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Abstract

In tasks like question answering and fact-
checking, models must discern relevant infor-
mation from extensive corpora in an "open-
book" setting. Conventional transformer-based
models excel at classifying input data, but (i)
often falter due to sensitivity to noise and (ii)
lack explainability regarding their decision pro-
cess. To address these challenges, we introduce
ATTUN, a novel transformer architecture de-
signed to enhance model transparency and re-
silience to noise by refining the attention mech-
anisms. Our approach involves a dedicated
module that directly modifies attention weights,
allowing the model both to improve predictions
and to identify the most relevant sections of in-
put data after supervised training. We validate
our methodology using fact-checking datasets
and show promising results in question answer-
ing. Experiments demonstrate improvements
of up to 51% in F1 score for detecting relevant
context, and gains of up to 18% in task accuracy
when integrating ATTUN into a model.1

1 Introduction

Transformer-based models are pivotal in numerous
applications, notably in tasks like fact-checking,
which has gained prominence with the rise of so-
cial media platforms (Nakov et al., 2021). In this
domain, a claim, denoted as a query q, is examined
for its truthfulness using supporting evidence ê ex-
tracted from a vast corpus. The model processes
this query-evidence pair to produce an output o,
categorically labeling the claim as Supports, Re-
futes, or Not Enough Information (NEI). Despite
their efficacy, traditional encoder models face chal-
lenges with noise sensitivity and lack transparency
in how these decisions are reached.

Consider, for example, the claim "B. Obama was
born in Hawaii". A retriever over Wikipedia pages

*Work done while at EURECOM.
1Code https://github.com/JeFlBu/ATTUN.git

might collect several passages related to Obama
and Hawaii. Among these, the crucial passage con-
firming Obama’s birthplace may not emerge as the
top choice. Consequently, the classifier model is
typically provided with 20 to 40 passages, which
introduces both relevant and noisy information. En-
hancing the model’s ability to discern and use rel-
evant evidence would improve both accuracy and
explainability of its decisions.

In realistic settings, retriever models often gen-
erate e, a noisy version of the ideal evidence ê.
Therefore, it is crucial to identify which parts of the
context e are truly beneficial for decision-making,
effectively aiming to expose the ê used by the
model. Human fact-checkers dismiss outputs that
lack transparency about the evidence supporting
the model’s decision (Nakov et al., 2021). Ensur-
ing transparency is vital for users, allowing them to
verify the evidence and determine their alignment
with the model’s conclusions (Guo et al., 2022).

However, traditional models often function as
black boxes, lacking explanations for their out-
puts, which makes it challenging to discern the
specific evidence ê used for decision-making (Bus-
sotti et al., 2024). Current post-hoc methods, like
SHAP and LIME (Ribeiro et al., 2016; Lundberg
and Lee, 2017), offer insights into model outputs,
but are computationally expensive, requiring nu-
merous executions. External models attempt to
classify context relevance (Atanasova et al., 2020),
but often fall short in faithfully representing the
model’s internal decision-making. Using LLMs for
both output and justification has shown limitations
in correctly attributing references (Gao et al., 2023),
despite attempts to address these issues through
synthetic data and fine-tuning (Huang et al., 2024).
While some approaches bypass retrieval by using
entire documents as context (Lee et al., 2024), this
renders the context e ineffective for explanation.

Attention mechanisms present a promising av-
enue for generating explainable outputs by allow-
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ing transformer models to focus on relevant in-
formation within the input. However, attention
weights do not always correlate well with feature
importance (Liu et al., 2022; Team, 2024). Existing
methods use attention to highlight tokens with high
attention scores, aiming to show which parts of
the text the model considers important (Kotipalli,
2024; MLOps Community, 2024). Yet, these ap-
proaches typically neglect the context of the query
during classification tasks, which significantly lim-
its the effectiveness of such explanations (Liu et al.,
2021). This underscores the need for improved
methods that effectively integrate query context
into attention-based explanations.

Finally, a significant challenge is the models’
lack of robustness to noise (Yoran et al., 2024).
While LLMs manage extensive contexts with mil-
lions of tokens (Dubey et al., 2024), their outputs
can be disrupted by lengthy inputs (Lee et al.,
2024). Current explainers and post-hoc methods
do not enhance model performance, highlighting
the need for novel architectural solutions.

We address these challenges by exploring the
following research question: Can we create
lightweight models that justify their output using
the input? We introduce ATTUN (from ATTention
tUNing), which offers a solution for Transformer-
based models by providing more faithful explana-
tions without increasing computational cost. Our
approach integrates a module that evaluates the at-
tention between the context and the query within
the classifier’s architecture. This module is trained
jointly with the classifier, refining its attention pa-
rameters based on evidence relevance. This refine-
ment enhances both the quality of explanations and
the accuracy of attention values, ultimately improv-
ing the classifier’s overall performance.

We validate our approach by comparing AT-
TUN with other explainers through extensive ex-
periments with established systems and LLMs.
We assess the scalability of our method by apply-
ing it across various datasets, using encoder-only,
encoder-decoder, and decoder-only models. Our
results demonstrate that ATTUN significantly en-
hances performance, with an increase in F1 score
for detecting relevant contextual elements by up to
51%, and a boost in task accuracy by up to 18%
compared to using vanilla architecture.

2 Related Work

Most interpretable fact-checking systems bolt an
explainer onto a black-box verifier. Many rank
evidence passages before assigning a claim la-
bel (Kotonya and Toni, 2020; Dammu et al., 2024;
Saeed et al., 2021), while others train a parallel
explanation head (Si et al., 2023b,a; Atanasova
et al., 2020). Yet the evidence they highlight of-
ten differs from what the verifier truly uses. Post-
hoc tools such as SHAP and LIME provide more
faithful explanations, but at a steep computational
cost (Ribeiro et al., 2016; Lundberg and Lee, 2017).

Transformer self-attention (Vaswani et al., 2017)
has been probed for interpretability by visualiz-
ing attention maps (Sen et al., 2020; Pruthi et al.,
2020) and scoring token/head salience (Liu et al.,
2021; Voita et al., 2019; Clark et al., 2019)Because
raw weights often mis-align with model reason-
ing (Wiegreffe and Pinter, 2019; Jain and Wallace,
2019; Sun and Lu, 2020), refined variants improve
faithfulness for image-to-text (Rong et al., 2024)
and ECG diagnosis (Yoo et al., 2021). Look Back
Lens uses attention ratios post-hoc to flag hallu-
cinations without extra fine-tuning (Chuang et al.,
2024). Yet no prior work trains a single transformer
to jointly predict and explain, or alters attention dur-
ing the forward pass to control evidence selection.

3 Architecture

Our architecture identifies relevant inputs crucial
for generating the answer. We now outline the input
and output structures used by traditional systems in
comparison to our approach. We then explain the
modifications introduced to transformer models to
enhance their explainability and robustness.
Structure of output explanation. Transformer
models process a textual input i to produce an out-
put o. In fact-checking, i comprises a claim q and
an evidence set e, which includes both relevant and
irrelevant information for labeling q. The evidence
set is represented as e = {ei|i ∈ {0, ..., k}}, where
k is the total number of evidence pieces and ei de-
notes each piece. Typically, we input i into the
model as a concatenated string "q|e0|...|ek".

ATTUN retains this input structure but intro-
duces an additional output, el, for evidence label-
ing. This output identifies relevant components of
e that contributed to producing o, represented as
el = {eli|i ∈ {0, ..., k}}, where eli is 1 if the evi-
dence is useful, and 0 if it is noise. The purpose of
el is to provide a transparent explanation to users



about which evidence influenced the model’s deci-
sions. For instance, with q="B. Obama was born in
the US" and the evidence set e={"B. Obama was
born in Hawaii", "Hawaii is in the US", "B. Obama
was elected in 2008"}, el = {1, 1, 0}. With NEI
claims, an evidence is useful if it is necessary to
support or refute the claim but not sufficient.

Model refinement. We enhance the architecture of
transformer models to directly use attention val-
ues A. Ignoring batch size, A is structured as
[l, h,N,N ], where N is the number of tokens in
the input i, and l and h denote the attention lay-
ers and heads, respectively. Each element from
the context ei is associated with a specific token
range within [0, N ]. We build a function, fe, which
processes A to derive a specific value for each ei,
considering its role within the entire context. The
function fe computes, for each layer and head, the
average attention weight between the context in-
put tokens – claim or full input – and the tokens
of each evidence span ei. This yields a matrix
of shape [l, h] per evidence representing attention
interactions between the evidence and the overall
input across all layers and heads. These matrices
are then element-wise divided by a reference ma-
trix computed in the same way over the claim span.
The resulting matrices are flattened and passed to
a linear classifier to produce a usefulness score for
each evidence. Alternative strategies for computing
fe are provided in Appendix A.2. By compiling
these labels, we form the set of evidence labels,
êl = {êli|i ∈ {0, ..., k}}.

We either use a single classifier, or one classifier
per label. Having a different classifiers can be
beneficial when different labels require different
focus on the evidence. For instance, a Refutes claim
only requires to focus on contradicting elements.

Linear classifiers are included inside the model
architecture and trained during the fine-tuning of
the model. Their training objective is to minimize
the binary cross entropy loss, losse, between the
generated set êl and the original set el. This loss is
then added to the loss of the original model lossm
and multiplied by a tunable coefficient γ. The total
loss is loss = lossm + γ × losse.

Figure 1 illustrates the pipeline of our system.
This novel architecture incorporates a loss function
that refines attention parameters by focusing on key
input elements, enhancing model robustness and
making it internally explainable.
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Figure 1: Integration of ATTUN attention-based ex-
plainer module into a pretrained transformer. The mod-
ule processes attention values A to generate evidence
labels êl, enhancing interpretability and robustness.

4 Experiments

We conduct experiments to evaluate ATTUN in the
context of fact-checking. Additional experiments
on question answering are in the Appendix.
Settings. We use four popular datasets for fact-
checking: Feverous, AVeriTeC, FM2 and SciFact.
We compare ATTUN against models with intrinsic
explanations, such as GFCE, LLaMa3, and GPT-4o
mini (the latter is evaluated both with and with-
out additional fine-tuning on each dataset). We
use both SHAP-based post-hoc explainability and
ATTUN explainability on RoBERTa, Phi-4 mini,
and DeBERTa-V3 verifiers, enabling direct com-
parisons. LLaMa3 and GPT-4o mini are prompted
to identify relevant evidence prior to classifying the
claim, whereas Phi-4 mini outputs a label directly.
We also introduce ATTÆX (ATTention Analysis
for EXplainability), a simpler variant in which the
verifier is fine-tuned independently of its explainer
module. Details on models and training procedures
are in Appendix A.7. All models are trained and
evaluated on their corresponding datasets. The F1
Useful metric measures the alignment between pre-
dicted and gold evidence sets, while F1 Noise is
for the evidence correctly predicted as not useful.
Results. Table 1 summarizes our results; we pro-
vide the effect of hyperparameter variations in
the Appendix. Our model ATTUN consistently
achieves state-of-the-art results in evidence identi-
fication, with up to 51% improvement in F1 Use-
ful (from 0.49 to 0.74 on Feverous) compared to
other approaches. On Feverous, the retriever re-
call is only 0.36 (Appendix Table 8), meaning that
many gold evidence sentences are missing from
the input. Yet, ATTUN improves evidence identi-
fication showing its capacity to handle incomplete
contexts in noisy retrieval settings. Conversely, on
datasets where all gold evidence is present (i.e.,
recall of 1), ATTUN still brings significant gains,



Model DS Verifier Explainer DS Verifier Explainer
Acc. F1 Sup F1 NEI F1 Ref Acc. F1 Useful F1 Noise Acc. F1 Sup F1 NEI F1 Ref Acc. F1 Useful F1 Noise

GFCE

Fe
ve

ro
us 0.59 0.69 0.00 0.46 0.79 0.33 0.88

Sc
iF

ac
t 0.37 0.52 0.00 0.23 0.38 0.20 0.50

LLaMA 0.57 0.70 0.17 0.44 0.88 0.46 0.93 0.76 0.80 0.71 0.72 0.80 0.51 0.88
GPT-4o mini 0.51 0.65 0.20 0.5 0.89 0.49 0.94 0.69 0.73 0.62 0.69 0.84 0.41 0.91
FT GPT-4o mini 0.57 0.68 0.00 0.43 0.93 0.49 0.96 0.69 0.74 0.74 0.40 0.89 0.52 0.94
RoBERTa + SHAP 0.60 0.71 0.00 0.41 0.89 0.35 0.94 0.67 0.69 0.75 0.49 0.83 0.28 0.91
RoBERTa + ATTÆX 0.60 0.71 0.00 0.41 0.86 0.36 0.92 0.67 0.69 0.75 0.49 0.79 0.49 0.87
RoBERTa + ATTUN 0.68 0.75 0.00 0.62 0.93 0.73 0.96 0.79 0.79 0.86 0.59 0.91 0.56 0.95
DeBERTa + SHAP 0.71 0.77 0.00 0.68 0.84 0.29 0.90 0.83 0.80 0.83 0.86 0.89 0.29 0.94
DeBERTa + ATTÆX 0.71 0.77 0.00 0.68 0.88 0.46 0.93 0.83 0.80 0.83 0.86 0.76 0.34 0.86
DeBERTa + ATTUN 0.72 0.78 0.00 0.70 0.94 0.74 0.97 0.88 0.89 0.90 0.81 0.91 0.61 0.95
Phi-4 mini + SHAP 0.68 0.75 0.00 0.62 0.90 0.48 0.94 0.67 0.67 0.05 0.81 0.89 0.40 0.94
Phi-4 mini + ATTÆX 0.68 0.75 0.00 0.62 0.88 0.56 0.93 0.67 0.67 0.05 0.81 0.86 0.29 0.92
Phi-4 mini + ATTUN 0.69 0.76 0.00 0.62 0.88 0.61 0.93 0.70 0.71 0.18 0.81 0.90 0.63 0.94

GFCE

FM
2 0.58 0.59 - 0.56 0.60 0.32 0.71

AV
er

iT
eC 0.59 0.50 0.50 0.69 0.37 0.49 0.17

LLaMA 0.87 0.88 - 0.87 0.85 0.58 0.91 0.76 0.77 0.44 0.85 0.88 0.81 0.92
GPT-4o mini 0.81 0.87 - 0.79 0.88 0.64 0.93 0.85 0.90 0.51 0.89 0.89 0.80 0.92
FT GPT-4o mini 0.88 0.88 - 0.87 0.95 0.79 0.97 0.90 0.90 0.65 0.93 0.85 0.80 0.88
RoBERTa + SHAP 0.86 0.86 - 0.86 0.87 0.27 0.93 0.79 0.86 0.52 0.78 0.78 0.49 0.86
RoBERTa + ATTÆX 0.86 0.86 - 0.86 0.91 0.64 0.95 0.79 0.86 0.52 0.78 0.87 0.80 0.91
RoBERTa + ATTUN 0.86 0.86 - 0.86 0.95 0.80 0.97 0.83 0.75 0.50 0.88 0.92 0.86 0.93
DeBERTa + SHAP 0.90 0.90 - 0.90 0.89 0.47 0.94 0.79 0.84 0.00 0.79 0.77 0.48 0.85
DeBERTa + ATTÆX 0.90 0.90 - 0.90 0.83 0.46 0.90 0.79 0.84 0.00 0.79 0.78 0.67 0.83
DeBERTa + ATTUN 0.91 0.91 - 0.91 0.96 0.81 0.97 0.90 0.86 0.72 0.93 0.91 0.85 0.93
Phi-4 mini + SHAP 0.89 0.89 - 0.89 0.81 0.11 0.90 0.78 0.70 0.60 0.83 0.71 0.20 0.82
Phi-4 mini + ATTÆX 0.89 0.89 - 0.89 0.87 0.41 0.93 0.78 0.70 0.60 0.83 0.67 0.26 0.79
Phi-4 mini + ATTUN 0.89 0.89 - 0.89 0.91 0.65 0.95 0.78 0.71 0.00 0.85 0.85 0.77 0.89

Table 1: Performance comparison across different models and datasets for claim verification (Verifier) and explana-
tion through evidence attribution (Explainer). Best explanation result for every dataset in bold. Models including
our architecture refinement are underlined. The tests are performed on test datasets from Table 7. Our primary goal,
explainability, is assessed using the F1 Useful Evidence column, with accuracy also being an important factor. The
performance of claim classification is primarily evaluated based on its accuracy.

confirming that its benefits extend to high-recall
settings as well. These results address our pri-
mary research question. In addition to improved
explainability, ATTUN yields better claim classi-
fication accuracy across several datasets — with
improvements up to 18% (from 0.67 to 0.79 on
RoBERTa+SciFact) compared to its non-ATTUN
counterpart — demonstrating enhanced noise ro-
bustness. We attribute ATTUN’s superior perfor-
mances to its architecture. It enables a better evi-
dence labeling, due to a more expressive evidence
classifier, as well as an improved claim prediction,
since useful evidence tokens receive refined atten-
tion scores. Through regularization via multitask
learning, it prevents overfitting by penalizing bi-
ased shortcuts – a model that relies on spurious
signals for claims will struggle to label evidence.

In contrast, models like GFCE – which use sep-
arate modules with a joint loss – fail to capture
this synergy, likely due to insufficient cross-task
signal propagation. Similarly, ATTÆX, where the
evidence classifier is decoupled, underperforms, un-
derscoring the value of shared learning in ATTUN.
Using attention values, even with the manipula-
tions performed by fe, it is not enough to provide
a relevant selection of evidence as output.

We observe that ATTUN brings the most bene-
fits when applied to encoder-only architectures like

RoBERTa and DeBERTa-V3. In contrast, decoder-
only models like Phi-4 mini benefit less. We hy-
pothesize this is due to the difference in input rep-
resentation handling. Encoder models preserve a
consistent mapping to input tokens throughout the
layers, enabling attention-based methods to faith-
fully track evidence relevance while Decoder mod-
els (like Phi-4 mini), which update token repre-
sentations autoregressively, shift attention toward
generated abstractions, making evidence attribution
less reliable. Despite this, ATTUN still improves
Phi-4 mini’s explainability and classification, show-
ing general robustness across datasets.

Finally, we suggest ATTUN’s generalizability
by applying it to question answering, where it
reaches a strong F1 Useful score of 0.75 in pre-
liminary experiments (Appendix A.4, Table 6).
Takeaways: ATTUN significantly improves evi-
dence attribution performance, our primary objec-
tive. Our method sets a new standard for explain-
ability in fact-checking.

5 Conclusion and Future Work

We address noise sensitivity and explainability is-
sues in transformer models through enhanced atten-
tion – a crucial focus given the continuous increase
in input lengths. Future work could explore the
application of ATTUN to instruction-based tasks.



Limitations

Although we apply our method on several fact-
checking dataset, we do not evaluate on a broader
range of tasks. The main reason for focusing on
a limited number of tasks is the lack of annotated
datasets. We aim to work on tasks as realistic as
possible, sourcing evidence either from question an-
swering or fact-checking based on real retrieved ev-
idence. We show proofs of generalization through
a first experiment on Question Answering, relying
on a dataset adapted to the task thanks to its noisy
passages. Our experiments already demonstrate
that adding artificial noise makes the evidence clas-
sification task more artificial and biased, as the
noise becomes easier to distinguish. Also, given
the constraints of a short paper, adding extensive
experiments on additional tasks is challenging. We
leave other applications as future work.

ATTUN can be adapted to a range of tasks,
including extractive QA. However, in extractive
settings the explainer offers limited benefit at in-
ference, since the answer span already reveals
the relevant context. Its contribution is there-
fore mainly complementary, reinforcing evidence-
focused learning during training, whereas tasks like
fact-checking or abstractive QA showcase its full
potential.

Including our module in the models complicates
the training procedure. Training datasets need to
have usefulness labels for their context as part of
the data. In case there is none, it is not always
possible to create such labels. For instance, hu-
man written context would request to use synthetic
dataset generation methods to fill the gap. One can
use an LLM to add noise, but it might be too trivial
compared to real noise.

Ethical considerations

The deployment of fact-checking models comes
with inherent risks, including potential misuse and
unintended harm. A key concern is the possibility
of adversaries exploiting these models to spread
disinformation. By analyzing how the models op-
erate, they could manipulate evidence sources to
generate misleading yet plausible claims. ATTUN
would then expose those false evidence. Mitigating
this requires frequent updates to the models and
improved detection of evolving misinformation tac-
tics.

Another risk involves bias and fairness. Fact-
checking models may unintentionally reinforce bi-

ases present in their training data, leading to unfair
treatment of certain groups. For example, if spe-
cific communities are underrepresented in the evi-
dence base, the models may struggle with claims
related to them. Addressing this challenge involves
auditing datasets, enhancing data diversity, and in-
corporating fairness-aware learning methods to re-
duce bias and ensure equitable performance.
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A Appendix

A.1 Features of our system and competitors
We propose Table 2 to compare our system versus
other existing ones. Our approach permits light-
weight and faithful prediction.

A.2 Alternative configurations for fe

We mention in the main content that values
corresponding to each evidence span ei are split
per layer and per head before being passed to a
linear classifier.

Before selecting this approach, we explored
several variants:

We denote by stratKey the strategy used to
operate on evidence ei, and by stratQuery the
strategy applied to the overall context.

For stratKey, we either compute the average
of the attention values over the tokens in ei
(average), or we extract the attention value
from the previous separator token (sepToken) or
the following one (sepTokenAfter). The latter
options may be more or less meaningful depending
on the architecture of the model.

For overall context handling, stratQuery,
we either compute the average over all input
tokens, referred to as averageEverything, or we
compute the average over the tokens corresponding
to the claim (averageClaim). We also test using
only the attention to the last token (lastToken).

Using ratio on stratKey and stratQuery
defines our overall operation strategy. We also
experimented with subtraction instead of ratio.

For example, when using the average
(for stratKey) and averageEverything (for
stratQuery) strategies, we compute, for each
evidence span ei, the average attention weight
received by the tokens in ei from all other tokens
in the input. This computation is performed
separately for each attention layer and head,
resulting in a matrix of shape [l, h] for each ei.
We then compute a reference matrix in the same
manner for the claim span. Each evidence matrix is
element-wise divided by this reference matrix. The
resulting [l, h] matrices are flattened and passed
through a linear classifier to produce scalar scores
indicating evidence usefulness. We introduce an
additional parameter, an advanced evidence loss

factor, which multiplies the loss attributed to useful
evidence, thereby increasing the importance of
correctly labeling them. This is applied exclusively
to Phi-4, as other models perform well without
it. More details can be found in the code released
with the paper.

A.3 Selection of best parameters
We show in Table 3 the parameters we found opti-
mals for ATTUN upon experiments. The results
we report used those values for training.

We show in Tables 4 and 5 the impact using other
parameters have on the final results on RoBERTa.

Similar behavior is observed on DeBERTa. How-
ever, for Phi-4, the only strategies that prove effec-
tive are averageEverything and average.

Due to cost and time constraints, we are unable
to provide a comprehensive comparison of all pa-
rameter combinations.

A.4 Results on question answering
To extend our analysis on Question Answering, we
use the MS MARCO dataset (Bajaj et al., 2018),
which consists of over 1 million real search queries
from Bing, paired with human-generated answers
and supporting web passages, enabling tasks like
answer generation and passage ranking. Our goal
is to generate an answer from the inputs, and label
at the same time the useful passages. The input
of our task is constituted from the questions and
passages. We choose to use the T5 model (Raf-
fel et al., 2020) for the task. Since the inputs are
too long for the model, we limit the context to 4
passages—retaining all useful ones and filling the
remainder with randomly selected noisy passages
from the same question. Future work should inves-
tigate the full 10-passage setting. We fine-tune both
the original model and its ATTUN version on this
dataset, setting the learning rate to 1e−05 and train-
ing for 3 epochs. We test models on the MS Marco
test set, both on the quality of the answer generated
with ROUGE (Lin, 2004), BLEU (Papineni et al.,
2002) and Perplexity (Jelinek et al., 2005) metrics,
and on evidence labeling with the standard clas-
sification metrics. Results are displayed in Table
6.

T5 serves as the baseline in this setting, while
both T5 and T5+ATTUN represent our contribu-
tions. We do not provide results for ATTÆX in
this context. Exploring other models for question
answering, as well as conducting ablation studies,
is left for future work.
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Model ChatGPT SHAP/LIME Joint-Model ATTÆX ATTUN
Scalable ✓ ✓ ✓
Low resource constraint ✓ ✓ ✓ ✓
Instant prediction ✓ ✓ ✓ ✓
Privacy / Run on your own ✓ ✓ ✓ ✓
Flexible structure ✓ ✓ ✓
Context-label tuned ✓ ✓ ✓
Intrinsic explanation ✓ ✓ ✓
Impact label prediction ✓ ✓ ✓
Specific loss adjustment ✓

Table 2: Comparison of models based on various characteristics.

Dataset stratQ stratK. ope. γ mult.C. adv.Ev.

R
oB

E
R

Ta Scifact av.Claim av. ratio 1.25 False 1
Feverous av.Claim av. ratio 0.75 False 1
FM2 av.Every av. ratio 1.5 False 1
AVeriTeC av.Claim av. ratio 2.5 False 1

D
eB

E
R

Ta Scifact av.Claim av. ratio 2.5 False 1
Feverous av.Claim av. ratio 1.15 False 1
FM2 av.Every av. ratio 1 False 1
AVeriTeC av.Every av. ratio 0.5 False 1

Ph
i-4

Scifact av.Every av. ratio 0.5 False 1
Feverous av.Every av. ratio 0.5 False 1
FM2 av.Every av. ratio 0.05 False 1.5
AVeriTeC av.Every av. ratio 0.25 False 1

Table 3: Configuration settings for the different datasets in the results reported. av. stands for average, stratQ and
stratK refer to the strategy for query and key, respectively. adv.Ev. represents the advanced evidence loss. mult.C.
corresponds to multiple classifiers for evidence labeling, one for each claim label. mult.C=True trains three binary
evidence lassifiers (one per claim label) - we use the classifier corresponding to the predicted label at test time. ope.
denotes the operation used, which can either be ratio or subtraction.

From the preliminary experiments, we can see
similar results of T5 and T5 & ATTUN for most
text evaluation metrics. We observe one notable
difference, as ATTUN reduces perplexity by half.
This indicates that the model trained with our mod-
ule generates outputs with greater confidence. We
assume that for the same rationale as the higher
accuracy on the fact-checking task, the evidence
labeling module helps to focus on the right inputs.
We think that the noise here is too simple with only
4 evidence. Therefore, there is no impact on BLEU
or Rouge.

Concerning evidence labeling, we see that AT-
TUN permits again to provide explainability, with
a F1 Useful of 0.74 and a F1 Noise of 0.95. By
contrast, T5 vanilla model is not able to provide
explanation.

A.5 Details on datasets used

We select four fact-checking datasets. All exam-
ples consist of a claim written by a human, a label,
and the golden evidence used to classify the claim.
Statistics about the datasets after pre-processing
are in Table 7. When the original test set is private,
we use the original validation set as test set.

Feverous (Aly et al., 2021) is an extension of
Fever (Thorne et al., 2018) with more complex
claims. Claims are crafted by humans from tex-
tual and tabular evidence from Wikipedia. We lin-
earize tabular evidence in the format: CellV alue

<context>CellHeader</context>.
SciFact (Wadden et al., 2020) contains expert-

written claims paired with evidence from scientific
papers. The evidence is from textual sources only.

FM2 (Eisenschlos et al., 2021) is obtained from
an online multiplayer game where users write
claims from a list of evidence from Wikipedia. To
gain points, claims must be hard to fact-check by
other players. Evidence is only textual and the ‘Not
Enough Information’ label is not present.

AVeriTeC (Schlichtkrull et al., 2023) contains
real-world claims to verify with Web evidence.
Each claim has evidence in the form of question-
answer pairs supported by online content. We treat
each pair as one textual evidence. This dataset
has a fourth label, ‘Conflicting Evidence/Cherry-
picking’, we do not report it in our results as no
verifier returns it.

We exclude examples exceeding 512 tokens as
they are too long for RoBERTa.



stratQuery
Dataset avEverything avClaim lastToken
Scifact 95.3 100.0 58.7
FM2 100.0 99.0 -
AVeriTeC 99.7 100 -
Feverous 98.4 100.0 97.3

stratKey
Dataset average sepTok sepTokAft
Scifact 100.0 98.2 94.7
FM2 100.0 99.5 98.6
AVeriTeC 100.0 99.7 98.9
Feverous 100.0 100.0 98.9

multipleClassifier
Dataset True False
Scifact 100.0 98.2
FM2 100.0 99.6
AVeriTeC 100.0 99.7
Feverous 100.0 100.0

Table 4: Performance comparison across different
datasets on RoBERTa in terms of accuracy in claim ver-
ification when using different parameters for attention
operations. Scores are min-max normalized acrossed
the compared settings(best=100).

A.6 Retrieval for Noisy Evidence

Datasets come with golden evidence for every
claim. However, we must include noisy evidence in
the examples to enable our experiments. Whenever
possible, we obtain the evidence with retrievers, as
this is how they arise in practice. When no corpus
is available, we mix the gold evidence with noise.
We show an overview of retrieval performances in
Table 8. We next detail how we add noise to every
data set.

For Feverous, the corpus of Wikipedia pages and
the retriever are provided in the pipeline, so we
run it on the train and test datasets to obtain their
noisy versions. We retrieve 5 documents per claim,
and in each document 5 sentences and 3 tables.
The retriever selects an arbitrary number of cells
per table. Crucially, gold evidence is missing after
the retrieval step (0.36 Recall) and a lot of noise
is selected in the dataset (0.07 Precision). In the
Feverous datasets, recall is lower than 1, i.e., some
golden evidence are not picked by the retriever.
This may lead the labels of the verifier to be less
accurate, as it may lack sufficient information to
verify the claim.

SciFact authors included for each example five
“distractor abstracts” that cover topics mentioned
in the original article. We append sentences from
these abstracts to the original evidence, up to a total
of 20 sentences.

To write a claim, FM2’s players use one to two
sentences out of ten sentences from Wikipedia, the

stratQuery
Dataset avEverything avClaim lastToken
Scifact 99.2 100.0 41.7
FM2 100.0 99.9 -
AVeriTeC 95.6 100.0 -
Feverous 100.0 99.6 50.1

stratKey
Dataset average sepToken sepTokAft
Scifact 97.8 100.0 62.7
FM2 100.0 99.7 97.7
AVeriTeC 100.0 95.6 96.6
Feverous 100.0 98.5 98.5

multipleClassifier
Dataset True False
Scifact 97.8 100.0
FM2 99.9 100.0
AVeriTeC 97.3 100.0
Feverous 99.4 100.0

Table 5: Performance comparison across different
datasets on RoBERTa in terms of F1 Useful of evidence
labeling when using different parameters for attention
operations. Scores are min-max normalized acrossed
the compared settings(best=100).

remaining sentences are used as noise.
In AVeriTeC, gold evidence are human-created

question-answer pairs. The authors provide a
question-answer generator to obtain retrieved ev-
idence. From the generator, we pick the least rel-
evant pairs measured by BM25 against the claim.
We add an average of 5.5 pairs per example.

A.7 Fact-checking models and their training

For the verifier models, the objective is to infer
a label from a claim and the retrieved evidence.
Before testing models on the test set, we fine-tune
them on the corresponding train set.

GFCE (Atanasova et al., 2020) jointly trains ve-
racity prediction and explanation generation using
a fine-tuned version of DistilBERT. It leverages
both claim texts and supporting evidence to pro-
duce justifications. We use a learning rate of 1e−5

for every dataset. We train FM2, Feverous and
SciFact on 3 epochs, and AVeriTeC on 2.

LLaMa 3.1 70B (Dubey et al., 2024) outputs a
veracity label as well as a list of the evidence used
to make the decision. The prompt used includes
the description of the task and the claim with its
evidence.

GPT-4o mini (OpenAI et al., 2024) We also
report an LLM-prompting verifier based on GPT-
4o mini with a similar task. To go further, we report
a fine-tuned version of GPT-4o mini on our task.
We use 100 examples from the train set of each
dataset to fine-tune it.



Table 6: Comparison of model performance on Question Answering on MS Marco with and without attention tuning
across various metrics. We put in bold the model obtaining the best results. Explanation here can only be provided
with ATTUN.

Model ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore F1 Perplexity F1 Useful F1 Noise

T5 0.88 0.81 0.88 0.75 0.98 16 - -
T5 & ATTUN 0.88 0.80 0.88 0.74 0.98 7.3 0.74 0.95

Dataset #Claim T. |Claim| #Ev. #Noise

Feverous 71.2k(27.2k/2.2k/41.8k) train 25.3 1.6 16.8
7.9k(3.5k/0.5k/3.9k) test 24.9 1.4 17.6

SciFact 0.8k(0.2k/0.3k/0.3k) train 12.3 1.3 9.0
0.3k(0.1k/0.1k/0.1k) test 12.5 1.3 8.7

AVTC 2.8k(1.7k/0.3k/0.8k) train 17.1 2.6 5.6
0.5k(0.3k/0.04k/0.1k) test 14.4 2.6 5.5

FM2 10.4k(5.3k/0/5.1k) train 13.7 1.3 9.1
1.4k(0.7k/0/0.7k) test 13.8 1.3 9.1

Table 7: Statistics of datasets used for training and test-
ing the fact-checking models. The number of claim de-
tails stand from left to right for ‘Supports’, ‘Not Enough
Information’, and ‘Refutes’. AVTC stands for AVeriTeC.

Dataset Precision Recall F1 Sufficient

Feverous 0.07 0.36 0.12 ✗
SciFact 0.13 1 0.23 ✓
AVeriTeC 0.32 1 0.48 ✓
FM2 0.12 1 0.22 ✓

Table 8: Performance metrics for the retrievers used to
build every dataset (Precision, Recall, F1).

RoBERTa (Liu et al., 2019) is an Encoder only
transformer model. We fine-tune the model on rele-
vant NLI datasets (Nie et al., 2020) as in Feverous,
with learning rate 1e−5 for the dataset with 3 labels,
and 1e−7 for the datasets with 2 labels. We run the
training for 1 epoch on Feverous and AVeriTeC,
and 3 epochs on FM2 and Scifact.

DeBERTa-v3 (He et al., 2023) is a more re-
cent Encoder only transformer model. We also
fine-tune the model on relevant NLI datasets (Nie
et al., 2020). We use a learning rate of 1e−5 for
the dataset with 3 labels, and 1e−7 for the datasets
with 2 labels. We run the training for 1 epoch on
Feverous and AVeriTeC, and 3 epochs on FM2 and
Scifact.

Phi-4 mini (Abdin et al., 2024) is a 4B decoder-
only transformer model, originally designed for
generation tasks rather than classification. To adapt
this model for claim classification, we explored
two strategies. First, we considered adding a lin-
ear classification layer on top of the transformer’s
hidden states. In this setup, we evaluated several

pooling methods for selecting hidden states, includ-
ing using only the last hidden state, taking the mean
across all hidden states, or selecting hidden states
corresponding specifically to the tokens that rep-
resent the claim. Alternatively, we explored using
the model’s generative nature directly by calculat-
ing classification logits from the probabilities of
the tokens associated with each label. We used
the second strategies for this paper, as it provides
more solid results. A second critical adjustment ad-
dresses training stability issues, as fine-tuning Phi-
4 mini can exhibit significant instability. To miti-
gate this, we implemented several enhancements.
Specifically, we applied weighted loss functions
separately tailored to both claim and evidence clas-
sification tasks to manage imbalanced data effec-
tively. To further amplify the impact of minority
classes during training, this variant incorporates
an advanced evidence loss function designed to
increase their contribution to the overall loss. Ad-
ditionally, we employed careful training settings,
including the introduction of warm-up steps, the
use of weight decay for regularization, and a linear
learning rate scheduler to progressively adjust the
learning rate throughout the training process. These
adjustments significantly improved the robustness
and reliability of the training process. We trained
the model using QLoRA with 4-bit quantization
and a rank of 16. The training was conducted with
a learning rate of 5e−04. The training was 1 epoch
long for Feverous and AVeriTeC, 2 epochs long for
FM2, and 3 epochs long for SciFact.

A.8 Configurations of the Post-Hoc
Explainers

We use LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) to analyze the
Roberta outputs. We set 500 perturbation samples
per explanation.

A.9 Experimental Setup
The experiments were conducted on a system run-
ning Ubuntu 20.04.6 LTS with a kernel version
of 5.4.0-177-generic. The hardware configuration



You are an expert fact-checker. I will provide
you a claim and a list of evidence. Based on
them, you should answer in two steps.
In the first step, you should repeat every evi-
dence that is useful to predict a label for the
claim. Repeat only those evidence pieces, one
evidence piece per line starting with their in-
dex, as they are presented to you. Start this
step by the text: Useful evidence:
The second step should contain your predicted
label. The label [PREDICTED LABEL] can be
$LABELS_TAG$. Answer even if you are not
sure. The format of the second step should be
Label:[PREDICTED LABEL]

Figure 2: Prompt for LLaMa and GPT-4o mini.
$LABELS_TAG$ is a place holder for the possible labels
of the given dataset.

consisted of an AMD EPYC 7272 12-Core Proces-
sor with 128GB of RAM, and a NVIDIA GeForce
RTX 3090 GPU with 24GB of memory.

The software setup included Python 3.8.10,
LIME 0.2.0.1, SHAP 0.45.0. To run inference on
LLaMa 3.1 70B, we used a more powerful server
running Ubuntu 20.04.6 LTS with a kernel version
of 5.15.0-122-generic. The hardware configura-
tion consisted of an AMD EPYC 7742 64-Core
Processor with 512GB of RAM, and a NVIDIA
A100-SXM with 80GB of memory. The software
setup included Docker 23.0.3 where we ran in a
container LLaMa 3.1 using Python 3.9.

For reproducibility, we run our experiments with
a fixed seed of 1234.

A.10 Information About Use Of AI Assistants

In the preparation of this manuscript, we utilized
an AI assistant to aid in various aspects, including
coding, rewriting, and providing suggestions.

Throughout this process, we maintained a crit-
ical review of the AI’s contributions, thoroughly
double-checking and revising the text to uphold the
quality and integrity of the final work. The human
authors remained in full control, ensuring that the
manuscript reflects their expertise and scholarly
standards.

B Controlled ablation on FM2

Appendix B: Controlled Ablation on FM2

We conduct a controlled ablation on FM2 by
injecting k% random distractor sentences into

the retriever list for each claim, with k ∈
{10, 25, 50, 100, 150, 200, 300, 500, 700}.

At k = 100%, LLaMA-prompt slightly out-
performs DeBERTa+ATTUN in terms of F1Useful
(0.79 vs. 0.78, compared to 0.53 for De-
BERTa+SHAP). However, as the amount of noise
increases, ATTUN shows greater robustness: at
k = 500%, ATTUN maintains F1Useful ≥ 0.69,
while LLaMA-prompt drops to 0.62 and De-
BERTa+SHAP falls to 0.42. These relative trends
confirm that refining attention makes the verifier
less sensitive to noisy context.

The corresponding charts (Figures 3–5) display
the evolution of F1Useful, F1Noise, and evidence
accuracy across different k values for the three
models.
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Figure 3: Evolution of F1Useful with increasing noise
levels (k). k = % of additional random distractors.
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Figure 4: Evolution of F1Noise with increasing noise
levels (k). k = % of additional random distractors.
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Figure 5: Evolution of evidence accuracy with increas-
ing noise levels (k). k = % of additional random distrac-
tors.
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