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 A B S T R A C T

The growing integration of artificial intelligence (AI) into wireless communication systems is driving a shift 
toward semantic communication, an emerging paradigm that prioritizes the exchange of meaning over raw 
data. However, semantic communication systems face major challenges when deployed across diverse and 
unseen domains due to variations in language, context, and channel conditions. This survey provides a 
comprehensive overview of Domain Generalization (DG) as a key enabler for improving the robustness and 
adaptability of AI-enabled semantic communication. We explore the types of domain shifts and review the 
latest DG techniques applicable to semantic communication. Additionally, the paper discusses architectural 
considerations and real world applications across varied wireless scenarios. Unlike prior works, this survey 
brings together DG strategies specifically within the context of semantic communication, identifying open 
challenges and future research directions such as scalable adaptation, resource efficient deployment, and 
resilience in dynamic environments. It aims to serve as a timely resource for researchers and practitioners 
working to develop reliable, generalizable communication systems for next generation networks.
1. Introduction

The evolution of wireless networks from 1G to 6G represents an 
impressive journey through technological progress, driven by an ever 
growing demand for faster, more intelligent, and context aware com-
munication systems. It commenced with first generation (1G) networks, 
which introduced mobile communication through basic voice calls with 
limited mobility. Subsequent generations, such as 2G and 3G, brought 
digital voice and data transmission capabilities, significantly expanding 
mobile communication possibilities. With the advent of 4G, mobile 
networks experienced a transformative leap, facilitating high speed 
data access, widespread internet usage, and app driven interactions. 
The emergence of 5G elevated connectivity further, delivering ultra 
fast data rates, exceptionally low latency, and supporting extensive IoT 
deployments [1]. Now, standing at the threshold of the 6G era, we 
anticipate groundbreaking advancements such as terahertz communi-
cation, real time immersive applications, and the deep integration of 
artificial intelligence (AI) to enable semantic communication which is 
a paradigm shift that focuses on transmitting the intended meaning 
rather than raw data [2,3]. This evolution signals a transition from 
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merely connecting devices to enabling intelligent, adaptive, and seman-
tically rich interactions. Fig.  1 illustrates this evolutionary trajectory 
from early mobile communication to the envisioned capabilities of 6G 
networks [4].

The continuous pursuit of increased bandwidth and reduced latency 
remains a cornerstone of current 5G networks and the forthcoming 6G, 
reflecting the need for more intelligent and efficient communication 
mechanisms. Modern digital services, such as high definition video 
streaming, cloud gaming, real time augmented reality (AR), and large 
scale Internet of Things (IoT) applications, impose unprecedented de-
mands on network capacity and responsiveness [5]. While traditional 
communication systems rely on transmitting raw data, this approach 
becomes increasingly unsustainable as data volumes grow exponen-
tially. The anticipated 6G architecture aims to address these challenges 
through technologies such as edge computing and network slicing, 
which optimize data routing and processing to minimize latency [6]. 
However, to achieve truly scalable and efficient communication, a fun-
damental shift is required in how information is transmitted. Semantic 
communication (SemCom) meets this need by focusing on the trans-
mission of meaningful information rather than raw symbols, thereby 
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Fig. 1. Evolution of wireless networks.
reducing the amount of data that must be sent without sacrificing the 
integrity of the intended message. By enabling the receiver to infer 
the original meaning with fewer bits, SemCom significantly alleviates 
bandwidth pressure and shortens transmission times. In doing so, it not 
only enhances spectral and energy efficiency but also lays the founda-
tion for a more responsive, context aware, and scalable communication 
framework critical for the demands of future 6G systems [7].

To fulfill the full potential of semantic communication within 6G 
networks, integrating artificial intelligence into communication designs 
becomes imperative [8]. While traditional wireless networks excel at 
transmitting vast volumes of data, they fall short in interpreting and 
contextualizing the transmitted content. This limitation becomes more 
pronounced with the emergence of 6G, where the need for intelligent, 
adaptive, and context aware communication systems intensifies [9]. AI-
enabled semantic communication aligns naturally with this evolution, 
enabling systems to not only transmit but also understand and act on 
the semantic content of data. By embedding contextual awareness and 
cognitive reasoning into communication processes, AI-driven SemCom 
systems are positioned to meet the unique demands of 6G where ap-
plications extend beyond mere data exchange to include personalized, 
real time, and meaningful information interactions [10].

Within the landscape of 6G and semantic communication, domain 
generalization (DG) emerges as a critical challenge. Wireless communi-
cation networks in the 6G era will operate in dynamic and constantly 
evolving environments, requiring AI models to adapt effectively across 
diverse and unpredictable scenarios [11]. Domain generalization ad-
dresses the need for AI models to maintain their performance despite 
domain shifts caused by changes in network conditions, contexts, and 
operational scenarios. The adaptability provided by domain general-
ization significantly impacts the reliability and performance quality 
of semantic communication systems. Techniques that facilitate knowl-
edge transfer across various domains are essential to ensure consistent 
AI performance in the heterogeneous environments envisioned for 
6G [12].

Domain generalization thus represents a transformative capabil-
ity for AI-enabled semantic communication systems. Just as experi-
enced travelers adapt to new countries using insights from past ex-
periences, AI models leveraging domain generalization can seamlessly 
adapt across diverse network conditions, from dense urban environ-
ments rich with data to remote areas with limited information availabil-
ity. These capabilities foster resilient, versatile, and reliable communi-
cation systems capable of interpreting and conveying complex mean-
ings clearly and effectively across varying contexts [13]. Ultimately, 
domain generalization promises to evolve communication networks 
into sophisticated ecosystems capable of maintaining robust, context 
aware interactions, significantly enhancing connectivity and interaction 
depth across global communication platforms [14].
2 
The motivation behind this survey stems from the pressing need 
to address a fundamental challenge in AI-enabled semantic communi-
cation: ensuring consistent performance across diverse, dynamic, and 
previously unseen environments. As 6G networks evolve to support 
complex and heterogeneous communication scenarios, traditional AI 
models struggle to maintain generalization beyond their training do-
mains. Domain Generalization (DG) offers a promising direction by 
equipping models with the ability to adapt to new contexts without 
explicit retraining or prior exposure. Despite its critical role, the ap-
plication of DG in semantic communication remains underexplored, 
with limited efforts to consolidate current techniques, challenges, and 
use cases in a unified framework. This work aims to fill that gap by 
presenting a structured overview of DG strategies, analyzing their ap-
plicability in semantic communication systems, and highlighting future 
directions that can guide the design of more adaptable and robust 6G 
communication infrastructures.

1.1. Contributions and paper organization

To the best of our knowledge, this paper presents the first compre-
hensive survey that specifically investigates the role of Domain Gener-
alization (DG) in semantic communication. The major contributions of 
this work are outlined as follows:

• Focused Analysis of Domain Generalization in Semantic Com-
munication: This paper highlights the pivotal role of domain gen-
eralization in ensuring that AI-enabled semantic communication 
systems maintain robust performance across diverse and previ-
ously unseen domains. We explore how DG addresses the chal-
lenge of domain shifts and supports adaptability in real-world, 
heterogeneous communication environments.

• Survey of State of the Art DG Techniques: We provide a 
structured overview of recent advancements in DG, particularly 
within the context of semantic communication. Our survey cat-
egorizes and analyzes techniques such as data augmentation, 
meta-learning, adversarial training, and robust optimization in 
terms of their relevance and applicability to communication 
systems.

• Identification of Application Scenarios and Challenges: We 
present several real world use cases that benefit from DG-
enhanced semantic communication and outline the practical chal-
lenges associated with deploying DG models in dynamic, resource 
constrained, or low data environments.

• Roadmap for Future Research: Based on the gaps identified in 
existing literature, we propose promising directions for future re-
search. These include improving DG efficiency, minimizing train-
ing overhead, and enhancing generalization across multimodal 
and multilingual communication scenarios.
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Fig. 2. Paper Structure.
For the reader’s convenience, the main abbreviations used in this 
paper are listed in Table  1, and the paper’s structure is illustrated in 
Fig.  2.

By the end of this survey, readers will gain a comprehensive under-
standing of how domain generalization contributes to building robust, 
adaptive, and scalable semantic communication systems ultimately 
supporting the development of resilient 6G wireless networks.

1.2. Foundations of semantic communication and the role of AI

Semantic communication represents a significant evolution in the 
realm of communication theory, addressing critical limitations inherent 
in traditional communication methodologies grounded in Shannon’s 
classical information theory. Shannon’s information theory primarily 
focuses on the technical aspects of data transmission, emphasizing 
accurate and efficient delivery of bits over communication channels. 
While revolutionary in ensuring reliable data transmission through 
advanced encoding and decoding techniques, such as CDMA, OFDM, 
and MIMO [15,16], Shannon’s framework predominantly measures 
communication effectiveness in terms of bit level accuracy, leaving 
the meaningful interpretation and context of transmitted data largely 
unaddressed [17].

Weaver, recognizing these critical gaps in Shannon’s theory, pro-
posed a complementary communication model in 1949, which artic-
ulated the significance of semantic interpretation in effective commu-
nication [18]. Weaver introduced three distinct communication levels: 
technical, semantic, and efficacy, as depicted in Fig.  3 [19]. The techni-
cal level corresponds directly with Shannon’s model, emphasizing the 
accurate transmission of signals and bits across communication chan-
nels. However, Weaver argued that successful communication requires 
not only accurate transmission but also precise understanding at the 
3 
semantic level, where the meaning and context of transmitted messages 
are comprehensively interpreted. The efficacy level further encom-
passes the practical impact and usefulness of the received message on 
the receiver.

To mathematically illustrate the bandwidth efficiency achieved 
through semantic communication compared to Shannon’s traditional 
approach, consider the following formulation. Let 𝐵𝑐 denote the band-
width used to transmit a full message of size 𝑁 bits: 
𝐵𝑐 ∝ 𝑁. (1)

Semantic communication, by contrast, only transmits essential se-
mantic content. The required bandwidth 𝐵𝑠 can be represented as: 

𝐵𝑠 ∝ 𝛼𝑁, (2)

where 0 < 𝛼 < 1 is the fraction of semantically essential information. 
The bandwidth saving 𝑆 achieved is: 

𝑆 =
𝐵𝑐 − 𝐵𝑠
𝐵𝑐

= 1 − 𝛼. (3)

This reflects the proportionate bandwidth reduction achieved
through semantic communication, with 𝛼 indicating the efficiency of 
semantic content compression. Thus, the mathematical representation 
simplifies the concept and does not capture the complexity of semantic 
encoding and decoding processes. Still, it illustrates the fundamental 
principle of how focusing on transmitting meaning rather than raw 
data can lead to more efficient use of bandwidth. The Fig.  4 illustrates 
the conceptual difference between conventional communication and 
semantic communication, demonstrating how semantic communication 
enables intelligent and context aware interactions that result in lower 
bandwidth utilization. In conventional communication systems, a trans-
mitted message such as ‘‘The weather today is very hot’’ would typically 
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Table 1
List of common acronyms.
 Acronym Description  
 AI Artificial Intelligence  
 AR Augmented Reality  
 AWGN Additive White Gaussian Noise  
 BERT Bidirectional Encoder Representations from Transformers  
 BLEU Bilingual Evaluation Understudy Score  
 CIFAR-10 Canadian Institute For Advanced Research 10-class Dataset 
 COCO Common Objects in Context  
 CSI Channel State Information  
 DAEL Domain Adaptive Ensemble Learning  
 DANN Domain Adversarial Neural Network  
 DG Domain Generalization  
 DIR Decoding Information Resolution  
 DIV2K DIVerse 2K Resolution Dataset  
 DRO Distributionally Robust Optimization  
 D-SAM Domain Specific Aggregation Module  
 eMBB Enhanced Mobile Broadband  
 Europarl European Parliament Proceedings Parallel Corpus  
 F1 F1-Score (harmonic mean of Precision and Recall)  
 FDSD Fréchet Deep Speech Distance  
 FN False Negative  
 FP False Positive  
 GAN Generative Adversarial Network  
 GLUE General Language Understanding Evaluation  
 GRL Gradient Reversal Layer  
 IoT Internet of Things  
 JSCC Joint Source Channel Coding  
 KB Knowledge Base  
 LLM Large Language Model  
 LPIPS Learned Perceptual Image Patch Similarity  
 MAML Model Agnostic Meta-Learning  
 MetaReg Meta Regularization  
 MI Mutual Information  
 Mini-ImageNet Subset of ImageNet for Few-Shot Learning  
 MLDG Model Agnostic Meta-Learning for Domain Generalization  
 MIMO Multiple Input Multiple Output  
 mAP Mean Average Precision  
 MS-SSIM Multi-Scale Structural Similarity Index Measure  
 NLP Natural Language Processing  
 NYU Depth V2 New York University Depth Dataset V2  
 OFDM Orthogonal Frequency Division Multiplexing  
 OOD Out-Of-Domain  
 PPL Perplexity  
 PSNR Peak Signal to Noise Ratio  
 ROUGE Recall-Oriented Understudy for Gisting Evaluation  
 RSC Representation Self Challenging  
 SemCom Semantic Communication  
 SNR Signal to Noise Ratio  
 SSL Self-Supervised Learning  
 SSIM Structural Similarity Index Measure  
 STM Semantic Textual Similarity Measure  
 STS Semantic Textual Similarity Benchmark  
 TN True Negative  
 TP True Positive  
 URLLC Ultra Reliable Low Latency Communication  
 VCTK Voice Cloning Toolkit Corpus  
 VLM Vision Language Model  
 WER Word Error Rate  
 WMT Workshop on Machine Translation  
 XR Extended Reality  
 XSum Extreme Summarization Dataset  
   

be delivered word for word using standard encoding and decoding 
processes. In contrast, semantic communication emphasizes the transfer 
of meaning rather than exact wording. For example, if the receiver 
already possesses contextual knowledge such as awareness that it is 
summer in a region known for high temperatures the message could 
be compressed to a shorter phrase like ‘‘It’s hot’’ or even represented 
by a symbolic value denoting ‘‘very hot’’ weather. The receiver then 
uses its own background knowledge, situational awareness, or prior 
information to fill in the missing details and recover the full meaning 
that the sender intended.
4 
Fig. 3. The three major levels of semantic communications as introduced by 
Weaver.

Fig. 4. Transmission via Normal/Conventional Communication vs Semantic 
Communication.

Though Weaver’s concept of semantic level communication was 
fascinating, unfortunately, it could not become the need of the hour and 
due to technical constraints further research in this area was silenced. 
On the other hand, Shannon’s information theory, which primarily 
focuses on the technical aspect of information transmission, which is 
about how to encode and transmit information efficiently and reliably 
over a noisy channel received more focus on developing different 
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Fig. 5. Data Centric Semantic Communication approaches.

communication techniques [20]. The good news is with the recent ad-
vancement in AI, prerequisite techniques like semantic communication 
have started gaining popularity to add the ingredient of intelligence in 
communication systems. In the past few years, the topic of semantic 
communication has gained the attention of many researchers world-
wide. As a result, numerous system models and transceiver and receiver 
designs have recently been presented [21–25] which proves that se-
mantic communication is a promising enabler for the technologies that 
will be using 6G and beyond applications.

Semantic communication can help save bandwidth by optimiz-
ing the amount of information transmitted and reducing unnecessary 
data transmission. In Fig.  5 we display the data centric semantic 
communication approaches and now we further describe how it works:

1. Context Based Compression: Semantic communication enables 
the exchange of meaningful messages that convey the intended infor-
mation more efficiently. Instead of transmitting raw or redundant data, 
the communication can be focused on conveying the essential semantic 
meaning. For example, in a chat conversation, using abbreviations or 
emojis to represent specific ideas can convey the same message with 
fewer characters, saving bandwidth [26].

2. Data Reduction through Abstraction: By conveying the underlying 
meaning of information, semantic communication can use abstract 
representations rather than detailed, data heavy descriptions. For in-
stance, sending a compressed summary or the key points of a document 
instead of the entire document can save bandwidth while conveying the 
essential information [27].

3. Intelligent Data Filtering: In systems with AI or machine learning 
capabilities, semantic communication allows for more intelligent data 
filtering. Instead of sending all data to a central processing unit, only 
the relevant and semantically important data can be selected and trans-
mitted, reducing unnecessary data traffic and saving bandwidth [28].

4. Lossless Data Compression: Semantic communication can enable 
lossless data compression techniques that maintain the exact meaning 
of the information while reducing its size. By utilizing appropriate 
algorithms, the communication can achieve compression without losing 
any vital details, thus saving bandwidth during data transmission [29].

5. Smart Data Synchronization: In scenarios where multiple devices 
or systems need to synchronize data, semantic communication can 
ensure that only the changes or updates to the data are transmitted, 
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rather than sending the entire datasets repeatedly. This selective syn-
chronization helps save bandwidth by minimizing the amount of data 
transferred [30].

6. Optimized Multimedia Streaming: In media streaming applica-
tions, semantic communication can facilitate adaptive bitrate stream-
ing, where the quality of the media (e.g., video or audio) is adjusted 
based on the user’s device capabilities and network conditions. This 
optimization ensures that the most relevant and suitable media con-
tent is transmitted, saving bandwidth and providing a smoother user 
experience [31].

These advancements collectively illustrate how semantic communi-
cation, rooted in Weaver’s foundational ideas and empowered by AI, 
transcends the traditional limitations imposed by Shannon’s model. It 
enables not only efficient transmission but also meaningful understand-
ing across diverse and evolving communication scenarios. However, the 
practical realization of semantic communication systems in dynamic 6G 
environments introduces a new challenge: ensuring consistent semantic 
fidelity across unseen or varying domains. This calls for robust learn-
ing frameworks specifically, domain generalization techniques that 
empower semantic models to adapt and perform reliably under do-
main shifts without requiring retraining. The next sub-section explores 
this critical frontier, highlighting how domain generalization forms a 
cornerstone in achieving scalable, resilient, and intelligent semantic 
communication.

1.3. Transcending boundaries: The crucial role of domain generalization in 
enhancing AI-enabled semantic communication

Domain generalization (DG) stands as a foundational pillar at the 
intersection of artificial intelligence and semantic communication, par-
ticularly within the heterogeneous and dynamic environments of 6G 
and beyond. Unlike conventional AI models that rely heavily on domain 
specific training data, DG equips models with the ability to trans-
fer learned representations to novel, unseen domains without retrain-
ing [32]. This adaptability is crucial for preserving semantic fidelity 
across fluctuating linguistic, cultural, contextual, and network specific 
conditions that characterize modern communication systems [33].

The role of DG is not merely technical but systemic. As AI transforms 
communication from raw data exchange into semantically rich and 
context aware interaction, semantic models are increasingly exposed 
to diverse operating conditions. Without DG, these models risk brittle-
ness and inconsistency when deployed outside their original training 
environments. By contrast, DG supports resilience by ensuring that 
semantic encoders and decoders maintain reliability across variations 
in language, modality, and user preferences, while retaining the band-
width and latency efficiencies inherent in semantic compression [34]. 
This capacity is particularly critical for cross lingual dialogues, multi-
modal interactions, and adaptive communication in highly dynamic 6G 
networks.

Beyond enabling robust message interpretation, DG strengthens 
the scalability and inclusivity of semantic communication. Systems 
designed with DG are better prepared to handle global deployment 
scenarios where linguistic diversity, cultural nuance, and shifting social 
contexts come into play. This makes them suitable not only for multi-
lingual collaboration and immersive applications but also for socially 
attuned use cases such as assistive technologies and emergency commu-
nication, where trustworthiness and accessibility are paramount [35]. 
In this way, DG extends the benefits of semantic communication to 
broader populations and ensures equitable access to intelligent systems.

1.3.1. Domain shifts in AI-enabled semantic communication
Domain shifts in AI-enabled semantic communication represent a 

pivotal challenge as networks transition from controlled settings to 
real world deployment across diverse and non-stationary environments. 
These shifts refer to changes in data distribution, communication con-
text, or operating conditions that can significantly affect semantic fi-
delity. Because semantic communication systems depend on AI models 
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Table 2
Domain shifts in semantic communication: examples and challenges.
 Domain shifts Example Domain generalization 

challenge
 

 Multimodal 
Communication

AI interpreting a 
video with text 
captions.

Generalizing 
understanding and 
integration skills 
across various sensory 
data types.

 

 Linguistic 
Variability

AI adapting to 
regional dialects 
or slang.

Enabling models to 
work effectively 
across diverse 
linguistic expressions.

 

 Cultural and 
Contextual Shifts

AI adjusting 
communication for 
cultural norms.

Aligning 
communication 
strategies with varied 
cultural norms and 
cues.

 

 Technological 
Evolution

AI using new 
protocols in smart 
homes.

Adapting to evolving 
technologies without 
retraining.

 

 Network Dynamics AI functioning 
over different 
internet speeds.

Maintaining 
communication 
quality across 
variable connectivity.

 

 Physical Layer 
Variability

AI adapting to 
Rayleigh fading or 
hardware 
impairments.

Ensuring semantic 
fidelity across unseen 
channel and hardware 
conditions.

 

to understand, compress, and reconstruct meaning, robustness against 
domain variability is essential. DG addresses this by enabling AI models 
to generalize across unseen domains without retraining [33].

To better understand these challenges, Table  2 categorizes common 
sources of domain shift and illustrates their impact on semantic com-
munication. It highlights how DG mitigates their effects to maintain 
semantic consistency across heterogeneous contexts.

a. Multimodal Communication: The rise of multimodal commu-
nication combining text, audio, images, and contextual cues requires 
AI models to infer meaning across heterogeneous inputs. Shifts in 
modality (e.g., moving from text to video, or from clean to noisy 
audio) can disrupt semantic interpretation. DG provides cross modal 
resilience, enabling models to transfer knowledge across modalities 
while maintaining coherence [36].

b. Linguistic Variability: Semantic communication must support 
diverse languages, dialects, and registers. Regional expressions, evolv-
ing slang, and technical jargon introduce variability that can degrade 
understanding. DG mitigates this by abstracting high level semantics, 
allowing models to generalize across linguistic distributions and ensure 
consistent interpretation in multilingual and informal contexts [37].

c. Cultural and Contextual Shifts: Cultural norms and contex-
tual expectations shape how meaning is conveyed and received. Do-
main shifts occur when AI models encounter unfamiliar values or im-
plicit conventions. DG addresses this by leveraging transferable seman-
tic representations, fostering culturally adaptive and globally relevant 
communication [38].

d. Technological Evolution: Evolving devices, codecs, and com-
munication standards create shifting technological environments. With-
out DG, semantic systems risk obsolescence when infrastructure
changes. DG enables continuity by allowing AI models to generalize 
knowledge across new platforms, ensuring long term reliability and 
future readiness [39].

e. Network Dynamics: Bandwidth fluctuations, latency, jitter, and 
signal variability are inherent to wireless networks. Semantic fidelity 
must be maintained despite these constraints. DG enhances resilience 
by enabling models to adjust semantic compression and reconstruction 
strategies dynamically, preserving communication quality in volatile 
conditions [40].
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f. Physical Layer Variability: Beyond higher layer contextual and 
linguistic factors, many critical domain shifts originate at the physi-
cal layer. Diverse channel conditions (e.g., AWGN, Rayleigh, Rician, 
and Nakagami fading), fluctuations in signal to noise ratio (SNR), 
and hardware impairments such as IQ imbalance, phase noise, and 
nonlinearities in RF front ends can all introduce distributional shifts 
that directly affect semantic fidelity. From a DG perspective, these 
impairments can be treated as distinct domains, where models trained 
under one set of channel or hardware conditions may fail under others. 
DG techniques such as meta-learning, adversarial domain alignment, 
and distributionally robust optimization provide mechanisms to en-
hance resilience by simulating or aligning across such conditions during 
training [41]. Viewing physical layer variability as domain shifts not 
only strengthens semantic robustness but also broadens the relevance of 
DG for physical communication research, highlighting the importance 
of cross layer designs that integrate PHY level phenomena into semantic 
communication frameworks.

Within 6G networks, where semantic communication will span 
highly dynamic and heterogeneous contexts, DG is not optional, it is 
foundational. By preparing systems to handle domain shifts systemat-
ically, DG ensures robustness, scalability, and trustworthiness across 
diverse operational landscapes.

1.3.2. Strategic impacts of domain generalization on semantic communica-
tion

DG holds transformative potential for advancing AI-enabled seman-
tic communication. As shown in Table  2, domain shifts range from 
linguistic and cultural diversity to network and technological variabil-
ity. DG enhances the robustness, scalability, and inclusivity of these 
systems, ensuring performance across unseen conditions.

i. Robustness to Environmental Variability: DG equips semantic 
models to remain reliable across cultural, linguistic, and situational 
variability, enabling accurate meaning exchange in real world applica-
tions such as international negotiation, virtual assistants, and context 
aware services [33,42,43].

ii. Efficiency and Scalability: Conventional retraining across ev-
ery new domain is impractical. DG supports unified and reusable 
models, reducing computational cost and accelerating deployment in 
emerging use cases, thereby promoting sustainable scaling of semantic 
communication systems [44–46].

iii. Enhanced Generalization Capabilities: Semantic communica-
tion seeks to transmit meaning across diverse contexts. DG guides mod-
els to focus on invariant semantic patterns that persist despite shifts, 
supporting consistent interpretation across languages, modalities, and 
cultures [38,47].

iv. Broader Applicability and Accessibility: DG extends semantic 
communication to underserved contexts, including cross lingual col-
laboration, accessibility for differently abled users, and deployment 
in resource constrained environments [48,49]. This inclusivity ensures 
equitable participation in future communication ecosystems.

Therefore, DG transcends algorithmic performance, representing 
a paradigm shift toward communication systems that are adaptive, 
inclusive, and globally deployable. As 6G and beyond evolve, DG 
provides the foundation for resilient, trustworthy, and human centric 
semantic communication that can operate effectively across domains 
and contexts.

2. Architecture and performance metrics for domain generaliza-
tion in AI-enabled semantic communication

AI-enabled semantic communication marks a paradigm shift from 
conventional data transmission by focusing on conveying intended 
meaning rather than transmitting raw symbols. To support real world 
applications, such systems must be resilient to domain shifts variations 
in input modalities, user contexts, linguistic styles, or environmen-
tal conditions. Therefore, a general architecture that incorporates do-
main generalization (DG) mechanisms is essential for achieving robust 
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Fig. 6. General architecture of AI-enabled semantic communication highlighting key modules that facilitate domain generalization through multimodal 
understanding, adaptive semantic encoding, and context aware decision generation.
Table 3
Functional roles and domain generalization contributions of key modules in AI-enabled semantic communication architecture.
 Architecture module Function in semantic communication Contribution to domain generalization (DG)  
 
User Input 
(Text/Speech/Image)

Accepts raw input from users or sensors (e.g., 
text queries, voice, camera feeds). Forms the 
multimodal basis for semantic interpretation.

Not directly part of DG, but motivates the need for 
generalization due to inherent input diversity 
across domains, languages, or modalities.

 

 Multimodal 
Pre-processing Module

Transforms raw input into structured embeddings 
using modality specific techniques (e.g., 
tokenizers, CNNs, spectrograms).

Supports DG: Normalizes input structure across 
domains, helping the downstream representation 
learner cope with input heterogeneity.

 

 Semantic 
Representation Learning

Learns domain invariant semantic embeddings 
𝐳 ∈  using neural encoders (e.g., transformers, 
contrastive models).

Core DG Enabler: Employs strategies like 
adversarial training, meta-learning, or DRO to 
produce embeddings that generalize across 
domains.

 

 Knowledge Base (KB) Provides domain independent and contextual 
world knowledge for grounding semantic 
decisions and disambiguation.

DG Supportive: Anchors semantic reasoning in 
shared knowledge; enables generalization by 
reducing dependence on domain specific features.

 

 Semantic Encoding and 
Modulation

Compresses and prepares semantic vectors for 
transmission using joint source channel encoding 
(e.g., variational encoders, autoencoders).

DG indirect: Ensures robustness to channel level 
variation; less focused on semantic domain 
adaptation but critical for transmission integrity.

 

 Communication 
Channel 
(AWGN/Fading)

Simulates environmental noise, fading, or 
interference; challenges the system to maintain 
semantic fidelity during real world transmission.

Not a DG module per se, but exposes the system 
to domain shifts at the channel level, indirectly 
enhancing robustness of downstream decoding.

 

 Semantic Demodulation 
and Decoding

Recovers semantic embeddings 𝐳̂ from noisy 
signals using domain robust decoders (e.g., 
GRL-based or self-supervised models).

DG-Linked: Critical for reconstructing semantics 
across different channel conditions or encoder 
variants; can leverage self-supervised pretraining.

 

 Semantic Decision and 
Response Generator

Uses semantic vectors and contextual inputs to 
generate task specific responses (e.g., 
translations, actions, summaries).

DG-Linked: Supports generalization to unseen 
tasks, styles, or domains using meta-learning or 
adaptive response models.

 

 AI-Enhanced Output Generates the final system output in a format 
tailored to users or applications (e.g., speech, 
structured message, visualization).

Indirect: Reflects the success of upstream DG 
modules; ensures semantic consistency across 
usage contexts.

 

 Receiver Endpoint The endpoint that consumes the output (human 
user or automated system). Closes the 
communication loop.

Not applicable to DG directly; receives benefits 
from DG-driven processing upstream.

 

and adaptable semantic communication in dynamic wireless environ-
ments [21]. The Fig.  6 illustrates a conceptual architecture that outlines 
the key building blocks of AI-enabled semantic communication systems 
enhanced with domain generalization. This framework is not a concrete 
implementation but rather a generic blueprint intended to guide fu-
ture research and system design [50–52]. Table  3 provides a detailed 
mapping of the functional roles of each architectural component in the 
AI-enabled semantic communication system shown in Fig.  6. It high-
lights how each module contributes to domain generalization within 
the system.
7 
Beginning with the User Input and Multimodal Preprocessing Mod-
ule, the architecture ensures that data from heterogeneous sources 
can be consistently transformed into representations suitable for se-
mantic analysis. The Semantic Representation Learning block plays a 
pivotal role in enabling DG by extracting domain invariant features 
that remain robust across various contexts, languages, and modalities. 
This capability is further reinforced by the Knowledge Base, which 
provides contextual grounding and supports generalization by encoding 
shared knowledge applicable across domains. The Semantic Encod-
ing and Modulation and its counterpart, Semantic Demodulation and 
Decoding, maintain the integrity of semantic content under different 
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channel conditions, thus contributing to generalization in noisy or de-
graded transmission environments. Meanwhile, the Semantic Decision 
and Response Generator employs adaptive reasoning mechanisms to 
uphold semantic consistency and task performance even in unfamiliar 
communication scenarios. Finally, the AI-Enhanced Output and Re-
ceiver Endpoint ensure that the system’s response remains coherent, 
informative, and contextually relevant across diverse user profiles and 
interaction settings [33,53,54].

The Table  3 complements the system diagram and clarifies how each 
module contributes to building domain generalizable semantic commu-
nication systems for next generation wireless networks. The following 
section elaborates on the operation of each module, supported by 
mathematical formulations that explain their roles in enabling domain 
generalization in AI-enabled semantic communication.

• Multimodal User Input: Accepts user generated input data in 
various formats, including text, audio, images, and sensor read-
ings. These inputs serve as the foundation for semantic inference 
and often vary in structure and context across different domains.

• Multimodal Pre-processing Module: Transforms raw input data 
into structured feature vectors using modality specific deep learn-
ing models. For example, BERT may be used for text embed-
dings, ResNet or Vision Transformers for images, and spectrogram 
based CNNs for speech. This step ensures uniform representations 
suitable for semantic interpretation [55].

• Semantic Representation Learning: This is the core compo-
nent of the AI-enabled semantic communication architecture, 
responsible for generating robust and domain invariant semantic 
embeddings from heterogeneous input features. Given input data 
𝐱 ∈  , which may consist of text, speech, image, or multimodal 
signals, the encoder function 𝑓𝜃 ∶  →  learns to produce a 
semantic embedding 𝐳 = 𝑓𝜃(𝐱) ∈  that captures the underlying 
meaning while abstracting away domain specific information. 
This abstraction is crucial for ensuring semantic coherence when 
the system operates across different domains characterized by 
variations in modality, context, or communication conditions [56,
57].
The training objective for this module incorporates a dual com-
ponent loss function designed to enhance both semantic accuracy 
and generalization. Formally, the objective is defined as: 

DG(𝜃) =
𝑁
∑

𝑖=1
E(𝐱,𝑦)∼𝐷𝑖

[

𝓁(𝑓𝜃(𝐱), 𝑦)
]

+ 𝜆(𝜃) (4)

where 𝐷𝑖 represents the data distribution from the 𝑖th domain 
(e.g., different speakers, languages, or environments), 𝓁(⋅) de-
notes a task specific loss function such as cross entropy or BLEU 
score [58]. Here, 𝓁 is computed after mapping 𝑓 (𝑥) to a task 
specific prediction (e.g., via a classifier or decoder), and then 
compared with the label 𝑦, and (𝜃) is a domain generalization 
regularizer. This regularizer can take various forms depending 
on the adopted technique: adversarial losses (e.g., DANN) aim 
to confuse a domain discriminator, thereby enforcing domain 
invariance; statistical approaches (e.g., Maximum Mean Discrep-
ancy or CORAL) align feature distributions across domains; and 
meta-learning strategies (e.g., MLDG, MetaReg) simulate domain 
shifts during training to enhance adaptability. The scalar 𝜆 is 
a hyperparameter that controls the trade off between semantic 
fidelity and domain robustness [59].
This formulation ensures that the encoder not only learns to 
predict semantically meaningful outputs across all training do-
mains but is also explicitly regularized to suppress domain spe-
cific variance. In practice, this allows the system to generalize 
to previously unseen domains with minimal or no fine tuning, 
which is critical in dynamic and diverse real world communica-
tion environments. By learning domain agnostic embeddings, the 
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Semantic Representation Learning module thus serves as the foun-
dation for robust downstream modules such as semantic encod-
ing, reasoning, and response generation in AI-enabled semantic 
communication systems.

• Knowledge Base: Acts as a static or dynamic source of contextual 
and domain specific semantic information. It supports both train-
ing and inference by supplying background knowledge necessary 
for accurate disambiguation and semantic interpretation.

• Semantic Encoding and Modulation: Transforms the semantic 
vector 𝐳 into a transmittable signal 𝐬 ∈  using a joint source 
channel encoder 𝑔𝜙: 

𝐬 = 𝑔𝜙(𝐳). (5)

It is worth noting that semantic communication systems can be 
realized in two main ways i.e. through separated source chan-
nel coding (SSCC), where semantic representation and channel 
coding are designed and optimized independently, or via joint 
source channel coding (JSCC), which integrates semantic extrac-
tion and communication into a unified end to end framework. 
SSCC supports modularity and allows domain generalization tech-
niques to be applied separately to semantic or channel com-
ponents, whereas JSCC especially learning based variants has 
demonstrated superior robustness and scalability under challeng-
ing and dynamic channel conditions [60–62]. These architectural 
differences could lead to significantly distinct interactions with 
DG strategies as the DG may act on individual modules in SSCC, 
yet must jointly account for both semantic and channel shifts in 
JSCC designs.

• Communication Channel: Models environmental noise during 
transmission. The transmitted signal 𝐬 is corrupted by Gaussian 
noise 𝐧 ∼  (0, 𝜎2𝐈): 
𝐫 = 𝐬 + 𝐧. (6)

• Semantic Demodulation and Decoding: Recovers the original 
semantic embedding 𝐳̂ from the noisy received signal 𝐫 using the 
decoder ℎ𝜓 : 

𝐳̂ = ℎ𝜓 (𝐫). (7)

The quality of reconstruction is evaluated using: 

rec = E𝐳
[

‖𝐳̂ − 𝐳‖22
]

. (8)

• Semantic Decision and Response Generator: This module plays 
a pivotal role in interpreting the domain invariant semantic rep-
resentation 𝐳̂ and generating the final system output 𝑦̂ in an 
adaptive, context aware manner. This module integrates decoded 
semantic features from prior stages with auxiliary context re-
trieved from the Knowledge Base 𝐾, enabling the model to reason 
semantically and make informed decisions across diverse domains 
and scenarios [63]. The semantic decision function is defined as: 

𝑦̂ = 𝑑𝜔(𝐳̂, 𝐾), (9)

where 𝑑𝜔(⋅) denotes the decision function or classifier parame-
terized by 𝜔, responsible for interpreting semantic inputs and 
generating outputs relevant to the given task (e.g., classification, 
translation, summarization, or response generation). The incor-
poration of 𝐾 allows the model to contextualize 𝐳̂, enriching 
decision making with domain specific facts, rules, or background 
knowledge essential for semantic consistency [64].
The optimization objective for this module focuses on minimizing 
the expected semantic prediction loss between the generated 
output 𝑦̂ and the target label 𝑦: 

 = E
[

𝓁(𝑑 (𝐳̂, 𝐾), 𝑦)
]

, (10)
decision (𝐳̂,𝑦) 𝜔
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where 𝓁(⋅) is a task specific loss function, such as cross entropy for 
classification or mean squared error for regression based outputs. 
This objective ensures that the model not only learns accurate 
mappings from semantic embeddings to outputs but also gener-
alizes well across different task domains, even when presented 
with previously unseen input patterns [64].
From a domain generalization (DG) standpoint, this module is 
critical for ensuring output level consistency and robustness. 
Since it operates on representations that may originate from a 
variety of domains (e.g., different users, languages, or modalities), 
the decision function must be resilient to contextual variation. 
This can be further supported through techniques such as do-
main mixed batch training, attention based integration of 𝐾, 
and architectural strategies that promote interpretability and 
transferability of semantic reasoning. By learning how to generate 
coherent, context sensitive responses across domains, the Seman-
tic Decision and Response Generator becomes central to fulfilling 
the mission of adaptable AI-enabled semantic communication 
systems [65].

• Output: The final output 𝑦̂ is rendered in natural language, visual, 
or symbolic form and delivered to the user or system endpoint.

The entire architecture is trained end to end using a composite 
objective: 
min
𝜃,𝜙,𝜓,𝜔

DG + 𝛼rec + 𝛽decision, (11)

where 𝛼, 𝛽 are hyperparameters balancing the trade offs between gen-
eralization, semantic preservation, and task accuracy.

This general framework provides a technically sound foundation for 
designing domain agnostic semantic communication systems. It offers 
guidance for integrating domain generalization objectives across both 
the semantic and transmission layers, particularly relevant for robust 
AI-enabled systems under the stringent requirements of future 6G and 
beyond wireless networks.

2.1. Performance metrics for domain generalization in semantic communi-
cation

In AI-enabled semantic communication systems with domain gen-
eralization, rigorous performance evaluation is essential for bench-
marking models, guiding design decisions, and validating transmission 
fidelity, semantic preservation, and robustness under distribution shifts. 
Table  4 provides an overview of the principal metrics employed in this 
context, covering semantic fidelity (e.g., BLEU, ROUGE, semantic sim-
ilarity), generative quality (e.g., perplexity), information retrieval ef-
fectiveness (e.g., precision, recall, F1-score, mAP), and communication 
robustness (e.g., accuracy, PSNR). These metrics collectively establish 
a multidimensional foundation for evaluating semantic communication 
models. In the subsequent discussion, each metric is examined in detail, 
with emphasis on its applicability, limitations, and extensions under 
domain generalization.

Let  = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 denote a dataset of 𝑁 samples, where 𝑥𝑖
represents the input and 𝑦𝑖 the corresponding ground-truth label or 
target output. The model prediction is expressed as 𝑦̂𝑖 = 𝑓 (𝑥𝑖; 𝜃), 
with 𝜃 denoting the learnable parameters of the system. Within this 
framework, several performance metrics are employed to assess seman-
tic communication models under both in-domain and out-of-domain 
(OOD) conditions, thereby highlighting their ability to generalize across 
distributional shifts.

• Precision () is a key metric that quantifies the relevance of 
retrieved or predicted information. In semantic communication 
with domain generalization, precision evaluates how accurately 
the system preserves semantic fidelity when exposed to unseen 
domains. A DG-robust model should maintain high precision not 
only in the source domain but also under out-of-domain (OOD) 
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conditions, minimizing false positives even when channel charac-
teristics, languages, or modalities differ from training. Formally, 
precision is defined as: 

 = TP
TP + FP , (12)

where TP denotes the number of true positives (correct posi-
tive predictions) and FP represents the number of false positives 
(incorrect positive predictions). In the DG setting, reporting pre-
cision across both ID and OOD domains enables quantification of 
semantic reliability under distributional shifts [66].

• Recall () complements precision by quantifying the system’s 
ability to capture all relevant semantic information. In DG-enabled
semantic communication, recall indicates how effectively a model 
retrieves or preserves critical semantic content when tested on 
domains that differ from training (e.g., unseen channels, di-
alects, or modalities). High recall ensures comprehensive seman-
tic coverage and robustness against information loss under OOD 
conditions. Formally, recall is defined as: 

 = TP
TP + FN , (13)

where TP denotes the number of true positives (correct posi-
tive predictions) and FN represents the number of false nega-
tives (missed relevant instances). In practice, recall under DG 
evaluates a system’s resilience against under-representation of 
domain-specific features and its ability to maintain semantic com-
pleteness [67].

• F1-Score (𝐹1) is a composite metric that harmonizes precision 
and recall into a single value. In the context of domain general-
ization for semantic communication, the F1-score is particularly 
valuable because it balances the trade-off between accuracy (high 
precision) and completeness (high recall) under both in-domain 
and out-of-domain (OOD) conditions. A DG-robust system should 
maintain a stable F1-score across distributional shifts, reflecting 
its ability to deliver semantically accurate outputs while avoiding 
information loss.
Mathematically, the F1-score is defined as the harmonic mean of 
precision and recall: 

𝐹1 = 2 ⋅  ⋅
 +

, (14)

where  and  denote precision and recall, respectively. In 
DG evaluation, reporting the F1-score across both ID and OOD 
domains highlights the model’s resilience in balancing semantic 
reliability with comprehensive coverage, even under noisy or 
imbalanced conditions [68].

• Accuracy () is a fundamental metric that measures the propor-
tion of correctly classified instances among all evaluated sam-
ples. In semantic communication, accuracy is often applied to 
tasks such as sentiment analysis, topic classification, or intent 
recognition, where categorical predictions are required. Within 
the domain generalization setting, accuracy provides insight into 
how consistently a model maintains correct predictions when 
evaluated across both in-domain and out-of-domain (OOD) dis-
tributions. A DG-robust model should sustain high accuracy even 
under varying channel conditions, linguistic diversity, or unseen 
modalities, ensuring reliable semantic preservation.
Formally, accuracy is defined as: 

 = TP + TN
TP + FP + TN + FN , (15)

where TP and TN represent the number of true positives and true 
negatives, while FP and FN denote false positives and false neg-
atives, respectively. In DG evaluation, accuracy must be reported 
not only as an aggregate value but also in terms of perfor-
mance gaps between ID and OOD domains, reflecting the system’s 
robustness and generalization capacity [69].
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Table 4
Summary of performance metrics for domain generalization in AI-enabled semantic communication with example datasets.
 Metric Best-suited 

modality
Common 
datasets/Benchmarks

Mathematical expression DG-aware description  

 
Precision

Text, Multimodal CIFAR-10, SVHN, Europarl  = TP
TP+FP Assesses prediction relevance 

across domains.
 

 Recall Text, Multimodal CIFAR-10, SVHN, Europarl  = TP
TP+FN Evaluates completeness of 

retrieval under OOD.
 

 F1-Score Text, Multimodal CIFAR-10, SVHN, 
Multimodal fusion sets

𝐹1 = 2 ⋅  ⋅
+

Balances precision and recall 
for DG robustness.

 

 Accuracy Text, Image, 
Multimodal

CIFAR-10, Mini-ImageNet, 
NYU Depth V2

 = TP+TN
TP+FP+TN+FN Classification reliability 

across ID/OOD domains.
 

 Mean Average 
Precision 
(mAP)

Text, Multimodal 
(retrieval)

COCO-Stuff, ImageNet, 
Multimodal retrieval datasets

mAP = 1
𝑄

∑𝑄
𝑞=1 ∫

1
0 𝑞 (𝑟) 𝑑𝑟 Assesses ranking 

performance and retrieval 
stability.

 

 BLEU Score Text Europarl, WMT, 
OpenSubtitles

BLEU = BP ⋅ exp
(

∑𝑁
𝑛=1 𝑤𝑛 log 𝑝𝑛

)

Evaluates semantic fidelity 
via n-gram overlap.

 

 ROUGE Score Text CNN/DailyMail, XSum, 
Europarl

ROUGE𝑛 =
∑

ref Countmatch (𝑛-gram)
∑

ref Count(𝑛-gram)
Assesses 
summarization/dialogue 
fidelity under DG.

 

 Perplexity Text Penn Treebank, Europarl, 
Wikitext

 = exp
(

− 1
𝑁

∑𝑁
𝑖=1 log𝑃 (𝑦𝑖 ∣ 𝑦<𝑖)

)

Measures fluency and 
stability under OOD inputs.

 

 Word 
Embedding 
Evaluation

Text, Multimodal WordSim353, GLUE, COCO 
captions

cos(𝜃) = 𝐰1 ⋅𝐰2

‖𝐰1‖ ‖𝐰2‖
Tests whether embeddings 
preserve semantic relations 
across domains.

 

 Semantic 
Similarity

Text, Multimodal STS Benchmark, Europarl, 
COCO captions

sim(𝐮, 𝐯) = 𝐮⋅𝐯
‖𝐮‖ ‖𝐯‖ Quantifies meaning 

preservation across ID/OOD.
 

 PSNR Image, Audio COCO-Stuff, DIV2K, 
ImageNet, VCTK (audio)

PSNR = 10 ⋅ log10
( MAX2

MSE

)

Evaluates reconstruction 
quality under unseen 
channel noise.

 

• Mean Average Precision (mAP) is a widely used metric in 
information retrieval that evaluates performance across multiple 
recall levels and queries. It provides a comprehensive measure of 
how consistently a system maintains precision as recall increases. 
In semantic communication, mAP is particularly relevant for tasks 
such as semantic retrieval, multimodal search, or knowledge-
based message reconstruction, where relevance must be preserved 
across diverse inputs.
In the context of domain generalization, mAP becomes an im-
portant tool for assessing robustness across unseen domains. A 
DG-robust system should achieve stable mAP values not only on 
the source domain but also under out-of-domain (OOD) condi-
tions, ensuring that semantic relevance is consistently maintained 
despite distributional shifts in channel conditions, modalities, or 
linguistic domains.
Formally, mAP is defined as: 

mAP = 1
𝑄

𝑄
∑

𝑞=1
∫

1

0
𝑞(𝑟) 𝑑𝑟, (16)

where 𝑄 denotes the total number of queries and 𝑞(𝑟) represents 
the precision as a function of recall 𝑟 for query 𝑞. Reporting mAP 
across both ID and OOD domains provides a robust indicator of 
generalization capacity, reflecting the system’s ability to maintain 
relevance under distributional variations [70].

• BLEU Score is a standard metric in natural language processing, 
originally developed for machine translation, and widely applied 
in semantic communication tasks that involve text generation, 
such as conversational agents, summarization, or semantic mes-
sage reconstruction. BLEU evaluates the quality of generated text 
by measuring the n-gram overlap between model outputs and 
reference sequences. Higher BLEU scores indicate stronger align-
ment with reference semantics, ensuring that generated responses 
are both linguistically and semantically coherent [71].
10 
In the context of domain generalization, BLEU plays an important 
role in quantifying semantic preservation under unseen linguis-
tic or channel conditions. A DG-robust semantic communication 
system should sustain consistent BLEU scores across both in-
domain and out-of-domain (OOD) test sets, reflecting its ability to 
maintain semantic fidelity even when facing shifts in vocabulary 
distributions, dialects, or communication environments.
Formally, BLEU is defined as: 

BLEU = BP ⋅ exp

( 𝑁
∑

𝑛=1
𝑤𝑛 log 𝑝𝑛

)

, (17)

where 𝑝𝑛 represents the modified precision of n-grams, 𝑤𝑛 is the 
weight assigned to n-grams of size 𝑛, and BP is the brevity penalty 
applied to discourage excessively short outputs. Reporting BLEU 
scores across ID and OOD domains allows researchers to evaluate 
not only generation quality but also robustness to domain shifts 
in semantic communication systems.

• ROUGE Score is a widely adopted metric for evaluating the 
quality of generated text summaries and responses, making it 
highly relevant for semantic communication systems such as chat-
bots, dialogue agents, and content summarization tools. ROUGE 
measures the degree of overlap between generated and reference 
summaries in terms of n-grams, longest common subsequences, 
or skip-grams. Higher ROUGE values indicate that the generated 
output is more accurate, contextually relevant, and semantically 
aligned with the reference content [68].
Within the domain generalization setting, ROUGE provides a 
means to assess semantic preservation when models are applied 
to unseen domains. For example, in cross-lingual summarization 
or communication over noisy/unseen channels, a DG-robust sys-
tem should sustain consistent ROUGE scores, demonstrating its 
ability to generate contextually faithful and semantically coherent 
outputs despite distributional shifts.
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Formally, ROUGE is expressed as: 

ROUGE𝑛 =
∑

ref Countmatch(n-gram)
∑

ref Count(n-gram)
, (18)

where Countmatch denotes the number of overlapping n-grams be-
tween the generated output and the reference. Reporting ROUGE 
across both in-domain (ID) and out-of-domain (OOD) scenarios 
enables researchers to capture the system’s robustness in generat-
ing semantically faithful summaries under varying conditions.

• Perplexity () is a widely used metric for evaluating the qual-
ity and fluency of language models. It quantifies how well a model 
predicts the next token in a sequence, with lower perplexity 
values indicating better predictive capability and greater linguis-
tic coherence. In semantic communication, perplexity is particu-
larly important for tasks involving text generation or completion, 
such as chatbot responses, semantic message reconstruction, or 
auto-completion systems [72].
Within the domain generalization context, perplexity serves as 
an indicator of a model’s robustness to unseen distributions. A 
DG-robust semantic communication system should maintain low 
perplexity not only on in-domain (ID) test sets but also on out-of-
domain (OOD) scenarios, such as unseen languages, dialects, or 
noisy channel conditions. Stable perplexity across distributional 
shifts suggests that the system generates fluent and context-aware 
outputs despite exposure to novel domains.
Formally, perplexity is defined as: 

 = exp

(

− 1
𝑁

𝑁
∑

𝑖=1
log𝑃 (𝑦𝑖|𝑦<𝑖)

)

, (19)

where 𝑦𝑖 denotes the ground-truth token at position 𝑖, 𝑦<𝑖 rep-
resents the preceding sequence of tokens, and 𝑃 (𝑦𝑖|𝑦<𝑖) is the 
conditional probability assigned by the model. In DG evaluation, 
reporting perplexity across ID and OOD domains provides insights 
into the model’s generative stability and semantic fluency under 
distributional shifts.

• Word Embedding Evaluation plays a crucial role in semantic 
communication, as embeddings such as Word2Vec, GloVe, or 
transformer-based contextual representations capture semantic 
relationships between words and phrases. Evaluation tasks typ-
ically involve computing cosine similarity between vectors, com-
pleting analogy tests (e.g., ‘‘king – man + woman = queen’’), or 
assessing the clustering of word vectors in semantic space. High-
quality embeddings enhance the semantic communication sys-
tem’s ability to represent meaning accurately, thereby improving 
encoding, transmission, and decoding processes [73].
In the domain generalization setting, embedding evaluation is 
extended to assess robustness under distributional shifts. A DG-
robust embedding space should maintain consistent semantic re-
lationships across both in-domain (ID) and out-of-domain (OOD) 
conditions, such as unseen languages, new channel character-
istics, or domain-specific terminology. Stability of embeddings 
across these variations indicates strong generalization in seman-
tic representation learning, which is fundamental for reliable 
semantic communication.
A common metric for evaluating embedding similarity is cosine 
similarity, expressed as: 

cos(𝜃) =
𝐰1 ⋅ 𝐰2

‖𝐰1‖‖𝐰2‖
, (20)

where 𝐰1,𝐰2 ∈ R𝑑 represent word embeddings in a 𝑑-dimensional 
space. In DG evaluation, cosine similarity can be measured across 
ID and OOD embedding spaces to determine the extent to which 
semantic consistency is preserved under domain shifts.
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• Semantic Similarity metrics, such as cosine similarity, Jaccard 
index, or Euclidean distance, are employed to quantify the degree 
of relatedness between text documents, sentences, or embedding 
representations. In semantic communication systems, these mea-
sures are critical for evaluating how closely the reconstructed 
output preserves the meaning of the original input. High seman-
tic similarity ensures that transmitted messages align with user 
intent, thereby enhancing reliability and overall system perfor-
mance [74].
Semantic similarity is often regarded as a practical measure of se-
mantic fidelity, since both concepts aim to assess the preservation 
of intended meaning during transmission. While semantic fidelity 
is a broader notion encompassing the overall accuracy of semantic 
preservation (including task-level correctness), semantic similar-
ity metrics provide a quantifiable approach to approximating this 
fidelity.
In the context of domain generalization, semantic similarity pro-
vides an essential means of assessing robustness to distributional 
shifts. A DG-robust model should maintain high similarity scores 
not only in-domain but also when exposed to out-of-domain 
(OOD) conditions such as new communication environments, 
languages, or modalities. This demonstrates the system’s capacity 
to preserve semantic content even when the test distribution 
deviates from the training domain.
A common approach is to compute cosine similarity between the 
vector representations of input and reconstructed messages: 
sim(𝐮, 𝐯) = 𝐮 ⋅ 𝐯

‖𝐮‖‖𝐯‖
, (21)

where 𝐮, 𝐯 denote the embedding representations of the input 
and the reconstructed messages, respectively. In DG evaluation, 
this metric is particularly useful for quantifying semantic fidelity 
across ID and OOD domains, providing a direct measure of mean-
ing preservation under domain shifts.

• Peak Signal-to-Noise Ratio (PSNR) is a classical metric used 
to evaluate the fidelity of reconstructed signals, particularly in 
image or audio transmission tasks. PSNR measures the ratio be-
tween the maximum possible signal power and the power of 
the reconstruction error, thereby quantifying distortion at the 
signal level. Higher PSNR values indicate closer alignment be-
tween the transmitted and reconstructed signals, reflecting lower 
levels of degradation and better reconstruction quality. In seman-
tic communication, PSNR complements semantic-oriented met-
rics by ensuring that low-level distortions do not undermine the 
interpretability or utility of the transmitted content.
Within the domain generalization setting, PSNR serves as an im-
portant robustness measure. A DG-robust system should maintain 
stable PSNR values not only in-domain but also when operating 
under out-of-domain (OOD) conditions, such as unseen channel 
environments (e.g., Rayleigh or Rician fading) or novel noise 
distributions. Consistency in PSNR across these scenarios demon-
strates resilience in maintaining reconstruction quality despite 
distributional shifts.
Formally, PSNR is expressed as: 

PSNR = 10 ⋅ log10

(

MAX2
MSE

)

, (22)

where MAX denotes the maximum possible pixel (or signal) value 
and MSE is the mean squared error between the original and 
reconstructed signals. In DG evaluation, PSNR is often reported 
alongside semantic metrics such as BLEU or semantic similarity, 
providing a holistic view of both signal-level fidelity and semantic 
preservation under domain shifts.

In summary, the set of DG-aware performance metrics offers a 
multidimensional perspective for the evaluation of AI-enabled semantic 
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Table 5
Comparison of semantic communication surveys: Coverage of domain generalization aspects.
 Ref. DG techniques DG taxonomy Applications/Use cases SemCom framework for DG DG challenges Paper scope  
 [75] 7 7 ✓ 7 7 Theory, Metrics, Challenges  
 [76] 7 7 ✓ 7 7 Task driven SemCom, AI for IoT  
 [77] 7 7 7 ✓ 7 Generative AI, Architecture  
 [20] 7 7 ✓ 7 7 6G Theory, Design Vision  
 [78] 7 7 7 7 7 Historical Review, Principles  
 [79] 7 7 ✓ 7 7 Security, Network Stack, Protocols 
 [80] 7 7 ✓ ✓ 7 SemCom Architecture  
 [34] ✓ 7 ✓ 7 7 AI Techniques, Efficiency  
 [81] 7 7 7 7 7 Metrics, Evaluation, Theory  
 [82] 7 7 ✓ 7 7 Bandwidth Efficiency, Applications 
 Our Survey ✓ ✓ ✓ ✓ ✓ Cross domain DG in SemCom  
Note: This table shows that while previous surveys contribute to selective areas of semantic communication, they largely omit comprehensive coverage domain generalization 
in SemCom. Our survey addresses all key dimensions in a unified manner.
communication systems, capturing accuracy, completeness, semantic 
fidelity, generative quality, and resilience to distributional shifts. The 
selection of appropriate metrics should be carefully aligned with the 
specific objectives and modalities of the target application, whether 
text, image, or multimodal. Furthermore, the integration of these quan-
titative measures with explainability techniques enhances interpretabil-
ity, transparency, and trust, thereby facilitating the development of 
semantic communication models that are not only high performing but 
also reliable and generalizable across heterogeneous environments.

3. Literature review on domain generalization in semantic com-
munication

In this section, we review the evolving literature on AI-enabled 
semantic communication with a focused lens on domain generalization. 
Semantic communication is an emerging paradigm designed to enhance 
communication efficiency by enabling systems to understand and trans-
mit meaning rather than raw data. As these systems are increasingly 
deployed in real world environments characterized by domain shifts 
such as variations in user context, language, or network conditions the 
importance of domain generalization becomes paramount [83].

Domain generalization addresses a core limitation of traditional AI 
models in semantic communication: the inability to maintain perfor-
mance across unseen or dynamic domains without retraining. Despite 
the increasing interest in semantic communication, our investigation re-
veals a substantial gap there is currently no comprehensive survey that 
deeply explores the role of domain generalization in making semantic 
communication systems robust, context aware, and scalable. Our work 
aims to fill this gap by systematically analyzing the current state of 
domain generalization techniques as applied to semantic communica-
tion, providing a forward looking perspective on how these methods 
can shape the adaptability and reliability of future 6G communication 
systems.

While early works have laid foundational concepts for semantic 
communication, few have addressed the intersection of domain gen-
eralization and semantic understanding in communication systems. 
Moreover, existing surveys often treat domain generalization only as 
a peripheral concern or focus exclusively on general purpose vision 
and NLP tasks. As shown in Table  5, previous reviews have largely 
overlooked the unique challenges and opportunities that domain shifts 
present in AI-enabled semantic transmission. This oversight highlights 
the need for a focused, in depth survey that examines domain general-
ization as a central pillar in the development of scalable and intelligent 
semantic communication models.

By offering a detailed synthesis of this emerging intersection, our 
survey provides a roadmap for building semantic communication
frameworks that can operate reliably across diverse, unseen, and evolv-
ing communication environments. In doing so, we contribute to both 
theoretical development and practical system design, guiding future 
research toward robust, adaptable, and real world ready semantic 
communication infrastructures.
12 
3.1. Literature insights on the advancements of semantic communication

The literature on semantic communication has increasingly rec-
ognized the importance of robustness and adaptability, especially in 
dynamic wireless environments. In this context, domain generalization 
techniques have emerged as key enablers of generalizable semantic 
inference, helping models maintain stable performance under domain 
shifts. While research in this area remains nascent, a growing body 
of work has explored how semantic transceivers can be made more 
resilient to variability in linguistic, contextual, and network specific 
domains.

This subsection presents a curated set of recent contributions in 
semantic communication and highlights how these works incorpo-
rate or could benefit from domain generalization principles. Table  6 
summarizes the methodologies, input types, optimization algorithms, 
performance metrics and limitations in selected studies, along with 
their relevance to DG techniques where applicable. These insights are 
further discussed to emphasize how domain generalization elevates the 
scalability, reliability, and applicability of AI-enabled semantic systems 
across real world communication scenarios.

The study presented in [23] introduces an innovative end to end 
image transmission system that leverages semantic communication 
and integrates AI technologies with 6G communication networks. This 
system, consisting of a transmitter (encoder) and a receiver (decoder), 
communicates over a physical channel. The transmitter performs a se-
mantic segmentation task on the image to extract its semantic meaning, 
transmitting the segmentation map instead of the original image. At 
the receiving end, a pre-trained GAN network reconstructs a realistic 
image from the received segmentation map. Using the COCO Stuff 
dataset for training, both the transmitter and receiver share a common 
knowledge base. The research also examines the impact of physi-
cal channel distortions and quantization noise on the transmission of 
multimedia content via semantic communication. Experimental results 
highlight the system’s efficiency, demonstrating a compression ratio of 
approximately 20 compared to traditional image transmission methods.

A DeepSC model is presented in [84], which is an intelligent end 
to end communication system, operates on two key levels: semantic 
and transmission. The semantic level focuses on processing informa-
tion for encoding and decoding, while the transmission level ensures 
accurate exchange over the medium. DeepSC aims to maximize sys-
tem capacity, emphasizing sentence meaning recovery over traditional 
bit or symbol error concerns. Utilizing transfer learning, it adapts to 
diverse communication environments, demonstrating superior perfor-
mance in low signal to noise ratio scenarios and increased resilience to 
channel variation. The comparisons with traditional systems highlight 
DeepSC’s robustness, particularly in low SNR regimes, across varied 
channel conditions. Introducing the novel metric ‘‘sentence similarity’’, 
the system precisely measures semantic communication performance, 
justifying DeepSC’s efficacy in meaning recovery and semantic error 
reduction. An analysis of loss value, mutual information, BLEU score, 
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Table 6
State of the art AI models and generalization methods in semantic communication with DG-specific limitations.
 Study Input feature Model Performance metric DG methodology DG-specific limitations  
 [23] Image Transformer PSNR GAN Training instability;

adversarial vulnerability
 

 [84] Text Transformer, DNN BLEU, MI Transfer Learning Needs large pretraining;
weak zero/few-shot OOD

 

 [85] Multimodal (Text, Image) CNN (ResNet) MAP GAN Modality gap persists;
limited interpretability

 

 [76] Image ResNet Accuracy Self-supervised Learning Data hungry;
sensitive to imbalance

 

 [86] Multimodal Images ResNet Accuracy Self-supervised Learning Scalability/compute 
overhead;
adversarial robustness 
unverified

 

 [87] Images CNN PSNR, SSIM Meta-Learning High compute;
sensitive to task design

 

 [88] Multimodal Images AE, VAE PSNR, Accuracy Federated + MAML Comm. overhead;
privacy leakage risk

 

 [89] Images Swin Transformer PSNR Transfer Learning Drops in dynamic domains;
depends on pretraining

 

 [90] Text Transformer BLEU, Similarity GAN Semantic drift under attack;
limited OOD robustness

 

 [43] Text DNN WER, FDSD, Accuracy Unified Feature Learning Overfitting risk;
lacks adversarial defense

 

 [91] Image Swin Transformer + Diffusion PSNR, LPIPS Generative Refinement High compute;
data bias sensitivity

 

 [92] Image VLM + Transformer BLEU, SSQ Continual Learning Catastrophic forgetting;
memory overhead

 

 [93] Image Diffusion (DDPM) PSNR, MS-SSIM Noise Modeling + Denoising Resource intensive;
adversarial robustness 
unproven

 

 [94] Multimodal (Text, Image) ResNet-50, CLIP, Diffusion PSNR, MS-SSIM Multimodal Fusion + Selection Fusion overhead;
cross-modal inconsistencies

 

 [95] Image ResNet + Diffusion (DDPM/DDIM) PSNR, SSIM, Semantic Fidelity Semantic Priors High complexity;
priors may leak info

 

and SNR underscores DeepSC’s performance, revealing the impact of 
training parameters on mutual information and BLEU score. While the 
sources lack explicit overall results, they provide valuable insights into 
DeepSC’s enhanced performance and the metrics used for evaluation.

The paper [85], introduces a comprehensive system model for cross 
modal retrieval and semantic representation learning. It incorporates 
generative parts for image and text representation, classification parts 
for multi label classification, and an inter modal discriminative net-
work to bridge the modality gap. Adversarial learning is employed 
to iteratively train generative and discriminative models, aiming to 
generate common semantic representations and distinguish differences 
between modalities. The joint optimization of the generative adversar-
ial network and classification network enhances cross modal retrieval. 
The proposed model demonstrates superior performance on widely 
used datasets, achieving indistinguishable and close representations for 
data with similar semantics through adversarial learning. The inter 
modal discriminative network effectively contributes to overcoming the 
modality gap by distinguishing between image and text modalities.

Tilahun et al. propose a self supervised learning based framework 
for task oriented semantic communication under limited label avail-
ability, aimed at enhancing generalization across varying channel con-
ditions and data distributions [76]. The system, termed SLSCom, in-
tegrates deep learning and the Information Bottleneck (IB) principle to 
extract semantically meaningful representations using both labeled and 
unlabeled data. A two stage training strategy is employed: self super-
vised pre-training with unlabeled samples via pretext tasks (e.g., con-
trastive InfoNCE loss and reconstruction), followed by supervised fine 
tuning on a small set of labeled examples. Experiments on CIFAR-10 
and SVHN datasets demonstrate that SLSCom maintains high classi-
fication accuracy even with minimal supervision and under domain 
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shifts such as SNR variations. By leveraging self supervision, the frame-
work significantly improves semantic representation robustness and 
effectively addresses the domain generalization challenge in low label 
semantic communication systems.

Zhao et al. introduce a self-supervised, multi modal semantic com-
munication framework that addresses domain generalization through 
task agnostic pre-training and label efficient learning [86]. The pro-
posed system operates across multiple modalities (e.g., RGB and depth 
data) using separate encoders at edge devices and a central decoder 
for downstream classification tasks. A two stage training scheme is 
adopted: in the first stage, a novel self supervised learning method 
is used to capture both shared and unique semantic features across 
modalities via intra modal and cross modal contrastive objectives. In 
the second stage, supervised fine tuning adapts the system to specific 
tasks with minimal labeled data. This pre-training strategy significantly 
reduces training related communication overhead while maintaining 
robustness across different channel conditions and label scarcity. Ex-
perimental results on the NYU Depth V2 dataset demonstrate that the 
framework outperforms fully supervised and other self supervised base-
lines in both efficiency and accuracy. By enabling task agnostic seman-
tic representation learning, this approach effectively enhances domain 
generalization capabilities in multi modal semantic communication.

Chen et al. propose a scalable semantic communication system 
tailored for industrial scenarios, where the dynamic addition of new 
transmission tasks imposes challenges for adaptability and training 
efficiency [87]. To address this, the authors introduce a joint source 
channel coding (JSCC) semantic communication framework integrated 
with meta-learning and a novel metric called Decoding Information 
Resolution (DIR) to assess scalability. The system employs a Con-
volutional Neural Network (CNN) for semantic encoding and decod-
ing and is trained using a model agnostic meta-learning algorithm 
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that operates in three stages: offline training, quasi-online adaptation, 
and online deployment. The framework is validated using the mini 
ImageNet dataset and tested under various SNR conditions. Results 
demonstrate that the proposed method significantly improves scalabil-
ity and performance, particularly in low SNR environments and during 
the addition of new tasks. This work highlights the effectiveness of 
meta-learning in enhancing domain generalization and scalability in 
semantic communication systems.

Bian et al. present a federated semantic communication frame-
work tailored for the Metaverse, aiming to balance communication 
efficiency, privacy, and adaptability in large scale virtual environ-
ments [88]. The framework integrates deep learning based semantic 
communication with federated learning to enable collaborative model 
training across distributed nodes without sharing raw data. Core com-
ponents include semantic encoders/decoders (e.g., autoencoders and 
variational autoencoders) and semantic digital twins (SCDTs) for effi-
cient semantic representation and reconstruction. The model is eval-
uated on diverse datasets (MNIST, KMNIST, CIFAR-10), showing im-
proved performance in both PSNR and classification accuracy under 
noisy and compressed settings. To enhance robustness across non-
IID data distributions, the system incorporates Model Agnostic Meta-
Learning (MAML) into the federated training loop. This approach sig-
nificantly boosts generalization across domains and tasks, making it a 
strong candidate for enabling scalable and adaptive semantic commu-
nication systems in the Metaverse.

Nguyen et al. address the challenge of semantic communication in a 
multi user setting with users having diverse computing capacities [89]. 
They propose a Swin Transformer based semantic communication sys-
tem for image transmission, where a single encoder at the base station 
communicates with multiple decoders of varying complexity. To im-
prove training efficiency and generalization for low computing users, 
they introduce a two stage training strategy: (1) pairing the encoder 
with a high capacity decoder for initial training and (2) reusing the en-
coder while training the low capacity decoder. Two techniques enhance 
generalization: transfer learning, where parameters are transferred be-
tween compatible layers of decoders, and knowledge distillation, where 
the high capacity decoder acts as a teacher guiding the low capacity de-
coder. Experiments on the DIV2K dataset demonstrate improvements in 
PSNR under varied SNR conditions, showing the system’s effectiveness 
in adapting to resource constrained users. This approach highlights the 
role of cross user transfer and teacher student learning in promoting 
domain generalization in semantic communication.

Mao et al. propose a novel GAN based semantic communication 
framework (Ti-GSC) designed for text transmission without relying 
on Channel State Information (CSI), addressing a major limitation in 
existing SC systems over fading channels [90]. The proposed framework 
integrates two core modules: (1) an autoencoder based encoder de-
coder module (AEDM) built upon Transformers for semantic extraction 
and reconstruction, and (2) a GAN-based signal distortion suppression 
module (GSDSM), which learns to remove syntactic and semantic noise 
without prior CSI. The system is trained using a joint optimization 
strategy (JOT) involving a composite loss function that includes cross 
entropy, adversarial, syntactic, and semantic distortion terms. The 
GSDSM is implemented using a U-Net generator and a convolutional 
discriminator, enabling semantic alignment of distorted signals. Evalu-
ated on the Europarl text dataset across AWGN, Rician, and Rayleigh 
channels, the Ti-GSC significantly improves BLEU and sentence similar-
ity scores compared to baselines, even in the absence of CSI. The paper 
also performs generalization experiments on Nakagami-m fading chan-
nels, confirming the model’s robustness in unseen channel conditions 
thereby demonstrating strong domain generalization capabilities.

Qin et al. propose a generalized semantic communication (GSC) 
framework that extends semantic processing to both the source and the 
wireless channel, aiming to optimize efficiency across diverse multi-
modal data types and channel environments [43]. The system supports 
semantic transmission of text, speech, image, and video, employing 
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deep learning (DL) models for joint semantic channel coding. In ad-
dition to conventional source semantics, the framework introduces en-
vironment semantics, where semantic features (e.g., object layout and 
categories) extracted from images assist in channel estimation and pre-
coding tasks. This reduces reliance on pilot signals and explicit channel 
state information (CSI). A case study on speech transmission (DeepSC-
ST) demonstrates enhanced performance under Rayleigh channels us-
ing semantic representations rather than raw signals. For the channel 
side, an environment semantics aided communication (ESAC) module 
predicts beamforming vectors directly from semantic scene features. 
The system emphasizes generalization across source tasks and channel 
conditions, enabled by unified DL-based abstraction and feature selec-
tion strategies, making it a compelling approach for domain adaptive 
semantic communication.

Zhang et al. propose a next generation semantic communication 
system called GSC (Generative AI Semantic Communication), which 
integrates a Swin Transformer based semantic encoder with a Diffusion 
Model (DM) powered refinement module to enhance reconstruction 
fidelity, particularly under challenging channel conditions [91]. The 
system introduces a novel semantic successive refinement strategy, 
wherein an initial coarse semantic reconstruction is first generated 
by the base decoder. This is then passed to a pre-trained Diffusion 
Model, which acts as a powerful generative prior to iteratively re-
fine and reconstruct the output with high semantic consistency and 
perceptual quality. This generative refinement enables the system to 
correct semantic distortions that may arise due to noise or compression 
during transmission. The authors further extend their design to a multi 
user asynchronous setting (MU-GSC), supporting scalable and paral-
lel transmissions. Experiments conducted under AWGN and Rayleigh 
fading channels show that GSC significantly outperforms DeepJSCC 
and conventional LDPC based baselines in terms of PSNR and LPIPS, 
even at low SNRs. While the framework does not use traditional DG 
algorithms, the diffusion based generative enhancement enables strong 
generalization across varying channel conditions, making it an effective 
domain adaptive solution for future semantic communication networks.

Jiang et al. propose a novel Visual Language Model based Cross 
modal Semantic Communication (VLM-CSC) system to overcome key 
limitations of traditional image semantic communication (ISC) systems, 
such as low information density, catastrophic forgetting, and SNR vari-
ability [92]. Their framework introduces three core components: (1) a 
Cross modal Knowledge Base (CKB) using pretrained BLIP and Stable 
Diffusion (SD) models for transforming images into high density text 
at the transmitter and reconstructing them at the receiver, (2) a Mem-
ory Assisted Encoder/Decoder (MED) combining short term and long 
term memory to enable continual learning, and (3) a Noise Attention 
Module (NAM) that adaptively allocates importance to semantic and 
channel coding based on SNR feedback. The system uses transformer 
based encoders/decoders for text processing and integrates pretrained 
vision language models to boost semantic alignment. Evaluated across 
diverse datasets (e.g., CIFAR, CATSvsDOGS) and SNR levels, VLM-CSC 
demonstrates high BLEU scores and Semantic Service Quality (SSQ), 
while maintaining robustness and adaptability. The MED mechanism 
particularly enhances domain generalization by preserving past knowl-
edge while learning new domain shifts, making VLM-CSC a powerful 
DG capable architecture for multimodal communication.

The study in [93] proposes a Joint Source Channel Noise Adding 
with Adaptive Denoising (JSCNA-AD) framework, developed on the 
foundation of the Denoising Diffusion Probabilistic Model (DDPM) for 
semantic communication. The proposed method incorporates channel 
noise directly into the forward diffusion process and applies attention 
guided adaptive denoising at the receiver, thereby enabling high fi-
delity reconstruction of semantically important regions while minimiz-
ing redundant computations. Experimental evaluations on ImageNet-
256 and STL-10 datasets over AWGN and Rayleigh channels demon-
strate performance improvements of up to 13.3 dB in PSNR, alongside 
superior MS-SSIM, reduced FLOPs, and lower inference time compared 
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Fig. 7. State of the art domain generalization techniques for AI-Enabled Semantic Communication.
with JPEG2000+LDPC, DeepJSCC, and WITT baselines. These find-
ings suggest that integrating channel aware noise modeling within 
DDPM based diffusion processes, coupled with adaptive denoising, 
can substantially enhance reconstruction fidelity, robustness under di-
verse channel conditions, and computational efficiency in semantic 
communication.

The study in [95] presents an end to end semantic communica-
tion system designed for efficient image transmission under band-
width limited conditions. At the transmitter, a deep learning classifier 
(ResNet-18) predicts image category labels, and dictionary learning 
with sparse coding is employed to extract compact semantic features. At 
the receiver, a diffusion model based conditional generator synthesizes 
candidate images from the received category, while dictionary learning 
is again used to match and select the image most consistent with 
the transmitted features. To assess reconstruction quality, the authors 
introduce a Semantic Fidelity Index (SFI) that jointly incorporates 
mutual information and CNN feature similarity, providing a more 
reliable evaluation than conventional metrics such as PSNR and SSIM. 
Experimental results demonstrate that the proposed system achieves 
superior semantic fidelity and visual quality compared to JPEG2000 
and generative baselines (GAN, VAE, StyleGAN2), while operating 
under reduced bandwidth constraints. Moreover, the diffusion model 
yields better convergence behavior and higher reconstruction quality 
than alternative generative approaches at lower complexity, indicating 
that integrating dictionary learning with diffusion based generative 
reconstruction and a semantic fidelity metric enables more efficient, 
semantically faithful, and robust image transmission than traditional 
codecs or alternative generative models.

The authors in [94] presented a Multimodal Semantic Communi-
cation (MMSemCom) framework that jointly exploits image and text 
features for supervised image generation. At the transmitter, seman-
tic features are extracted using ResNet-50 for image representations 
and CLIP for text prompts, which are subsequently fused into a uni-
fied MultiSem representation via cross attention. At the receiver, a 
diffusion model (DM) generates candidate images, followed by a super-
vised selection mechanism either sequential or simultaneous that aligns 
the generated outputs with the transmitted multimodal semantics. Ex-
tensive experiments on CIFAR-100, STL-10, and ImageNet-256 under 
AWGN and Rayleigh channels demonstrate that MMSemCom consis-
tently outperforms traditional codecs (BPG, WebP) and deep learning 
baselines (DeepJSCC, WITT, LaMoSC). The sequential variant achieves 
higher robustness in low SNR conditions, reaching up to 35.6 dB PSNR, 
whereas the simultaneous variant offers improved efficiency by achiev-
ing strong fidelity with lower overhead. Furthermore, the framework 
exhibits strong generalization to out of distribution datasets such as 
FGVC-Aircraft and Stanford Cars, underscoring its resilience to domain 
shifts. Collectively, these results indicate that combining multimodal 
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semantic features with diffusion based generation and supervised selec-
tion not only improves reconstruction fidelity and robustness to channel 
noise but also enhances generalization to previously unseen domains.

In summary, Section 3 and Table  6 together show that domain gen-
eralization in semantic communication is advanced by complementary 
building blocks that map onto the SemCom pipeline: strong represen-
tation learners (transfer and self supervised) establish versatile feature 
bases across modalities and channel conditions; adversarial and diffu-
sion based components repair residual distribution gaps and enhance 
semantic fidelity; meta learning enables rapid, label efficient adaptation 
when environments change; federated and continual variants preserve 
performance across clients and over time without centralizing data; and 
unified feature learning with semantic priors imposes structure that 
preserves meaning under perturbations. In practice, the most effective 
systems compose two or more families, for example self or transfer 
pretraining for general features, a lightweight DG head (meta learning 
or domain adversarial), and selective generative refinement, balancing 
robustness with deployability. Table  6 makes these trade offs explicit by 
aligning each study’s modality, model, metrics, DG methodology, and 
limitations from the literature offering a clear blueprint for designing 
resilient SemCom systems under real world constraints.

The recent studies reviewed in this section highlight substantial 
progress in strengthening the robustness and adaptability of semantic 
communication through diverse domain generalization strategies, in-
cluding self-supervised learning, meta-learning, transfer learning, and 
generative refinement techniques. Collectively, these approaches estab-
lish a solid foundation for advancing the field while pointing toward 
promising future directions. They underscore the importance of sus-
tained innovation and interdisciplinary collaboration to realize scal-
able, efficient, and reliable semantic communication systems capable 
of meeting the evolving demands of next generation networks.

4. Domain generalization techniques for AI-enabled semantic
communication

This section presents an analysis of current techniques that enhance 
the domain generalization capabilities of AI-enabled semantic commu-
nication systems. Our contribution addresses a key gap in the literature 
by focusing on how modern models can generalize effectively across 
varied and unseen domains such as changes in user context, modality, 
network conditions, and linguistic styles without requiring retraining.

We examine a range of diverse methods aimed at improving gen-
eralization performance. Fig.  7 highlights key domain generalization 
techniques, which we discuss below.
1. Meta-Learning:

Meta-learning, also known as ‘‘learning to learn’’, is a powerful 
approach aimed at enhancing domain generalization by enabling mod-
els to quickly adapt to new tasks with limited data. This is par-
ticularly beneficial in semantic communication, where models must 
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efficiently understand and convey meaning across varying domains 
such as different languages, modalities, communication styles, and user 
contexts [96]. Meta-learning frameworks such as Model Agnostic Meta-
Learning (MAML) [97], First Order MAML [98], Model Agnostic Meta-
Learning for Domain Generalization (MLDG) [99], and MetaReg [100] 
have shown effectiveness in enabling fast adaptation and improved 
generalization capabilities.

These methods typically follow a two level learning scheme: a base 
learner is trained on individual tasks using conventional optimization 
techniques, while a meta learner optimizes the base learner’s ability to 
perform well across a distribution of tasks or domains. In the context 
of semantic communication, this setup allows the model to acquire a 
strong initialization that can be fine tuned on unseen semantic tasks 
using just a few gradient steps. Tasks can include translation, sum-
marization, or classification in different linguistic or domain settings, 
where the semantic structure of the input varies.

This generalization capability becomes especially critical when 
adapting semantic models to emerging environments, such as low re-
source languages or newly introduced modalities. For instance, in cross 
domain sentiment analysis on social media platforms, each platform 
(e.g., Twitter, Facebook, Instagram) features distinct writing styles, 
vocabularies, and context. Meta-learning algorithms like MLDG and 
MetaReg allow models to learn domain invariant features across these 
tasks and adapt rapidly without retraining from scratch. The models 
not only learn the core patterns of language understanding but also 
effectively handle style and dialect variation.

To evaluate the performance of meta-learning in semantic commu-
nication, metrics such as accuracy, BLEU scores for translation, ROUGE 
for summarization, and adaptation speed are commonly used [101]. 
These metrics assess both the quality of semantic preservation and the 
efficiency of adaptation across tasks. For example, a multilingual cus-
tomer support system equipped with a meta learned semantic encoder 
could generalize across different customer service scenarios, quickly 
adapting to new query patterns or domain specific language with 
minimal labeled data. This makes meta-learning a promising candidate 
for building scalable, robust, and adaptive semantic communication 
systems in real world environments.
2. Domain Adversarial Training:

Domain adversarial training is a widely adopted strategy for enhanc-
ing domain generalization by learning feature representations that are 
invariant across different domains [102]. Within semantic communi-
cation systems, this technique becomes highly relevant when models 
are expected to operate consistently in varying linguistic, acoustic, or 
environmental conditions. By jointly optimizing semantic accuracy and 
domain invariance, domain adversarial training helps models maintain 
stable performance in unseen contexts without requiring fine tuning or 
retraining.

The general architecture involves three key components: a feature 
extractor that converts input data (e.g., text, speech, or images) into la-
tent representations; a task specific classifier that performs the semantic 
task (e.g., intent detection, translation, or sentiment classification); and 
a domain discriminator that attempts to infer the domain label from 
the same latent features. A minimax optimization is used, where the 
model minimizes task loss and simultaneously maximizes the domain 
discriminator’s error. This competitive interaction compels the feature 
extractor to learn domain agnostic representations [103,104]. A cen-
tral mechanism enabling this learning is the gradient reversal layer 
(GRL) [105]. During training, GRL inverts the gradient signals from 
the domain discriminator, pushing the feature extractor to produce 
embeddings that confuse the discriminator while still enabling accurate 
semantic task performance. This leads to representations that gener-
alize well across domains an essential property for scalable semantic 
communication systems.

Consider, for instance, a multilingual voice assistant system in-
tegrated into smart home environments, where users communicate 
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through speech across various accents, languages, room acoustics, and 
microphone qualities. In such a system, domain adversarial training 
ensures the semantic understanding module remains robust to these 
variations. Whether a command is issued in a quiet kitchen by a native 
speaker or in a noisy living room with accented speech, the model must 
consistently understand the intent and respond appropriately [106]. By 
training the feature extractor to ignore acoustic and linguistic domain 
differences, the system can generalize well across user and environ-
mental variations, maintaining reliable semantic performance without 
reconfiguration.

Therefore, this technique is particularly beneficial in scenarios 
where explicit domain labels may not be available during inference, yet 
generalization is still critical. It effectively decouples semantic learning 
from domain specific nuances, ensuring models are not overfitted to 
source conditions. As a result, domain adversarial training is a core 
component of domain generalization strategies in semantic communi-
cation. It enables real time, cross condition adaptability and supports 
the deployment of intelligent communication systems in heterogeneous 
environments with minimal data preparation or retraining overhead.
3. Gradient Operation:

Gradient based optimization methods are essential tools for enhanc-
ing generalization in machine learning, particularly within semantic 
communication systems that operate in dynamic or unfamiliar envi-
ronments. These techniques aim to stabilize training and guide models 
toward learning domain invariant representations by regulating how 
gradients are propagated and updated across tasks or domains. Among 
the widely used approaches are gradient clipping, gradient normaliza-
tion, and algorithmic frameworks such as Representation Self Challeng-
ing (RSC) [107] and Fish [108], which are designed specifically for 
domain generalization.

Gradient clipping involves constraining the gradient values dur-
ing backpropagation to avoid instability caused by excessively large 
updates. This is especially important in language centric tasks like 
semantic translation or summarization, where gradient explosion may 
hinder training convergence. In contrast, gradient normalization en-
sures that gradients across layers maintain consistent scales, addressing 
vanishing gradient problems and promoting uniform learning across 
network components [109]. These operations help maintain steady op-
timization dynamics, improving the model’s robustness under domain 
shift conditions.

RSC introduces a self challenging mechanism where the model 
suppresses its most confident features during training, encouraging it 
to rely on more diverse and stable patterns across domains [107]. This 
forces the model to learn alternative semantic cues that generalize 
better to unseen conditions. Fish, on the other hand, adopts a gradient 
matching approach: it aligns gradients computed across multiple source 
domains during meta-training, promoting learning trajectories that are 
more consistent and transferable [108]. Together, these techniques 
contribute to building representations that are not only task relevant 
but also domain agnostic.

In semantic communication, such capabilities are particularly criti-
cal when transmitting or interpreting data across highly variable chan-
nels or user environments. Consider, for example, an industrial IoT 
scenario involving real time sensor data collection and communica-
tion across different factory floors, where environmental conditions 
(e.g., electromagnetic interference, machine noise, sensor brands) differ 
widely [110]. A semantic communication system trained on data from 
one location may perform poorly in another unless it can generalize 
across such conditions. Applying gradient based domain generalization 
techniques enables the system to extract semantically relevant informa-
tion from sensor readings while ignoring environment specific noise. 
This leads to more consistent communication quality and decision 
making across industrial settings without retraining [110].

Overall, gradient operation techniques such as RSC and Fish serve 
as powerful strategies to equip semantic communication models with 
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the ability to generalize across heterogeneous domains. By refining 
optimization trajectories and encouraging reliance on stable, transfer-
able semantic patterns, these approaches significantly strengthen the 
reliability and scalability of semantic communication systems in real 
world deployments.
4. Distributionally Robust Optimization:

Distributionally Robust Optimization (DRO) is a powerful strat-
egy in domain generalization aimed at training models to maintain 
performance across a range of possible data distributions. In seman-
tic communication, where models must handle variations in context, 
language, channel conditions, and message structure, DRO offers a prin-
cipled framework to enhance robustness and reliability [111]. Unlike 
standard empirical risk minimization, which assumes that training and 
test distributions are similar, DRO explicitly considers uncertainty in 
the data distribution by defining an ambiguity set typically formulated 
using metrics such as Wasserstein distance, moment constraints, or f-
divergences. The objective is to minimize the worst case expected loss 
over all distributions within this ambiguity set, making it highly suited 
for unpredictable and dynamic environments [112].

The optimization process in DRO typically involves a nested min-
imax structure: the inner maximization identifies the worst case dis-
tribution in the ambiguity set under which model performance de-
teriorates the most, while the outer minimization updates the model 
parameters to reduce this worst case loss. Though computationally 
more intensive than conventional training, this framework encourages 
the model to learn representations that are not overly tailored to any 
specific domain, thus achieving better generalization across unseen 
or shifting conditions [113]. This approach is particularly relevant 
for semantic communication, where input data can exhibit significant 
variability across regions, user demographics, signal distortions, and 
linguistic constructs.

Several effective algorithms fall under the DRO paradigm. VRex 
(Variance Risk Extrapolation) minimizes variance in model predictions 
across domains, promoting more uniform generalization [114]. Just 
Train Twice (JTT) reweights training data to emphasize underrep-
resented or difficult examples, enhancing the model’s resilience to 
rare or complex semantic structures [115]. GroupDRO takes a group 
based approach by minimizing the worst case loss across predefined or 
dynamically inferred groups, ensuring robustness even in the presence 
of latent domain heterogeneity [116]. These techniques allow semantic 
communication models to avoid overfitting to dominant data pat-
terns and instead learn representations that support consistent message 
interpretation across diverse conditions.

A compelling use case for DRO in semantic communication is found 
in emergency communication networks deployed in low resource envi-
ronments during natural disasters. In such scenarios, linguistic content 
can vary widely across users, and channel conditions may degrade 
unpredictably due to infrastructural damage or interference. A seman-
tic communication system trained with DRO could remain functional 
across fluctuating noise levels, dialectical shifts, or compressed signal 
formats by focusing on the most challenging examples during training. 
GroupDRO, for instance, would ensure consistent performance across 
multiple user populations or message types, such as emergency alerts, 
weather updates, and rescue coordination messages each potentially 
originating from different data domains.
5. Self-Supervised Learning: 

Self-supervised learning (SSL) has emerged as a promising approach 
for domain generalization by leveraging the inherent structure of data 
to learn meaningful representations without relying on labeled super-
vision [117]. In semantic communication, where the goal is to extract 
and transmit semantic meaning rather than surface level data, SSL 
enables models to generalize across diverse linguistic, contextual, and 
environmental conditions by creating surrogate tasks that force the 
network to learn high level abstractions.
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SSL frameworks design pretext tasks in which the model learns 
to predict or reconstruct certain components of the input from oth-
ers. These tasks encourage the model to capture relationships, struc-
tures, and dependencies within the data. In natural language pro-
cessing (NLP), common pretext tasks include masked language mod-
eling (MLM), next sentence prediction (NSP), and sentence permuta-
tion [118]. For instance, BERT [119] uses MLM, where input tokens are 
randomly masked and the model learns to predict the missing tokens 
using the surrounding context. Similarly, NSP trains the model to 
determine whether two sentences appear consecutively in a document, 
thereby reinforcing the understanding of semantic coherence [120]. 
These strategies are particularly valuable for semantic communica-
tion, where understanding context, semantics, and intent is essential 
for encoding and decoding messages across variable communication 
channels.

Several SSL techniques have shown strong domain generalization 
capabilities in broader machine learning tasks. JiGen (Jigsaw Puzzle 
Generation) combines image permutation with classification to help 
models learn robust representations across domains [121]. In the con-
text of semantic communication, JiGen like techniques can be adapted 
for textual or multimodal inputs by segmenting data into logical units 
and forcing the model to learn their relationships. Another technique, 
SelfReg [122,123], introduces regularization losses during SSL train-
ing that promote representation consistency and reduce overfitting to 
specific source domains. These constraints enhance generalizability and 
have been successfully applied in cross domain adaptation scenarios.

One of the key advantages of SSL in semantic communication lies 
in its applicability to low resource settings where labeled data are 
scarce or infeasible to obtain. For example, consider a multilingual 
educational platform used globally by students in different regions, lan-
guages, and cultural contexts. Each user may access the platform with 
different semantic expectations, vocabulary styles, and interface lan-
guages. Training a semantic communication model using SSL enables 
the system to extract semantically meaningful structures from unla-
beled interaction data such as forum posts, feedback, or spoken queries 
without requiring exhaustive manual annotation. This empowers the 
platform to personalize content delivery, answer queries accurately, 
and maintain consistent understanding across diverse user populations. 
Moreover, SSL is inherently scalable and efficient. Once trained, the 
encoder can be fine tuned on downstream tasks or directly integrated 
into end to end semantic transceivers for real time communication. Its 
capacity to generalize from unlabeled data makes it especially valuable 
in dynamic environments where domain shifts occur frequently, such 
as mobile applications, multilingual AI assistants, or adaptive learning 
systems.

6. Generative Adversarial Networks (GANs):
Generative Adversarial Networks (GANs) represent a powerful class 

of generative models that have been increasingly adopted to enhance 
domain generalization in semantic communication systems. Their core 
utility lies in generating high quality, diverse synthetic data samples 
that enrich training sets, enabling models to generalize across domains 
with varying characteristics [124,125]. GANs are composed of two 
neural networks a generator and a discriminator that are trained ad-
versarially. The generator learns to produce synthetic data that mimic 
real samples, while the discriminator learns to distinguish real data 
from generated data. Through a minimax optimization framework, 
both networks improve iteratively and the generator becomes more 
proficient at producing indistinguishable data, while the discriminator 
sharpens its ability to detect subtle differences [126,127].

The GAN training process alternates between updating the discrim-
inator and the generator. Initially, the discriminator is trained using 
both real and generated samples to distinguish between them. The 
generator is then trained to produce data that mislead the discrimina-
tor, minimizing its ability to correctly classify synthetic instances. This 
adversarial interplay results in a generator capable of producing highly 
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realistic data, including text, speech, or semantic signals, depending on 
the application. Such synthetic data are critical for improving the gen-
eralization of semantic communication models, especially in domains 
with scarce labeled data or hard to simulate conditions [128].

From a domain generalization perspective, GANs contribute in two 
significant ways. First, they augment training datasets with samples 
from diverse distributions, exposing models to a broader spectrum of 
scenarios and reducing overfitting to narrow domains. Second, they 
help simulate edge cases or underrepresented conditions such as noisy 
channels, uncommon linguistic patterns, or sensor anomalies thereby 
preparing semantic models for real world deployment in highly variable 
environments [129,130]. Moreover, the adversarial learning process 
helps the model distinguish meaningful semantic content from domain 
specific noise, enhancing the transferability of learned features across 
tasks and domains [131].

Consider a practical application such as a semantic broadcast sys-
tem designed to disseminate real time alerts and news updates across 
multilingual and multicultural regions. These systems must support 
domain robust semantic understanding and transmission across varying 
dialects, content styles, and reception formats. Using GANs, synthetic 
message datasets can be generated to simulate different broadcast 
styles, languages, and communication settings. This allows the semantic 
model to learn from both dominant and rare communication scenarios, 
improving its ability to generalize without needing exhaustive data 
collection across all locales. For example, GANs can generate synthetic 
versions of emergency alerts in multiple languages or simulate recep-
tion distortions caused by regional infrastructure, training the system 
to respond accurately under a wide range of conditions.

7. Ensemble Learning:
Ensemble learning is a powerful approach in machine learning 

that combines predictions from multiple models to improve robust-
ness, accuracy, and generalization performance. Within the context of 
semantic communication, ensemble methods are especially valuable 
when systems need to operate across diverse and complex linguistic do-
mains, user intents, or noisy environments [132]. The core idea is that 
while individual models may have limitations or biases toward certain 
domains, an ensemble of complementary models can compensate for 
each other’s weaknesses, resulting in stronger overall performance.

Common ensemble techniques include bagging, boosting, and stack-
ing. Bagging (bootstrap aggregating) involves training multiple in-
stances of the same model on different subsets of training data and 
aggregating their predictions to reduce variance and overfitting. This 
method is beneficial in tasks like speech recognition or text classifi-
cation, where data heterogeneity can hinder a single model’s perfor-
mance [133,134]. Boosting builds a sequence of models where each 
subsequent model focuses on correcting the errors of the previous ones. 
This makes it effective for handling hard to classify semantic nuances, 
such as sentiment expressed with sarcasm or ambiguity. Stacking trains 
diverse base learners and then uses a meta-learner to synthesize their 
outputs, capturing a broader range of semantic features and improving 
decision accuracy in complex tasks like machine translation or dialogue 
generation [133,134].

In addition to these traditional methods, advanced ensemble based 
algorithms have been proposed to explicitly address domain gener-
alization. Among them, D-SAM (Domain Specific Aggregation Mod-
ule) [135], DAEL (Domain Adaptive Ensemble Learning) [136], and 
COPA (Collaborative Part based Aggregation) [137] are notable ex-
amples. D-SAM introduces domain specific attention modules within 
the ensemble, allowing each sub model to specialize in a particular 
domain while still contributing to a unified prediction [135]. DAEL 
promotes domain invariant feature learning while maintaining domain 
specific pathways, enhancing both adaptability and stability in variable 
environments [136]. COPA improves domain generalization through 
collaborative learning among domain specific classifiers, incorporating 
privacy preserving updates and normalization techniques to ensure 
scalability and resilience [137] .
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A compelling use case for ensemble learning in semantic commu-
nication arises in multi agent robotic systems. In these environments, 
multiple autonomous agents (e.g., drones, delivery robots, or underwa-
ter vehicles) need to communicate semantically relevant information 
such as location updates, hazard signals, or task assignments under 
varying terrain, acoustic conditions, and operational settings. Each 
agent may operate in slightly different conditions and data domains. 
By employing ensemble learning, the communication framework can 
aggregate insights from multiple sub models trained on different op-
erational contexts, ensuring that the system generalizes well across all 
agents. For instance, an ensemble of models specialized for different 
terrains (e.g., urban, indoor, rural) can improve the semantic encoding 
and decoding processes, resulting in more reliable coordination and 
fewer communication breakdowns.
8. Transfer Learning:

Transfer learning is a widely adopted technique in machine learning 
that enables models trained on one task or domain to be reused or 
adapted for a different, yet related, task. This method is particularly 
advantageous in semantic communication, where systems such as in-
telligent agents, translation tools, or multilingual chatbots must often 
operate in novel domains with minimal labeled data [138]. The key 
benefit of transfer learning lies in its ability to reduce training costs and 
data requirements while enhancing performance in previously unseen 
or underrepresented semantic environments. The typical workflow of 
transfer learning involves two phases i.e. pre-training and fine tuning. 
In the pre-training phase, a model is exposed to a large scale dataset 
from a broad, general purpose domain, allowing it to learn reusable 
representations such as grammatical structures, contextual embeddings, 
and high level semantics. In the fine tuning phase, the model is adapted 
to a more specific task or domain by retraining its weights either 
partially or fully on a smaller, domain specific dataset [139]. This dual 
phase training approach helps the model maintain general knowledge 
while becoming sensitive to new task specific patterns. In semantic 
communication, this framework enables the rapid adaptation of com-
munication models to emerging application scenarios. For example, 
a model pre-trained on open domain conversational data can be fine 
tuned on a technical corpus such as customer support logs or medical 
dialogue, allowing it to interpret context rich queries more effectively. 
This approach is especially valuable in resource constrained environ-
ments where collecting and annotating new domain specific data is 
impractical or expensive.

Prominent pre-trained models such as BERT, GPT, RoBERTa, and T5 
demonstrate the power of transfer learning. These models are typically 
trained on large corpora covering a range of topics and linguistic styles 
and can be fine tuned for specific semantic communication tasks such 
as question answering, paraphrase generation, and real time summa-
rization [140]. By transferring learned knowledge of language and 
semantics, these systems generalize more efficiently to new domains, 
even when provided with minimal domain specific supervision.

A practical use case illustrating the power of transfer learning in 
semantic communication is its application in low resource cross lingual 
emergency response systems. During natural disasters or humanitarian 
crises, timely and accurate communication across multiple languages 
and dialects is critical. However, building and training separate mod-
els for each linguistic group is not always feasible due to time and 
resource constraints. By pre-training a semantic encoder on a high 
resource language corpus and then fine tuning it on limited examples 
of regional or dialect specific emergency texts, transfer learning en-
ables effective communication across linguistic barriers. This allows for 
faster model deployment and ensures generalization across scenarios 
involving varied languages, writing styles, and urgency levels.

Across the techniques reviewed in this section, each family makes 
distinct trade-offs in generalization, compute, data, and stability sum-
marized in Table  7. Meta-learning typically delivers the strongest out 
of domain performance and fastest few-shot adaptation, but incurs high 



M.F. Zia et al. Physical Communication 73 (2025) 102857 
Table 7
Comparative trade-offs of domain generalization techniques.
 DG technique Key methods Gen. 

performance
Complexity Data Req. Stability Strengths Limitations Best for shifts 

 Meta-learning MAML, 
MLDG, 
MetaReg

Strong, fast 
few-shot 
adaptation

High (bi-level 
opt.)

Moderate–high 
(diverse tasks)

Sensitive; 
unstable if 
poorly 
sampled

Rapid 
adaptation, 
versatile

Expensive 
training, episodic 
overhead

Source 
modality 
shifts, hetero-
geneous tasks

 

 Domain-
adversarial

DANN, GRL, 
ADDA

Good 
average-case 
robustness

Moderate (adds 
discriminator)

Low–moderate Moderate; 
adversarial 
risk of 
collapse

Learns domain-
invariant 
features, 
efficient

May fail on large 
unseen shifts

Channel 
shifts, hetero-
geneous envs.

 

 Gradient-
based

RSC, Fish, 
IRM

Stable, 
incremental 
improvements

Low–moderate 
(light ops)

Low High stability Simple, 
efficient, 
plug-and-play

Limited 
robustness on 
severe shifts

Source-level 
shifts 
(linguistic/vi-
sual)

 

 DRO GroupDRO, 
VREx, JTT

Strong 
worst-case 
guarantees

High (min–max 
opt.)

Moderate Less stable 
(saddle-point 
issues)

Protects 
against 
worst-case 
domains

Computationally 
heavy, slower 
convergence

Severe 
channel + 
modality 
shifts

 

 Self-
supervised

SimCLR, 
MoCo, BYOL

Good via large 
pretraining

High 
(pretrain)/Low 
(fine-tune)

High (large 
unlabeled 
corpora)

Stable after 
pretraining

Uses unlabeled 
data; versatile

Expensive 
pretraining, task 
alignment 
needed

Broad shifts 
(linguistic, 
multimodal)

 

 Generative GANs, 
Diffusion, 
VAE

High fidelity 
reconstructions

High (large 
models)

High 
(paired/unpair- 
ed data)

GANs 
unstable; 
diffusion 
more stable 
but slow

Improves 
semantic 
fidelity, robust 
to corruption

Compute-heavy, 
latency issues

Channel 
corruption, 
noisy recon-
structions

 

 Ensemble Bagging, 
Boosting, 
Snapshot 
Ensembles

Moderate boost 
via aggregation

High (parallel 
inference)

Low–moderate Stable Reliable, 
improves 
robustness

High 
inference/storage 
cost

General 
robustness 
across 
domains

 

 Transfer 
learning

BERT, 
ResNet-
pretrain, 
CLIP

Good when 
pretrained 
matches target

Low–moderate 
(fine-tuning)

Low (few-shot 
possible)

Stable; 
depends on 
pretrained 
quality

Strong 
baseline, 
efficient

Domain 
mismatch hurts 
performance

Cross-domain 
semantic 
shifts, 
low-resource 
settings

 

training overhead (bi-level optimization, episodic sampling) and can be 
brittle to task selection. By contrast, domain adversarial methods add 
only moderate complexity and deploy broadly, yet their domain invari-
ant features can underperform under extreme or non-stationary shifts. 
Gradient based regularizers (e.g., self challenging, gradient match-
ing) are lightweight and stable, offering an attractive efficiency ro-
bustness balance, though gains taper under severe distribution gaps. 
Distributionally robust optimization prioritizes worst case guarantees 
in unpredictable settings, at the cost of heavier min–max training 
and careful tuning. Self-supervised/contrastive pretraining lowers label 
dependence and scales well, but shifts cost to pretraining and de-
mands alignment with downstream semantics. Generative/reconstruc-
tion driven models (GANs, diffusion, VAEs) improve semantic fidelity 
and corruption robustness, while increasing model size, latency, and 
(for GANs) training instability. Finally, ensembles and transfer learning 
are practical, scalable baselines, ensembles reliably boost robustness at 
parallel inference cost, and transfer learning excels when pretraining 
data match the target domain but degrades under semantic mismatch. 
In practice, method choice should reflect shift type channel corruption 
often favors generative or adversarial approaches, cross modality or 
semantic shifts favor self-supervised or transfer learning, and high 
uncertainty deployments justify DRO while hybrid designs balance 
robustness, latency, and compute budget.

In summary, the techniques discussed in this section represent 
significant advancements in enabling domain generalization for AI-
enabled semantic communication. Each method ranging from meta-
learning and domain adversarial training to gradient based optimiza-
tion, distributionally robust optimization, self-supervised learning, gen-
erative modeling, ensemble strategies, and transfer learning offers 
unique mechanisms to improve adaptability, robustness, and scala-
bility. When integrated into semantic communication architectures, 
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these approaches empower models to operate reliably across dynamic 
and heterogeneous environments, reducing dependence on domain 
specific training and enhancing generalization to unseen conditions. As 
semantic communication systems are deployed in increasingly complex 
real world scenarios, the adoption of these domain generalization 
strategies will be essential for ensuring consistent performance, low 
latency adaptation, and reliable interpretation of meaning across varied 
linguistic, contextual, and operational domains. These capabilities are 
vital for next generation wireless technologies, supporting applica-
tions in autonomous systems, distributed AI agents, human machine 
interaction, and global scale communication networks.

5. Open issues, potential solutions, and future research directions 
in domain generalization for semantic communication

AI-enabled semantic communication represents a significant ad-
vancement in wireless communication, shifting the focus from tradi-
tional bit level transmission to the efficient exchange of meaningful 
information. While notable strides have been made in developing ar-
chitectures and algorithms that support semantic inference, a number 
of critical research challenges remain particularly in the context of 
domain generalization. As semantic communication systems are de-
ployed in increasingly diverse environments, the ability of AI models 
to generalize across different domains without retraining becomes a 
central requirement.

This section explores open issues and potential research directions 
related to domain generalization in semantic communication. We iden-
tify key challenges that impede the adaptability, robustness, and scal-
ability of current systems and propose methodological strategies to 
address them. These challenges are categorized into four major themes: 
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Fig. 8. Open Challenges and Solution Pathways for Domain Generalization in Semantic Communication System.
(i) scalability in large and heterogeneous networks, (ii) dynamic adapt-
ability across evolving domains, (iii) semantic understanding across 
languages and contexts, and (iv) real time processing of unstructured 
multimodal data.

Each challenge is paired with promising solution pathways, offering 
a structured roadmap for future research and system development. Fig. 
8 provides a conceptual overview of the open problems and associated 
strategies. This section aims to guide researchers and practitioners 
toward building resilient and generalizable semantic communication 
systems capable of operating reliably across a wide range of real world 
scenarios.

1. Challenge: Scalability
Scalability is a core challenge in AI-enabled semantic communica-

tion, particularly when systems are expected to operate across vast, 
diverse, and dynamic environments. In the context of domain gener-
alization, scalability refers not only to managing large data volumes 
but also to maintaining model robustness and adaptability across dis-
tributed domains without extensive retraining. With the emergence of 
6G and intelligent networks, AI-based semantic systems must support 
massive IoT infrastructures, real time vehicular communication, AR/VR 
streaming, and mission critical services each generating multimodal, 
non stationary data that challenge both communication efficiency and 
semantic consistency [141,142].

As these networks scale, ensuring that semantic communication 
models generalize well across varied operational contexts languages, 
use cases, and devices without centralized retraining or performance 
degradation becomes increasingly difficult.
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Potential Solutions:

• Distributed AI for Semantic Inference: Distributing semantic com-
munication models across nodes within the network (e.g., user 
devices, sensors, base stations) allows for localized semantic en-
coding and decoding that is better aligned with domain spe-
cific data. This setup supports generalization by learning domain 
aware patterns in situ while maintaining coordination with the 
global model. For instance, federated or decentralized training 
frameworks can be employed for domain aware semantic learn-
ing across IoT devices without data centralization, thus scal-
ing semantic communication while preserving privacy and local 
domain specificity [143,144].

• Edge Enabled Semantic Communication: AI models deployed at 
the edge (e.g., on mobile devices, smart cameras, or vehicu-
lar units) can perform near real time semantic encoding, re-
ducing transmission overhead and adapting to the local envi-
ronment. In AI-enabled semantic communication, edge AI en-
ables rapid adaptation to context (e.g., accent, dialect, or sensor 
modality), improving generalization without requiring constant 
connectivity to centralized servers. For example, semantic de-
coders on autonomous vehicles can dynamically adapt to different 
environments or road signage styles across cities [145,146].

• Cloud Edge Collaboration for Semantic Adaptation: Combining edge 
responsiveness with cloud level training and knowledge manage-
ment can address both generalization and scalability. Edge de-
vices can handle lightweight semantic inference while the cloud 
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aggregates feedback from multiple domains to refine and synchro-
nize global semantic representations. This architecture enables AI-
enabled semantic communication systems to continuously adapt 
to unseen domains through periodic updates while maintaining 
responsiveness and scalability in real time deployments [147].

The system should achieve at least a 50% reduction in floating-
point operations (FLOPs) or energy consumption per inference relative 
to baseline semantic encoders such as DeepSC, while maintaining high 
semantic fidelity with target thresholds of BLEU ⩾ 0.75 or PSNR ⩾
30 dB under in-distribution to out-of-distribution (ID→ OOD) shifts. 
Moreover, the end to end inference latency at the network edge should 
be limited to 20–30 ms for interactive applications and further reduced 
to no more than 10 ms in ultra-reliable low-latency communication 
(URLLC) scenarios, ensuring both efficiency and responsiveness across 
diverse use cases [148,149].
2. Challenge: Dynamic Adaptability and Cross Domain Generaliza-
tion

In AI-enabled semantic communication, dynamic adaptability and 
cross domain generalization are essential to maintaining robust per-
formance across diverse operating environments. Communication net-
works are inherently dynamic, subject to rapid changes in user demand, 
environmental factors, network topology, and traffic patterns. For se-
mantic communication systems to remain effective, AI models must 
adapt in real time to novel data distributions, evolving channel con-
ditions, and domain shifts such as variations in language, context, or 
modality without retraining from scratch [150,151].

These requirements are especially critical in mission critical appli-
cations such as autonomous transportation, real time augmented reality 
(AR), and industrial IoT, where semantic fidelity must be preserved 
under continuous change. The ability to dynamically generalize across 
domains ensures that models maintain semantic accuracy and low la-
tency in unseen scenarios, which is fundamental for deploying scalable 
and dependable semantic communication solutions.

Potential Solutions:

• Adaptive Learning Algorithms: Adaptive learning approaches allow 
semantic encoders and decoders to update their parameters in real 
time in response to distributional changes. These algorithms en-
hance cross domain generalization by enabling the system to learn 
from evolving patterns such as changes in user intent, context, or 
signal quality without compromising efficiency. Techniques like 
online meta-learning, experience replay, or few shot fine tuning 
help maintain semantic performance even under severe domain 
shifts. This adaptability is vital in systems where semantic com-
munication must respond quickly to new interaction modalities 
or user behaviors [152,153].

• Robust Training Methods: Adopting robust training paradigms such 
as adversarial learning and distributionally robust optimization 
(DRO) prepares models to withstand noise, adversarial input, or 
worst case domain shifts. In semantic communication, adversarial 
training exposes models to perturbed inputs that simulate real 
world variation in encoding, transmission, or contextual ambi-
guity. DRO optimizes models not just for average performance 
but for worst case distribution performance, ensuring resilience 
across heterogeneous domains. These methods collectively in-
crease the model’s ability to generalize semantic representations 
under unpredictable and volatile conditions [154,155].

• Transfer Learning: Transfer learning enables semantic models to 
reuse knowledge from related domains and quickly adapt to 
new communication scenarios. This is particularly valuable when 
labeled data in the target domain is scarce or when rapid deploy-
ment is necessary. For example, a model pre-trained on general 
language or visual data can be fine tuned with limited task spe-
cific examples such as domain specific speech patterns, scene de-
scriptors, or device logs while maintaining performance. This ac-
celerates deployment and enhances generalization across diverse 
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communication contexts such as multilingual virtual assistants or 
cross domain collaborative robotics [156].

Ideally, the adaptation cost should be limited to no more than five 
gradient steps with the use of at most 1% labeled target data, while 
the online adaptation time should not exceed one second. In addition, 
the relative performance degradation under ID→ OOD shifts should 
remain within 10% or less, measured using BLEU score or accuracy, 
and assessed across at least two previously unseen channel or content 
domains [157,158].
3. Challenge: Semantic Understanding Across Languages and Con-
texts

Semantic communication systems are designed to extract, encode, 
and transmit the meaning of messages rather than raw symbols. How-
ever, when deployed in multilingual and cross cultural environments, 
these systems face the complex challenge of preserving semantics across 
diverse linguistic structures, cultural norms, and contextual interpre-
tations. Each language presents unique syntax, grammar, idiomatic 
expressions, and semantic nuances, making direct translation or seman-
tic mapping non-trivial. Moreover, context specific meanings such as 
sarcasm, humor, or metaphor require AI models to perform fine grained 
semantic inference beyond surface level understanding [159].

The challenge becomes more acute in low resource languages, 
where labeled datasets are scarce and linguistic structures may differ 
significantly from those in high resource settings. Without effective 
domain generalization, semantic communication systems risk perfor-
mance degradation or meaning distortion when operating across such 
linguistic gaps. Furthermore, as language evolves introducing new 
expressions, regional dialects, or user specific jargon models must 
dynamically adapt to ensure semantic consistency across shifting lin-
guistic domains [160]. Evaluating semantic fidelity in this context is 
also difficult, as standard benchmarks may fail to capture the full 
spectrum of cultural and contextual diversity [161].

Potential Solutions:

• Unified Multilingual Models: Leveraging multilingual pre-trained 
models such as mBERT or XLM-RoBERTa offers a scalable so-
lution for cross lingual semantic communication. These models 
are trained on diverse multilingual corpora and can capture gen-
eralizable linguistic patterns that support domain transfer from 
high resource to low resource languages. In semantic commu-
nication, such models enable robust semantic encoding and de-
coding across languages within a single architecture, reducing 
the need for language specific pipelines and improving system 
maintainability [162].

• Cross Lingual Embeddings: Embedding alignment methods map 
words from different languages into a shared semantic space, 
ensuring that semantically similar concepts are closely positioned 
regardless of their language of origin. This approach enhances the 
ability of semantic communication models to generalize across 
languages, enabling accurate message reconstruction and intent 
recognition in multilingual systems. Tools such as MUSE and 
VecMap support both supervised and unsupervised embedding 
alignment, benefiting tasks like cross lingual retrieval, multilin-
gual dialogue generation, and translation [160,163].

• Meta-Learning: For low resource or emergent languages, meta-
learning can provide a mechanism for efficient adaptation with 
minimal training data. Meta-learning frameworks train the model 
on a variety of linguistic tasks, allowing it to learn transferable 
semantic representations. When applied to semantic communi-
cation, these techniques enable rapid adaptation to new lan-
guages, dialects, or cultural expressions with limited supervision. 
This supports more inclusive and globally adaptable semantic 
communication systems, especially in multilingual environments 
such as global customer service or international disaster response 
networks [96,161].
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In cross-lingual transfer, performance should retain at least 90% of 
the in-domain BLEU score when applied to OOD languages. For low 
resource adaptation, fine-tuning should be achievable with no more 
than 1000 parallel sentences. Moreover, semantic similarity should 
remain at or above 0.80 in zero or few-shot settings, evaluated across 
at least two distinct language families [164,165].
4. Challenge: Semantics for Unstructured Data in Real Time Mul-
timodal Communication

One of the most complex challenges in achieving domain gener-
alization within AI-enabled semantic communication systems lies in 
processing unstructured, multimodal data streams such as text, audio, 
images, and video in real time. Unlike structured tabular inputs, un-
structured data lacks predefined formats and often carries nuanced 
semantic meaning embedded in variable length sequences, contextual 
dependencies, or multi sensor inputs. These data types dominate many 
real world communication settings, including video conferencing, intel-
ligent surveillance, and human robot interaction, yet remain difficult to 
model due to their heterogeneity and semantic ambiguity [166].

Semantic communication systems are required not only to transmit 
this data efficiently but to extract and convey its underlying meaning 
accurately across domain shifts. These shifts may manifest in changes 
to visual context, acoustic background, user interaction styles, or data 
collection modalities. Therefore, models must generalize across diverse 
multimodal sources while remaining responsive to temporal dynamics 
and context specific semantic cues. Achieving this goal demands ar-
chitectures that integrate, annotate, and fuse multimodal signals in a 
domain aware and latency sensitive manner [167].

Potential Solutions:

• Multimodal Integration: A key enabler of semantic generaliza-
tion across unstructured data sources is the development of 
multimodal representation learning. Cross modal learning tech-
niques allow semantic communication models to capture relation-
ships between text, speech, and visual inputs, ensuring consistent 
meaning inference across domains. Transformer based architec-
tures with multi head attention and shared embedding spaces 
can align modality specific semantics during training, enabling 
the model to adapt when one modality changes (e.g., different 
dialects, lighting conditions, or image resolutions). Training on di-
verse, mixed domain datasets also improves generalization under 
varying real world conditions [167,168].

• Semantic Annotation: Automated semantic annotation methods 
are critical for structuring unlabeled multimodal data into for-
mats usable by semantic encoders and decoders. Annotating vi-
sual or audio signals with contextual tags (e.g., object types, 
speaker intent, emotion) supports domain generalization by re-
ducing ambiguity in cross modal alignment. Techniques such as 
convolutional neural networks (CNNs) for image tagging, large 
language models (LLMs) for contextual text generation [169], and 
weak supervision methods for semi automated labeling help boot-
strap domain robust annotations. These annotations allow mod-
els to extract generalizable patterns from limited or noisy data 
and maintain semantic coherence across different deployment 
environments [170,171].

• Multimodal Fusion: Real time semantic communication requires 
efficient fusion of multimodal features to generate coherent mes-
sages. Fusion strategies such as early fusion (combining raw 
data), late fusion (merging modality specific outputs), or hybrid 
fusion support the creation of unified semantic representations 
that retain the relevance of each input source. Attention based 
fusion mechanisms further improve domain generalization by dy-
namically weighting modality importance depending on context 
(e.g., prioritizing visual data in noisy environments or text in am-
biguous audio). These fusion strategies enable semantic systems 
to adaptively interpret diverse inputs and maintain robustness 
under domain shifts [172].
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For real time multimodal pipelines, the end to end latency should 
remain below 10 ms for URLLC scenarios and within 20–30 ms for 
XR or other interactive tasks operating at a minimum of 30 frames 
per second. The system should sustain a PSNR of at least 30 dB for 
images and video, as well as a semantic similarity score of at least 
0.80 under OOD channel conditions and noise. Additionally, the fusion 
overhead at the edge should contribute no more than 20% of the total 
latency [173,174].
5. Challenge: Trustworthiness in DG-Enabled Semantic Communi-
cation

A critical but often overlooked challenge in deploying domain gen-
eralization within semantic communication systems is ensuring trust-
worthiness, particularly against security risks and privacy concerns. 
While DG enhances robustness to distributional shifts, models remain 
vulnerable to adversarial attacks that exploit domain invariant fea-
tures. Such perturbations can cause semantic misinterpretations or 
even malicious manipulation of transmitted meaning, posing risks in 
safety critical applications such as autonomous driving, telemedicine, 
and industrial automation. Additionally, reliance on shared knowledge 
bases (KBs) for grounding semantics raises privacy concerns, as sensi-
tive contextual information may be inadvertently exposed or inferred, 
undermining user trust and data protection [175].

For DG-enabled semantic systems to achieve widespread adoption in 
real-world 6G deployments, they must not only generalize effectively 
but also ensure resilience against malicious actors and guarantee the 
confidentiality of semantic data. Addressing these dual concerns re-
quires embedding security and privacy preservation as integral design 
principles rather than afterthoughts.

Potential Solutions:

• Adversarial Robustness: Apply adversarial training and certified 
robustness methods to harden DG models against perturbations 
targeting domain invariant features, ensuring semantic fidelity 
under malicious attacks [176].

• Differential Privacy (DP): Integrate DP into DG training and adap-
tation to provide formal guarantees against leakage of sensitive 
user data, enabling privacy preserving generalization without 
exposing knowledge base contents [177].

• Federated and Secure Learning: Employ federated DG frameworks 
with secure aggregation so that raw user data remains on-device, 
reducing central exposure while maintaining adaptability across 
heterogeneous domains. [178]

To ensure trustworthy deployment, DG-enabled semantic communi-
cation systems should demonstrate resilience against adversarial pertur-
bations with less than 5% performance degradation, while maintaining 
differential privacy guarantees (e.g., 𝜖 < 5) during training and adap-
tation. These safeguards should be achieved without exceeding the 
latency and energy constraints of URLLC or XR applications, thereby 
balancing generalization, efficiency, and trustworthiness [179].

The challenges outlined in this section including scalability, dy-
namic adaptability, semantic consistency across languages and con-
texts, the processing of unstructured multimodal data, and the over-
arching issue of trustworthiness constitute major barriers to realizing 
robust domain generalization in AI-enabled semantic communication. 
Overcoming these obstacles is vital for the design of systems capable 
of operating reliably across diverse real world conditions, heteroge-
neous user populations, and varied application domains. The potential 
solutions discussed such as distributed AI, adaptive learning, mul-
tilingual modeling, and multimodal fusion offer promising avenues 
toward building semantic communication frameworks that are not 
only accurate and context-aware but also resilient to environmental 
variability and domain shifts. As semantic communication advances, 
future research must continue to refine these strategies to ensure that 
AI models can generalize autonomously and meaningfully across the 
full spectrum of data modalities, linguistic diversity, and contextual 
dynamics that define next-generation global communication networks.
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6. Conclusion

The integration of AI into semantic communication systems repre-
sents a foundational shift in how meaning is extracted, transmitted, 
and interpreted within next generation wireless networks. As networks 
become increasingly heterogeneous and data environments more di-
verse, the ability of AI models to generalize across unseen domains 
without retraining has emerged as a defining requirement for robust 
and scalable communication systems. This survey has provided a fo-
cused and indepth examination of domain generalization in the context 
of AI-enabled semantic communication, identifying its role as both a 
challenge and a catalyst for system wide adaptability. We discussed 
a broad set of techniques including meta-learning, domain adversarial 
training, distributionally robust optimization, self-supervised learning, 
transfer learning, and multimodal fusion that enable semantic commu-
nication systems to maintain performance across varying languages, 
modalities, environments, and user contexts. Furthermore, we iden-
tified key open issues related to scalability, dynamic adaptability, 
multilingual understanding, and real time unstructured data processing, 
offering a roadmap of potential solutions and research directions. By 
consolidating the current state of research in domain generalization for 
semantic communication, this work offers a reference framework for 
future studies aiming to develop context aware, resilient, and deploy-
ment ready AI communication models. As the demand for intelligent 
connectivity continues to grow across sectors ranging from IoT and 
autonomous systems to smart cities and global infrastructure ensuring 
that AI-enabled semantic communication systems can generalize across 
real world complexities will be central to their success. We hope this 
survey will inspire further interdisciplinary efforts to bridge the gap 
between generalization theory and practical communication system 
design, paving the way toward truly adaptive, intelligent, and globally 
interoperable wireless networks.
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