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Abstract—Expectation Propagation (EP) is a popular Message
Passing algorithm. In contrast to Belief Propagation (BP), it
projects beliefs to the exponential family at every update.
The update for a posterior factor gets obtained by dividing
the projected tilted pdf by the other approximate posterior
factors. This division can easily pose problems such as negative
variances. This may happen if the factor to be updated, which
in many instances is a prior, is very spread out such as a
super Gaussian pdf or a Gaussian mixture model. Upon closer
inspection however, it turns out that the posterior and extrinsic
variances are computed in EP using different pdfs. We propose
two solutions to remedy the problem, both based on using the
same pdf to compute extrinsic and posterior variances. A third
solution is proposed based on revisiting the EP optimization
criterion. Furthermore, in a Generalized Linear Model where the
signal is composed of multiple sub-signals of constant magnitude,
we propose employing the Von Mises distribution for messages
in order to circumvent the issue of non-proper distributions. We
had encountered this problem in semiblind channel estimation in
which we exploit the finite alphabet for the unknown symbols.

I. INTRODUCTION

Sparse signal recovery is a fundamental problem in signal
processing with a wide range of applications. Many of these
problems can be framed as the task of estimating a latent
vector  based on a correlated observation vector y [1]. In
the Bayesian framework, the complexity of Canonical Methods
such as MMSE and MAP experiences exponential growth as
the dimension of the problem grows.

By exploiting the structure of the models, graphical model
based methods prove to be effective. With a given factored
joint probabilistic model, a factor graph can be obtained by
first writing down all the factors and variables involved in
the probabilistic model and then connect the variables to all
the factors that contain it as a parameter. Each link between
variable and factor node has messages of two directions. If
the factor graph is tree-structured, Belief Propagation (BP)
transforms the global inference problem into a local inference
problem as outlined by [2]. The marginal posterior (or belief
at variable/factor node) is obtained as a product of all the
messages to the node in question (and the factor itself if
the node is a factor node). To update the messages between
variable and factor nodes, marginalized belief is first computed
(integrate out all variables except the one contained in the
variable node). Finally, the message from the node in question
is the quotient of the marginal belief and the message on the
same link but with reversed direction (i.e., to the node).
Loopy Belief Propagation (LBP) extends BP by directly em-
ploying BP on a factorization scheme for p(x|y) that may
involve loops [3]. In comparison to BP, LBP can be considered
as an approximation method. A limitation of (L)BP is that the
(iterative) updating scheme leads to pdfs that correspond to
the product of a large number of messages, leading to high
complexity. To address this issue, Expectation Propagation
(EP) was introduced [4]. EP has been shown to share a similar
updating scheme as (L)BP, but for computational efficiency,

the messages in (L)BP are approximated as members of the
family of exponential distributions [4].

Expectation Propagation (EP) is a popular Message Passing
algorithm. In contrast to BP, it projects beliefs to the exponen-
tial family at every update to ensure that the messages passed
nodes belong to the exponential family as well. However, due
to the projection, the division step can easily pose problems
as is known in the statistics literature. For instance, if the
exponential family corresponds to Gaussians, the variance
obtained in the division of Gaussians may sometimes be
negative. This may happen if the is very spread out such as a
super Gaussian pdf or a Gaussian mixture model. Solutions to
this problem remain elusive. This may seem counter intuitive
because this would imply that the use of the prior next to
the other pdfs, which we can jointly call the extrinsic, would
result in a larger (posterior) mean squared error than the
extrinsic variance. Upon closer inspection however, it turns
out that the posterior and extrinsic variances are computed in
EP using different pdfs. We propose two solutions to remedy
the problem, both based on using the same pdf to compute
extrinsic and posterior variances. A third solution is proposed
based on revisiting the EP optimization criterion. Furthermore,
in a Generalized Linear Model where the signal is composed
of multiple sub-signals of constant magnitude, we propose
employing the Von Mises distribution for messages in order
to circumvent the issue of non-proper distributions. We had
encountered this problem in semiblind channel estimation in
which we exploit the finite alphabet for the unknown symbols.

II. EP NEGATIVE GAUSSIAN QUOTIENT VARIANCE ISSUE
Consider a factored Joint Probabilistic Model

p(@) o< [ ] fa(za) (1)

where x, is a sub-vector of x (all entries in x,, are also entries
of x). The marginal distribution of Vi, x; is often hard to
obtain due to the intractable integrals. EP can be understood as
an iterative method which convert the global inference problem
into local ones. Following [4], EP can be concluded as the
following iteration
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where N(f,) and N(x;) denote the neighborhood set around
fo and x; respectively. The Projz{b(x)} projects b(x) into
another distribution within a family F by KL-Divergence



arg ming, » KLD(b|[b). In most cases F is assumed to be
Gaussian family, and the projection simply means moment
matching of first and second order moments. It is unnecessary
for the messages m._,. to be proper distributions. However, the
belief by, must satisfy the definition of a distribution. Actually,
we can view by as an approximated posterior. That is why
we call it belief at factor node. Furthermore, we can define
Va € N(z;), by, = My, 2, Mgy, as a belief at variable
node.

Revisited Generalized Vector Approximate Message Passing
(reGVAMP) is an application of EP with a Generalized Linear
Model (GLM) [5]
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where me(zm) = p(ym|zm)7 fﬂcn(xw) = p(‘r’ﬂ)v f(;(Z,ZE) =
d(z — Ax). Due to the factorization, if we consider the
belief by, derived from (2), it is natural to treat my,
as approximated priors. In reGVAMP, the projection family
F is defined to be Gaussian family. Therefore, the division
in (3) may lead to a non-distribution function (or Gaussian
with negative variance) if some moments are constrained. In
the Gaussian case, (co)variances are required to be positive
(definite). Indefiniteness problems can occur when f,, is more
widely spread than a Guassian, e.g. super Gaussian pdfs or
Gaussian Mixture Model (GMM), includes discrete pmfs (e.g.
finite alphabet for detection).
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Fig. 1. Negative prior variance issue in reVAMP with GMM prior.

3

Fig. 2. Negative prior variance in global MMSE solution, SNR=10dB.
A. EP Negative Gaussian Quotient Variance : Proposed So-
lutions
The detailed derivation of reGVAMP can be found in [5]. We
consider here the computation of by, and my, 4. Since the
posterior can be computed as bfl,i X Mg, f,. fx:» we shall
call my, f, “extrinsic”. Furthermore, we denote the mean
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Fig. 3. NMSE for @ as a function of SNR for various reVAMP solutions
with GMM prior, and the LMMSE and MMSE solutions.

and variance of by, as pz, and 73, the mean and variance of
Mg, —f,. as fp, and 7,.; the mean and variance of my, .o,
as f,, and 7,,. Since in the later context of this section we
only focus on one symbol, we omit the subscript indices. The
computation of the belief by, leads to a simple measurement
model

Wy = + v, with x ~ f,., var(v,) = 7,. 5)

Solution 1: posterior variance averaging : 7z = E,, [75 (1, )]
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where we exploited the orthogonality property of MMSE
estimation. Note that Solution 1 coincides with noise unbiasing
Advantage: no effect in Gaussian case. Disadvantage: carrying
out £, may be a complex operation. Actually, for the prior
mean, with the usual update formula based on the Gaussian
quotient as in [6], we consider two variations. Solution la:
take the standard MMSE estimate ;15 for the posterior mean;
Solution 1b: replace pz by p,-, which also leads to p,. as prior
mean.

Solution 2: recompute the extrinsic variance as E,, (z— [T

Epjp, (& — 1) = m2(pr) + (pa(pr) — pr)? > 72 (1) -
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Note that (6) can be obtained from (7) by taking E,, {(})
Advantage: easy to apply. Disadvantage: this solution modifies
the Gaussian case. Again, for the prior mean we consider
the two variations. Solution 2a: maintain uz for the posterior
mean; Solution 2b: replace uz by w,., which also leads to p,
as prior mean. This second choice is more consistent with
the prior variance calculation in Solution 2. Note that Noise
Unbiasing [6] corresponds to a combination of Solution la
for the prior mean and something similar to Solution 2 for the
prior variance.
Solution 3: reconsider EP optimization.
Consider the projection operation of by_ . In the projection, we
minimize
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Minimization of the KLD w.r.t. uz leads to uz =
f zbs, () dz. Define &, = 7,7 1. Due to the division operation
in (3), we have 7 =1 + 7,71, Therefore, apart from a
constant and a scale factor we rewrite (8) as a function of &,:

KLD(&;) o< —In(&, + 7—7-71) + (& + 7';1) (1) (9)
which needs to be minimized W rt the prior precision &; > 0,
and where 7z(p) = [ by, (%) (x — pz(pr))?dz. KLD(E,)
exhibits an extremum at £2 = Tz 1 — 71, which can be nega-
tive, and is increasing for £, > £2. Hence, under the constraint
&, > 0, the optimum is attained at &, = max(0, 7, —7,71).
When ¢, = 0, the prior mean m, is unimportant. Solution 3
can be extended to the matrix case by clipping the eigenvalues
of the quotient precision matrix to be nonnegative.
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ITII. PRIOR WITH CONSTANT MAGNITUDE

For a class of signal recovery problems where the signal has a
hierachical structure and can be decomposed into multiple sub-
signals with constant maginitude, the Von Mises distribution
can be used to approximate the messages [7]. Assume that the
observation of the GLM is slightly modified by
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with fé(dj,z) = 6(Z_Aj3)’ fzm = p(ym|zm)’ f:cnk = p(‘rnk),
where Vn € [1, N], &, = ;| Tnk, and the random variable
Tpp is iid. with constant magnitude, ie., |r,x|?> = aﬁnk.
For simplicity, we also denote & = ), @j. It is easy to
see all PSK and 4-QAM satisfy this assumption. To avoid

the negative variances in the messages, we use Von Mises

distribution to approximate the message my, = —s,,. We will
approximate the prior of x,j as
Tpp = 0,4, 0%, (10)

and denote the corresponding prior for 0,5 as pg,, (Onk).
Therefore, the approximated prior my, s, is implicitly
given by

Y

The approximated prior mean and variance of x, is obtained
as the circular mean and variance of my, L0 which are
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Based on the previous discussion, we use approximated priors
instead of true prior in the extrinsic terms in mgs_,,

M= fe,, AN Mg _yp = M, p—fo - We assume my, .,
to be Gaussian, just like in [5]. Due to CLT, the extrinsic

Haop,

Ms—,, can be calculated as
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Following [5], we can compute the update of message
myf, 5, which is a Gaussian with mean and variance
W2, and 7, . Likewise, apply Central Limit Theory (CLT)
approximation and the the extrinsic ms_,,,, becomes

mé%wnk wnk /N Ail?‘llfz, Hm:z ,k/ﬁé(xn k’)dwn’k’
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Denote the extrinsic as ms—q, , (Tnk) = N (Tnk|lir, > Trop)

which can be obtained as
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where e,, is a unit vector with 1 at the n-th entry. From this
point, we can compute the posterior mean and variance of x,,x
based on N (Zpk|or, s Trp . )Pani (Tnk ), Which are denoted as
1z, and 7z . Using the definition of (10), we project the
extrinsic of x,; onto a circle to obtain pdf of 6,

Tnk = Tr,, Q@
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We define g, = wpre*, K, , = %k"’f and (13)
n
becomes
Mg, (i) ¢ €rnk OOni=Pri), (14)

The belief of x,; can be obtained via (2) as bfznk (Tnk) =
fonr - Mo, - Denote the belief mean and variance as pz,,
and 73,, . Based on the posterior mean and variance of x,,
and following a procedure analogous to that described in
equations (13)—(14), we transform the approximated belief into
0,1 representation. The corresponding posterior parameters
Ky and lig,, are

nk
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The approximated prior in (11) is then updated by
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where the updated g
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IV. SIMULATION RESULTS

We consider a real linear model with A of size 10 x 10 and
i.i.d. entries (0, 0.1), and additive white Gaussian noise. One
of the prior models for which the overall MMSE solution can
be computed analytically is GMM. Hence we consider an i.i.d.
priot p(x;) = 0.5 N (2;;1,1) + 0.5 N (2;; —1,0.01) (18)
which has zero mean. The results involve 10,000 realizations
of  and v. In Fig. 1 we consider a (reGVAMP) scalar MMSE
problem as in (5). With the prior as in (18), we explore in the
(z,v) plane where the issue of a negative quotient variance (in
red) occurs (posterior variance larger than extrinsic variance).
In Fig. 2, we explore the same issue, at SNR=10dB, for the
global MMSE and extrinsic variances. The results are similar
though not identical to what appears in reGVAMP. In any
case, the negative quotient variance issue is clearly inherent
in some Bayesian estimation scenarios. In Fig. 3, we plot
the MSE of x as a function of SNR for reGVAMP EP at
convergence, with various solutions for the negative quotient
issue. The equivalent Gaussian priors are initialized by direct
Gaussian matching of the prior (corresponding to LMMSE).
Solutions 1 to 3 are as described in the previous section. In
Solution 4 we don’t update the prior in case of a negative prior
variance update, and in Solution 5 we use the posterior mean
and variance for their updated prior counterparts. Solution 6
corresponds to Noise Unbiasing. Finally, we also plot the MSE
of LMMSE and global MMSE estimation. We can note that at
each SNR, the best solution is very close to the global MMSE
solution, which is far from LMMSE. However, at sufficiently
high SNR, Solution 3 is the best, whereas for lower SNR it’s
Solution 6. Note that given the results in Figures 1 and 2,
the negative prior variance issue is not just a transient issue
during iterations, but can very well persist at convergence! For
the Von-Mises Approximation, we consider a complex linear
model with 4-QAM signal input and AWGN channel. The
transmitted data has power 02 = 1. The measurement matrix
has i.i.d. Gaussian entries, each of which is zero mean and has
power G,QLM = 1/N. The noise is zero mean Gaussian, whose
power is tuned to mean the SNR requirement. To verify our
proposed method, we plot the Symbol Error Rate (SER) vs
SNR. We simulate different pairs of M, N € {4,8} to show
the performance in compressed sensing. The simulation results
are plotted in Fig. 4.

V. CONCLUDING REMARKS

In this paper, we recalled the EP approach and reGVAMP,
an application of EP to the GLM. We pointed out moment
constraint violation issues that can occur in the EP pdf division
step and elaborated on existing and new solutions for the case
of negative quotient variances when using Gaussian pdfs. We
also investigate the Von Mises message approximation, where
the negative quotient variances is avoided completely. An open
issue that arises from the simulations is to find a solution that
would be optimal at all SNR.

We may refer the reader also to [8] where we present AM-
BGAMP, a provably convergent fast version of reGVAMP.

GAMP does not build equivalent Gaussian priors explicitly
but nevertheless also has a quotient variance issue. [8] and
this paper build upon the works of [1], [9], [10], [5]. Whereas
GAMP is based on asymptotics of an i.i.d. (sign) model for A,
more general models are considered in [11], [12], [13], [14].
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Fig. 4. Using Von Mises distribution as Message
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