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Abstract—Distributed collaborative machine learning tech-
niques enable the training of intelligent models while preserving
user data privacy. However, in reality, training a large-scale
and intricate model on resource-constrained devices such as
Unmanned Aerial Vehicles (UAVs) is unfeasible. In this context,
lightweight and resource-efficient deep learning techniques are
required. This work first suggests a new resource-aware dis-
tributed framework, SFMec, in the context of a UAV power
consumption scenario. The framework is evaluated and com-
pared with other distributed frameworks, including FedMec,
a federated learning-based approach, to assess its performance
across different system architectures and resource management
strategies. The results obtained demonstrate that SFMec has
the potential to conserve more than 50% of the storage space
occupied by FedMec, making it more attractive for devices
with limited resources. Then, a novel architecture, denoted as
SFMecLite, is introduced to minimize the interactions between
SFMec entities. Furthermore, an enhanced version of SFMecLite
is also presented that greatly outperforms FedMec and reduces
the computational and communication costs in SFMec without
compromising learning performance.

Index Terms—Unmanned Aerial Vehicle (UAV), Resource-
constrained Devices, Resource Optimization, Split Federated
Learning (SFL), Mobile Edge Computing (MEC).

I. INTRODUCTION

DUE to their ease and rapid deployment, low acquisition

and maintenance costs, high flexibility, and mobility,

Unmanned Aerial Vehicles (UAVs) are becoming increasingly

indispensable for a wide range of socio-economic applications.

For example, in the realm of environmental issues, sensor-

equipped UAVs can be used in air pollution and emissions

tracking, guiding industries to environmental sustainability [1].

In addition, UAVs equipped with sensors, cameras, and RFID

can be used for smart warehouse management. Advanced

analytics of the collected data enables predictive restocking,

guaranteeing product availability for consumers [2]. Moreover,

incorporating UAVs into logistics and supply chain manage-

ment will significantly enhance the efficiency, speed, cost,

and reliability of supply chain operations, aligning with the
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evolving expectations of consumers [3]. Furthermore, they can

be utilized for predictive maintenance in smart factories by

monitoring various machine parameters, such as temperature,

voltage, and current. Analysis of collected data, leveraging

advanced Machine Learning (ML) and Deep Learning (DL)

algorithms, enables the identification of defects and anomalies

in real time. This approach enhances production efficiency,

prevents breakdowns, and ensures both material resilience and

industrial operations sustainability. Additionally, UAVs can

have a great impact on commercial activities by gathering

location data to analyze customer behavior, enhance market-

ing, and improve satisfaction [4]. UAVs can also serve as a

wireless infrastructure, facilitating seamless connectivity for

data transfer between IoT devices and the control center [5].

Therefore, the integration of AI and UAV technologies in

various industries will facilitate data-driven decision-making,

personalized consumer experiences, sustainability practices,

and efficient operations in several sectors.

However, despite the promising prospects, this transfor-

mative synergy also brings forth a set of challenges that

must be addressed to fully leverage its potential. One of

the primary challenges involves determining the appropriate

methodology to train ML/DL models on resource-limited and

hardware-constrained UAVs. Traditional training approaches,

which involve transmitting UAV data to a central server for

further analysis, require a large amount of communication

bandwidth. Additionally, relying on a single entity can lead

to system-wide failure, known as the single-point-of-failure.

Another major concern is related to the security and privacy

of sensitive data captured by UAVs (military and industrial

secrets, geolocation data, etc.) [6].

Federated learning is a prominent distributed algorithm

designed to precisely address these issues. In FL, training data

are not managed centrally, but instead held by data owners who

participate in the FL process [7]. Recent studies [8], indicate

that advancements in computational power of onboard engines

such as enhanced CPUs, GPUs, and digital signal processors,

enable UAVs to locally train ML models on sub-datasets and

share only model parameters with base stations instead of the

entire raw data. In the literature, several studies have already

applied federated learning to UAVs [9], [10], [11]. Although

this technique reduces bandwidth consumption and enhances

data privacy, the efficiency of such training remains context-

dependent and sensitive to several factors, including hardware

specifications, as well as the model size and complexity [12].

Therefore, the successful deployment of FL in UAVs cannot be

generalized and requires case-specific evaluation. For example,



training a full FL model with a large number of trainable

parameters on UAVs with limited onboard resources rapidly

depletes their energy, leading to premature termination of the

training process.

To effectively optimize drone resource utilization, alterna-

tive lightweight deep learning algorithms are desideratum.

Inspired by this, our study leverages a more sophisticated

distributed technique that has recently been proposed, namely

split federated learning [13], by dividing the neural network

among the different clients/learners. Each learner trains ex-

clusively a section of the entire model, while the remaining

section would be trained by more resourceful devices (e.g.,

edge servers). This collaboration during the training process

would extend the lifespan of drone batteries and reduce the

task completion time.

The contribution of this work is three-fold:

1) Resource-optimized framework for MEC-enhanced

UAV networks: First, we propose a collaborative

resource-aware framework, called SFMec, that optimizes

resource utilization for resource-constrained UAV com-

puting devices while maintaining learning performance.

2) An enhanced architecture for seamless connectivity

and performance: Building on the analysis conducted

in the first part of this work, we identified that split fed-

erated learning involves frequent communication between

clients and servers (main and fed servers). Therefore,

a more efficient data exchange mechanism, optimizing

the bidirectional communication between the involved

entities, is provided. Thanks to the proposed technique,

known as SFMecLite, both the learning performance and

training efficiency of SFMec are significantly enhanced.

3) A high-performance framework for optimized client-

server communication: Additionally, we are considering

the reduction of split federated learning communication

costs and computation time, all while ensuring there is

no compromise in learning performance. To achieve that,

a biologically inspired method using the Particle Swarm

Optimization (PSO) algorithm is applied. Numerical re-

sults demonstrate that the new scheme surpasses FedMec,

SFMec and SFMecLite in terms of all evaluated metrics.

The details about the organization of this work are provided

as follows. We first present a review of the literature in Sec-

tion II. Section III outlines our research methodology and our

designed approach. In Section IV, the implementation settings

and performance evaluation are discussed. SectionV introduces

enhancements in communication efficiency for interactions be-

tween clients and servers in split federated learning. Section VI

concludes and summarizes the key ideas of this study.

II. LITERATURE REVIEW

The emergence of federated learning has prompted re-

searchers to delve into a comprehensive examination of its

application in the air [14], [15]. In the literature, several

federated learning solutions have been proposed to address

various issues related to UAV-enabled networks. For example,

in October 2021, the authors of [9] presented an FL approach

based on CNN-LSTM for an accurate and timely prediction of

the air quality index using a fleet of UAVs. In the same year,

the authors of [11] proposed a federated learning-based drone

authentication, where drones locally train the authentication

model using their data in a federated manner. In [16], the

authors introduced a secure federated learning framework for

UAV-assisted mobile crowdsensing (SFAC). By integrating

blockchain, local differential privacy, and a reinforcement

learning-based incentive mechanism, SFAC enables decen-

tralized and verifiable model sharing, protects UAV updates,

preserves global accuracy, and motivates high-quality model

contributions under uncertain networks.

The researchers in [10], designed a novel fair and robust

federated learning (FRFL) technique for UAV-assisted crowd-

sensing. The contributions of this work are multifold. (1) the

authors integrate 5G edge networks to provide efficient FL

services with high data rate and low latency for UAVs. (2) Un-

der knowledge asymmetry, a contract-theory-based incentive

mechanism is used to guarantee truthful and equitable partic-

ipation of UAVs. (3) The framework incorporates Byzantine-

resilient aggregation and equitable profit distribution according

to the contribution of UAVs to improve robustness. (4) To

discourage free-riders and enhance trust, a reputation system

is also included.

In [17], a cooperative tracking framework, FedTrack, us-

ing adaptive FL to improve tracking efficiency while re-

ducing transmission costs and time, is proposed. FedTrack

incorporates a dual reputation mechanism and an adaptive

client selection algorithm for optimized participation, and a

capability-based node selection strategy for efficiency aggre-

gation. Experimental results show competitive accuracy with

lower resource demands compared to existing methods. The

researchers in [19], design a hybrid federated and centralized

learning (HFCL) framework for wireless traffic prediction in

UAV-aided multi-access edge computing (MEC) servers. The

approach balances latency and energy consumption while en-

suring compliance with 3GPP 5G standards. By formulating an

optimization problem and incorporating a Deep Reinforcement

Learning (DRL)-based solution, the framework achieves lower

costs and better efficiency than benchmarks.

While studies [9], [10], [11], [17], [19] provide several ad-

vantages over centralized solutions, they fall short in address-

ing the restricted computational power and battery capacities

of UAVs. The main challenge of these implementations is to

train the entire model in a limited, low-resource environment.

That is why other works try to optimize the federated training

process in UAV-assisted networks.

The research conducted in [20] presents a DRL-based

algorithm to maximize long-term FL performance. To reduce

the complexity of the problem, the authors introduce the use

of the Lyapunov optimization technique. This approach helps

transform the long-term energy constraint into a deterministic

problem. Afterwards, the optimization problem is reformulated

as a Markov decision process (MDP). The MDP is solved with

DRL, where the agent learns the optimal UAV placement and

resource allocation, ensuring sustainable and energy-efficient

UAV-assisted networks. Similarly, the authors in [21] explore

the optimization of the federated edge learning process in

UAV-enabled IoT for B5G/6G networks. The presented frame-



TABLE I: Comparison of distributed training approaches on UAVs in the literature

Reference Approach Solve Data Privacy Solve Model Privacy Full Model Training Generalization via Aggregation

[9], [10], [11], [17], [16], [18] Standard FL Yes No Yes Yes

[19] Hybrid (Centralized + FL) Yes No Yes Yes

[20], [21], [22], [23], [24], [25] Optimized FL Yes No Yes Yes

[26], [27] Hybrid FL-SL Yes No Yes Yes

[28], [29], [30] SL Yes Yes No No

Our Work SFL + Optimized SFL Yes Yes No Yes

work allows devices to adjust their operating CPU frequency

to prolong the UAVs battery life and avoid withdrawing from

training untimely, through managing resource allocation in

changing environments. To solve the optimization problem,

the authors employ the Deep Deterministic Policy Gradient

(DDPG) strategy. In a parallel way, authors in [22], developed

a joint training and resource allocation method to minimize the

energy consumption for the multi-UAV-assisted FL scheme.

The proposed solution uses an optimization algorithm that

addresses the minimization of overall training energy con-

sumption of UAV swarms as well as the minimization of

maximum energy consumption of UAV swarms. Likewise,

the work in [25], presented an energy-efficient framework

for federated learning called E2FL. By leveraging UAVs

equipped with edge computing and wireless power transfer, the

system acts as both an aerial server and energy source. E2FL

jointly optimizes UAV placement, power control, bandwidth

allocation, and computing resources to minimize total energy

consumption. Simulation results demonstrate the effectiveness

of joint optimization for sustainable FL.

The paper [23] addresses the high energy consumption in

FL for wireless devices by using MEC-enabled UAVs for data

collection and training. To handle UAV location uncertainties

that affect data transmission and network performance, the

authors model UAV deviations as Gaussian distributions and

introduce probabilistic constraints on data offloading. Using

Bernstein-Type Inequality (BTI), they convert these constraints

into deterministic ones, making the optimization problem

solvable. They then apply Block Coordinate Descent (BCD)

to optimize UAV energy consumption while ensuring robust

FL training. The work done in [24] suggests a two-tier

hierarchical FL scheme assisted by a UAV swarm to address

connectivity challenges in wireless FL. UAVs act as data

collectors and relays. To optimize FL convergence and UAV

data transmission, the authors formulate a joint optimization

problem involving UAV-client matching, time allocation, and

local training iterations. They propose an efficient solution

combining a subgradient-based method with a cross entropy-

based genetic algorithm. Numerical results demonstrate the

effectiveness of this approach in improving FL performance

and communication efficiency. In [18], the authors designed a

decentralized, energy-efficient FL framework for UAV swarms

using Spiking Neural Networks (SNNs) to reduce redundant

computations and energy consumption during local training.

In addition, to handle UAV mobility, the authors introduced

an intelligent leader selection scheme (based on the Bayes

theorem) to accelerate the aggregation of model parameters

and reduce communication time.

Recently, a new idea was proposed in [26], where the

authors suggest a hybrid approach, leveraging both federated

learning for local training by a portion of clients and split

learning for collaborative training with the base station. A

related idea was implemented in [27], where UAVs are divided

into two groups, namely FL-mode and SL-mode, based on

their computational capacity and dataset size. FL-mode UAVs

perform local model training on their entire datasets and trans-

mit model parameters to the server for FedAvg aggregation.

SL-mode UAVs train only a partial sub-model locally up to a

cut layer and send the resulting activations to the same server,

which completes the training and returns cut-layer gradients

for backpropagation.

To minimize energy consumption in multitasking split in-

ference in UAV networks, the authors in [28], propose a

two-timescale optimization approach called OPETRL. The

technique combines Tiny Reinforcement Learning (TRL) for

transmission mode selection, and Optimization Programming

(OP) for transmit power adjustment. The simulation results

demonstrated that OPETRL can effectively reduce computa-

tional complexity while ensuring energy efficiency and higher

task success rates during aerial AI operations. In [29], the

authors suggest a split learning-based technique for image

classification in a multi-UAV system to support applications

such as area exploration and object detection. The study aims

to demonstrate that SL can effectively offload computation

from UAVs to a base station, reducing local processing time

and improving training performance, especially under non-IID

data conditions, compared to FL and centralized learning. The

work in [30], presented a novel approach called Stitch-able

Split Learning (SSL). The technique combine split learning

with Stitch-able Neural Networks (SN-NET) to overcome

challenges in multi-UAV environments, such as device in-

stability, model heterogeneity, privacy concerns, and limited

computational resources. The simulation results showed that

SSL achieves reduced learning time, better accuracy, and

adaptability against centralized learning, FL, traditional SL,

and SplitFed V1 (SFLV1). TABLE I compares different dis-

tributed ML/DL training approaches on UAVs in the literature.

From the above, it is evident that most existing works

leverage federated learning for distributed model training.

However, training the complete FL model directly on UAVs

poses a significant risk of training interruptions, due to their

limited battery capacity, which can severely impact model



convergence and overall system reliability. While some studies

attempt to optimize the FL process, they still require UAVs

to process the full model, which remains impractical. This

highlights the necessity of an alternative approach where

UAVs devices train only a lightweight model rather than the

entire FL model. To fill this gap, through this work, we

propose a lightweight deep-learning approach for UAVs that

accommodates their storage and processing capabilities while

maintaining favorable learning outcomes.

III. PROPOSED FRAMEWORK

In this section, we first present an overview of the proposed

framework. Then, we provide additional details on each step.

A. Overview

SFMec is a distributed collaborative framework designed

to predict instantaneous power consumption in MEC-enabled

UAV networks. By leveraging split federated learning, an

emerging decentralized privacy-protection training technology,

SFMec enables multiple clients, each with its own sensor data,

to collaboratively train a global model. The framework incor-

porates Long Short-Term Memory (LSTM) for sequential data

modeling. As illustrated in Fig. 1, the proposed framework is

divided into two sides, namely: the front end, and the back

end. This architectural division not only preserves data privacy

but also ensures model privacy, as neither the front end nor

the back end has complete access to the full model [31]. In

SFMec, three types of entities are involved: a main serverM,

a fed server F , and distributed clients K (UAVs). Each client

has a dataset Di = {Xi, Yi}, i ∈ {1, 2, ...K}. The global

model is divided into two subsections, the first sub-model is

maintained on F , while the second sub-model is hosted on the

main server M .

B. Components and Operations

As mentioned earlier, the proposed framework is divided

into two principal parts: a front end and a back end. The

following presents a detailed description of each part.

• Front end: It represents the module operating on the

client-side, tasked with carrying out lightweight compu-

tational operations. It consists of two layers, specifically

the input layer and the first LSTM layer. At first, each

client (UAV) downloads the initial weights from the fed

server. Then, it performs the forward propagation by

training only a segment of the global model (up to the

cut layer), using its own input data and the associated

client sub-model. Afterwards, each client (UAV) sends

the intermediate outputs and target values to the main

server. When the client receives the gradients of the

cut layer (after the main server assignment completes

successfully), it back-propagates the received gradients

and updates its own weights. The updated weights of

all the clients are then passed to the fed server for

aggregation and the same training process will continue.

• Back end: At the edge level of the framework, this

module is responsible for completing the training tasks on

Fed Server

Edge

UAV4UAV3UAV2UAV1

Main Server Neural Section

UAVs Neural Section

Global Model

Cut Layer Main Server

1

2

3

4

Front end

Back end

Fig. 1: Split Federated Learning MEC-enabled Framework for

UAV Networks

Algorithm 1: SFMec Algorithm

/* UAV Side */ Input: Training data (X,Y )
for each round do

for each UAV Ui in parallel do

for each Batch Size do

Ab =ForwardPass(Xb,Wui
);

MainServerProcess(Ab, Yb);

procedure UAVBackProp(Gb);

Update Weights W ′
ui

;

end

W g
u ← FedServerProcess(Wui

);
end

end

/* Main Server Side */ ;

Initialize Server Side Sub-model Weights Ws;

procedure MainServerProcess(Ab, Yb);

(1) ForwardPass(Ab,Ws);

(2) Compute Cost Function J(θ);
(3) Compute Gradients Gb = ∇J(θ);
(4) Update Weights W ′

s;

(5) UAVBackProp(Gb);

/* Fed Server Side */;

Initialize UAV Side Sub-model Weights W g
u ;

Forward W g
u to all participating UAVs;

function FedServerProcess(Wc);

(1) Wait until receiving all UAVs’ updates;

(2) Aggregate(Wu);

(3) Update UAV Side Sub-model Weights W g
u ;

(4) Return W g
u to all participating UAVs;

the server-side. In the server part, the network structure

consists of the remaining layers, namely: two LSTM

layers, the dense layer, and the output layer. After ob-

taining the output data from a client, the server resumes

the feedforward pass and calculates the loss function L.

Moreover, the gradients for both the server and client are

computed, respectively. Subsequently, the gradients are

sent back to the client and the forecasting precision can

be measured. Algorithm 1 outlines the methodological

steps constituting the framework in a systematic manner.



TABLE II: Implementation Parameters

Parameters Values

Seed, Window Step 42, 10

Data Split 80% Training / 20% Test

Activation Function Tanh (hidden layers), Linear (output)

Loss Function / Optimizer Huber (delta = 1) / Adam

Learning Rate / Batch Size 0.001 / 64

Normalization Alg / Rounds MinMax Scalar / 200

FedMec Client side: 5 layers, Server side: /

SplitMec and SFMec Client side: 2 layers, Server side: 3 layers

IV. IMPLEMENTATION AND EVALUATION

In this section, we assess the performance of SFMec by

comparing it against a federated learning-enabled (FedMec)

and split learning-enabled (SplitMec) frameworks for predic-

tion power consumption in UAV networks. We first discuss the

dataset used and the experimental settings. Then we present

the experimental findings and conduct a performance analysis.

A. Dataset

We chose a recent real-world dataset collected under non-

i.i.d conditions using a hexacopter drone [32] that has six 18-

inch propellers, weighs 6 kg, and a maximum takeoff mass

of 13 kg. The goal is to empirically measure the power

consumption of electric UAVs. The experimenters collect data

during automatic and manual missions, without any payload

weight and with additional payload weights of 2 kg, 4 kg,

and 6 kg. Measurements were taken for the hourglass-shaped

trajectory with a velocity equal to 4m/s. The dataset contains

27 variables (altitude, velocities, orientation, total mass, etc.).

To carry out our experimental study, we selected the most

relevant features.

B. Parameter Settings

Our framework operates with 5 clients over 200 rounds.

20% of the dataset is separated as the testing data for all

the clients while the rest 80% of the dataset is equitably

divided among the five clients. The model is implemented

in Python 3.10.12 with TensorFlow 2.12.0. The Hyperband

tuning algorithm [33] is used to determine the best hyper-

parameters of the neural network. The experiments were con-

ducted in Google Colab using a supervised LSTM regression

model with four layers: input (features), 3 hidden layers, and

output (energy prediction). The first two hidden layers consist

of 128 neurons, whereas the third hidden layer contains 32

neurons. Except for the last layer of the model that uses a

linear activation function, the other layers are followed by the

Tanh function. The model employs the Huber loss function

and Adam optimizer. For a fair comparison, all previously

mentioned training parameters are consistently maintained for

FedMec and SplitMec without any modifications. TABLE II

outlines the parametric settings used in the evaluation process.

C. Performance Metrics

1) Learning Performance:

• Loss: It is a standard metric that quantifies the error

between model prediction and the actual ground truth

values in the training data. In our case, we selected the

Huber as a loss function that can be derived using the

equation 1.

L(y, ŷ) =

{

1

2
(y − ŷ)2 if |y − ŷ| ≤ δ

δ(|y − ŷ| − 1

2
δ) otherwise

(1)

• Mean Absolute Error (MAE): is the average of the

absolute differences between the predicted and actual

values.

2) Computing Performance:

• Model storage complexity: It denotes the client’s neces-

sary memory to store its related segment for each model,

calculated as the total number of client-side parameters

multiplied by the size of each parameter.

• Memory usage (during training): denotes the amount of

memory consumed throughout the training process.

• Communication overhead: It represents the data size

sent between clients and servers (weights, activation,

gradients, etc.).

• Total training time: It represents the time necessary to

complete the training process between the clients and the

server.

• Bandwidth: It refers to the quantity of data conveyed

between the clients and the server within a specific

amount of time.

D. Numerical Results and Discussion

From Fig. 2, we can observe that initially SplitMec records

a low level of loss compared with FedMec and SFMec. This

is mainly due to the synchronous training mode of SplitMec,

where the current participating client does not start the training

with randomly initialized weights but rather downloads the

model’s pre-existing weights from its previous neighbor. This

knowledge transfer among neighbors accelerates the learning

process. After 40 rounds, the curve appears in a decreasing

trend for the three models. Thereafter, a minor decrease

in FedMec loss is observed, whereas SplitMec and SFMec

exhibit a high degree of similarity throughout the 200 rounds.

Fig. 3 demonstrates the mean absolute error of FedMec,

SplitMec and SFMec for the dataset used. As can be seen,

the MAE values of FedMec and SFMec remain consistent and

illustrate a close correlation as the number of rounds increases,

indicating stability in the results. However, the MAE of the

SplitMec model is slightly higher than FedMec and SFMec

with small fluctuations. This discrepancy can be attributed to

the fact that FedMec and SFMec share the same aggregation

rule, which plays a crucial role in smoothing the results,

reducing fluctuations, and enhancing the model generalization.

However, SplitMec does not use any aggregation strategy that

could reduce the risk of variations in the results obtained.

Next, we proceed with a comparative analysis of the com-

putational performance across the different models within the

UAV system. The comparison is made in terms of model

storage complexity, memory usage, average training time,
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communication overhead and bandwidth. For the total training

time (see Fig. 4), SplitMec and SFMec gave the best results,

with SFMec coming second out of three and being slightly

outperformed by SplitMec. In addition, we see that both Split-

Mec and SFMec offered a remarkable performance compared

to FedMec in terms of model footprint (see Fig. 5). They could

save more than half of the FedMec storage space, with only

0.27MB compared to FedMec which requires 0.85MB. This

is due to the reduction in the number of trainable parameters to

only 7168, which is more than three times less than the 223393

parameters in FedMec (see Fig. 6). It is also important to note

that SFMec and SplitMec outperform FedMec in optimizing

memory utilization during training. As can be seen in Fig. 7,

SplitMec and SFMec take up only 68.6MB and 81MB of

memory during training, while FedMec occupies 306.7MB
(the reported results pertain to one round). In terms of commu-

nication overhead and bandwidth, as highlighted in Figures 8

and 9, it is evident that FedMec outperforms both SplitMec

and SFMec. This is because SFMec (as well as SplitMec)

involves additional data to manage communication between

learners and the server, including smashed data and gradients.

Consequently, this leads to an increased overhead and higher

bandwidth consumption on the network. In contrast, in the

FedMec approach, only the weights are transmitted between

the UAVs and the server.

Based on these findings, we can deduce that, except for the

communication overhead that directly impacts the consumed

bandwidth, SFMec framework has proved its superiority in

terms of computing performance compared to FedMec, and

it could cope with the characteristics of aerial vehicles. Fur-

thermore, as seen above, SFMec offers better results than

SplitMec in terms of learning performance. All in all, we could

say that SFMec achieves a good trade-off between learning

performance and computing performance.

This first part of the study constituted an essential step

in identifying the key limitations of split federated learning

in resource-constrained UAV environments. Specifically, the

high number of request-response exchanges between UAVs

and servers, leading to significant communication overhead.

The next section introduces the SFMecLite framework, an

enhancement of SFMec that addresses this issue by optimizing

the communication process.

V. COMMUNICATION OPTIMIZATION FOR

CLIENTS-SERVERS INTERACTIONS

A. SFMecLite: Novel Architecture for Optimal Connectivity

and Performance

To model the system, suppose that M is the SFL model to

train, p denotes the number of training rounds, n is the number

of learners (drones), m represents the number of samples in

the dataset, k indicates the number of samples for each batch.

NRmain and NRfed are the number of requests between the

clients and the main/fed server respectively. The task is to

train M for p rounds among n drones using a dataset of m
samples.

In the traditional architecture, the total number of requests

between the drones and the main server is typically

NRmain = 2 ∗ i ∗ p ∗m/k, i ∈ {1, n} (2)

If we consider that UAVs forward their local weights

towards the fed server after each round, then, the total number

of requests between the drones and the fed server is

NRfed = p ∗ (i+ 1) , i ∈ {1, n} (3)

To minimize clients-servers communication, consider the

proposed architecture design illustrated in Fig. 10. In the

proposed system, existing base stations in the network are

leveraged as central relay points for communication between

drones and the main/fed server. Each participating node sub-

mits its individual activations/weights, identified by a client-

specific ID, to the base station. The latter aggregates the

received data into a batch of smashed data or weights, which

are then transmitted to the main/fed server. Upon receiving the

data batch, the main server proceeds with the backpropagation

phase for each learner (drone). Subsequently, the main server

forwards the vector of gradients back to the relay point (BS).

The BS acts as an intermediary, efficiently propagating the

computed gradients to the respective learners involved in the

learning process. In our design, we have opted for a fixed

base station for several reasons. First, a fixed base station

provides high transmission power, ensuring stable and reliable

communication between drones and servers. Furthermore, it

has more computational resources and storage capacity. In

addition, it is more scalable, supporting a higher number of

UAVs and larger data flows. We recognize that there are

scenarios, such as in remote areas, where the deployment

of a fixed base station is impossible. In this situation, a

temporary mobile base station, such as one of the UAVs,

can be deployed. However, selecting the appropriate drone
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Fig. 10: New design for reduced client-server exchanges

to serve as a BS involves some challenges that must be

carefully managed. These include the high mobility of UAVs

that causes communication interruptions, frequent handover,

increased overhead, and latency. Furthermore, the limited

battery life and computational resources of UAVs restrict their

operational capacities and time. It is important to note that

while these challenges are significant, they are beyond the

scope of this research and require a separate study to fully

explore and address the issues related to mobile base station

deployment.

With the proposed design, the total requests between the

base station and the main/fed server will be minimized to

NRmain = 2 ∗ p ∗m/k and NRfed = 2 ∗ p (4)

Here, it is important to mention that SFMecLite serves to

mitigate the communication costs in terms of additional data

(headers and control information) between the clients and the

server, but does not directly contribute to the reduction of

the SFMec data (smashed data and gradients). For instance,

if we consider that the original SFMec payload is sent by

the standard TCP protocol that has a minimum header size

of 20 bytes, each client that establishes a connection with the

server will incur an overhead associated with the TCP header

size and the three-way handshake process. Forwarding a

batch of data through a single connection minimizes overhead

by reducing connection establishment costs for each learner.

Furthermore, this helps optimize resource utilization on both

the client and server sides. The subsequent section addresses

the minimization of the original data associated with split

federated learning.

B. OptSFMec: Particle Swarm Approach for Balancing Multi-

Objectives in Split Federated Learning

Traditional hyperparameter optimization algorithms involve

iterative adjustment of model parameters to optimize (min-

imize or maximize) the cost function (accuracy, loss, etc.).

However, in the context of distributed learning (e.g., split

federated learning), where multiple entities are considered,

additional metrics beyond the traditional ones, such as com-

munication cost and computation time, become a significant

consideration, and extended optimization is required. Our

objective is to consider trade-offs between communication

cost, computational time, and learning performance (loss).

There is no known polynomial-time algorithm that guarantees

an optimal solution for all these factors. Furthermore, the

decision-parameter space is high-dimensional and non-convex,

making it computationally challenging, even impractical, to

explore exhaustively, especially when dealing with complex

models. In the literature, metaheuristics have been successfully

applied to address similar optimization problems in Deep

Neural Networks (DNN) and federated learning [34] [35].

In this section, we determine an optimal set of model

parameters using an evolutionary technique, namely particle

swarm optimization (PSO) [36] and prove that it is an efficient

way to acquire satisfactory results.

1) Overview of Particle Swarm Optimization (PSO): It is

a population-based metaheuristic inspired by bird flocking

behavior during food search. It is widely used to solve complex

optimization problems, including constrained, multiobjective,

multimodal and discrete problems. The algorithm starts with

a population (aka swarm) of particles with random locations

and velocities in the N-dimensional search space. Each particle

i represents a potential solution. During each iteration, the

population is updated based on two best values, namely: pbestti
which represents the best position found by particle i so far,

and gbestt which is the best position obtained by any particle

in the swarm so far. The process continues until the iteration

limit or a satisfactory solution is reached.

2) Problem Formulation: Let us denote the set of clients

as D = {d1, d2, . . . , dn}, the main server as M , and the fed

server as F . First, we formulate the terms that contribute to

the overall value of the objective function f(X).

• Communication cost C(X): It is the total data size

transmitted between the clients and the servers. Tak-

ing Ai,p,b as the input matrix for batch b of client

di ∈ D during round p, W is the weight matrix, z
is the bias vector, σ represents the activation function,

∇ refers to the gradient operator and θ denotes the

model parameters. The total data transmitted of an SFL

training is represented by

C(X) =
∑

i∈N

∑

p∈N

∑

b∈N

(σ(Ai,p,b ·W + z) +∇θLi,p,b(θ)) (5)



In practice, the real-world communication cost is measured

using network monitoring for each client in each round. For

clarity, if we assume that Sc→s
c,r is the smashed data size sent

from client c to the main server in round r. Gs→c
c,r is the

gradients size from the main server to the client c in round

r. W c→f
c,r is the weights size sent from the client c to the fed

server in round r and Fr is the size of the new submodel

broadcasted from the fed server to all clients. Formally, the

communication cost can be expressed as

C(X) =
∑

c∈C

R
∑

r=1

(

Sc→s
c,r +Gs→c

c,r +W c→f
c,r

)

+
R
∑

r=1

Fr

• Computation time T (X): It quantifies the duration that a

split federated learning system invests in model training.

If we consider that CFPTj is the time complexity for

the forwarding pass during round j, and SFPTj is

the time complexity of the main server for the same.

Similarly, CBPTj and SBPTj represent the client and

main server time complexities for backward pass during

round j. T j
F,regen is the time required for the fed server to

regenerate the global client sub model in round j. Then,

the computation time of an SFL model training can be

formulated as

T (X) =

p
∑

j=1

[(CFPT j + SFPT j+ SBPT j + CBPT j)]

+

p
∑

j=1

Tj
F,regen

(6)

For clarity and without loss of generality, in what follows, we

provide further details on how each term of equation 6 can be

computed.

In equation 7, we show that the time complexity for per-

forming the forward pass depends on the computational power

of the client, the batch size, the architecture of the client-

side neural network, and the network bandwidth. Therefore,

CFPTj can be expressed as

CFPT j = f(Sb,i,O(NN i), Pi) + Ttrans,i,j,b

=
n
∑

i=1

k
∑

b=1

Sb,i · O(NN i)

Pi

+
Sb,i

BW

(7)

Where: Sb,i is the batch size of client di ∈ D. O(NN i) is the

computational complexity of the client side neural network. Pi

is the processing rate of the client di (UAV). Ttrans,i,j,b denotes

the transmission time of batch b between client di and the main

server M during round j and BW is the network bandwidth.

Similarly, equation 8 describes that the increase/decrease in

the time required for the main server to execute the forward

pass is also influenced by the size of the smashed data,

the architecture of the server-side neural network, and the

computational capacities of the server. Therefore, SFPT j can

be represented as

SFPT j = f(Sa,i,O(NNM), PM ) =
n
∑

i=1

k
∑

a=1

Sa,i · O(NNM)

PM

(8)

Where: Sa,i is the activation size sent by client di ∈ D,

O(NNM) is the computational complexity of the server side

neural network for processing the smashed data and PM is

the processing rate of the main server M.

The total time required by the main server to calculate

the gradients for itself and its associated clients, represented

by SBPT j , consists of the time needed to compute both

gradients (T server
grad and T client

grad respectively), update the server

weights (T server
update ), and forward the client’s gradients to the

respective client (T client
send ). This depends on the number of

parameters of the server side sub-model, denoted as ns, and the

client side sub-model, denoted as nc, as well as the processing

rate of the main server PM . Therefore, it can be formulated

as

SBPT j = T server
grad + T client

grad + T server
update + T client

send

=
n
∑

i=1

k
∑

b=1

(

ns · O(gradserver, b)

PM

+
nc · O(gradclient, i, b)

PM

+
ns · O(updateserver, b)

PM

+
Sclient,i
grad

BW

)

(9)

If we assume that O(gradserver, b) = O(gradclient, i, b) =
O(updateserver, b) = O(gradi, b), then equation 9 will be

simplified to

SBPT j =
n
∑

i=1

k
∑

b=1

(

(2ns + nc) · O(gradi, b)

PM

+
Sclient,i
grad

BW

)

Where Sclient,i
grad represents the size of the gradients for client

di ∈ D.

Equation 10 defines the amount of time it takes the client to

update its weights using the gradients received from the main

server M

CBPT j =
n
∑

i=1

k
∑

b=1

(

nc · O(updateclient, i, b)

Pi

)

(10)

To express the time required by the fed server F to regen-

erate the client-side submodel, we need to consider the time

to upload the weights of each client di ∈ D to F , represented

by Tupload(i, F ). Furthermore, the time required by the fed

server to aggregate all client weights, denoted as Tagg and the

time required to broadcast the new global client submodel to

all clients, Tbroadcast. Equation 11 models the calculation of

T j
F,regen

T j
F,regen =

n
∑

i=1

Tupload(i, F ) + Tagg + Tbroadcast

=

n
∑

i=1

Sw,i

BW
+

n · O(updateweights) · Sweights

PF

+
Sclient−submod

BW

(11)

Where: Sw,i is the size of the weights of client di ∈ D,

n is the number of participating clients, Supdate represents the



average size of the clients weights, PF is the processing rate

of the fed server, and Sclient−submod is the size of the new

global client side submodel.

Note that O in all equations refers to the computational

complexity of each of the mentioned terms.

• Loss L(x): It quantifies the extent to which the model’s

predictions deviate from the true values (refer to equa-

tion 1).

Additionally, we introduce the following decision variables

X = [Ns, Cunits,Ml1,units,Ml2,units, δ, b]

Where Ns represents the sequence length, Cunits is the number

of neurons on the client side, Ml1,units and Ml2,units are the

numbers of neurons for the first and second layers on the

server side, respectively, and b expresses the batch size. We

consider a mono-objective minimization problem defined as

follows
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min f(X) = α · C(X) + β · T (X) + γ · L(X)

S.t,

α+ β + γ = 1, α, β, γ ∈ R
+

Cunits ≤

∑2

i=1
Mli,units

2

∀di ∈ D : Cdi
(X) ≤ τ ∧

n
∑

i=1

Cdi
(X) ≤ τ

∀j ∈ p : T (X)j ≤ ρ

If (p = j), then L(X)j ≤ ϕ

(12)

(13)

(14)

(15)

(16)

(17)

In the objective function (12), our primary goal is to min-

imize the computation time, communication costs concerning

the original data associated with SFL, and improvement in

learning performance, measured by reduction in loss. These

objectives are pursued while adhering to the following con-

straints. Constraint (13) ensures that the sum of the coefficients

α, β and γ adds up to 1. Each coefficient indicates the

relative importance of the associated term. In our experi-

ments, we assign equal importance to all terms; therefore,

α = β = γ = 1

3
. The primary objective of constraint (14)

is to ensure that clients always have fewer parameters than

the server, respecting the limited resources of UAVs. The

number of parameters for the client must be less than or

equal to 50% of that of the server. Constraint (15) aims to

minimize communication overhead while avoiding exceeding

the threshold τ . The value of τ can be set by the network

operator based on the link conditions or fixed to ∞ in the

absence of restrictions. Constraint (16) guarantees that the

round execution time must not exceed a predefined threshold

ρ. Finally, constraint (17) ensures that in round j the loss

reaches or goes below ϕ. We set τ , ρ on the basis of the best

values obtained from our previous experiments. We specified

τ to be 5.11, representing the minimum overhead achieved by

FedMec (see Fig. 8). We configured ρ to 14.47, reflecting the

minimum average training time obtained with SFMecLite. For

ϕ, the optimization algorithm is expected to achieve a target

value better than SFMecLite (equal or lower than 0.004 within

30 rounds).

TABLE III: Side Constraints

Parameters Ns b Cunits Ml1,units Ml2,units δ

Initial Min 5 8 32 32 32 0.1

Initial Max 20 128 128 128 128 1

Selected Min 5 100 32 96 96 0.1

Selected Max 20 130 128 256 256 1

TABLE IV: PSO Parameters

Parameter ω φp φg minstep minfunc swarmsize

Value 0.5 0.5 0.5 1e-8 1e-8 4

3) OptSFMec Implementation and Optimization Strategy:

To implement the proposed OptSFMec, we have used

pyswarm, a Python package for particle swarm optimization

(PSO) with constraint support [37]. The PSO parameters are

set to the values mentioned in TABLE IV. The optimization is

terminated when two conditions are met: (1) if all constraints

are satisfied and (2) the difference between the values of the

objective function from three successive iterations is less than

a defined tolerance of 0.01. This criterion is implemented to

prevent unnecessary iterations.

The selection of decision variables is a crucial step in

the optimization process. Properly chosen decision variables

reduce the computational burden associated with searching in

unfeasible regions and lead to faster convergence. In addition,

it contributes to the generation of high-quality solutions. To

achieve this, we carefully considered the lower and upper

bounds of each decision variable. We started by setting the

decision variables with values commonly utilized in ML/DL

algorithms. We have chosen a sequence length ranging from

5 to 20. This selection aims to strike a balance, avoiding

the computational expense and potential memory limitations

associated with processing longer sequences while ensuring

the model captures relevant patterns within a reasonable time.

For the batch size, Fig. 11 explores how varying this decision

variable influences the satisfaction of our problem constraints

and then the convergence process. As can be seen, when batch

sizes of 8 to 50 are used, the time constraint is consistently not

met. Thus, opting for a batch size value outside this range is

imperative to ensure better alignment with the specified time

constraint. As depicted in Fig. 11b, with batch sizes between

51 and 128, the time constraint is more often adhered to than

breached while the algorithm violates the constraint only twice

when employing a batch size from 100 to 130, as illustrated

in Fig. 11c. This limited occurrence of violations served as a

motivating factor in opting for this specific range. Furthermore,

given the expected higher computational capacities on the

server side compared to the client side, it is more optimal

to opt for an expanded range of the number of neurons on the

server side. This permits effective utilization of computational

power while enabling the server-deployed neural network to

capture complex data patterns, enhancing its convergence and

generalization. In addition, this increases the likelihood of

satisfying constraint (14) and achieving the desired outcomes.

Finally, we opted for a δ range between 0.1 and 1 to strike



TABLE V: PSO Solution

Parameter Ns b Cunits Ml1,units Ml2,units δ

Solution 5 123 33 129 176 0.1

a balance between robustness to outliers and sensitivity to

data variations. Figures 12 and 13 illustrate that, with the

adopted parameters, the client and overhead constraints are

less violated compared to the initial parameters.
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Fig. 11: Time-constraint violation across varied batch sizes

C. Results and Analysis

To the best of our knowledge, no existing literature has

applied a metaheuristic approach to SFL for comparative

analysis. To demonstrate the effectiveness of OptSFMec, we

conducted comparisons with FedMec, SFMec and SFMecLite.

Comparison is always made in terms of learning performance

and computing performance. It is worth mentioning that for a

fair comparison, we have used the PSO-derived solution listed

in TABLE V to train FedMec anew.

We have two different sets of results to explore. The first

part reveals the effectiveness of the proposed SFMecLite.

Fig. 14a and 14b demonstrate that SFMecLite has faster

updates and prevents the spikes observed in SFMec, demon-

strating a more consistent and stable learning curve. In contrast

to SFMec setup where the server receives all activations from a

single client, which can be exposed to a limited perspective of

the data, training in batches allows multiple clients to package

their activations into a single batch where each client may have

different data characteristics, allowing the server to capture

a more comprehensive set of patterns present in the overall

dataset. This diversity provides a richer variety of information,

helps the model generalize better, and enables it to adapt to

different aspects of the data, leading to faster convergence and

improved overall model performance. Furthermore, Fig. 14c

shows that reducing the number of trips between clients and

servers significantly contributes to reducing training time. The

mean training time of SFMecLite has been reduced to 14.47 s,
in contrast to the SFMec that required 23.86 s.

The second part of the results provides insights into the

results of the optimization process, starting with an analysis

of the learning performance. From Fig. 14a and 15a, one

can easily observe the superiority of the proposed OptSFMec

over the other three models in terms of the loss. It is even

better than FedMec, which slightly outperformed SFMec in

our first experiments. The same observations hold true for the

MAE (Fig. 14b and 15b). OptSFMec reported a remarkable

better performance compared to the baseline SFMec. Also,

it exhibited better behavior than FedMec and SFMecLite

variants, as it converges faster. This confirms the efficiency

of OptSFMec in terms of learning performance over the two

variants, SFMec and SFMecLite, as well as FedMec.

We now compare the different variants of SFMec and

FedMec in terms of computing performance between the

four models. Fig. 16 indicates that OptSFMec is significantly

smaller than FedMec, SFMec and SFMecLite. The trainable

parameters on the client side for OptSFMec is more than ten

times better than the basic SFMec (as well as SFMecLite) and

negligible compared to the number of parameters of FedMec.

This directly influences the storage space necessary to save the

model. As illustrated in Fig. 17, under OptSFMec, clients only

need 0.022MB to store the model, making it ultra-lightweight

and highly suitable for resource-constrained UAVs, where

storing and running large models is infeasible. Moreover,

OptSFMec significantly optimizes the communication over-

head between the trainers and the servers. As shown in Fig. 18,

compared to FedMec, it achieves a 71.24% reduction in over-

head, and compared to SFMec and SFMecLite, it reduces over-

head by 92.29% respectively, indicating a major improvement.

This low communication overhead makes the model ideal

for resource-constrained environments, as it decreases energy

consumption, and extends the operational time of resource-

limited clients. Moreover, the model scales more effectively in

networks with multiple clients, as reduced data transmission

helps minimize network congestion. Fig. 19 outlines the

average training time (per round) for the four models. As

can be seen, OptSFMec achieves the fastest training time

(9.65 s) outperforming FedMec (27.39 s), SFMec (23.86 s) and

SFMecLite (14.47 s). This leads to lower energy consumption,

while also reducing memory and processing requirements.

Furthermore, Fig. 20 demonstrates that OptSFMec exhibits

significantly higher bandwidth efficiency compared to the three

models and performs even better than FedMec.

Through the presented results, we have experimentally

demonstrated that, in contrast to Hyperband, the PSO meta-

heuristic could be successfully used to deal with multi-

criteria and high-dimensional machine learning optimization

problems. The PSO solution has substantially decreased the

overhead and training time, leading to significant improve-

ments in the efficiency of the training process. The solution has

also provided adaptable parameters for clients with resource

limitations, enabling effective participation in the learning

process despite their resource constraints. More importantly,

these enhancements in efficiency and adaptability do not

come at the expense of the model’s learning performance. In

contrast, numerically speaking, OptSFMec has shown superior

results across all metrics compared to other proposed models.

VI. CONCLUSION

This work introduces three distributed, collaborative,

privacy-preserving and lightweight frameworks for resource

optimization in MEC-enabled UAV networks. The proposed

frameworks highlight a clear progression of enhancement.

The first variant, SFMec, achieves comparable learning per-

formance with FedMec, while significantly outperforming it in

terms of computational efficiency. SFMec optimizes the model
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Fig. 13: Overhead constraint violation
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Fig. 14: Learning performance and training time for SFMec,

SFMecLite, and OptSFMec
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Fig. 15: Comparative analysis of learning performance and

training time complexity for OptSFMec and FedMec

size that each drone should train, enhancing both training

efficiency and computational performance. This makes it an

efficient baseline for high-performing UAV-based networks.

Building on SFMec, we proposed a second variant, SFMe-

cLite, which introduces significant enhancements to optimize

the iterative exchanges between UAVs and the main server.

Through empirical validation, we have demonstrated its effi-

ciency compared to the baseline SFMec. Finally, we proposed

a third variant, OptSFMec, that extends the enhancements

of both SFMec and SFMecLite, by integrating additional

optimization of the communication overhead between UAVs

and the main server, as well as the training time, while con-

currently enhancing the learning performance in comparison

to FedMec, SFMec, and SFMecLite. Future work will consider

unreliable and challenging network conditions between UAVs,

base stations and edge servers. We will also incorporate

additional parameters into the optimization process, evaluate

the impact of various PSO parameters on OptSFMec, and

explore alternative metaheuristics.
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