adversarial Neural Network
DG Domain Generalization
DIR Decoding Information Resolution
DIV2K DIVerse 2K Resolution Dataset
DRO Distributionally Robust Optimization
D-SAM Domain Specific Aggregation Module
eMBB Enhanced Mobile Broadband
Europarl European Parliament Proceedings Parallel Corpus
F1 F1-Score (harmonic mean of Precision and Recall)
FDSD Fréchet Deep Speech Distance
FN False Negative
FpP False Positive
GAN Generative Adversarial Network
GLUE General Language Understanding Evaluation
GRL Gradient Reversal Layer
IoT Internet of Things
JSCC Joint Source Channel Coding
KB Knowledge Base
LLM Large Language Model
LPIPS Learned Perceptual Image Patch Similarity
MAML Model Agnostic Meta-Learning
MetaReg Meta Regularization
MI Mutual Information
Mini-ImageNet Subset of ImageNet for Few-Shot Learning
MLDG Model Agnostic Meta-Learning for Domain Generalization
MIMO Multiple Input Multiple Output
mAP Mean Average Precision
MS-SSIM Multi-Scale Structural Similarity Index Measure
NLP Natural Language Processing
NYU Depth V2 New York University Depth Dataset V2
OFDM Orthogonal Frequency Division Multiplexing
00D Out-Of-Domain
PPL Perplexity
PSNR Peak Signal to Noise Ratio
ROUGE Recall-Oriented Understudy for Gisting Evaluation
RSC Representation Self Challenging
SemCom Semantic Communication
SNR Signal to Noise Ratio
SSL Self-Supervised Learning
SSIM Structural Similarity Index Measure
STM Semantic Textual Similarity Measure
STS Semantic Textual Similarity Benchmark
TN True Negative
TP True Positive
URLLC Ultra Reliable Low Latency Communication
VCTK Voice Cloning Toolkit Corpus
VLM Vision Language Model
WER Word Error Rate
WMT Workshop on Machine Translation
XR Extended Reality
XSum Extreme Summarization Dataset

be delivered word for word using standard encoding and decoding
processes. In contrast, semantic communication emphasizes the transfer
of meaning rather than exact wording. For example, if the receiver
already possesses contextual knowledge such as awareness that it is
summer in a region known for high temperatures the message could
be compressed to a shorter phrase like “It’s hot” or even represented
by a symbolic value denoting “very hot” weather. The receiver then
uses its own background knowledge, situational awareness, or prior
information to fill in the missing details and recover the full meaning
that the sender intended.
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Fig. 4. Transmission via Normal/Conventional Communication vs Semantic
Communication.

Though Weaver’s concept of semantic level communication was
fascinating, unfortunately, it could not become the need of the hour and
due to technical constraints further research in this area was silenced.
On the other hand, Shannon’s information theory, which primarily
focuses on the technical aspect of information transmission, which is
about how to encode and transmit information efficiently and reliably

over a noisy channel received more focus on developing different
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communication techniques [20]. The good news is with the recent ad-
vancement in Al, prerequisite techniques like semantic communication
have started gaining popularity to add the ingredient of intelligence in
communication systems. In the past few years, the topic of semantic
communication has gained the attention of many researchers world-
wide. As a result, numerous system models and transceiver and receiver
designs have recently been presented [21-25] which proves that se-
mantic communication is a promising enabler for the technologies that
will be using 6G and beyond applications.

Semantic communication can help save bandwidth by optimiz-
ing the amount of information transmitted and reducing unnecessary
data transmission. In Fig. 5 we display the data centric semantic
communication approaches and now we further describe how it works:

1. Context Based Compression: Semantic communication enables
the exchange of meaningful messages that convey the intended infor-
mation more efficiently. Instead of transmitting raw or redundant data,
the communication can be focused on conveying the essential semantic
meaning. For example, in a chat conversation, using abbreviations or
emojis to represent specific ideas can convey the same message with
fewer characters, saving bandwidth [26].

2. Data Reduction through Abstraction: By conveying the underlying
meaning of information, semantic communication can use abstract
representations rather than detailed, data heavy descriptions. For in-
stance, sending a compressed summary or the key points of a document
instead of the entire document can save bandwidth while conveying the
essential information [27].

3. Intelligent Data Filtering: In systems with Al or machine learning
capabilities, semantic communication allows for more intelligent data
filtering. Instead of sending all data to a central processing unit, only
the relevant and semantically important data can be selected and trans-
mitted, reducing unnecessary data traffic and saving bandwidth [28].

4. Lossless Data Compression: Semantic communication can enable
lossless data compression techniques that maintain the exact meaning
of the information while reducing its size. By utilizing appropriate
algorithms, the communication can achieve compression without losing
any vital details, thus saving bandwidth during data transmission [29].

5. Smart Data Synchronization: In scenarios where multiple devices
or systems need to synchronize data, semantic communication can
ensure that only the changes or updates to the data are transmitted,

Physical Communication 73 (2025) 102857

rather than sending the entire datasets repeatedly. This selective syn-
chronization helps save bandwidth by minimizing the amount of data
transferred [30].

6. Optimized Multimedia Streaming: In media streaming applica-
tions, semantic communication can facilitate adaptive bitrate stream-
ing, where the quality of the media (e.g., video or audio) is adjusted
based on the user’s device capabilities and network conditions. This
optimization ensures that the most relevant and suitable media con-
tent is transmitted, saving bandwidth and providing a smoother user
experience [31].

These advancements collectively illustrate how semantic communi-
cation, rooted in Weaver’s foundational ideas and empowered by Al,
transcends the traditional limitations imposed by Shannon’s model. It
enables not only efficient transmission but also meaningful understand-
ing across diverse and evolving communication scenarios. However, the
practical realization of semantic communication systems in dynamic 6G
environments introduces a new challenge: ensuring consistent semantic
fidelity across unseen or varying domains. This calls for robust learn-
ing frameworks specifically, domain generalization techniques that
empower semantic models to adapt and perform reliably under do-
main shifts without requiring retraining. The next sub-section explores
this critical frontier, highlighting how domain generalization forms a
cornerstone in achieving scalable, resilient, and intelligent semantic
communication.

1.3. Transcending boundaries: The crucial role of domain generalization in
enhancing Al-enabled semantic communication

Domain generalization (DG) stands as a foundational pillar at the
intersection of artificial intelligence and semantic communication, par-
ticularly within the heterogeneous and dynamic environments of 6G
and beyond. Unlike conventional Al models that rely heavily on domain
specific training data, DG equips models with the ability to trans-
fer learned representations to novel, unseen domains without retrain-
ing [32]. This adaptability is crucial for preserving semantic fidelity
across fluctuating linguistic, cultural, contextual, and network specific
conditions that characterize modern communication systems [33].

The role of DG is not merely technical but systemic. As Al transforms
communication from raw data exchange into semantically rich and
context aware interaction, semantic models are increasingly exposed
to diverse operating conditions. Without DG, these models risk brittle-
ness and inconsistency when deployed outside their original training
environments. By contrast, DG supports resilience by ensuring that
semantic encoders and decoders maintain reliability across variations
in language, modality, and user preferences, while retaining the band-
width and latency efficiencies inherent in semantic compression [34].
This capacity is particularly critical for cross lingual dialogues, multi-
modal interactions, and adaptive communication in highly dynamic 6G
networks.

Beyond enabling robust message interpretation, DG strengthens
the scalability and inclusivity of semantic communication. Systems
designed with DG are better prepared to handle global deployment
scenarios where linguistic diversity, cultural nuance, and shifting social
contexts come into play. This makes them suitable not only for multi-
lingual collaboration and immersive applications but also for socially
attuned use cases such as assistive technologies and emergency commu-
nication, where trustworthiness and accessibility are paramount [35].
In this way, DG extends the benefits of semantic communication to
broader populations and ensures equitable access to intelligent systems.

1.3.1. Domain shifts in Al-enabled semantic communication

Domain shifts in Al-enabled semantic communication represent a
pivotal challenge as networks transition from controlled settings to
real world deployment across diverse and non-stationary environments.
These shifts refer to changes in data distribution, communication con-
text, or operating conditions that can significantly affect semantic fi-
delity. Because semantic communication systems depend on Al models
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Table 2

Domain shifts in semantic communication: examples and challenges.

Domain shifts

Example

Domain generalization
challenge

Multimodal Al interpreting a Generalizing
Communication video with text understanding and
captions. integration skills
across various sensory
data types.
Linguistic Al adapting to Enabling models to
Variability regional dialects work effectively

or slang.

across diverse
linguistic expressions.

Cultural and
Contextual Shifts

Al adjusting
communication for
cultural norms.

Aligning
communication
strategies with varied
cultural norms and
cues.

Technological
Evolution

Al using new
protocols in smart
homes.

Adapting to evolving
technologies without
retraining.

Network Dynamics

Al functioning
over different
internet speeds.

Maintaining
communication
quality across
variable connectivity.

Physical Layer
Variability

Al adapting to
Rayleigh fading or
hardware
impairments.

Ensuring semantic
fidelity across unseen
channel and hardware
conditions.

to understand, compress, and reconstruct meaning, robustness against
domain variability is essential. DG addresses this by enabling Al models
to generalize across unseen domains without retraining [33].

To better understand these challenges, Table 2 categorizes common
sources of domain shift and illustrates their impact on semantic com-
munication. It highlights how DG mitigates their effects to maintain
semantic consistency across heterogeneous contexts.

a. Multimodal Communication: The rise of multimodal commu-
nication combining text, audio, images, and contextual cues requires
Al models to infer meaning across heterogeneous inputs. Shifts in
modality (e.g., moving from text to video, or from clean to noisy
audio) can disrupt semantic interpretation. DG provides cross modal
resilience, enabling models to transfer knowledge across modalities
while maintaining coherence [36].

b. Linguistic Variability: Semantic communication must support
diverse languages, dialects, and registers. Regional expressions, evolv-
ing slang, and technical jargon introduce variability that can degrade
understanding. DG mitigates this by abstracting high level semantics,
allowing models to generalize across linguistic distributions and ensure
consistent interpretation in multilingual and informal contexts [37].

c. Cultural and Contextual Shifts: Cultural norms and contex-
tual expectations shape how meaning is conveyed and received. Do-
main shifts occur when AI models encounter unfamiliar values or im-
plicit conventions. DG addresses this by leveraging transferable seman-
tic representations, fostering culturally adaptive and globally relevant
communication [38].

d. Technological Evolution: Evolving devices, codecs, and com-
munication standards create shifting technological environments. With-
out DG, semantic systems risk obsolescence when infrastructure
changes. DG enables continuity by allowing AI models to generalize
knowledge across new platforms, ensuring long term reliability and
future readiness [39].

e. Network Dynamics: Bandwidth fluctuations, latency, jitter, and
signal variability are inherent to wireless networks. Semantic fidelity
must be maintained despite these constraints. DG enhances resilience
by enabling models to adjust semantic compression and reconstruction
strategies dynamically, preserving communication quality in volatile
conditions [40].
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f. Physical Layer Variability: Beyond higher layer contextual and
linguistic factors, many critical domain shifts originate at the physi-
cal layer. Diverse channel conditions (e.g., AWGN, Rayleigh, Rician,
and Nakagami fading), fluctuations in signal to noise ratio (SNR),
and hardware impairments such as IQ imbalance, phase noise, and
nonlinearities in RF front ends can all introduce distributional shifts
that directly affect semantic fidelity. From a DG perspective, these
impairments can be treated as distinct domains, where models trained
under one set of channel or hardware conditions may fail under others.
DG techniques such as meta-learning, adversarial domain alignment,
and distributionally robust optimization provide mechanisms to en-
hance resilience by simulating or aligning across such conditions during
training [41]. Viewing physical layer variability as domain shifts not
only strengthens semantic robustness but also broadens the relevance of
DG for physical communication research, highlighting the importance
of cross layer designs that integrate PHY level phenomena into semantic
communication frameworks.

Within 6G networks, where semantic communication will span
highly dynamic and heterogeneous contexts, DG is not optional, it is
foundational. By preparing systems to handle domain shifts systemat-
ically, DG ensures robustness, scalability, and trustworthiness across
diverse operational landscapes.

1.3.2. Strategic impacts of domain generalization on semantic communica-
tion

DG holds transformative potential for advancing Al-enabled seman-
tic communication. As shown in Table 2, domain shifts range from
linguistic and cultural diversity to network and technological variabil-
ity. DG enhances the robustness, scalability, and inclusivity of these
systems, ensuring performance across unseen conditions.

i. Robustness to Environmental Variability: DG equips semantic
models to remain reliable across cultural, linguistic, and situational
variability, enabling accurate meaning exchange in real world applica-
tions such as international negotiation, virtual assistants, and context
aware services [33,42,43].

ii. Efficiency and Scalability: Conventional retraining across ev-
ery new domain is impractical. DG supports unified and reusable
models, reducing computational cost and accelerating deployment in
emerging use cases, thereby promoting sustainable scaling of semantic
communication systems [44-46].

iii. Enhanced Generalization Capabilities: Semantic communica-
tion seeks to transmit meaning across diverse contexts. DG guides mod-
els to focus on invariant semantic patterns that persist despite shifts,
supporting consistent interpretation across languages, modalities, and
cultures [38,47].

iv. Broader Applicability and Accessibility: DG extends semantic
communication to underserved contexts, including cross lingual col-
laboration, accessibility for differently abled users, and deployment
in resource constrained environments [48,49]. This inclusivity ensures
equitable participation in future communication ecosystems.

Therefore, DG transcends algorithmic performance, representing
a paradigm shift toward communication systems that are adaptive,
inclusive, and globally deployable. As 6G and beyond evolve, DG
provides the foundation for resilient, trustworthy, and human centric
semantic communication that can operate effectively across domains
and contexts.

2. Architecture and performance metrics for domain generaliza-
tion in Al-enabled semantic communication

Al-enabled semantic communication marks a paradigm shift from
conventional data transmission by focusing on conveying intended
meaning rather than transmitting raw symbols. To support real world
applications, such systems must be resilient to domain shifts variations
in input modalities, user contexts, linguistic styles, or environmen-
tal conditions. Therefore, a general architecture that incorporates do-
main generalization (DG) mechanisms is essential for achieving robust
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Fig. 6. General architecture of Al-enabled semantic communication highlighting key modules that facilitate domain generalization through multimodal
understanding, adaptive semantic encoding, and context aware decision generation.

Functional roles and domain generalization contributions of key modules in Al-enabled semantic communication architecture.

Architecture module

Function in semantic communication

Contribution to domain generalization (DG)

Accepts raw input from users or sensors (e.g.,

Not directly part of DG, but motivates the need for

User Input text queries, voice, camera feeds). Forms the generalization due to inherent input diversity
(Text/Speech/Image) multimodal basis for semantic interpretation. across domains, languages, or modalities.
Multimodal Transforms raw input into structured embeddings Supports DG: Normalizes input structure across

Pre-processing Module

using modality specific techniques (e.g.,
tokenizers, CNNs, spectrograms).

domains, helping the downstream representation
learner cope with input heterogeneity.

Semantic
Representation Learning

Learns domain invariant semantic embeddings
z € Z using neural encoders (e.g., transformers,
contrastive models).

Core DG Enabler: Employs strategies like
adversarial training, meta-learning, or DRO to
produce embeddings that generalize across
domains.

Knowledge Base (KB)

Provides domain independent and contextual
world knowledge for grounding semantic
decisions and disambiguation.

DG Supportive: Anchors semantic reasoning in
shared knowledge; enables generalization by
reducing dependence on domain specific features.

Semantic Encoding and
Modulation

Compresses and prepares semantic vectors for
transmission using joint source channel encoding
(e.g., variational encoders, autoencoders).

DG indirect: Ensures robustness to channel level
variation; less focused on semantic domain
adaptation but critical for transmission integrity.

Communication
Channel
(AWGN/Fading)

Simulates environmental noise, fading, or
interference; challenges the system to maintain
semantic fidelity during real world transmission.

Not a DG module per se, but exposes the system
to domain shifts at the channel level, indirectly
enhancing robustness of downstream decoding.

Semantic Demodulation
and Decoding

Recovers semantic embeddings z from noisy
signals using domain robust decoders (e.g.,
GRL-based or self-supervised models).

DG-Linked: Critical for reconstructing semantics
across different channel conditions or encoder
variants; can leverage self-supervised pretraining.

Semantic Decision and
Response Generator

Uses semantic vectors and contextual inputs to
generate task specific responses (e.g.,
translations, actions, summaries).

DG-Linked: Supports generalization to unseen
tasks, styles, or domains using meta-learning or
adaptive response models.

Al-Enhanced Output

Generates the final system output in a format
tailored to users or applications (e.g., speech,
structured message, visualization).

Indirect: Reflects the success of upstream DG
modules; ensures semantic consistency across
usage contexts.

Receiver Endpoint

The endpoint that consumes the output (human
user or automated system). Closes the
communication loop.

Not applicable to DG directly; receives benefits
from DG-driven processing upstream.

and adaptable semantic communication in dynamic wireless environ-
ments [21]. The Fig. 6 illustrates a conceptual architecture that outlines
the key building blocks of Al-enabled semantic communication systems
enhanced with domain generalization. This framework is not a concrete
implementation but rather a generic blueprint intended to guide fu-
ture research and system design [50-52]. Table 3 provides a detailed
mapping of the functional roles of each architectural component in the
Al-enabled semantic communication system shown in Fig. 6. It high-
lights how each module contributes to domain generalization within
the system.

Beginning with the User Input and Multimodal Preprocessing Mod-
ule, the architecture ensures that data from heterogeneous sources
can be consistently transformed into representations suitable for se-
mantic analysis. The Semantic Representation Learning block plays a
pivotal role in enabling DG by extracting domain invariant features
that remain robust across various contexts, languages, and modalities.
This capability is further reinforced by the Knowledge Base, which
provides contextual grounding and supports generalization by encoding
shared knowledge applicable across domains. The Semantic Encod-
ing and Modulation and its counterpart, Semantic Demodulation and
Decoding, maintain the integrity of semantic content under different
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channel conditions, thus contributing to generalization in noisy or de-
graded transmission environments. Meanwhile, the Semantic Decision
and Response Generator employs adaptive reasoning mechanisms to
uphold semantic consistency and task performance even in unfamiliar
communication scenarios. Finally, the Al-Enhanced Output and Re-
ceiver Endpoint ensure that the system’s response remains coherent,
informative, and contextually relevant across diverse user profiles and
interaction settings [33,53,54].

The Table 3 complements the system diagram and clarifies how each
module contributes to building domain generalizable semantic commu-
nication systems for next generation wireless networks. The following
section elaborates on the operation of each module, supported by
mathematical formulations that explain their roles in enabling domain
generalization in Al-enabled semantic communication.

» Multimodal User Input: Accepts user generated input data in
various formats, including text, audio, images, and sensor read-
ings. These inputs serve as the foundation for semantic inference
and often vary in structure and context across different domains.
Multimodal Pre-processing Module: Transforms raw input data
into structured feature vectors using modality specific deep learn-
ing models. For example, BERT may be used for text embed-
dings, ResNet or Vision Transformers for images, and spectrogram
based CNNs for speech. This step ensures uniform representations
suitable for semantic interpretation [55].

Semantic Representation Learning: This is the core compo-
nent of the Al-enabled semantic communication architecture,
responsible for generating robust and domain invariant semantic
embeddings from heterogeneous input features. Given input data
x € X, which may consist of text, speech, image, or multimodal
signals, the encoder function f, : & — Z learns to produce a
semantic embedding z = f,(x) € Z that captures the underlying
meaning while abstracting away domain specific information.
This abstraction is crucial for ensuring semantic coherence when
the system operates across different domains characterized by
variations in modality, context, or communication conditions [56,
57].

The training objective for this module incorporates a dual com-
ponent loss function designed to enhance both semantic accuracy
and generalization. Formally, the objective is defined as:

N
Lpg0) = Y B pyep, [£(f5(), )] + AR() )

i=1

where D, represents the data distribution from the ith domain
(e.g., different speakers, languages, or environments), #(-) de-
notes a task specific loss function such as cross entropy or BLEU
score [58]. Here, ¢ is computed after mapping f(x) to a task
specific prediction (e.g., via a classifier or decoder), and then
compared with the label y, and R(6) is a domain generalization
regularizer. This regularizer can take various forms depending
on the adopted technique: adversarial losses (e.g., DANN) aim
to confuse a domain discriminator, thereby enforcing domain
invariance; statistical approaches (e.g., Maximum Mean Discrep-
ancy or CORAL) align feature distributions across domains; and
meta-learning strategies (e.g., MLDG, MetaReg) simulate domain
shifts during training to enhance adaptability. The scalar 4 is
a hyperparameter that controls the trade off between semantic
fidelity and domain robustness [59].

This formulation ensures that the encoder not only learns to
predict semantically meaningful outputs across all training do-
mains but is also explicitly regularized to suppress domain spe-
cific variance. In practice, this allows the system to generalize
to previously unseen domains with minimal or no fine tuning,
which is critical in dynamic and diverse real world communica-
tion environments. By learning domain agnostic embeddings, the
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Semantic Representation Learning module thus serves as the foun-
dation for robust downstream modules such as semantic encod-
ing, reasoning, and response generation in Al-enabled semantic
communication systems.

Knowledge Base: Acts as a static or dynamic source of contextual
and domain specific semantic information. It supports both train-
ing and inference by supplying background knowledge necessary
for accurate disambiguation and semantic interpretation.
Semantic Encoding and Modulation: Transforms the semantic
vector z into a transmittable signal s € S using a joint source
channel encoder g,

s = g4(@). ©)

It is worth noting that semantic communication systems can be
realized in two main ways i.e. through separated source chan-
nel coding (SSCC), where semantic representation and channel
coding are designed and optimized independently, or via joint
source channel coding (JSCC), which integrates semantic extrac-
tion and communication into a unified end to end framework.
SSCC supports modularity and allows domain generalization tech-
niques to be applied separately to semantic or channel com-
ponents, whereas JSCC especially learning based variants has
demonstrated superior robustness and scalability under challeng-
ing and dynamic channel conditions [60-62]. These architectural
differences could lead to significantly distinct interactions with
DG strategies as the DG may act on individual modules in SSCC,
yet must jointly account for both semantic and channel shifts in
JSCC designs.

Communication Channel: Models environmental noise during
transmission. The transmitted signal s is corrupted by Gaussian
noise n ~ N'(0, 621):

r=s+n. (6)

Semantic Demodulation and Decoding: Recovers the original
semantic embedding 2 from the noisy received signal r using the
decoder h,,:

Z=h,(r). @
The quality of reconstruction is evaluated using:
Liee =E, [”i - Z”%] . ®

Semantic Decision and Response Generator: This module plays
a pivotal role in interpreting the domain invariant semantic rep-
resentation Z and generating the final system output § in an
adaptive, context aware manner. This module integrates decoded
semantic features from prior stages with auxiliary context re-
trieved from the Knowledge Base K, enabling the model to reason
semantically and make informed decisions across diverse domains
and scenarios [63]. The semantic decision function is defined as:

y=d,(Z K), )]

where d,(-) denotes the decision function or classifier parame-
terized by w, responsible for interpreting semantic inputs and
generating outputs relevant to the given task (e.g., classification,
translation, summarization, or response generation). The incor-
poration of K allows the model to contextualize Z, enriching
decision making with domain specific facts, rules, or background
knowledge essential for semantic consistency [64].

The optimization objective for this module focuses on minimizing
the expected semantic prediction loss between the generated
output y and the target label y:

L gecision = IE(i,y) [f(dw(i, K), y)] s (10)
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where #(-) is a task specific loss function, such as cross entropy for
classification or mean squared error for regression based outputs.
This objective ensures that the model not only learns accurate
mappings from semantic embeddings to outputs but also gener-
alizes well across different task domains, even when presented
with previously unseen input patterns [64].

From a domain generalization (DG) standpoint, this module is
critical for ensuring output level consistency and robustness.
Since it operates on representations that may originate from a
variety of domains (e.g., different users, languages, or modalities),
the decision function must be resilient to contextual variation.
This can be further supported through techniques such as do-
main mixed batch training, attention based integration of K,
and architectural strategies that promote interpretability and
transferability of semantic reasoning. By learning how to generate
coherent, context sensitive responses across domains, the Seman-
tic Decision and Response Generator becomes central to fulfilling
the mission of adaptable Al-enabled semantic communication
systems [65].

Output: The final output j is rendered in natural language, visual,
or symbolic form and delivered to the user or system endpoint.

The entire architecture is trained end to end using a composite
objective:

Gmin ‘CDG + aLlec + PLgecisions an
RUR7RC]

where «, # are hyperparameters balancing the trade offs between gen-
eralization, semantic preservation, and task accuracy.

This general framework provides a technically sound foundation for
designing domain agnostic semantic communication systems. It offers
guidance for integrating domain generalization objectives across both
the semantic and transmission layers, particularly relevant for robust
Al-enabled systems under the stringent requirements of future 6G and
beyond wireless networks.

2.1. Performance metrics for domain generalization in semantic communi-
cation

In Al-enabled semantic communication systems with domain gen-
eralization, rigorous performance evaluation is essential for bench-
marking models, guiding design decisions, and validating transmission
fidelity, semantic preservation, and robustness under distribution shifts.
Table 4 provides an overview of the principal metrics employed in this
context, covering semantic fidelity (e.g., BLEU, ROUGE, semantic sim-
ilarity), generative quality (e.g., perplexity), information retrieval ef-
fectiveness (e.g., precision, recall, F1-score, mAP), and communication
robustness (e.g., accuracy, PSNR). These metrics collectively establish
a multidimensional foundation for evaluating semantic communication
models. In the subsequent discussion, each metric is examined in detail,
with emphasis on its applicability, limitations, and extensions under
domain generalization.

Let D = {(x;,y)}Y, denote a dataset of N samples, where x;
represents the input and y; the corresponding ground-truth label or
target output. The model prediction is expressed as y; = f(x;;0),
with 6 denoting the learnable parameters of the system. Within this
framework, several performance metrics are employed to assess seman-
tic communication models under both in-domain and out-of-domain
(OOD) conditions, thereby highlighting their ability to generalize across
distributional shifts.

+ Precision (P) is a key metric that quantifies the relevance of
retrieved or predicted information. In semantic communication
with domain generalization, precision evaluates how accurately
the system preserves semantic fidelity when exposed to unseen
domains. A DG-robust model should maintain high precision not
only in the source domain but also under out-of-domain (OOD)
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conditions, minimizing false positives even when channel charac-
teristics, languages, or modalities differ from training. Formally,
precision is defined as:

P TP i

TP + FP
where TP denotes the number of true positives (correct posi-
tive predictions) and FP represents the number of false positives
(incorrect positive predictions). In the DG setting, reporting pre-
cision across both ID and OOD domains enables quantification of
semantic reliability under distributional shifts [66].

12

Recall (R) complements precision by quantifying the system’s
ability to capture all relevant semantic information. In DG-enabled
semantic communication, recall indicates how effectively a model
retrieves or preserves critical semantic content when tested on
domains that differ from training (e.g., unseen channels, di-
alects, or modalities). High recall ensures comprehensive seman-
tic coverage and robustness against information loss under OOD
conditions. Formally, recall is defined as:

R = TP i

TP + FN
where TP denotes the number of true positives (correct posi-
tive predictions) and FN represents the number of false nega-
tives (missed relevant instances). In practice, recall under DG
evaluates a system’s resilience against under-representation of
domain-specific features and its ability to maintain semantic com-
pleteness [67].

13)

F1-Score (F)) is a composite metric that harmonizes precision
and recall into a single value. In the context of domain general-
ization for semantic communication, the Fl-score is particularly
valuable because it balances the trade-off between accuracy (high
precision) and completeness (high recall) under both in-domain
and out-of-domain (OOD) conditions. A DG-robust system should
maintain a stable Fl-score across distributional shifts, reflecting
its ability to deliver semantically accurate outputs while avoiding
information loss.
Mathematically, the F1-score is defined as the harmonic mean of
precision and recall:
P-R
‘PR’
where P and R denote precision and recall, respectively. In
DG evaluation, reporting the Fl-score across both ID and OOD
domains highlights the model’s resilience in balancing semantic
reliability with comprehensive coverage, even under noisy or
imbalanced conditions [68].

14

F =2

Accuracy (A) is a fundamental metric that measures the propor-
tion of correctly classified instances among all evaluated sam-
ples. In semantic communication, accuracy is often applied to
tasks such as sentiment analysis, topic classification, or intent
recognition, where categorical predictions are required. Within
the domain generalization setting, accuracy provides insight into
how consistently a model maintains correct predictions when
evaluated across both in-domain and out-of-domain (OOD) dis-
tributions. A DG-robust model should sustain high accuracy even
under varying channel conditions, linguistic diversity, or unseen
modalities, ensuring reliable semantic preservation.

Formally, accuracy is defined as:

A= TP + TN i (15)
TP + FP + TN + FN

where TP and TN represent the number of true positives and true
negatives, while FP and FN denote false positives and false neg-
atives, respectively. In DG evaluation, accuracy must be reported
not only as an aggregate value but also in terms of perfor-
mance gaps between ID and OOD domains, reflecting the system’s
robustness and generalization capacity [69].
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Table 4
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Summary of performance metrics for domain generalization in Al-enabled semantic communication with example datasets.

Metric Best-suited Common Mathematical expression DG-aware description
modality datasets/Benchmarks
Text, Multimodal CIFAR-10, SVHN, Europarl P= TPT:’FP Assesses prediction relevance
Precision across domains.
Recall Text, Multimodal CIFAR-10, SVHN, Europarl = % Evaluates completeness of
retrieval under OOD.
F1-Score Text, Multimodal CIFAR-10, SVHN, F=2- ;:r’; Balances precision and recall
Multimodal fusion sets for DG robustness.
Accuracy Text, Image, CIFAR-10, Mini-ImageNet, A= 2N __ Classification reliability

Multimodal

NYU Depth V2

TP+FP+TN+FN .
across ID/OOD domains.

Mean Average

Text, Multimodal

COCO-Stuff, ImageNet,

mAP = é e, f Py dr Assesses ranking

Precision (retrieval) Multimodal retrieval datasets performance and retrieval
(mAP) stability.
BLEU Score Text Europarl, WMT, BLEU =BP - exp(zglzl w, log p,,) Evaluates semantic fidelity
OpenSubtitles via n-gram overlap.
ROUGE Score Text CNN/DailyMail, XSum, ROUGE, = W Assesses
Europarl " summarization/dialogue
fidelity under DG.
Perplexity Text Penn Treebank, Europarl, PPL = exp(—% EZ] log P(y; | y<,)) Measures fluency and
Wikitext stability under OOD inputs.
Word Text, Multimodal WordSim353, GLUE, COCO cos(0) = m Tests whether embeddings
Embedding captions R preserve semantic relations
Evaluation across domains.
Semantic Text, Multimodal STS Benchmark, Europarl, sim(u, v) = \Iut\‘l M Quantifies meaning
Similarity COCO captions preservation across ID/OOD.
PSNR Image, Audio COCO-Stuff, DIV2K, PSNR = 10 - logo( MAXI) Evaluates reconstruction

ImageNet, VCTK (audio)

MSE N
quality under unseen

channel noise.

+ Mean Average Precision (mAP) is a widely used metric in
information retrieval that evaluates performance across multiple
recall levels and queries. It provides a comprehensive measure of
how consistently a system maintains precision as recall increases.
In semantic communication, mAP is particularly relevant for tasks
such as semantic retrieval, multimodal search, or knowledge-
based message reconstruction, where relevance must be preserved
across diverse inputs.

In the context of domain generalization, mAP becomes an im-
portant tool for assessing robustness across unseen domains. A
DG-robust system should achieve stable mAP values not only on
the source domain but also under out-of-domain (OOD) condi-
tions, ensuring that semantic relevance is consistently maintained
despite distributional shifts in channel conditions, modalities, or
linguistic domains.

Formally, mAP is defined as:

[ 1
1
AP = — P,(rydr, 16
m Q;/‘) () dr e

where Q denotes the total number of queries and P, (r) represents
the precision as a function of recall r for query ¢g. Reporting mAP
across both ID and OOD domains provides a robust indicator of
generalization capacity, reflecting the system’s ability to maintain
relevance under distributional variations [70].

BLEU Score is a standard metric in natural language processing,
originally developed for machine translation, and widely applied
in semantic communication tasks that involve text generation,
such as conversational agents, summarization, or semantic mes-
sage reconstruction. BLEU evaluates the quality of generated text
by measuring the n-gram overlap between model outputs and
reference sequences. Higher BLEU scores indicate stronger align-
ment with reference semantics, ensuring that generated responses
are both linguistically and semantically coherent [71].

10

In the context of domain generalization, BLEU plays an important
role in quantifying semantic preservation under unseen linguis-
tic or channel conditions. A DG-robust semantic communication
system should sustain consistent BLEU scores across both in-
domain and out-of-domain (OOD) test sets, reflecting its ability to
maintain semantic fidelity even when facing shifts in vocabulary
distributions, dialects, or communication environments.
Formally, BLEU is defined as:

N
BLEU =BP - exp( )" w,logp, . an”
n=1

where p, represents the modified precision of n-grams, w, is the
weight assigned to n-grams of size n, and BP is the brevity penalty
applied to discourage excessively short outputs. Reporting BLEU
scores across ID and OOD domains allows researchers to evaluate
not only generation quality but also robustness to domain shifts
in semantic communication systems.

ROUGE Score is a widely adopted metric for evaluating the
quality of generated text summaries and responses, making it
highly relevant for semantic communication systems such as chat-
bots, dialogue agents, and content summarization tools. ROUGE
measures the degree of overlap between generated and reference
summaries in terms of n-grams, longest common subsequences,
or skip-grams. Higher ROUGE values indicate that the generated
output is more accurate, contextually relevant, and semantically
aligned with the reference content [68].

Within the domain generalization setting, ROUGE provides a
means to assess semantic preservation when models are applied
to unseen domains. For example, in cross-lingual summarization
or communication over noisy/unseen channels, a DG-robust sys-
tem should sustain consistent ROUGE scores, demonstrating its
ability to generate contextually faithful and semantically coherent
outputs despite distributional shifts.
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Formally, ROUGE is expressed as:

ROUGE. = Y ref COUNty e (n-gram) -
! Zref Count(n-gram) ’

where Count,,,;, denotes the number of overlapping n-grams be-
tween the generated output and the reference. Reporting ROUGE
across both in-domain (ID) and out-of-domain (OOD) scenarios
enables researchers to capture the system’s robustness in generat-
ing semantically faithful summaries under varying conditions.

Perplexity (PPL) is a widely used metric for evaluating the qual-
ity and fluency of language models. It quantifies how well a model
predicts the next token in a sequence, with lower perplexity
values indicating better predictive capability and greater linguis-
tic coherence. In semantic communication, perplexity is particu-
larly important for tasks involving text generation or completion,
such as chatbot responses, semantic message reconstruction, or
auto-completion systems [72].

Within the domain generalization context, perplexity serves as
an indicator of a model’s robustness to unseen distributions. A
DG-robust semantic communication system should maintain low
perplexity not only on in-domain (ID) test sets but also on out-of-
domain (OOD) scenarios, such as unseen languages, dialects, or
noisy channel conditions. Stable perplexity across distributional
shifts suggests that the system generates fluent and context-aware
outputs despite exposure to novel domains.

Formally, perplexity is defined as:

N
PPL = exp <—% ; log P(y,-lyq-)) , (19)
where y; denotes the ground-truth token at position i, y_; rep-
resents the preceding sequence of tokens, and P(y;|y.;) is the
conditional probability assigned by the model. In DG evaluation,
reporting perplexity across ID and OOD domains provides insights
into the model’s generative stability and semantic fluency under

distributional shifts.

Word Embedding Evaluation plays a crucial role in semantic
communication, as embeddings such as Word2Vec, GloVe, or
transformer-based contextual representations capture semantic
relationships between words and phrases. Evaluation tasks typ-
ically involve computing cosine similarity between vectors, com-
pleting analogy tests (e.g., “king — man + woman = queen”), or
assessing the clustering of word vectors in semantic space. High-
quality embeddings enhance the semantic communication sys-
tem’s ability to represent meaning accurately, thereby improving
encoding, transmission, and decoding processes [73].

In the domain generalization setting, embedding evaluation is
extended to assess robustness under distributional shifts. A DG-
robust embedding space should maintain consistent semantic re-
lationships across both in-domain (ID) and out-of-domain (OOD)
conditions, such as unseen languages, new channel character-
istics, or domain-specific terminology. Stability of embeddings
across these variations indicates strong generalization in seman-
tic representation learning, which is fundamental for reliable
semantic communication.

A common metric for evaluating embedding similarity is cosine
similarity, expressed as:
Wi - W,

cos(f) = ————,
[Iw IHHwo |

(20)
where w,, w, € R? represent word embeddings in a d-dimensional
space. In DG evaluation, cosine similarity can be measured across
ID and OOD embedding spaces to determine the extent to which
semantic consistency is preserved under domain shifts.
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» Semantic Similarity metrics, such as cosine similarity, Jaccard
index, or Euclidean distance, are employed to quantify the degree
of relatedness between text documents, sentences, or embedding
representations. In semantic communication systems, these mea-
sures are critical for evaluating how closely the reconstructed
output preserves the meaning of the original input. High seman-
tic similarity ensures that transmitted messages align with user
intent, thereby enhancing reliability and overall system perfor-
mance [74].

Semantic similarity is often regarded as a practical measure of se-
mantic fidelity, since both concepts aim to assess the preservation
of intended meaning during transmission. While semantic fidelity
is a broader notion encompassing the overall accuracy of semantic
preservation (including task-level correctness), semantic similar-
ity metrics provide a quantifiable approach to approximating this
fidelity.

In the context of domain generalization, semantic similarity pro-
vides an essential means of assessing robustness to distributional
shifts. A DG-robust model should maintain high similarity scores
not only in-domain but also when exposed to out-of-domain
(OOD) conditions such as new communication environments,
languages, or modalities. This demonstrates the system’s capacity
to preserve semantic content even when the test distribution
deviates from the training domain.

A common approach is to compute cosine similarity between the
vector representations of input and reconstructed messages:

sim(u,v) = 21

u-v
lalllivll”
where u,v denote the embedding representations of the input
and the reconstructed messages, respectively. In DG evaluation,
this metric is particularly useful for quantifying semantic fidelity
across ID and OOD domains, providing a direct measure of mean-
ing preservation under domain shifts.

Peak Signal-to-Noise Ratio (PSNR) is a classical metric used
to evaluate the fidelity of reconstructed signals, particularly in
image or audio transmission tasks. PSNR measures the ratio be-
tween the maximum possible signal power and the power of
the reconstruction error, thereby quantifying distortion at the
signal level. Higher PSNR values indicate closer alignment be-
tween the transmitted and reconstructed signals, reflecting lower
levels of degradation and better reconstruction quality. In seman-
tic communication, PSNR complements semantic-oriented met-
rics by ensuring that low-level distortions do not undermine the
interpretability or utility of the transmitted content.

Within the domain generalization setting, PSNR serves as an im-
portant robustness measure. A DG-robust system should maintain
stable PSNR values not only in-domain but also when operating
under out-of-domain (OOD) conditions, such as unseen channel
environments (e.g., Rayleigh or Rician fading) or novel noise
distributions. Consistency in PSNR across these scenarios demon-
strates resilience in maintaining reconstruction quality despite
distributional shifts.

Formally, PSNR is expressed as:

2
PSNR = 10 - log, <%> , (22)
where MAX denotes the maximum possible pixel (or signal) value
and MSE is the mean squared error between the original and
reconstructed signals. In DG evaluation, PSNR is often reported
alongside semantic metrics such as BLEU or semantic similarity,
providing a holistic view of both signal-level fidelity and semantic
preservation under domain shifts.

In summary, the set of DG-aware performance metrics offers a

multidimensional perspective for the evaluation of Al-enabled semantic
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Table 5
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Comparison of semantic communication surveys: Coverage of domain generalization aspects.

Ref. DG techniques DG taxonomy Applications/Use cases SemCom framework for DG DG challenges Paper scope

[75] X X v X X Theory, Metrics, Challenges

[76] X X v X X Task driven SemCom, Al for IoT
[77] X X X v X Generative Al, Architecture

[20] X X v X X 6G Theory, Design Vision

[78] X X X X X Historical Review, Principles

[79] X X v X X Security, Network Stack, Protocols
[80] X X v v X SemCom Architecture

[34] v X v X X Al Techniques, Efficiency

[81] X X X X X Metrics, Evaluation, Theory

[82] X X v X X Bandwidth Efficiency, Applications
Our Survey v v v v v Cross domain DG in SemCom

Note: This table shows that while previous surveys contribute to selective areas of semantic communication, they largely omit comprehensive coverage domain generalization

in SemCom. Our survey addresses all key dimensions in a unified manner.

communication systems, capturing accuracy, completeness, semantic
fidelity, generative quality, and resilience to distributional shifts. The
selection of appropriate metrics should be carefully aligned with the
specific objectives and modalities of the target application, whether
text, image, or multimodal. Furthermore, the integration of these quan-
titative measures with explainability techniques enhances interpretabil-
ity, transparency, and trust, thereby facilitating the development of
semantic communication models that are not only high performing but
also reliable and generalizable across heterogeneous environments.

3. Literature review on domain generalization in semantic com-
munication

In this section, we review the evolving literature on Al-enabled
semantic communication with a focused lens on domain generalization.
Semantic communication is an emerging paradigm designed to enhance
communication efficiency by enabling systems to understand and trans-
mit meaning rather than raw data. As these systems are increasingly
deployed in real world environments characterized by domain shifts
such as variations in user context, language, or network conditions the
importance of domain generalization becomes paramount [83].

Domain generalization addresses a core limitation of traditional Al
models in semantic communication: the inability to maintain perfor-
mance across unseen or dynamic domains without retraining. Despite
the increasing interest in semantic communication, our investigation re-
veals a substantial gap there is currently no comprehensive survey that
deeply explores the role of domain generalization in making semantic
communication systems robust, context aware, and scalable. Our work
aims to fill this gap by systematically analyzing the current state of
domain generalization techniques as applied to semantic communica-
tion, providing a forward looking perspective on how these methods
can shape the adaptability and reliability of future 6G communication
systems.

While early works have laid foundational concepts for semantic
communication, few have addressed the intersection of domain gen-
eralization and semantic understanding in communication systems.
Moreover, existing surveys often treat domain generalization only as
a peripheral concern or focus exclusively on general purpose vision
and NLP tasks. As shown in Table 5, previous reviews have largely
overlooked the unique challenges and opportunities that domain shifts
present in Al-enabled semantic transmission. This oversight highlights
the need for a focused, in depth survey that examines domain general-
ization as a central pillar in the development of scalable and intelligent
semantic communication models.

By offering a detailed synthesis of this emerging intersection, our
survey provides a roadmap for building semantic communication
frameworks that can operate reliably across diverse, unseen, and evolv-
ing communication environments. In doing so, we contribute to both
theoretical development and practical system design, guiding future
research toward robust, adaptable, and real world ready semantic
communication infrastructures.
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3.1. Literature insights on the advancements of semantic communication

The literature on semantic communication has increasingly rec-
ognized the importance of robustness and adaptability, especially in
dynamic wireless environments. In this context, domain generalization
techniques have emerged as key enablers of generalizable semantic
inference, helping models maintain stable performance under domain
shifts. While research in this area remains nascent, a growing body
of work has explored how semantic transceivers can be made more
resilient to variability in linguistic, contextual, and network specific
domains.

This subsection presents a curated set of recent contributions in
semantic communication and highlights how these works incorpo-
rate or could benefit from domain generalization principles. Table 6
summarizes the methodologies, input types, optimization algorithms,
performance metrics and limitations in selected studies, along with
their relevance to DG techniques where applicable. These insights are
further discussed to emphasize how domain generalization elevates the
scalability, reliability, and applicability of Al-enabled semantic systems
across real world communication scenarios.

The study presented in [23] introduces an innovative end to end
image transmission system that leverages semantic communication
and integrates Al technologies with 6G communication networks. This
system, consisting of a transmitter (encoder) and a receiver (decoder),
communicates over a physical channel. The transmitter performs a se-
mantic segmentation task on the image to extract its semantic meaning,
transmitting the segmentation map instead of the original image. At
the receiving end, a pre-trained GAN network reconstructs a realistic
image from the received segmentation map. Using the COCO Stuff
dataset for training, both the transmitter and receiver share a common
knowledge base. The research also examines the impact of physi-
cal channel distortions and quantization noise on the transmission of
multimedia content via semantic communication. Experimental results
highlight the system’s efficiency, demonstrating a compression ratio of
approximately 20 compared to traditional image transmission methods.

A DeepSC model is presented in [84], which is an intelligent end
to end communication system, operates on two key levels: semantic
and transmission. The semantic level focuses on processing informa-
tion for encoding and decoding, while the transmission level ensures
accurate exchange over the medium. DeepSC aims to maximize sys-
tem capacity, emphasizing sentence meaning recovery over traditional
bit or symbol error concerns. Utilizing transfer learning, it adapts to
diverse communication environments, demonstrating superior perfor-
mance in low signal to noise ratio scenarios and increased resilience to
channel variation. The comparisons with traditional systems highlight
DeepSC’s robustness, particularly in low SNR regimes, across varied
channel conditions. Introducing the novel metric “sentence similarity”,
the system precisely measures semantic communication performance,
justifying DeepSC’s efficacy in meaning recovery and semantic error
reduction. An analysis of loss value, mutual information, BLEU score,
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Table 6
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State of the art Al models and generalization methods in semantic communication with DG-specific limitations.

Study  Input feature Model Performance metric DG methodology DG-specific limitations
[23] Image Transformer PSNR GAN Training instability;
adversarial vulnerability
[84] Text Transformer, DNN BLEU, MI Transfer Learning Needs large pretraining;
weak zero/few-shot OOD
[85] Multimodal (Text, Image) CNN (ResNet) MAP GAN Modality gap persists;
limited interpretability
[76] Image ResNet Accuracy Self-supervised Learning Data hungry;
sensitive to imbalance
[86] Multimodal Images ResNet Accuracy Self-supervised Learning Scalability/compute
overhead;
adversarial robustness
unverified
[87] Images CNN PSNR, SSIM Meta-Learning High compute;
sensitive to task design
[88] Multimodal Images AE, VAE PSNR, Accuracy Federated + MAML Comm. overhead;
privacy leakage risk
[89] Images Swin Transformer PSNR Transfer Learning Drops in dynamic domains;
depends on pretraining
[90] Text Transformer BLEU, Similarity GAN Semantic drift under attack;
limited OOD robustness
[43] Text DNN WER, FDSD, Accuracy Unified Feature Learning Overfitting risk;
lacks adversarial defense
[91] Image Swin Transformer + Diffusion PSNR, LPIPS Generative Refinement High compute;
data bias sensitivity
[92] Image VLM + Transformer BLEU, SSQ Continual Learning Catastrophic forgetting;
memory overhead
[93] Image Diffusion (DDPM) PSNR, MS-SSIM Noise Modeling + Denoising Resource intensive;
adversarial robustness
unproven
[94] Multimodal (Text, Image)  ResNet-50, CLIP, Diffusion PSNR, MS-SSIM Multimodal Fusion + Selection  Fusion overhead;
cross-modal inconsistencies
[95] Image ResNet + Diffusion (DDPM/DDIM)  PSNR, SSIM, Semantic Fidelity =~ Semantic Priors High complexity;

priors may leak info

and SNR underscores DeepSC’s performance, revealing the impact of
training parameters on mutual information and BLEU score. While the
sources lack explicit overall results, they provide valuable insights into
DeepSC’s enhanced performance and the metrics used for evaluation.
The paper [85], introduces a comprehensive system model for cross
modal retrieval and semantic representation learning. It incorporates
generative parts for image and text representation, classification parts
for multi label classification, and an inter modal discriminative net-
work to bridge the modality gap. Adversarial learning is employed
to iteratively train generative and discriminative models, aiming to
generate common semantic representations and distinguish differences
between modalities. The joint optimization of the generative adversar-
ial network and classification network enhances cross modal retrieval.
The proposed model demonstrates superior performance on widely
used datasets, achieving indistinguishable and close representations for
data with similar semantics through adversarial learning. The inter
modal discriminative network effectively contributes to overcoming the
modality gap by distinguishing between image and text modalities.
Tilahun et al. propose a self supervised learning based framework
for task oriented semantic communication under limited label avail-
ability, aimed at enhancing generalization across varying channel con-
ditions and data distributions [76]. The system, termed SLSCom, in-
tegrates deep learning and the Information Bottleneck (IB) principle to
extract semantically meaningful representations using both labeled and
unlabeled data. A two stage training strategy is employed: self super-
vised pre-training with unlabeled samples via pretext tasks (e.g., con-
trastive InfoNCE loss and reconstruction), followed by supervised fine
tuning on a small set of labeled examples. Experiments on CIFAR-10
and SVHN datasets demonstrate that SLSCom maintains high classi-
fication accuracy even with minimal supervision and under domain
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shifts such as SNR variations. By leveraging self supervision, the frame-
work significantly improves semantic representation robustness and
effectively addresses the domain generalization challenge in low label
semantic communication systems.

Zhao et al. introduce a self-supervised, multi modal semantic com-
munication framework that addresses domain generalization through
task agnostic pre-training and label efficient learning [86]. The pro-
posed system operates across multiple modalities (e.g., RGB and depth
data) using separate encoders at edge devices and a central decoder
for downstream classification tasks. A two stage training scheme is
adopted: in the first stage, a novel self supervised learning method
is used to capture both shared and unique semantic features across
modalities via intra modal and cross modal contrastive objectives. In
the second stage, supervised fine tuning adapts the system to specific
tasks with minimal labeled data. This pre-training strategy significantly
reduces training related communication overhead while maintaining
robustness across different channel conditions and label scarcity. Ex-
perimental results on the NYU Depth V2 dataset demonstrate that the
framework outperforms fully supervised and other self supervised base-
lines in both efficiency and accuracy. By enabling task agnostic seman-
tic representation learning, this approach effectively enhances domain
generalization capabilities in multi modal semantic communication.

Chen et al. propose a scalable semantic communication system
tailored for industrial scenarios, where the dynamic addition of new
transmission tasks imposes challenges for adaptability and training
efficiency [87]. To address this, the authors introduce a joint source
channel coding (JSCC) semantic communication framework integrated
with meta-learning and a novel metric called Decoding Information
Resolution (DIR) to assess scalability. The system employs a Con-
volutional Neural Network (CNN) for semantic encoding and decod-
ing and is trained using a model agnostic meta-learning algorithm
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that operates in three stages: offline training, quasi-online adaptation,
and online deployment. The framework is validated using the mini
ImageNet dataset and tested under various SNR conditions. Results
demonstrate that the proposed method significantly improves scalabil-
ity and performance, particularly in low SNR environments and during
the addition of new tasks. This work highlights the effectiveness of
meta-learning in enhancing domain generalization and scalability in
semantic communication systems.

Bian et al. present a federated semantic communication frame-
work tailored for the Metaverse, aiming to balance communication
efficiency, privacy, and adaptability in large scale virtual environ-
ments [88]. The framework integrates deep learning based semantic
communication with federated learning to enable collaborative model
training across distributed nodes without sharing raw data. Core com-
ponents include semantic encoders/decoders (e.g., autoencoders and
variational autoencoders) and semantic digital twins (SCDTs) for effi-
cient semantic representation and reconstruction. The model is eval-
uated on diverse datasets (MNIST, KMNIST, CIFAR-10), showing im-
proved performance in both PSNR and classification accuracy under
noisy and compressed settings. To enhance robustness across non-
IID data distributions, the system incorporates Model Agnostic Meta-
Learning (MAML) into the federated training loop. This approach sig-
nificantly boosts generalization across domains and tasks, making it a
strong candidate for enabling scalable and adaptive semantic commu-
nication systems in the Metaverse.

Nguyen et al. address the challenge of semantic communication in a
multi user setting with users having diverse computing capacities [89].
They propose a Swin Transformer based semantic communication sys-
tem for image transmission, where a single encoder at the base station
communicates with multiple decoders of varying complexity. To im-
prove training efficiency and generalization for low computing users,
they introduce a two stage training strategy: (1) pairing the encoder
with a high capacity decoder for initial training and (2) reusing the en-
coder while training the low capacity decoder. Two techniques enhance
generalization: transfer learning, where parameters are transferred be-
tween compatible layers of decoders, and knowledge distillation, where
the high capacity decoder acts as a teacher guiding the low capacity de-
coder. Experiments on the DIV2K dataset demonstrate improvements in
PSNR under varied SNR conditions, showing the system’s effectiveness
in adapting to resource constrained users. This approach highlights the
role of cross user transfer and teacher student learning in promoting
domain generalization in semantic communication.

Mao et al. propose a novel GAN based semantic communication
framework (Ti-GSC) designed for text transmission without relying
on Channel State Information (CSI), addressing a major limitation in
existing SC systems over fading channels [90]. The proposed framework
integrates two core modules: (1) an autoencoder based encoder de-
coder module (AEDM) built upon Transformers for semantic extraction
and reconstruction, and (2) a GAN-based signal distortion suppression
module (GSDSM), which learns to remove syntactic and semantic noise
without prior CSI. The system is trained using a joint optimization
strategy (JOT) involving a composite loss function that includes cross
entropy, adversarial, syntactic, and semantic distortion terms. The
GSDSM is implemented using a U-Net generator and a convolutional
discriminator, enabling semantic alignment of distorted signals. Evalu-
ated on the Europarl text dataset across AWGN, Rician, and Rayleigh
channels, the Ti-GSC significantly improves BLEU and sentence similar-
ity scores compared to baselines, even in the absence of CSI. The paper
also performs generalization experiments on Nakagami-m fading chan-
nels, confirming the model’s robustness in unseen channel conditions
thereby demonstrating strong domain generalization capabilities.

Qin et al. propose a generalized semantic communication (GSC)
framework that extends semantic processing to both the source and the
wireless channel, aiming to optimize efficiency across diverse multi-
modal data types and channel environments [43]. The system supports
semantic transmission of text, speech, image, and video, employing
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deep learning (DL) models for joint semantic channel coding. In ad-
dition to conventional source semantics, the framework introduces en-
vironment semantics, where semantic features (e.g., object layout and
categories) extracted from images assist in channel estimation and pre-
coding tasks. This reduces reliance on pilot signals and explicit channel
state information (CSI). A case study on speech transmission (DeepSC-
ST) demonstrates enhanced performance under Rayleigh channels us-
ing semantic representations rather than raw signals. For the channel
side, an environment semantics aided communication (ESAC) module
predicts beamforming vectors directly from semantic scene features.
The system emphasizes generalization across source tasks and channel
conditions, enabled by unified DL-based abstraction and feature selec-
tion strategies, making it a compelling approach for domain adaptive
semantic communication.

Zhang et al. propose a next generation semantic communication
system called GSC (Generative Al Semantic Communication), which
integrates a Swin Transformer based semantic encoder with a Diffusion
Model (DM) powered refinement module to enhance reconstruction
fidelity, particularly under challenging channel conditions [91]. The
system introduces a novel semantic successive refinement strategy,
wherein an initial coarse semantic reconstruction is first generated
by the base decoder. This is then passed to a pre-trained Diffusion
Model, which acts as a powerful generative prior to iteratively re-
fine and reconstruct the output with high semantic consistency and
perceptual quality. This generative refinement enables the system to
correct semantic distortions that may arise due to noise or compression
during transmission. The authors further extend their design to a multi
user asynchronous setting (MU-GSC), supporting scalable and paral-
lel transmissions. Experiments conducted under AWGN and Rayleigh
fading channels show that GSC significantly outperforms DeepJSCC
and conventional LDPC based baselines in terms of PSNR and LPIPS,
even at low SNRs. While the framework does not use traditional DG
algorithms, the diffusion based generative enhancement enables strong
generalization across varying channel conditions, making it an effective
domain adaptive solution for future semantic communication networks.

Jiang et al. propose a novel Visual Language Model based Cross
modal Semantic Communication (VLM-CSC) system to overcome key
limitations of traditional image semantic communication (ISC) systems,
such as low information density, catastrophic forgetting, and SNR vari-
ability [92]. Their framework introduces three core components: (1) a
Cross modal Knowledge Base (CKB) using pretrained BLIP and Stable
Diffusion (SD) models for transforming images into high density text
at the transmitter and reconstructing them at the receiver, (2) a Mem-
ory Assisted Encoder/Decoder (MED) combining short term and long
term memory to enable continual learning, and (3) a Noise Attention
Module (NAM) that adaptively allocates importance to semantic and
channel coding based on SNR feedback. The system uses transformer
based encoders/decoders for text processing and integrates pretrained
vision language models to boost semantic alignment. Evaluated across
diverse datasets (e.g., CIFAR, CATSvsDOGS) and SNR levels, VLM-CSC
demonstrates high BLEU scores and Semantic Service Quality (SSQ),
while maintaining robustness and adaptability. The MED mechanism
particularly enhances domain generalization by preserving past knowl-
edge while learning new domain shifts, making VLM-CSC a powerful
DG capable architecture for multimodal communication.

The study in [93] proposes a Joint Source Channel Noise Adding
with Adaptive Denoising (JSCNA-AD) framework, developed on the
foundation of the Denoising Diffusion Probabilistic Model (DDPM) for
semantic communication. The proposed method incorporates channel
noise directly into the forward diffusion process and applies attention
guided adaptive denoising at the receiver, thereby enabling high fi-
delity reconstruction of semantically important regions while minimiz-
ing redundant computations. Experimental evaluations on ImageNet-
256 and STL-10 datasets over AWGN and Rayleigh channels demon-
strate performance improvements of up to 13.3 dB in PSNR, alongside
superior MS-SSIM, reduced FLOPs, and lower inference time compared



M.F. Zia et al.

Physical Communication 73 (2025) 102857

Domain Generalization Techniques
for Al-Enabled Semantic
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Fig. 7. State of the art domain generalization techniques for Al-Enabled Semantic Communication.

with JPEG2000+LDPC, DeepJSCC, and WITT baselines. These find-
ings suggest that integrating channel aware noise modeling within
DDPM based diffusion processes, coupled with adaptive denoising,
can substantially enhance reconstruction fidelity, robustness under di-
verse channel conditions, and computational efficiency in semantic
communication.

The study in [95] presents an end to end semantic communica-
tion system designed for efficient image transmission under band-
width limited conditions. At the transmitter, a deep learning classifier
(ResNet-18) predicts image category labels, and dictionary learning
with sparse coding is employed to extract compact semantic features. At
the receiver, a diffusion model based conditional generator synthesizes
candidate images from the received category, while dictionary learning
is again used to match and select the image most consistent with
the transmitted features. To assess reconstruction quality, the authors
introduce a Semantic Fidelity Index (SFI) that jointly incorporates
mutual information and CNN feature similarity, providing a more
reliable evaluation than conventional metrics such as PSNR and SSIM.
Experimental results demonstrate that the proposed system achieves
superior semantic fidelity and visual quality compared to JPEG2000
and generative baselines (GAN, VAE, StyleGAN2), while operating
under reduced bandwidth constraints. Moreover, the diffusion model
yields better convergence behavior and higher reconstruction quality
than alternative generative approaches at lower complexity, indicating
that integrating dictionary learning with diffusion based generative
reconstruction and a semantic fidelity metric enables more efficient,
semantically faithful, and robust image transmission than traditional
codecs or alternative generative models.

The authors in [94] presented a Multimodal Semantic Communi-
cation (MMSemCom) framework that jointly exploits image and text
features for supervised image generation. At the transmitter, seman-
tic features are extracted using ResNet-50 for image representations
and CLIP for text prompts, which are subsequently fused into a uni-
fied MultiSem representation via cross attention. At the receiver, a
diffusion model (DM) generates candidate images, followed by a super-
vised selection mechanism either sequential or simultaneous that aligns
the generated outputs with the transmitted multimodal semantics. Ex-
tensive experiments on CIFAR-100, STL-10, and ImageNet-256 under
AWGN and Rayleigh channels demonstrate that MMSemCom consis-
tently outperforms traditional codecs (BPG, WebP) and deep learning
baselines (DeepJSCC, WITT, LaMoSC). The sequential variant achieves
higher robustness in low SNR conditions, reaching up to 35.6 dB PSNR,
whereas the simultaneous variant offers improved efficiency by achiev-
ing strong fidelity with lower overhead. Furthermore, the framework
exhibits strong generalization to out of distribution datasets such as
FGVC-Aircraft and Stanford Cars, underscoring its resilience to domain
shifts. Collectively, these results indicate that combining multimodal

semantic features with diffusion based generation and supervised selec-
tion not only improves reconstruction fidelity and robustness to channel
noise but also enhances generalization to previously unseen domains.

In summary, Section 3 and Table 6 together show that domain gen-
eralization in semantic communication is advanced by complementary
building blocks that map onto the SemCom pipeline: strong represen-
tation learners (transfer and self supervised) establish versatile feature
bases across modalities and channel conditions; adversarial and diffu-
sion based components repair residual distribution gaps and enhance
semantic fidelity; meta learning enables rapid, label efficient adaptation
when environments change; federated and continual variants preserve
performance across clients and over time without centralizing data; and
unified feature learning with semantic priors imposes structure that
preserves meaning under perturbations. In practice, the most effective
systems compose two or more families, for example self or transfer
pretraining for general features, a lightweight DG head (meta learning
or domain adversarial), and selective generative refinement, balancing
robustness with deployability. Table 6 makes these trade offs explicit by
aligning each study’s modality, model, metrics, DG methodology, and
limitations from the literature offering a clear blueprint for designing
resilient SemCom systems under real world constraints.

The recent studies reviewed in this section highlight substantial
progress in strengthening the robustness and adaptability of semantic
communication through diverse domain generalization strategies, in-
cluding self-supervised learning, meta-learning, transfer learning, and
generative refinement techniques. Collectively, these approaches estab-
lish a solid foundation for advancing the field while pointing toward
promising future directions. They underscore the importance of sus-
tained innovation and interdisciplinary collaboration to realize scal-
able, efficient, and reliable semantic communication systems capable
of meeting the evolving demands of next generation networks.

4. Domain generalization techniques for Al-enabled semantic
communication

This section presents an analysis of current techniques that enhance
the domain generalization capabilities of Al-enabled semantic commu-
nication systems. Our contribution addresses a key gap in the literature
by focusing on how modern models can generalize effectively across
varied and unseen domains such as changes in user context, modality,
network conditions, and linguistic styles without requiring retraining.

We examine a range of diverse methods aimed at improving gen-
eralization performance. Fig. 7 highlights key domain generalization
techniques, which we discuss below.

1. Meta-Learning:

Meta-learning, also known as “learning to learn”, is a powerful
approach aimed at enhancing domain generalization by enabling mod-
els to quickly adapt to new tasks with limited data. This is par-
ticularly beneficial in semantic communication, where models must
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efficiently understand and convey meaning across varying domains
such as different languages, modalities, communication styles, and user
contexts [96]. Meta-learning frameworks such as Model Agnostic Meta-
Learning (MAML) [97], First Order MAML [98], Model Agnostic Meta-
Learning for Domain Generalization (MLDG) [99], and MetaReg [100]
have shown effectiveness in enabling fast adaptation and improved
generalization capabilities.

These methods typically follow a two level learning scheme: a base
learner is trained on individual tasks using conventional optimization
techniques, while a meta learner optimizes the base learner’s ability to
perform well across a distribution of tasks or domains. In the context
of semantic communication, this setup allows the model to acquire a
strong initialization that can be fine tuned on unseen semantic tasks
using just a few gradient steps. Tasks can include translation, sum-
marization, or classification in different linguistic or domain settings,
where the semantic structure of the input varies.

This generalization capability becomes especially critical when
adapting semantic models to emerging environments, such as low re-
source languages or newly introduced modalities. For instance, in cross
domain sentiment analysis on social media platforms, each platform
(e.g., Twitter, Facebook, Instagram) features distinct writing styles,
vocabularies, and context. Meta-learning algorithms like MLDG and
MetaReg allow models to learn domain invariant features across these
tasks and adapt rapidly without retraining from scratch. The models
not only learn the core patterns of language understanding but also
effectively handle style and dialect variation.

To evaluate the performance of meta-learning in semantic commu-
nication, metrics such as accuracy, BLEU scores for translation, ROUGE
for summarization, and adaptation speed are commonly used [101].
These metrics assess both the quality of semantic preservation and the
efficiency of adaptation across tasks. For example, a multilingual cus-
tomer support system equipped with a meta learned semantic encoder
could generalize across different customer service scenarios, quickly
adapting to new query patterns or domain specific language with
minimal labeled data. This makes meta-learning a promising candidate
for building scalable, robust, and adaptive semantic communication
systems in real world environments.

2. Domain Adversarial Training:

Domain adversarial training is a widely adopted strategy for enhanc-
ing domain generalization by learning feature representations that are
invariant across different domains [102]. Within semantic communi-
cation systems, this technique becomes highly relevant when models
are expected to operate consistently in varying linguistic, acoustic, or
environmental conditions. By jointly optimizing semantic accuracy and
domain invariance, domain adversarial training helps models maintain
stable performance in unseen contexts without requiring fine tuning or
retraining.

The general architecture involves three key components: a feature
extractor that converts input data (e.g., text, speech, or images) into la-
tent representations; a task specific classifier that performs the semantic
task (e.g., intent detection, translation, or sentiment classification); and
a domain discriminator that attempts to infer the domain label from
the same latent features. A minimax optimization is used, where the
model minimizes task loss and simultaneously maximizes the domain
discriminator’s error. This competitive interaction compels the feature
extractor to learn domain agnostic representations [103,104]. A cen-
tral mechanism enabling this learning is the gradient reversal layer
(GRL) [105]. During training, GRL inverts the gradient signals from
the domain discriminator, pushing the feature extractor to produce
embeddings that confuse the discriminator while still enabling accurate
semantic task performance. This leads to representations that gener-
alize well across domains an essential property for scalable semantic
communication systems.

Consider, for instance, a multilingual voice assistant system in-
tegrated into smart home environments, where users communicate
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through speech across various accents, languages, room acoustics, and
microphone qualities. In such a system, domain adversarial training
ensures the semantic understanding module remains robust to these
variations. Whether a command is issued in a quiet kitchen by a native
speaker or in a noisy living room with accented speech, the model must
consistently understand the intent and respond appropriately [106]. By
training the feature extractor to ignore acoustic and linguistic domain
differences, the system can generalize well across user and environ-
mental variations, maintaining reliable semantic performance without
reconfiguration.

Therefore, this technique is particularly beneficial in scenarios
where explicit domain labels may not be available during inference, yet
generalization is still critical. It effectively decouples semantic learning
from domain specific nuances, ensuring models are not overfitted to
source conditions. As a result, domain adversarial training is a core
component of domain generalization strategies in semantic communi-
cation. It enables real time, cross condition adaptability and supports
the deployment of intelligent communication systems in heterogeneous
environments with minimal data preparation or retraining overhead.

3. Gradient Operation:

Gradient based optimization methods are essential tools for enhanc-
ing generalization in machine learning, particularly within semantic
communication systems that operate in dynamic or unfamiliar envi-
ronments. These techniques aim to stabilize training and guide models
toward learning domain invariant representations by regulating how
gradients are propagated and updated across tasks or domains. Among
the widely used approaches are gradient clipping, gradient normaliza-
tion, and algorithmic frameworks such as Representation Self Challeng-
ing (RSC) [107] and Fish [108], which are designed specifically for
domain generalization.

Gradient clipping involves constraining the gradient values dur-
ing backpropagation to avoid instability caused by excessively large
updates. This is especially important in language centric tasks like
semantic translation or summarization, where gradient explosion may
hinder training convergence. In contrast, gradient normalization en-
sures that gradients across layers maintain consistent scales, addressing
vanishing gradient problems and promoting uniform learning across
network components [109]. These operations help maintain steady op-
timization dynamics, improving the model’s robustness under domain
shift conditions.

RSC introduces a self challenging mechanism where the model
suppresses its most confident features during training, encouraging it
to rely on more diverse and stable patterns across domains [107]. This
forces the model to learn alternative semantic cues that generalize
better to unseen conditions. Fish, on the other hand, adopts a gradient
matching approach: it aligns gradients computed across multiple source
domains during meta-training, promoting learning trajectories that are
more consistent and transferable [108]. Together, these techniques
contribute to building representations that are not only task relevant
but also domain agnostic.

In semantic communication, such capabilities are particularly criti-
cal when transmitting or interpreting data across highly variable chan-
nels or user environments. Consider, for example, an industrial IoT
scenario involving real time sensor data collection and communica-
tion across different factory floors, where environmental conditions
(e.g., electromagnetic interference, machine noise, sensor brands) differ
widely [110]. A semantic communication system trained on data from
one location may perform poorly in another unless it can generalize
across such conditions. Applying gradient based domain generalization
techniques enables the system to extract semantically relevant informa-
tion from sensor readings while ignoring environment specific noise.
This leads to more consistent communication quality and decision
making across industrial settings without retraining [110].

Overall, gradient operation techniques such as RSC and Fish serve
as powerful strategies to equip semantic communication models with
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the ability to generalize across heterogeneous domains. By refining
optimization trajectories and encouraging reliance on stable, transfer-
able semantic patterns, these approaches significantly strengthen the
reliability and scalability of semantic communication systems in real
world deployments.

4. Distributionally Robust Optimization:

Distributionally Robust Optimization (DRO) is a powerful strat-
egy in domain generalization aimed at training models to maintain
performance across a range of possible data distributions. In seman-
tic communication, where models must handle variations in context,
language, channel conditions, and message structure, DRO offers a prin-
cipled framework to enhance robustness and reliability [111]. Unlike
standard empirical risk minimization, which assumes that training and
test distributions are similar, DRO explicitly considers uncertainty in
the data distribution by defining an ambiguity set typically formulated
using metrics such as Wasserstein distance, moment constraints, or f-
divergences. The objective is to minimize the worst case expected loss
over all distributions within this ambiguity set, making it highly suited
for unpredictable and dynamic environments [112].

The optimization process in DRO typically involves a nested min-
imax structure: the inner maximization identifies the worst case dis-
tribution in the ambiguity set under which model performance de-
teriorates the most, while the outer minimization updates the model
parameters to reduce this worst case loss. Though computationally
more intensive than conventional training, this framework encourages
the model to learn representations that are not overly tailored to any
specific domain, thus achieving better generalization across unseen
or shifting conditions [113]. This approach is particularly relevant
for semantic communication, where input data can exhibit significant
variability across regions, user demographics, signal distortions, and
linguistic constructs.

Several effective algorithms fall under the DRO paradigm. VRex
(Variance Risk Extrapolation) minimizes variance in model predictions
across domains, promoting more uniform generalization [114]. Just
Train Twice (JTT) reweights training data to emphasize underrep-
resented or difficult examples, enhancing the model’s resilience to
rare or complex semantic structures [115]. GroupDRO takes a group
based approach by minimizing the worst case loss across predefined or
dynamically inferred groups, ensuring robustness even in the presence
of latent domain heterogeneity [116]. These techniques allow semantic
communication models to avoid overfitting to dominant data pat-
terns and instead learn representations that support consistent message
interpretation across diverse conditions.

A compelling use case for DRO in semantic communication is found
in emergency communication networks deployed in low resource envi-
ronments during natural disasters. In such scenarios, linguistic content
can vary widely across users, and channel conditions may degrade
unpredictably due to infrastructural damage or interference. A seman-
tic communication system trained with DRO could remain functional
across fluctuating noise levels, dialectical shifts, or compressed signal
formats by focusing on the most challenging examples during training.
GroupDRO, for instance, would ensure consistent performance across
multiple user populations or message types, such as emergency alerts,
weather updates, and rescue coordination messages each potentially
originating from different data domains.

5. Self-Supervised Learning:

Self-supervised learning (SSL) has emerged as a promising approach
for domain generalization by leveraging the inherent structure of data
to learn meaningful representations without relying on labeled super-
vision [117]. In semantic communication, where the goal is to extract
and transmit semantic meaning rather than surface level data, SSL
enables models to generalize across diverse linguistic, contextual, and
environmental conditions by creating surrogate tasks that force the
network to learn high level abstractions.
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SSL frameworks design pretext tasks in which the model learns
to predict or reconstruct certain components of the input from oth-
ers. These tasks encourage the model to capture relationships, struc-
tures, and dependencies within the data. In natural language pro-
cessing (NLP), common pretext tasks include masked language mod-
eling (MLM), next sentence prediction (NSP), and sentence permuta-
tion [118]. For instance, BERT [119] uses MLM, where input tokens are
randomly masked and the model learns to predict the missing tokens
using the surrounding context. Similarly, NSP trains the model to
determine whether two sentences appear consecutively in a document,
thereby reinforcing the understanding of semantic coherence [120].
These strategies are particularly valuable for semantic communica-
tion, where understanding context, semantics, and intent is essential
for encoding and decoding messages across variable communication
channels.

Several SSL techniques have shown strong domain generalization
capabilities in broader machine learning tasks. JiGen (Jigsaw Puzzle
Generation) combines image permutation with classification to help
models learn robust representations across domains [121]. In the con-
text of semantic communication, JiGen like techniques can be adapted
for textual or multimodal inputs by segmenting data into logical units
and forcing the model to learn their relationships. Another technique,
SelfReg [122,123], introduces regularization losses during SSL train-
ing that promote representation consistency and reduce overfitting to
specific source domains. These constraints enhance generalizability and
have been successfully applied in cross domain adaptation scenarios.

One of the key advantages of SSL in semantic communication lies
in its applicability to low resource settings where labeled data are
scarce or infeasible to obtain. For example, consider a multilingual
educational platform used globally by students in different regions, lan-
guages, and cultural contexts. Each user may access the platform with
different semantic expectations, vocabulary styles, and interface lan-
guages. Training a semantic communication model using SSL enables
the system to extract semantically meaningful structures from unla-
beled interaction data such as forum posts, feedback, or spoken queries
without requiring exhaustive manual annotation. This empowers the
platform to personalize content delivery, answer queries accurately,
and maintain consistent understanding across diverse user populations.
Moreover, SSL is inherently scalable and efficient. Once trained, the
encoder can be fine tuned on downstream tasks or directly integrated
into end to end semantic transceivers for real time communication. Its
capacity to generalize from unlabeled data makes it especially valuable
in dynamic environments where domain shifts occur frequently, such
as mobile applications, multilingual Al assistants, or adaptive learning
systems.

6. Generative Adversarial Networks (GANs):

Generative Adversarial Networks (GANs) represent a powerful class
of generative models that have been increasingly adopted to enhance
domain generalization in semantic communication systems. Their core
utility lies in generating high quality, diverse synthetic data samples
that enrich training sets, enabling models to generalize across domains
with varying characteristics [124,125]. GANs are composed of two
neural networks a generator and a discriminator that are trained ad-
versarially. The generator learns to produce synthetic data that mimic
real samples, while the discriminator learns to distinguish real data
from generated data. Through a minimax optimization framework,
both networks improve iteratively and the generator becomes more
proficient at producing indistinguishable data, while the discriminator
sharpens its ability to detect subtle differences [126,127].

The GAN training process alternates between updating the discrim-
inator and the generator. Initially, the discriminator is trained using
both real and generated samples to distinguish between them. The
generator is then trained to produce data that mislead the discrimina-
tor, minimizing its ability to correctly classify synthetic instances. This
adversarial interplay results in a generator capable of producing highly
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realistic data, including text, speech, or semantic signals, depending on
the application. Such synthetic data are critical for improving the gen-
eralization of semantic communication models, especially in domains
with scarce labeled data or hard to simulate conditions [128].

From a domain generalization perspective, GANs contribute in two
significant ways. First, they augment training datasets with samples
from diverse distributions, exposing models to a broader spectrum of
scenarios and reducing overfitting to narrow domains. Second, they
help simulate edge cases or underrepresented conditions such as noisy
channels, uncommon linguistic patterns, or sensor anomalies thereby
preparing semantic models for real world deployment in highly variable
environments [129,130]. Moreover, the adversarial learning process
helps the model distinguish meaningful semantic content from domain
specific noise, enhancing the transferability of learned features across
tasks and domains [131].

Consider a practical application such as a semantic broadcast sys-
tem designed to disseminate real time alerts and news updates across
multilingual and multicultural regions. These systems must support
domain robust semantic understanding and transmission across varying
dialects, content styles, and reception formats. Using GANs, synthetic
message datasets can be generated to simulate different broadcast
styles, languages, and communication settings. This allows the semantic
model to learn from both dominant and rare communication scenarios,
improving its ability to generalize without needing exhaustive data
collection across all locales. For example, GANs can generate synthetic
versions of emergency alerts in multiple languages or simulate recep-
tion distortions caused by regional infrastructure, training the system
to respond accurately under a wide range of conditions.

7. Ensemble Learning:

Ensemble learning is a powerful approach in machine learning
that combines predictions from multiple models to improve robust-
ness, accuracy, and generalization performance. Within the context of
semantic communication, ensemble methods are especially valuable
when systems need to operate across diverse and complex linguistic do-
mains, user intents, or noisy environments [132]. The core idea is that
while individual models may have limitations or biases toward certain
domains, an ensemble of complementary models can compensate for
each other’s weaknesses, resulting in stronger overall performance.

Common ensemble techniques include bagging, boosting, and stack-
ing. Bagging (bootstrap aggregating) involves training multiple in-
stances of the same model on different subsets of training data and
aggregating their predictions to reduce variance and overfitting. This
method is beneficial in tasks like speech recognition or text classifi-
cation, where data heterogeneity can hinder a single model’s perfor-
mance [133,134]. Boosting builds a sequence of models where each
subsequent model focuses on correcting the errors of the previous ones.
This makes it effective for handling hard to classify semantic nuances,
such as sentiment expressed with sarcasm or ambiguity. Stacking trains
diverse base learners and then uses a meta-learner to synthesize their
outputs, capturing a broader range of semantic features and improving
decision accuracy in complex tasks like machine translation or dialogue
generation [133,134].

In addition to these traditional methods, advanced ensemble based
algorithms have been proposed to explicitly address domain gener-
alization. Among them, D-SAM (Domain Specific Aggregation Mod-
ule) [135], DAEL (Domain Adaptive Ensemble Learning) [136], and
COPA (Collaborative Part based Aggregation) [137] are notable ex-
amples. D-SAM introduces domain specific attention modules within
the ensemble, allowing each sub model to specialize in a particular
domain while still contributing to a unified prediction [135]. DAEL
promotes domain invariant feature learning while maintaining domain
specific pathways, enhancing both adaptability and stability in variable
environments [136]. COPA improves domain generalization through
collaborative learning among domain specific classifiers, incorporating
privacy preserving updates and normalization techniques to ensure
scalability and resilience [137] .
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A compelling use case for ensemble learning in semantic commu-
nication arises in multi agent robotic systems. In these environments,
multiple autonomous agents (e.g., drones, delivery robots, or underwa-
ter vehicles) need to communicate semantically relevant information
such as location updates, hazard signals, or task assignments under
varying terrain, acoustic conditions, and operational settings. Each
agent may operate in slightly different conditions and data domains.
By employing ensemble learning, the communication framework can
aggregate insights from multiple sub models trained on different op-
erational contexts, ensuring that the system generalizes well across all
agents. For instance, an ensemble of models specialized for different
terrains (e.g., urban, indoor, rural) can improve the semantic encoding
and decoding processes, resulting in more reliable coordination and
fewer communication breakdowns.

8. Transfer Learning:

Transfer learning is a widely adopted technique in machine learning
that enables models trained on one task or domain to be reused or
adapted for a different, yet related, task. This method is particularly
advantageous in semantic communication, where systems such as in-
telligent agents, translation tools, or multilingual chatbots must often
operate in novel domains with minimal labeled data [138]. The key
benefit of transfer learning lies in its ability to reduce training costs and
data requirements while enhancing performance in previously unseen
or underrepresented semantic environments. The typical workflow of
transfer learning involves two phases i.e. pre-training and fine tuning.
In the pre-training phase, a model is exposed to a large scale dataset
from a broad, general purpose domain, allowing it to learn reusable
representations such as grammatical structures, contextual embeddings,
and high level semantics. In the fine tuning phase, the model is adapted
to a more specific task or domain by retraining its weights either
partially or fully on a smaller, domain specific dataset [139]. This dual
phase training approach helps the model maintain general knowledge
while becoming sensitive to new task specific patterns. In semantic
communication, this framework enables the rapid adaptation of com-
munication models to emerging application scenarios. For example,
a model pre-trained on open domain conversational data can be fine
tuned on a technical corpus such as customer support logs or medical
dialogue, allowing it to interpret context rich queries more effectively.
This approach is especially valuable in resource constrained environ-
ments where collecting and annotating new domain specific data is
impractical or expensive.

Prominent pre-trained models such as BERT, GPT, RoBERTa, and T5
demonstrate the power of transfer learning. These models are typically
trained on large corpora covering a range of topics and linguistic styles
and can be fine tuned for specific semantic communication tasks such
as question answering, paraphrase generation, and real time summa-
rization [140]. By transferring learned knowledge of language and
semantics, these systems generalize more efficiently to new domains,
even when provided with minimal domain specific supervision.

A practical use case illustrating the power of transfer learning in
semantic communication is its application in low resource cross lingual
emergency response systems. During natural disasters or humanitarian
crises, timely and accurate communication across multiple languages
and dialects is critical. However, building and training separate mod-
els for each linguistic group is not always feasible due to time and
resource constraints. By pre-training a semantic encoder on a high
resource language corpus and then fine tuning it on limited examples
of regional or dialect specific emergency texts, transfer learning en-
ables effective communication across linguistic barriers. This allows for
faster model deployment and ensures generalization across scenarios
involving varied languages, writing styles, and urgency levels.

Across the techniques reviewed in this section, each family makes
distinct trade-offs in generalization, compute, data, and stability sum-
marized in Table 7. Meta-learning typically delivers the strongest out
of domain performance and fastest few-shot adaptation, but incurs high
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Table 7

Comparative trade-offs of domain generalization techniques.
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DG technique Key methods Gen. Complexity Data Req. Stability Strengths Limitations Best for shifts
performance
Meta-learning MAML, Strong, fast High (bi-level Moderate-high Sensitive; Rapid Expensive Source
MLDG, few-shot opt.) (diverse tasks) unstable if adaptation, training, episodic modality
MetaReg adaptation poorly versatile overhead shifts, hetero-
sampled geneous tasks
Domain- DANN, GRL, Good Moderate (adds Low-moderate Moderate; Learns domain- May fail on large Channel
adversarial ADDA average-case discriminator) adversarial invariant unseen shifts shifts, hetero-
robustness risk of features, geneous envs.
collapse efficient
Gradient- RSC, Fish, Stable, Low-moderate Low High stability Simple, Limited Source-level
based IRM incremental (light ops) efficient, robustness on shifts
improvements plug-and-play severe shifts (linguistic/vi-
sual)
DRO GroupDRO, Strong High (min-max Moderate Less stable Protects Computationally Severe
VREx, JTT worst-case opt.) (saddle-point against heavy, slower channel +
guarantees issues) worst-case convergence modality
domains shifts
Self- SimCLR, Good via large High High (large Stable after Uses unlabeled Expensive Broad shifts
supervised MoCo, BYOL pretraining (pretrain)/Low unlabeled pretraining data; versatile pretraining, task (linguistic,
(fine-tune) corpora) alignment multimodal)
needed
Generative GANs, High fidelity High (large High GANs Improves Compute-heavy, Channel
Diffusion, reconstructions models) (paired/unpair- unstable; semantic latency issues corruption,
VAE ed data) diffusion fidelity, robust noisy recon-
more stable to corruption structions
but slow
Ensemble Bagging, Moderate boost High (parallel Low—moderate Stable Reliable, High General
Boosting, via aggregation inference) improves inference/storage robustness
Snapshot robustness cost across
Ensembles domains
Transfer BERT, Good when Low-moderate Low (few-shot Stable; Strong Domain Cross-domain
learning ResNet- pretrained (fine-tuning) possible) depends on baseline, mismatch hurts semantic
pretrain, matches target pretrained efficient performance shifts,
CLIP quality low-resource
settings

training overhead (bi-level optimization, episodic sampling) and can be
brittle to task selection. By contrast, domain adversarial methods add
only moderate complexity and deploy broadly, yet their domain invari-
ant features can underperform under extreme or non-stationary shifts.
Gradient based regularizers (e.g., self challenging, gradient match-
ing) are lightweight and stable, offering an attractive efficiency ro-
bustness balance, though gains taper under severe distribution gaps.
Distributionally robust optimization prioritizes worst case guarantees
in unpredictable settings, at the cost of heavier min-max training
and careful tuning. Self-supervised/contrastive pretraining lowers label
dependence and scales well, but shifts cost to pretraining and de-
mands alignment with downstream semantics. Generative/reconstruc-
tion driven models (GANSs, diffusion, VAEs) improve semantic fidelity
and corruption robustness, while increasing model size, latency, and
(for GANs) training instability. Finally, ensembles and transfer learning
are practical, scalable baselines, ensembles reliably boost robustness at
parallel inference cost, and transfer learning excels when pretraining
data match the target domain but degrades under semantic mismatch.
In practice, method choice should reflect shift type channel corruption
often favors generative or adversarial approaches, cross modality or
semantic shifts favor self-supervised or transfer learning, and high
uncertainty deployments justify DRO while hybrid designs balance
robustness, latency, and compute budget.

In summary, the techniques discussed in this section represent
significant advancements in enabling domain generalization for Al-
enabled semantic communication. Each method ranging from meta-
learning and domain adversarial training to gradient based optimiza-
tion, distributionally robust optimization, self-supervised learning, gen-
erative modeling, ensemble strategies, and transfer learning offers
unique mechanisms to improve adaptability, robustness, and scala-
bility. When integrated into semantic communication architectures,
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these approaches empower models to operate reliably across dynamic
and heterogeneous environments, reducing dependence on domain
specific training and enhancing generalization to unseen conditions. As
semantic communication systems are deployed in increasingly complex
real world scenarios, the adoption of these domain generalization
strategies will be essential for ensuring consistent performance, low
latency adaptation, and reliable interpretation of meaning across varied
linguistic, contextual, and operational domains. These capabilities are
vital for next generation wireless technologies, supporting applica-
tions in autonomous systems, distributed AI agents, human machine
interaction, and global scale communication networks.

5. Open issues, potential solutions, and future research directions
in domain generalization for semantic communication

Al-enabled semantic communication represents a significant ad-
vancement in wireless communication, shifting the focus from tradi-
tional bit level transmission to the efficient exchange of meaningful
information. While notable strides have been made in developing ar-
chitectures and algorithms that support semantic inference, a number
of critical research challenges remain particularly in the context of
domain generalization. As semantic communication systems are de-
ployed in increasingly diverse environments, the ability of Al models
to generalize across different domains without retraining becomes a
central requirement.

This section explores open issues and potential research directions
related to domain generalization in semantic communication. We iden-
tify key challenges that impede the adaptability, robustness, and scal-
ability of current systems and propose methodological strategies to
address them. These challenges are categorized into four major themes:
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Fig. 8. Open Challenges and Solution Pathways for Domain Generalization in Semantic Communication System.

(i) scalability in large and heterogeneous networks, (ii) dynamic adapt-
ability across evolving domains, (iii) semantic understanding across
languages and contexts, and (iv) real time processing of unstructured
multimodal data.

Each challenge is paired with promising solution pathways, offering
a structured roadmap for future research and system development. Fig.
8 provides a conceptual overview of the open problems and associated
strategies. This section aims to guide researchers and practitioners
toward building resilient and generalizable semantic communication
systems capable of operating reliably across a wide range of real world
scenarios.

1. Challenge: Scalability

Scalability is a core challenge in Al-enabled semantic communica-
tion, particularly when systems are expected to operate across vast,
diverse, and dynamic environments. In the context of domain gener-
alization, scalability refers not only to managing large data volumes
but also to maintaining model robustness and adaptability across dis-
tributed domains without extensive retraining. With the emergence of
6G and intelligent networks, Al-based semantic systems must support
massive IoT infrastructures, real time vehicular communication, AR/VR
streaming, and mission critical services each generating multimodal,
non stationary data that challenge both communication efficiency and
semantic consistency [141,142].

As these networks scale, ensuring that semantic communication
models generalize well across varied operational contexts languages,
use cases, and devices without centralized retraining or performance
degradation becomes increasingly difficult.

20

Potential Solutions:

» Distributed Al for Semantic Inference: Distributing semantic com-
munication models across nodes within the network (e.g., user
devices, sensors, base stations) allows for localized semantic en-
coding and decoding that is better aligned with domain spe-
cific data. This setup supports generalization by learning domain
aware patterns in situ while maintaining coordination with the
global model. For instance, federated or decentralized training
frameworks can be employed for domain aware semantic learn-
ing across IoT devices without data centralization, thus scal-
ing semantic communication while preserving privacy and local
domain specificity [143,144].

Edge Enabled Semantic Communication: Al models deployed at
the edge (e.g., on mobile devices, smart cameras, or vehicu-
lar units) can perform near real time semantic encoding, re-
ducing transmission overhead and adapting to the local envi-
ronment. In Al-enabled semantic communication, edge Al en-
ables rapid adaptation to context (e.g., accent, dialect, or sensor
modality), improving generalization without requiring constant
connectivity to centralized servers. For example, semantic de-
coders on autonomous vehicles can dynamically adapt to different
environments or road signage styles across cities [145,146].
Cloud Edge Collaboration for Semantic Adaptation: Combining edge
responsiveness with cloud level training and knowledge manage-
ment can address both generalization and scalability. Edge de-
vices can handle lightweight semantic inference while the cloud
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aggregates feedback from multiple domains to refine and synchro-
nize global semantic representations. This architecture enables Al-
enabled semantic communication systems to continuously adapt
to unseen domains through periodic updates while maintaining
responsiveness and scalability in real time deployments [147].

The system should achieve at least a 50% reduction in floating-
point operations (FLOPs) or energy consumption per inference relative
to baseline semantic encoders such as DeepSC, while maintaining high
semantic fidelity with target thresholds of BLEU > 0.75 or PSNR >
30 dB under in-distribution to out-of-distribution (ID— OOD) shifts.
Moreover, the end to end inference latency at the network edge should
be limited to 20-30 ms for interactive applications and further reduced
to no more than 10 ms in ultra-reliable low-latency communication
(URLLC) scenarios, ensuring both efficiency and responsiveness across
diverse use cases [148,149].

2. Challenge: Dynamic Adaptability and Cross Domain Generaliza-
tion

In Al-enabled semantic communication, dynamic adaptability and
cross domain generalization are essential to maintaining robust per-
formance across diverse operating environments. Communication net-
works are inherently dynamic, subject to rapid changes in user demand,
environmental factors, network topology, and traffic patterns. For se-
mantic communication systems to remain effective, AI models must
adapt in real time to novel data distributions, evolving channel con-
ditions, and domain shifts such as variations in language, context, or
modality without retraining from scratch [150,151].

These requirements are especially critical in mission critical appli-
cations such as autonomous transportation, real time augmented reality
(AR), and industrial IoT, where semantic fidelity must be preserved
under continuous change. The ability to dynamically generalize across
domains ensures that models maintain semantic accuracy and low la-
tency in unseen scenarios, which is fundamental for deploying scalable
and dependable semantic communication solutions.

Potential Solutions:

+ Adaptive Learning Algorithms: Adaptive learning approaches allow
semantic encoders and decoders to update their parameters in real
time in response to distributional changes. These algorithms en-
hance cross domain generalization by enabling the system to learn
from evolving patterns such as changes in user intent, context, or
signal quality without compromising efficiency. Techniques like
online meta-learning, experience replay, or few shot fine tuning
help maintain semantic performance even under severe domain
shifts. This adaptability is vital in systems where semantic com-
munication must respond quickly to new interaction modalities
or user behaviors [152,153].

* Robust Training Methods: Adopting robust training paradigms such

as adversarial learning and distributionally robust optimization

(DRO) prepares models to withstand noise, adversarial input, or

worst case domain shifts. In semantic communication, adversarial

training exposes models to perturbed inputs that simulate real
world variation in encoding, transmission, or contextual ambi-
guity. DRO optimizes models not just for average performance
but for worst case distribution performance, ensuring resilience
across heterogeneous domains. These methods collectively in-
crease the model’s ability to generalize semantic representations

under unpredictable and volatile conditions [154,155].

Transfer Learning: Transfer learning enables semantic models to

reuse knowledge from related domains and quickly adapt to

new communication scenarios. This is particularly valuable when
labeled data in the target domain is scarce or when rapid deploy-
ment is necessary. For example, a model pre-trained on general
language or visual data can be fine tuned with limited task spe-
cific examples such as domain specific speech patterns, scene de-
scriptors, or device logs while maintaining performance. This ac-
celerates deployment and enhances generalization across diverse
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communication contexts such as multilingual virtual assistants or
cross domain collaborative robotics [156].

Ideally, the adaptation cost should be limited to no more than five
gradient steps with the use of at most 1% labeled target data, while
the online adaptation time should not exceed one second. In addition,
the relative performance degradation under ID— OOD shifts should
remain within 10% or less, measured using BLEU score or accuracy,
and assessed across at least two previously unseen channel or content
domains [157,158].

3. Challenge: Semantic Understanding Across Languages and Con-
texts

Semantic communication systems are designed to extract, encode,
and transmit the meaning of messages rather than raw symbols. How-
ever, when deployed in multilingual and cross cultural environments,
these systems face the complex challenge of preserving semantics across
diverse linguistic structures, cultural norms, and contextual interpre-
tations. Each language presents unique syntax, grammar, idiomatic
expressions, and semantic nuances, making direct translation or seman-
tic mapping non-trivial. Moreover, context specific meanings such as
sarcasm, humor, or metaphor require AI models to perform fine grained
semantic inference beyond surface level understanding [159].

The challenge becomes more acute in low resource languages,
where labeled datasets are scarce and linguistic structures may differ
significantly from those in high resource settings. Without effective
domain generalization, semantic communication systems risk perfor-
mance degradation or meaning distortion when operating across such
linguistic gaps. Furthermore, as language evolves introducing new
expressions, regional dialects, or user specific jargon models must
dynamically adapt to ensure semantic consistency across shifting lin-
guistic domains [160]. Evaluating semantic fidelity in this context is
also difficult, as standard benchmarks may fail to capture the full
spectrum of cultural and contextual diversity [161].

Potential Solutions:

* Unified Multilingual Models: Leveraging multilingual pre-trained
models such as mBERT or XLM-RoBERTa offers a scalable so-
lution for cross lingual semantic communication. These models
are trained on diverse multilingual corpora and can capture gen-
eralizable linguistic patterns that support domain transfer from
high resource to low resource languages. In semantic commu-
nication, such models enable robust semantic encoding and de-
coding across languages within a single architecture, reducing
the need for language specific pipelines and improving system
maintainability [162].

Cross Lingual Embeddings: Embedding alignment methods map
words from different languages into a shared semantic space,
ensuring that semantically similar concepts are closely positioned
regardless of their language of origin. This approach enhances the
ability of semantic communication models to generalize across
languages, enabling accurate message reconstruction and intent
recognition in multilingual systems. Tools such as MUSE and
VecMap support both supervised and unsupervised embedding
alignment, benefiting tasks like cross lingual retrieval, multilin-
gual dialogue generation, and translation [160,163].
Meta-Learning: For low resource or emergent languages, meta-
learning can provide a mechanism for efficient adaptation with
minimal training data. Meta-learning frameworks train the model
on a variety of linguistic tasks, allowing it to learn transferable
semantic representations. When applied to semantic communi-
cation, these techniques enable rapid adaptation to new lan-
guages, dialects, or cultural expressions with limited supervision.
This supports more inclusive and globally adaptable semantic
communication systems, especially in multilingual environments
such as global customer service or international disaster response
networks [96,161].
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In cross-lingual transfer, performance should retain at least 90% of
the in-domain BLEU score when applied to OOD languages. For low
resource adaptation, fine-tuning should be achievable with no more
than 1000 parallel sentences. Moreover, semantic similarity should
remain at or above 0.80 in zero or few-shot settings, evaluated across
at least two distinct language families [164,165].

4. Challenge: Semantics for Unstructured Data in Real Time Mul-
timodal Communication

One of the most complex challenges in achieving domain gener-
alization within Al-enabled semantic communication systems lies in
processing unstructured, multimodal data streams such as text, audio,
images, and video in real time. Unlike structured tabular inputs, un-
structured data lacks predefined formats and often carries nuanced
semantic meaning embedded in variable length sequences, contextual
dependencies, or multi sensor inputs. These data types dominate many
real world communication settings, including video conferencing, intel-
ligent surveillance, and human robot interaction, yet remain difficult to
model due to their heterogeneity and semantic ambiguity [166].

Semantic communication systems are required not only to transmit
this data efficiently but to extract and convey its underlying meaning
accurately across domain shifts. These shifts may manifest in changes
to visual context, acoustic background, user interaction styles, or data
collection modalities. Therefore, models must generalize across diverse
multimodal sources while remaining responsive to temporal dynamics
and context specific semantic cues. Achieving this goal demands ar-
chitectures that integrate, annotate, and fuse multimodal signals in a
domain aware and latency sensitive manner [167].

Potential Solutions:

* Multimodal Integration: A key enabler of semantic generaliza-
tion across unstructured data sources is the development of
multimodal representation learning. Cross modal learning tech-
niques allow semantic communication models to capture relation-
ships between text, speech, and visual inputs, ensuring consistent
meaning inference across domains. Transformer based architec-
tures with multi head attention and shared embedding spaces
can align modality specific semantics during training, enabling
the model to adapt when one modality changes (e.g., different
dialects, lighting conditions, or image resolutions). Training on di-
verse, mixed domain datasets also improves generalization under
varying real world conditions [167,168].

Semantic Annotation: Automated semantic annotation methods
are critical for structuring unlabeled multimodal data into for-
mats usable by semantic encoders and decoders. Annotating vi-
sual or audio signals with contextual tags (e.g., object types,
speaker intent, emotion) supports domain generalization by re-
ducing ambiguity in cross modal alignment. Techniques such as
convolutional neural networks (CNNs) for image tagging, large
language models (LLMs) for contextual text generation [169], and
weak supervision methods for semi automated labeling help boot-
strap domain robust annotations. These annotations allow mod-
els to extract generalizable patterns from limited or noisy data
and maintain semantic coherence across different deployment
environments [170,171].

Multimodal Fusion: Real time semantic communication requires
efficient fusion of multimodal features to generate coherent mes-
sages. Fusion strategies such as early fusion (combining raw
data), late fusion (merging modality specific outputs), or hybrid
fusion support the creation of unified semantic representations
that retain the relevance of each input source. Attention based
fusion mechanisms further improve domain generalization by dy-
namically weighting modality importance depending on context
(e.g., prioritizing visual data in noisy environments or text in am-
biguous audio). These fusion strategies enable semantic systems
to adaptively interpret diverse inputs and maintain robustness
under domain shifts [172].
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For real time multimodal pipelines, the end to end latency should
remain below 10 ms for URLLC scenarios and within 20-30 ms for
XR or other interactive tasks operating at a minimum of 30 frames
per second. The system should sustain a PSNR of at least 30 dB for
images and video, as well as a semantic similarity score of at least
0.80 under OOD channel conditions and noise. Additionally, the fusion
overhead at the edge should contribute no more than 20% of the total
latency [173,174].

5. Challenge: Trustworthiness in DG-Enabled Semantic Communi-
cation

A critical but often overlooked challenge in deploying domain gen-
eralization within semantic communication systems is ensuring trust-
worthiness, particularly against security risks and privacy concerns.
While DG enhances robustness to distributional shifts, models remain
vulnerable to adversarial attacks that exploit domain invariant fea-
tures. Such perturbations can cause semantic misinterpretations or
even malicious manipulation of transmitted meaning, posing risks in
safety critical applications such as autonomous driving, telemedicine,
and industrial automation. Additionally, reliance on shared knowledge
bases (KBs) for grounding semantics raises privacy concerns, as sensi-
tive contextual information may be inadvertently exposed or inferred,
undermining user trust and data protection [175].

For DG-enabled semantic systems to achieve widespread adoption in
real-world 6G deployments, they must not only generalize effectively
but also ensure resilience against malicious actors and guarantee the
confidentiality of semantic data. Addressing these dual concerns re-
quires embedding security and privacy preservation as integral design
principles rather than afterthoughts.

Potential Solutions:

+ Adversarial Robustness: Apply adversarial training and certified
robustness methods to harden DG models against perturbations
targeting domain invariant features, ensuring semantic fidelity
under malicious attacks [176].

Differential Privacy (DP): Integrate DP into DG training and adap-
tation to provide formal guarantees against leakage of sensitive
user data, enabling privacy preserving generalization without
exposing knowledge base contents [177].

Federated and Secure Learning: Employ federated DG frameworks
with secure aggregation so that raw user data remains on-device,
reducing central exposure while maintaining adaptability across
heterogeneous domains. [178]

To ensure trustworthy deployment, DG-enabled semantic communi-
cation systems should demonstrate resilience against adversarial pertur-
bations with less than 5% performance degradation, while maintaining
differential privacy guarantees (e.g., ¢ < 5) during training and adap-
tation. These safeguards should be achieved without exceeding the
latency and energy constraints of URLLC or XR applications, thereby
balancing generalization, efficiency, and trustworthiness [179].

The challenges outlined in this section including scalability, dy-
namic adaptability, semantic consistency across languages and con-
texts, the processing of unstructured multimodal data, and the over-
arching issue of trustworthiness constitute major barriers to realizing
robust domain generalization in Al-enabled semantic communication.
Overcoming these obstacles is vital for the design of systems capable
of operating reliably across diverse real world conditions, heteroge-
neous user populations, and varied application domains. The potential
solutions discussed such as distributed AI, adaptive learning, mul-
tilingual modeling, and multimodal fusion offer promising avenues
toward building semantic communication frameworks that are not
only accurate and context-aware but also resilient to environmental
variability and domain shifts. As semantic communication advances,
future research must continue to refine these strategies to ensure that
Al models can generalize autonomously and meaningfully across the
full spectrum of data modalities, linguistic diversity, and contextual
dynamics that define next-generation global communication networks.
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6. Conclusion

The integration of Al into semantic communication systems repre-
sents a foundational shift in how meaning is extracted, transmitted,
and interpreted within next generation wireless networks. As networks
become increasingly heterogeneous and data environments more di-
verse, the ability of Al models to generalize across unseen domains
without retraining has emerged as a defining requirement for robust
and scalable communication systems. This survey has provided a fo-
cused and indepth examination of domain generalization in the context
of Al-enabled semantic communication, identifying its role as both a
challenge and a catalyst for system wide adaptability. We discussed
a broad set of techniques including meta-learning, domain adversarial
training, distributionally robust optimization, self-supervised learning,
transfer learning, and multimodal fusion that enable semantic commu-
nication systems to maintain performance across varying languages,
modalities, environments, and user contexts. Furthermore, we iden-
tified key open issues related to scalability, dynamic adaptability,
multilingual understanding, and real time unstructured data processing,
offering a roadmap of potential solutions and research directions. By
consolidating the current state of research in domain generalization for
semantic communication, this work offers a reference framework for
future studies aiming to develop context aware, resilient, and deploy-
ment ready Al communication models. As the demand for intelligent
connectivity continues to grow across sectors ranging from IoT and
autonomous systems to smart cities and global infrastructure ensuring
that Al-enabled semantic communication systems can generalize across
real world complexities will be central to their success. We hope this
survey will inspire further interdisciplinary efforts to bridge the gap
between generalization theory and practical communication system
design, paving the way toward truly adaptive, intelligent, and globally
interoperable wireless networks.
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