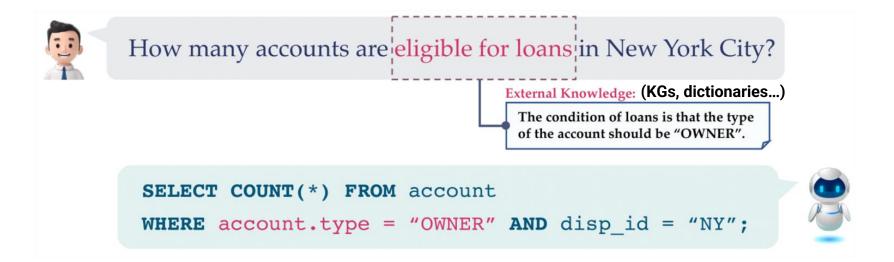
Reinforcement Learning to Enable Reasoning LLMs for Text2SQL

Paolo Papotti

Tabular Data Analysis (TaDA) Workshop, 5 Sept 2025

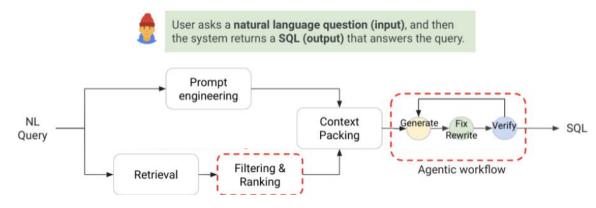
What is Text2SQL?

The task of mapping a **natural language question** on a database to the corresponding executable **SQL query**.

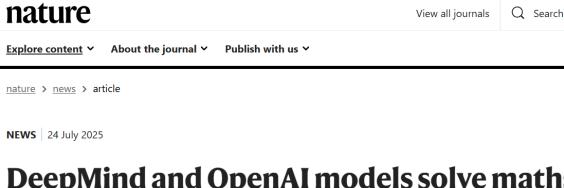


Li, Jinyang, et al. "Can Ilm already serve as a database interface? a big bench for large-scale database grounded text-to-sqls." Advances in Neural Information Processing Systems 36 (2023): 42330-42357.

State-Of-Art Text2SQL Pipelines



	BIRD Dev Ex Acc (%)					
Long Context NL2SQL	Simple	Moderate	Challenging	Overall		
+ All DB table schema	52.22 (-)	30.82 (-)	32.41 (-)	43.87 (-)		
+ Hints	67.35 (15.13)	51.08 (20.26)	44.14 (11.73)	60.23 (16.36)		
+ Sample column values	68.11 (↑ 0.76)	53.66 (2.58)	49.66 (↑ 5.52)	61.99 († 1.76)		
+ Self-correction	71.03 (↑ 2.92)	56.25 (2.59)	52.41 (2.75)	64.80 (2.81)		
+ Disambiguation	71.14 (↑ 0.11)	57.54 (↑ 1.29)	55.17 (2.76)	65.51 (↑ 0.71)		
+ Synthetic examples	72.32 (↑ 1.18)	59.05 (↑ 1.51)	53.79 (↓ 1.38)	66.56 († 1.05)		
+ Verify & retry ^b	72.65 (↑ 0.33)	59.70 (↑ 0.65)	55.86 (2.07)	67.14 († 0.58)		



DeepMind and OpenAI models solve maths problems at level of top students

Mathematical Olympiad.

Advanced version of Gemini with Deep Think officially achieves gold-medal standard at the International Mathematical Olympiad

RESEARCH

We achieved gold medal-level performance 7 on the 2025 International Mathematical Olympiad with a general-purpose reasoning LLM!

Our model solved world-class math problems—at the level of top human contestants. A major milestone for AI and mathematics.

21 JULY 2025

Research Question

To what extent do **reasoning** capabilities embedded or learned by LLMs **enhance Text2SQL performance** across **different training paradigms**?

Important Remark

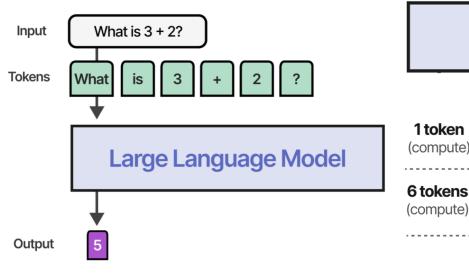
We are not trying to achieve SOTA!

- No prompt engineering, self-reflection, self-consistency, or ensembling
- Tables to answer the questions are provided (Oracle Table retrieval)

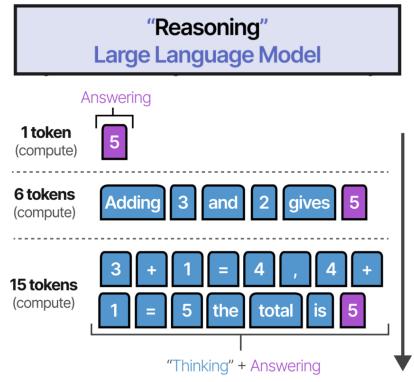
The key assumption

Standard Prompting Chain-of-Thought Prompting Model Input Model Input Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now? tennis balls does he have now? A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11. Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to do they have? make lunch and bought 6 more, how many apples do they have? Model Output Model Output prove A: The cafeteria had 23 apples originally. They used A: The answer is 27. 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

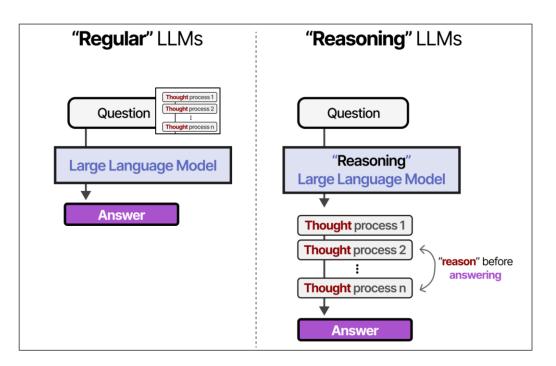
Background 1: What are reasoning models?

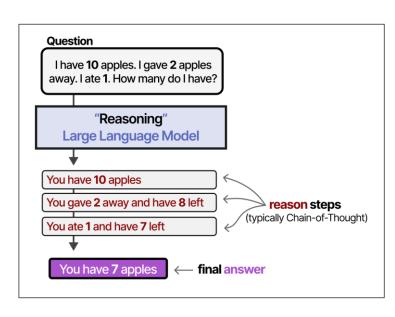


More tokens → more compute → better performance



Background 2: Difference with Chain-of-Thought?





LLMs: *Manually* specify in the <u>prompt</u> the step-by-step procedure for the problem (CoT) **Reasoning LLMs:** *Automatically* generates the "**best**" step-by-step formulation → **reasoning trace**

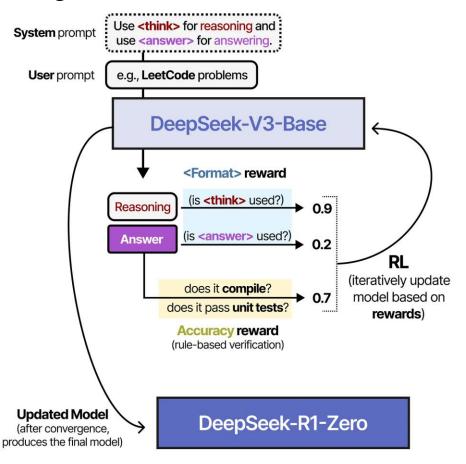
Background 3: Supervised-Fine-Tuning (SFT)

Thinking traces are "distilled" from DeepSeek-R1 (+ Gemini Pro)

```
Complete training/inference prompt.
   <|im_start|>system
   You are a helpful AI Assistant that provides well-reasoned and detailed responses. You first
   think about the reasoning process as an internal monologue and then provide the user with
   the answer. Respond in the following format: <think>
   </think>
   <answer>
   </answer><lim endl>
   <|im_start|>user
   Answer the following question with the SQL code. Use the piece of evidence and base your
   answer on the database schema. Given the question, the evidence and the database schema,
   return in the <answer> tags only the SQL script that addresses the question.
   Question:
   Calculate the average of 2020's population in each zip code.
   Evidence:
   average of 2020 population in each zip code refers to Divide (Sum(population_2020),
   Count(zip_code))
   Database Schema:
   CREATE TABLE zip_data
   zip_code INTEGER
   primary key,
   city TEXT.
   state TEXT.
   multi_county TEXT,
  "1st_quarter_payroll" INTEGER,
   foreign key (state) references state(abbreviation),
   foreign key (CBSA) references CBSA(CBSA)
   Return only the SQL script enclosed in <answer> tags.<|im_end|>
   <|im start|>assistant
```

```
Thinking generated trace
  <think>
  To solve this problem, we need to follow these steps:
  1. Identify the patients who have a body mass index (BMI) recorded
  in the observations table.
  2. Filter the records to find the lowest BMI value.
  3. Retrieve the full name (first and last) of the patient with the
  lowest BMI.
  The evidence provided indicates that the description we are looking for
  is "Body Mass Index" and the units should be 'kg/m2'.
  We also need to find the minimum value of the BMI.
  We can use a subquery to find the minimum value of BMI and then
  join this with the patients table to get the full name of the patient,
  </think>
  <answer>
  SELECT p.first, p.last FROM patients p
  JOIN (
      SELECT PATIENT, MIN(VALUE) AS min_bmi
      FROM observations
      WHERE DESCRIPTION = 'Body Mass Index' AND UNITS = 'kg/m2'
      GROUP BY PATTENT
  ) o ON p.patient = o.PATIENT
  WHERE o.min_bmi IN (
      SELECT MIN(VALUE)
      FROM observations
      WHERE DESCRIPTION = 'Body Mass Index' AND UNITS = 'kg/m2'
  </answer>
```

Background 4: RL with Verifiable Rewards (RLVR) - GRPO

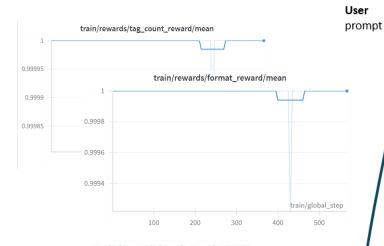


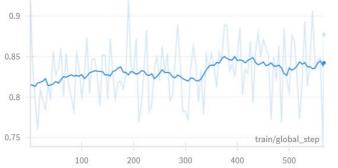
Training procedure

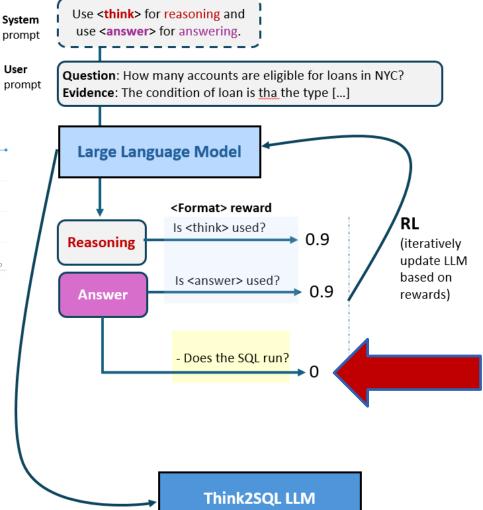
Start from a base/SFT model:

- 1. Generate G-possible answers
- 2. For each answer, calculate the rewards
- 3. Update the *advantage* of each response based on all the rewards
- 4. Update the model parameters based on each response and its relative advantage

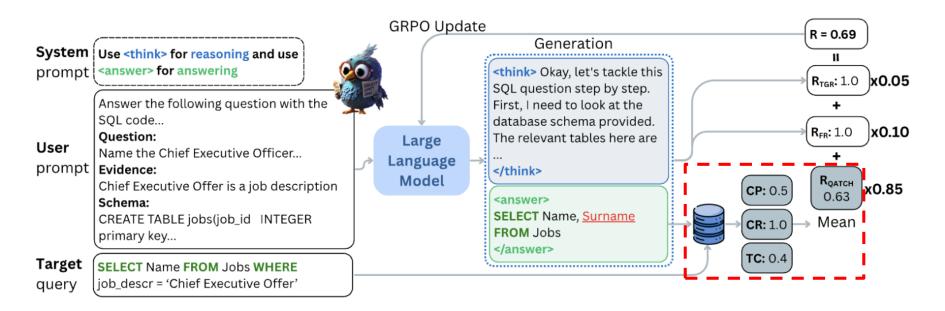
RLVR for **Text2SQL**







RLVR for Text2SQL with **Partial** Rewards



Partial rewards evaluate **precision**, **recall**, and **cardinality** of partially correct answers

S. Papicchio, P. Papotti, and L. Cagliero. Qatch: Automatic evaluation of sql-centric tasks on proprietary data. ACM Transactions on Intelligent Systems and Technology, 2025.

Think2SQL

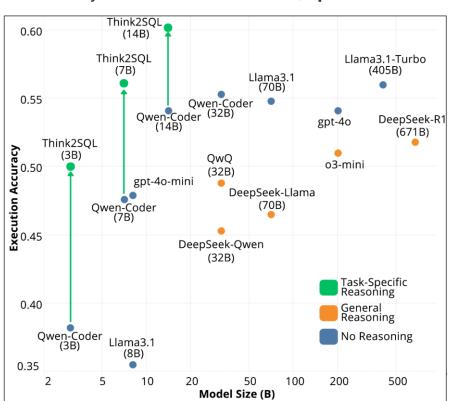
Research Question:

To what extent do reasoning capabilities embedded or learned by LLMs enhance Text2SQL performance

across different training paradigms?

Impact of **LLM training regimes**: Zero-Shot, SFT, RLVR, and their combination

Impact of rewards for RLVR



Takeaway 1: SFT with reasoning traces improves performance

SFT with reasoning improves over base models, especially for **smaller LLMs**.

Model	Simple	Medium	Challenging	Weighted AVG
Qwen-3B	0.469	0.267	0.196	0.382
${\tt Qwen-3B-SFT}_{NT}$	0.510	0.325	0.224	0.427
Qwen-3B-SFT	0.531	0.366	0.301	0.460

Qwen-7B	0.548	0.388	0.294	0.476
${\tt Qwen-7B-SFT}_{NT}$	0.537	0.310	0.273	0.443
Qwen-7B-SFT	0.573	0.40	0.294	0.494

14

Takeaway 2: Reasoning with RL improves performance

Possoning | Simple Medium Challenging | Weigthed AVC

Task-specific reasoning is better than general reasoning.

Model

	Model	Reasoning	Simple	Medium	Challenging	Weigthed AVG
	Open-source LLMs (< 10B))				
	DeepSeek-Qwen-1.5B	✓	0.056	0.004	0.0	0.035
	Qwen2.5-Coder-0.5B	✓	0.126	0.033	0.035	0.089
	DeepSeek-Qwen-7B	✓	0.297	0.113	0.049	0.218
	Qwen2.5-Coder-1.5B	✓	0.351	0.184	0.077	0.275
	Llama-8b	X	0.436	0.260	0.133	0.355
	Qwen2.5-Coder-3B	X	0.469	0.267	0.196	0.382
	Qwen2.5-Coder-7B	X	0.548	0.388	0.294	0.476
	Open-source LLMs (10-100	(B)				
	DeepSeek-Qwen-32B	✓	0.542	0.347	0.217	0.453
	DeepSeek-Llama-70B	✓	0.552	0.371	0.203	0.465
	QwQ-32B	✓	0.550	0.427	0.280	0.488
	Qwen2.5-Coder-14B	X	0.610	0.456	0.364	0.541
	Llama-70B	×	0.618	0.469	0.350	0.548
	Qwen2.5-Coder-32B	X	0.623	0.482	0.329	0.553
	Open-source LLMs (>100)	,				
	DeepSeek-R1	✓	0.588	0.440	0.294	0.518
	Llama-405B-Turbo	X	0.630	0.477	0.371	0.560
	Closed-source LLMs					
	gpt-4o-mini-2024-07-1	8 X	0.545	0.401	0.301	0.479
	o3-mini-2025-01-31	✓	0.561	0.406	0.329	0.510
	gpt-4o-2024-08-06	×	0.619	0.447	0.343	0.541
ĺ	Our Models					
	Think2SQL-0.5B	/	0.342	0.122	0.086	0.254
	Think2SQL-1.5B	✓	0.526	0.333	0.226	0.442
	Think2SQL-3B	✓	0.574	0.403	0.336	0.500
	Think2SQL-7B	✓	0.628	0.482	0.385	0.561
	Think2SQL-14B	✓	0.654	0.543	0.462	0.602

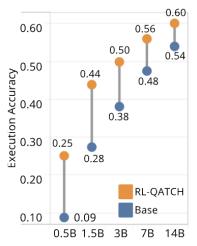


Figure 3: Qwen-Coder size vs. EX. on BIRD Dev.

Table 3: Improvement with \mathbf{R}_{QATCH} different model families.

Model	EX
Llama-8B	0.355
Llama-8B-RL	0.509 43%
DeepSeek-Qwen-7B	0.218
DeepSeek-Qwen-7B-RL	0.307 ▲41%

Takeaway 3: Dense Rewards work better

Dense Rewards as R_QATCH are more effective than sparse rewards like R_EX for RL. RL only beats SFT+RL on BIRD test data.

Model	Simple	Medium	Challenging	Weighted AVG
Qwen-3B	0.469	0.267	0.196	0.382
${\tt Qwen-3B-SFT}_{NT}$	0.510	0.325	0.224	0.427
Qwen-3B-SFT	0.531	0.366	0.301	0.460
${\tt Qwen-3B-RL}_{EX}$	0.569	0.381	0.273	0.485
${\tt Qwen-3B-RL}_{QATCH}$	0.574 ▲22%	0.403 ▲51%	0.336	0.500 ▲31%
${\tt Qwen-3B-SFT-RL}_{EX}$	0.560	0.370	0.343 ▲75%	0.482
${\tt Qwen-3B-SFT-RL}_{QATCH}$	0.564	0.372	0.305	0.482
Qwen-7B	0.548	0.388	0.294	0.476
${\tt Qwen-7B-SFT}_{NT}$	0.537	0.310	0.273	0.443
Qwen-7B-SFT	0.573	0.40	0.294	0.494
${\tt Qwen-7B-RL}_{EX}$	0.619	0.463	0.406	0.552
${\tt Qwen-7B-RL}_{QATCH}$	0.628 ▲15%	0.482 ▲24%	0.385	0.561 ▲18%
${\tt Qwen-7B-SFT-RL}_{EX}$	0.590	0.422	0.343	0.516
${\tt Qwen-7B-SFT-RL}_{QATCH}$	0.602	0.442	0.427 ▲45%	0.537

Takeaway 4: SFT + RL is more generalizable

Combining **SFT+RL** yields the **most generalizable models** across diverse datasets. This suggests that **SFT+RL** enables models to **better adapt** to **unseen scenarios**

Model	Spider	Spider-Syn	Spider-DK	KaggleDBQA
Qwen-3B	0.725	0.632	0.602	0.252
Qwen-3B-SFT	0.770	0.718	0.634	0.312
${\tt Qwen-3B-RL}_{QATCH}$	0.770	0.717	0.680 ▲13%	0.360
Qwen-3B-SFT-RL $_{QATCH}$	0.772 ▲6%	0.725 ▲15%	0.655	0.387 ▲54%
Qwen-7B	0.776	0.703	0.652	0.247
Qwen-7B-SFT	0.799	0.774	0.652	0.380
${\tt Qwen-7B-RL}_{QATCH}$	0.822	0.769	0.731 ▲12%	0.436
${\tt Qwen-7B-SFT-RL}_{QATCH}$	0.826 ▲6%	0.794 ▲13%	0.687	0.441 ▲79%

Open 1: reasoning traces quality?

```
<think>
To solve this problem, we need to follow these steps:
1. Identify the patients who have a body mass index (BMI) recorded
in the observations table.
2. Filter the records to find the lowest BMI value.
3. Retrieve the full name (first and last) of the patient with the
lowest BMI.
The evidence provided indicates that the description we are looking for
is "Body Mass Index" and the units should be 'kg/m2'.
We also need to find the minimum value of the BMI.
We can use a subquery to find the minimum value of BMI and then
join this with the patients table to get the full name of the patient.
</think>
<answer>
SELECT p.first, p.last FROM patients p
JOIN (
    SELECT PATIENT, MIN(VALUE) AS min_bmi
    FROM observations
    WHERE DESCRIPTION = 'Body Mass Index' AND UNITS = 'kg/m2'
    GROUP BY PATIENT
) o ON p.patient = o.PATIENT
WHERE o.min_bmi IN (
    SELECT MIN(VALUE)
    FROM observations
    WHERE DESCRIPTION = 'Body Mass Index' AND UNITS = 'kg/m2'
</answer>
```

RL training

```
<think>
Okay, let's see. The question is asking for the names of products where
there have been over 3 price changes. The evidence says that "over 3
price changes" means the count of ListPrice greater than 3.
Hmm, maybe that's a misunderstanding.
 Wait, count(ListPrice)>3 would mean more than three ListPrices,
but that doesn't make sense. Maybe it's actually referring to the
number of entries in ProductListPriceHistory where StartDate is not
null and ListPrice is not null. Because if a product has multiple
entries, each with different prices, that counts as a change.
So, the actual approach would be:
 count the distinct Products where there are entries in
 ProductListPriceHistory with ListPrice higher than a certain threshold.
But the evidence says over 3 refers to count(ListPrice)>3, which
confuses me. Maybe the intended solution counts distinct [...]
 But that might be more complex. For example:
 SELECT DISTINCT p.Name
FROM "Product" p
 JOIN ProductListPriceHistory h ON p.ProductID = h.ProductID
 WHERE h.ListPrice > h.StartDate AND COUNT(DISTINCT h.StartDate) > 3;
But wait, that's not right.
the same StartDate (same ProductID),
 that counts as one. For example, [...]
Find distinct products that have entries with ListPrice greater than
some threshold (say 3). For example:
 SELECT DISTINCT Name
 FROM Product
 WHERE ProductID IN (
     SELECT DISTINCT ProductID
     FROM ProductListPriceHistory
    WHERE ListPrice > 3
);
 [...]
 Alternatively, the user might have intended that for each Product
 in ProductListPriceHistory, if there's an entry with ListPrice >3,
then include that product. So the answer is selecting distinct names
 from product, joining with ProductListPriceHistory where ListPrice >3.
 </think>
 <answer>
 SELECT DISTINCT Name
```

SFT + RL training

Open 2: more input, more output for better reasoning?

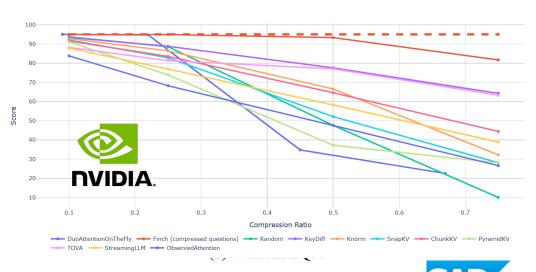
- Context is a bottleneck
 - Input: Opportunities for better quality
 - Output: Expensive at RL training time in terms of memory requirements
- Compression to the rescue?

$ \longrightarrow $	Guided by Attention	
Large Table (too big for LLM)	KV Cache Compression Keep only the most attended tokens	Efficient Tabular Tasks using Compressed Table

Corallo et al. *TableKV: KV Cache Compression for In-Context Table Processing.* TRL@ACL'25

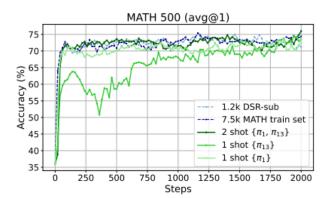
	BIRD Dev Ex Acc (%)				
Long Context NL2SQL	Simple	Moderate	Challenging		
+ All DB table schema	52.22 (-)	30.82 (-)	32.41 (-)		
+ Hints	67.35 (15.13)	51.08 (20.26)	44.14 (11.73)		
+ Sample column values	68.11 (↑ 0.76)	53.66 (2.58)	49.66 († 5.52)		

KVPress Leaderboard



Open 3: from pilots to solutions

- Efficiency at training
 - Running queries take a lot of time
 - Few examples to obtain comparable results?
 - MATH 500: 1 example vs 7.5K
 - Think2SQL: 256 ex. vs 9k → 2 points drop
- Efficiency at inference
 - Modeling SQL execution time in the rewards?
- Ambiguity in NL, Unanswerable Questions
 - Who issued "CD Special"?
 - Who produced "CD Special"?



Reinforcement Learning for Reasoning in Large Language Models with One Training Example. Arxiv 2025

Vagueness

Bank			Branch	
ID	Name	ID	Name	BankID
1	Nexus	1	East Side	1

Products				
ID	Name	BankID	BranchID	
1	CD Special	1	1	

AMBROSIA: A Benchmark for Parsing Ambiguous Questions into Database Queries. Neurips 2024

Can Human Annotation Be Replaced For Ambiguous And Unanswerable Text2SQL? [EMNLP'25]

Paper

Model

Think2SQL: Reinforce LLM Reasoning Capabilities for Text2SQL

Simone Papicchio

Politecnico di Torino, Turin, Italy EURECOM, Biot, France simone.papicchio@polito.it simone.papicchio@eurecom.fr

Luca Cagliero

Politecnico di Torino, Turin, Italy luca.cagliero@polito.it

Simone Rossi

EURECOM, Biot, France simone.rossi@eurecom.fr

Paolo Papotti

EURECOM, Biot, France paolo.papotti@eurecom.fr

Abstract

Large Language Models (LLMs) have shown impressive capabilities in transforming natural language questions about relational databases into SQL queries. Despite recent improvements, small LLMs struggle to handle questions involving multiple tables and complex SQL patterns under a Zero-Shot Learning (ZSL) setting. Supervised Fine-Tuning (SFT) partially compensate the knowledge deficits in pretrained models but falls short while dealing with queries involving multihop reasoning. To bridge this gap, different LLM training strategies to reinforce reasoning capabilities have been proposed, ranging from leveraging a thinking process within ZSL, including reasoning traces in SFT, or adopt Reinforcement Learning (RL) strategies. However, the influence of reasoning on Text2SQL performance is still largely unexplored.

https://arxiv.org/pdf/2504.15077

Thanks for your attention

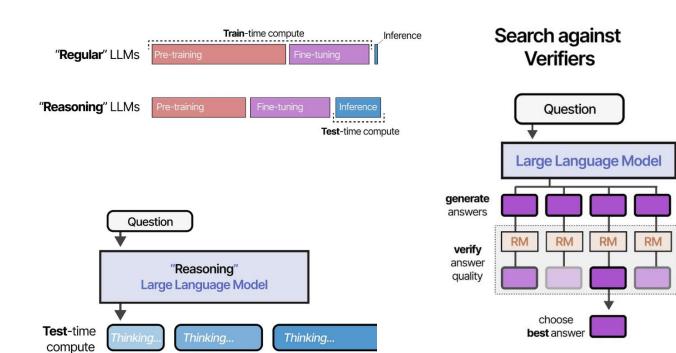
Background: **GRPO Loss**

$$\mathcal{L}_{ ext{GRPO}}(oldsymbol{ heta}) = \mathbb{E}\left[rac{1}{G}\sum_{i=1}^{G}rac{1}{T_{i}}\sum_{t=1}^{T_{i}}\min\left(p_{i,t}(oldsymbol{ heta})A_{i},\; ext{clip}ig(p_{i,t}(oldsymbol{ heta}),1-\epsilon,1+\epsilonig)A_{i}ig) - eta_{ ext{KL}}\left[\pi_{oldsymbol{ heta}}\parallel\pi_{oldsymbol{ heta}_{ ext{ref}}}
ight]
ight],$$

Token Level probability ratio

$$p_{i,t}(oldsymbol{ heta}) = rac{\pi_{oldsymbol{ heta}}(y_{i,t} \mid oldsymbol{s}_{i,t})}{\pi_{oldsymbol{ heta}_{
m old}}(y_{i,t} \mid oldsymbol{s}_{i,t})}$$

Advantage
$$A_i = rac{R_i - \mathbb{E}[R_j]}{\sqrt{\mathbb{V}[R_i]}}, \qquad j \in \{1, \dots, G\},$$

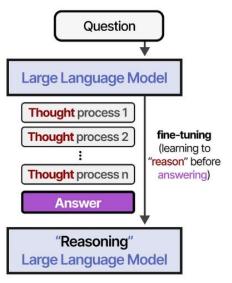


Months

Days

Weeks

Modifying Proposal Distribution



Impact of # examples

Think2SQ-7B-2048-samples-5-epochs

Table 8: Think2SQL-7B performance with reduced training samples and increased epochs, matching total gradient undates to the full data setting.

total gradient updates to the full-data setting.					
Model	BIRD-Dev	KaggleDBQA	Spider	Spider-Syn	
Think2SQL-7B-9000-samples-1-epochs	0.561	0.441	0.826	0.794	

0.552

Model	BIRD-Dev	KaggleDBQA	Spider	Spider-Syn
Think2SQL-7B-9000-samples-1-epochs	0.561	0.441	0.826	0.794

Model	BIRD-Dev	KaggleDBQA	Spider	Spider-Syn
Think2SQL-7B-9000-samples-1-epochs	0.561	0.441	0.826	0.794
Think 200 7D 256 samples 26 anachs	0.520	0.414	0.014	0.755

Think2SQL-7B-9000-samples-1-epochs	0.561	0.441	0.826	0.794	0.697
Think2SQ-7B-256-samples-36-epochs	0.539	0.414	0.814	0.755	0.693
Think2SQ-7B-512-samples-18-epochs	0.544	0.456	0.813	0.773	0.701

Think2SQ-7B-256-samples-36-epochs	0.539	0.414	0.814	0.755
Think2SO-7B-512-samples-18-epochs	0.544	0.456	0.813	0.773

The state of the s					
Think2SQ-7B-512-samples-18-epochs	0.544	0.456	0.813	0.773	0.701
Think2SQ-7B-1024-samples-9-epochs	0.550	0.432	0.817	0.783	0.720

0.432

0.811

0.775

Spider-DK

0.706

Impact of RL on other tasks

Qwen-7B-RL-EX

Table 7: Impact of RLVR fine-tuning on diverse benchmarks for mathematical reas	soning and code

generation. Results are reported as mean accuracy \pm standard deviation.

 0.09 ± 0.04

generation. Results are reported as mean accuracy = standard deviation.					
Model	AIME-2024@1:32	Math-500	GPQA Diamond	LiveCodeBench1:16	
Qwen2.5-Coder-7B	0.07±0.03	0.70 ± 0.02	0.37±0.03	0.16±0.02	
Qwen-7B-RL-QATCH	0.08 ± 0.03	0.70 ± 0.02	0.34 ± 0.03	0.15±0.01	

 0.698 ± 0.02

 0.30 ± 0.03

 0.16 ± 0.02

Think2SQL

Training regimes:

- 1. Zero shot
- 2. SFT
- 3. RL
- 4. RL+SFT

