Split Federated Learning-Driven Resource-Efficient
MEC Framework for UAV-based Networks

Houda Hafi, Bouziane Brik, Senior Member, IEEE, Zakaria Abou El Houda, Adlen
Ksentini, Senior Member, IEEE

Abstract—Distributed collaborative machine learning tech-
niques enable the training of intelligent models while preserving
user data privacy. However, in reality, training a large-scale
and intricate model on resource-constrained devices such as
Unmanned Aerial Vehicles (UAVs) is unfeasible. In this context,
lightweight and resource-efficient deep learning techniques are
required. This work first suggests a new resource-aware dis-
tributed framework, SFMec, in the context of a UAV power
consumption scenario. The framework is evaluated and com-
pared with other distributed frameworks, including FedMec,
a federated learning-based approach, to assess its performance
across different system architectures and resource management
strategies. The results obtained demonstrate that SFMec has
the potential to conserve more than 50% of the storage space
occupied by FedMec, making it more attractive for devices
with limited resources. Then, a novel architecture, denoted as
SFMecLite, is introduced to minimize the interactions between
SFMec entities. Furthermore, an enhanced version of SFMecLite
is also presented that greatly outperforms FedMec and reduces
the computational and communication costs in SFMec without
compromising learning performance.

Index Terms—Unmanned Aerial Vehicle (UAV), Resource-
constrained Devices, Resource Optimization, Split Federated
Learning (SFL), Mobile Edge Computing (MEC).

I. INTRODUCTION

UE to their ease and rapid deployment, low acquisition

and maintenance costs, high flexibility, and mobility,
Unmanned Aerial Vehicles (UAVs) are becoming increasingly
indispensable for a wide range of socio-economic applications.
For example, in the realm of environmental issues, sensor-
equipped UAVs can be used in air pollution and emissions
tracking, guiding industries to environmental sustainability [1].
In addition, UAVs equipped with sensors, cameras, and RFID
can be used for smart warehouse management. Advanced
analytics of the collected data enables predictive restocking,
guaranteeing product availability for consumers [2]]. Moreover,
incorporating UAVs into logistics and supply chain manage-
ment will significantly enhance the efficiency, speed, cost,
and reliability of supply chain operations, aligning with the

Houda Hafi is with the Faculty of New Information and Communication
Technologies, Abdelhamid Mehri University, Constantine, Algeria, e-mail:
(houda.hafi @univ-constantine2.dz).

Bouziane Brik is with the Computer Science Department, College of
Computing and Informatics, Sharjah University, Sharjah, UAE, e-mail:
(bbrik @sharjah.ac.ae).

Zakaria Abou El Houda is with Institut National de la Recherche
Scientifique Centre Energie Matériaux et Télécommunications
(INRS-EMT), Varennes, QC J3X 1S2, Canada, Canada, e-mail:
(zakaria.abouelhouda@inrs.ca).

Adlen Ksentini is with EURECOM, Sophia-Antipolis, France, e-mail:
(adlen.ksentini @eurecom.fr).

evolving expectations of consumers [3]]. Furthermore, they can
be utilized for predictive maintenance in smart factories by
monitoring various machine parameters, such as temperature,
voltage, and current. Analysis of collected data, leveraging
advanced Machine Learning (ML) and Deep Learning (DL)
algorithms, enables the identification of defects and anomalies
in real time. This approach enhances production efficiency,
prevents breakdowns, and ensures both material resilience and
industrial operations sustainability. Additionally, UAVs can
have a great impact on commercial activities by gathering
location data to analyze customer behavior, enhance market-
ing, and improve satisfaction [4]. UAVs can also serve as a
wireless infrastructure, facilitating seamless connectivity for
data transfer between IoT devices and the control center [3]].
Therefore, the integration of Al and UAV technologies in
various industries will facilitate data-driven decision-making,
personalized consumer experiences, sustainability practices,
and efficient operations in several sectors.

However, despite the promising prospects, this transfor-
mative synergy also brings forth a set of challenges that
must be addressed to fully leverage its potential. One of
the primary challenges involves determining the appropriate
methodology to train ML/DL models on resource-limited and
hardware-constrained UAVs. Traditional training approaches,
which involve transmitting UAV data to a central server for
further analysis, require a large amount of communication
bandwidth. Additionally, relying on a single entity can lead
to system-wide failure, known as the single-point-of-failure.
Another major concern is related to the security and privacy
of sensitive data captured by UAVs (military and industrial
secrets, geolocation data, etc.) [6].

Federated learning is a prominent distributed algorithm
designed to precisely address these issues. In FL, training data
are not managed centrally, but instead held by data owners who
participate in the FL process [7]. Recent studies [8], indicate
that advancements in computational power of onboard engines
such as enhanced CPUs, GPUs, and digital signal processors,
enable UAVs to locally train ML models on sub-datasets and
share only model parameters with base stations instead of the
entire raw data. In the literature, several studies have already
applied federated learning to UAVs [9], [10], [11]. Although
this technique reduces bandwidth consumption and enhances
data privacy, the efficiency of such training remains context-
dependent and sensitive to several factors, including hardware
specifications, as well as the model size and complexity [12]].
Therefore, the successful deployment of FL in UAVs cannot be
generalized and requires case-specific evaluation. For example,

training a full FL. model with a large number of trainable
parameters on UAVs with limited onboard resources rapidly
depletes their energy, leading to premature termination of the
training process.

To effectively optimize drone resource utilization, alterna-
tive lightweight deep learning algorithms are desideratum.
Inspired by this, our study leverages a more sophisticated
distributed technique that has recently been proposed, namely
split federated learning [13]], by dividing the neural network
among the different clients/learners. Each learner trains ex-
clusively a section of the entire model, while the remaining
section would be trained by more resourceful devices (e.g.,
edge servers). This collaboration during the training process
would extend the lifespan of drone batteries and reduce the
task completion time.

The contribution of this work is three-fold:

1) Resource-optimized framework for MEC-enhanced
UAV networks: First, we propose a collaborative
resource-aware framework, called SFMec, that optimizes
resource utilization for resource-constrained UAV com-
puting devices while maintaining learning performance.

2) An enhanced architecture for seamless connectivity
and performance: Building on the analysis conducted
in the first part of this work, we identified that split fed-
erated learning involves frequent communication between
clients and servers (main and fed servers). Therefore,
a more efficient data exchange mechanism, optimizing
the bidirectional communication between the involved
entities, is provided. Thanks to the proposed technique,
known as SFMecLite, both the learning performance and
training efficiency of SFMec are significantly enhanced.

3) A high-performance framework for optimized client-
server communication: Additionally, we are considering
the reduction of split federated learning communication
costs and computation time, all while ensuring there is
no compromise in learning performance. To achieve that,
a biologically inspired method using the Particle Swarm
Optimization (PSO) algorithm is applied. Numerical re-
sults demonstrate that the new scheme surpasses FedMec,
SFMec and SFMecLite in terms of all evaluated metrics.

The details about the organization of this work are provided
as follows. We first present a review of the literature in Sec-
tion [[I} Section [III| outlines our research methodology and our
designed approach. In Section the implementation settings
and performance evaluation are discussed. Section[V]introduces
enhancements in communication efficiency for interactions be-
tween clients and servers in split federated learning. Section V]|
concludes and summarizes the key ideas of this study.

II. LITERATURE REVIEW

The emergence of federated learning has prompted re-
searchers to delve into a comprehensive examination of its
application in the air [14]], [15]. In the literature, several
federated learning solutions have been proposed to address
various issues related to UAV-enabled networks. For example,
in October 2021, the authors of [9] presented an FL approach
based on CNN-LSTM for an accurate and timely prediction of

the air quality index using a fleet of UAVs. In the same year,
the authors of [11] proposed a federated learning-based drone
authentication, where drones locally train the authentication
model using their data in a federated manner. In [16], the
authors introduced a secure federated learning framework for
UAV-assisted mobile crowdsensing (SFAC). By integrating
blockchain, local differential privacy, and a reinforcement
learning-based incentive mechanism, SFAC enables decen-
tralized and verifiable model sharing, protects UAV updates,
preserves global accuracy, and motivates high-quality model
contributions under uncertain networks.

The researchers in [10], designed a novel fair and robust
federated learning (FRFL) technique for UAV-assisted crowd-
sensing. The contributions of this work are multifold. (1) the
authors integrate 5G edge networks to provide efficient FL
services with high data rate and low latency for UAVs. (2) Un-
der knowledge asymmetry, a contract-theory-based incentive
mechanism is used to guarantee truthful and equitable partic-
ipation of UAVs. (3) The framework incorporates Byzantine-
resilient aggregation and equitable profit distribution according
to the contribution of UAVs to improve robustness. (4) To
discourage free-riders and enhance trust, a reputation system
is also included.

In [[17]], a cooperative tracking framework, FedTrack, us-
ing adaptive FL to improve tracking efficiency while re-
ducing transmission costs and time, is proposed. FedTrack
incorporates a dual reputation mechanism and an adaptive
client selection algorithm for optimized participation, and a
capability-based node selection strategy for efficiency aggre-
gation. Experimental results show competitive accuracy with
lower resource demands compared to existing methods. The
researchers in [19], design a hybrid federated and centralized
learning (HFCL) framework for wireless traffic prediction in
UAV-aided multi-access edge computing (MEC) servers. The
approach balances latency and energy consumption while en-
suring compliance with 3GPP 5G standards. By formulating an
optimization problem and incorporating a Deep Reinforcement
Learning (DRL)-based solution, the framework achieves lower
costs and better efficiency than benchmarks.

While studies [9], [10], [1L], [17], [19] provide several ad-
vantages over centralized solutions, they fall short in address-
ing the restricted computational power and battery capacities
of UAVs. The main challenge of these implementations is to
train the entire model in a limited, low-resource environment.
That is why other works try to optimize the federated training
process in UAV-assisted networks.

The research conducted in [20] presents a DRL-based
algorithm to maximize long-term FL performance. To reduce
the complexity of the problem, the authors introduce the use
of the Lyapunov optimization technique. This approach helps
transform the long-term energy constraint into a deterministic
problem. Afterwards, the optimization problem is reformulated
as a Markov decision process (MDP). The MDP is solved with
DRL, where the agent learns the optimal UAV placement and
resource allocation, ensuring sustainable and energy-efficient
UAV-assisted networks. Similarly, the authors in [21] explore
the optimization of the federated edge learning process in
UAV-enabled IoT for BSG/6G networks. The presented frame-

TABLE I: Comparison of distributed training approaches on UAVs in the literature

Reference Approach Solve Data Privacy Solve Model Privacy Full Model Training Generalization via Aggregation
[91, 1101, (114, [17], [16], [18] Standard FL Yes No Yes Yes
[19] Hybrid (Centralized + FL) Yes No Yes Yes
201, 214, [22], [231, [24], [25] Optimized FL Yes No Yes Yes
[26], 1271 Hybrid FL-SL Yes No Yes Yes
281, (291, 130} SL Yes Yes No No
Our Work SFL + Optimized SFL Yes Yes No Yes

work allows devices to adjust their operating CPU frequency
to prolong the UAVs battery life and avoid withdrawing from
training untimely, through managing resource allocation in
changing environments. To solve the optimization problem,
the authors employ the Deep Deterministic Policy Gradient
(DDPG) strategy. In a parallel way, authors in [22]], developed
a joint training and resource allocation method to minimize the
energy consumption for the multi-UAV-assisted FL scheme.
The proposed solution uses an optimization algorithm that
addresses the minimization of overall training energy con-
sumption of UAV swarms as well as the minimization of
maximum energy consumption of UAV swarms. Likewise,
the work in [25], presented an energy-efficient framework
for federated learning called E2FL. By leveraging UAVs
equipped with edge computing and wireless power transfer, the
system acts as both an aerial server and energy source. E2FL
jointly optimizes UAV placement, power control, bandwidth
allocation, and computing resources to minimize total energy
consumption. Simulation results demonstrate the effectiveness
of joint optimization for sustainable FL.

The paper [23] addresses the high energy consumption in
FL for wireless devices by using MEC-enabled UAVs for data
collection and training. To handle UAV location uncertainties
that affect data transmission and network performance, the
authors model UAV deviations as Gaussian distributions and
introduce probabilistic constraints on data offloading. Using
Bernstein-Type Inequality (BTI), they convert these constraints
into deterministic ones, making the optimization problem
solvable. They then apply Block Coordinate Descent (BCD)
to optimize UAV energy consumption while ensuring robust
FL training. The work done in [24] suggests a two-tier
hierarchical FL scheme assisted by a UAV swarm to address
connectivity challenges in wireless FL. UAVs act as data
collectors and relays. To optimize FL convergence and UAV
data transmission, the authors formulate a joint optimization
problem involving UAV-client matching, time allocation, and
local training iterations. They propose an efficient solution
combining a subgradient-based method with a cross entropy-
based genetic algorithm. Numerical results demonstrate the
effectiveness of this approach in improving FL performance
and communication efficiency. In [18]], the authors designed a
decentralized, energy-efficient FL framework for UAV swarms
using Spiking Neural Networks (SNNs) to reduce redundant
computations and energy consumption during local training.
In addition, to handle UAV mobility, the authors introduced
an intelligent leader selection scheme (based on the Bayes

theorem) to accelerate the aggregation of model parameters
and reduce communication time.

Recently, a new idea was proposed in [26], where the
authors suggest a hybrid approach, leveraging both federated
learning for local training by a portion of clients and split
learning for collaborative training with the base station. A
related idea was implemented in [27], where UAVs are divided
into two groups, namely FL-mode and SL-mode, based on
their computational capacity and dataset size. FL-mode UAVs
perform local model training on their entire datasets and trans-
mit model parameters to the server for FedAvg aggregation.
SL-mode UAVs train only a partial sub-model locally up to a
cut layer and send the resulting activations to the same server,
which completes the training and returns cut-layer gradients
for backpropagation.

To minimize energy consumption in multitasking split in-
ference in UAV networks, the authors in [28], propose a
two-timescale optimization approach called OPETRL. The
technique combines Tiny Reinforcement Learning (TRL) for
transmission mode selection, and Optimization Programming
(OP) for transmit power adjustment. The simulation results
demonstrated that OPETRL can effectively reduce computa-
tional complexity while ensuring energy efficiency and higher
task success rates during aerial Al operations. In [29], the
authors suggest a split learning-based technique for image
classification in a multi-UAV system to support applications
such as area exploration and object detection. The study aims
to demonstrate that SL can effectively offload computation
from UAVs to a base station, reducing local processing time
and improving training performance, especially under non-IID
data conditions, compared to FL and centralized learning. The
work in [30], presented a novel approach called Stitch-able
Split Learning (SSL). The technique combine split learning
with Stitch-able Neural Networks (SN-NET) to overcome
challenges in multi-UAV environments, such as device in-
stability, model heterogeneity, privacy concerns, and limited
computational resources. The simulation results showed that
SSL achieves reduced learning time, better accuracy, and
adaptability against centralized learning, FL, traditional SL,
and SplitFed V1 (SFLV1). TABLE [[] compares different dis-
tributed ML/DL training approaches on UAVs in the literature.

From the above, it is evident that most existing works
leverage federated learning for distributed model training.
However, training the complete FLL model directly on UAVs
poses a significant risk of training interruptions, due to their
limited battery capacity, which can severely impact model

convergence and overall system reliability. While some studies
attempt to optimize the FL process, they still require UAVs
to process the full model, which remains impractical. This
highlights the necessity of an alternative approach where
UAVs devices train only a lightweight model rather than the
entire FL. model. To fill this gap, through this work, we
propose a lightweight deep-learning approach for UAVs that
accommodates their storage and processing capabilities while
maintaining favorable learning outcomes.

III. PROPOSED FRAMEWORK

In this section, we first present an overview of the proposed
framework. Then, we provide additional details on each step.

A. Overview

SFMec is a distributed collaborative framework designed
to predict instantaneous power consumption in MEC-enabled
UAV networks. By leveraging split federated learning, an
emerging decentralized privacy-protection training technology,
SFMec enables multiple clients, each with its own sensor data,
to collaboratively train a global model. The framework incor-
porates Long Short-Term Memory (LSTM) for sequential data
modeling. As illustrated in Fig. [T} the proposed framework is
divided into two sides, namely: the front end, and the back
end. This architectural division not only preserves data privacy
but also ensures model privacy, as neither the front end nor
the back end has complete access to the full model [31]. In
SFMec, three types of entities are involved: a main server M,
a fed server F, and distributed clients C (UAVs). Each client
has a dataset D; = {X;,Y;}, i € {1,2,...K}. The global
model is divided into two subsections, the first sub-model is
maintained on F', while the second sub-model is hosted on the
main server M.

B. Components and Operations

As mentioned earlier, the proposed framework is divided
into two principal parts: a front end and a back end. The
following presents a detailed description of each part.

o Front end: It represents the module operating on the
client-side, tasked with carrying out lightweight compu-
tational operations. It consists of two layers, specifically
the input layer and the first LSTM layer. At first, each
client (UAV) downloads the initial weights from the fed
server. Then, it performs the forward propagation by
training only a segment of the global model (up to the
cut layer), using its own input data and the associated
client sub-model. Afterwards, each client (UAV) sends
the intermediate outputs and target values to the main
server. When the client receives the gradients of the
cut layer (after the main server assignment completes
successfully), it back-propagates the received gradients
and updates its own weights. The updated weights of
all the clients are then passed to the fed server for
aggregation and the same training process will continue.

o Back end: At the edge level of the framework, this
module is responsible for completing the training tasks on

Frontend ®
R

N
® o o @ @
UAVs Neural Section

Global Model
(08
o e
. .
LS e
[o

Main Server

Fed Server

Cut Layer Main Server Neural Section

Fig. 1: Split Federated Learning MEC-enabled Framework for
UAV Networks

Algorithm 1: SFMec Algorithm
/# UAV Side */ Input: Training data (X,Y)
for each round do
for each UAV U; in parallel do
for each Batch Size do
Ay = ForwardPass(Xy, Wy,);
MainServerProcess(Ay, Yy);
procedure UAVBackProp(G,);
Update Weights W, ;
end
W9 « FedServerProcess(W.,);

end

end

/* Main Server Side */ ;
Initialize Server Side Sub-model Weights Wy;

procedure MainServerProcess(A;, Y3);
) ForwardPass(Ay, W),

2 Compute Cost Function J(6);

3) Compute Gradients G, = VJ(0);

@ Update Weights W/;

5) UAVBackProp(Gy);

/* Fed Server Side */,
Initialize UAV Side Sub-model Weights WJ;
Forward W to all participating UAVs;

function FedServerProcess(V,);

(1 Wait until receiving all UAVs’ updates;

@ Aggregate(W,,);

3 Update UAV Side Sub-model Weights W9,
@ Return WY to all participating UAVs;

the server-side. In the server part, the network structure
consists of the remaining layers, namely: two LSTM
layers, the dense layer, and the output layer. After ob-
taining the output data from a client, the server resumes
the feedforward pass and calculates the loss function L.
Moreover, the gradients for both the server and client are
computed, respectively. Subsequently, the gradients are
sent back to the client and the forecasting precision can
be measured. Algorithm |[1| outlines the methodological
steps constituting the framework in a systematic manner.

TABLE II: Implementation Parameters

Parameters Values
Seed, Window Step 42, 10
Data Split 80% Training / 20% Test

Activation Function Tanh (hidden layers), Linear (output)

Loss Function / Optimizer Huber (delta = 1) / Adam

Learning Rate / Batch Size 0.001 / 64

Normalization Alg / Rounds | MinMax Scalar / 200

FedMec Client side: 5 layers, Server side: /

SplitMec and SFMec Client side: 2 layers, Server side: 3 layers

IV. IMPLEMENTATION AND EVALUATION

In this section, we assess the performance of SFMec by
comparing it against a federated learning-enabled (FedMec)
and split learning-enabled (SplitMec) frameworks for predic-
tion power consumption in UAV networks. We first discuss the
dataset used and the experimental settings. Then we present
the experimental findings and conduct a performance analysis.

A. Dataset

We chose a recent real-world dataset collected under non-
i.i.d conditions using a hexacopter drone [32] that has six 18-
inch propellers, weighs 6kg, and a maximum takeoff mass
of 13kg. The goal is to empirically measure the power
consumption of electric UAVs. The experimenters collect data
during automatic and manual missions, without any payload
weight and with additional payload weights of 2kg, 4kg,
and 6 kg. Measurements were taken for the hourglass-shaped
trajectory with a velocity equal to 4 m/s. The dataset contains
27 variables (altitude, velocities, orientation, total mass, etc.).
To carry out our experimental study, we selected the most
relevant features.

B. Parameter Settings

Our framework operates with 5 clients over 200 rounds.
20% of the dataset is separated as the testing data for all
the clients while the rest 80% of the dataset is equitably
divided among the five clients. The model is implemented
in Python 3.10.12 with TensorFlow 2.12.0. The Hyperband
tuning algorithm [33] is used to determine the best hyper-
parameters of the neural network. The experiments were con-
ducted in Google Colab using a supervised LSTM regression
model with four layers: input (features), 3 hidden layers, and
output (energy prediction). The first two hidden layers consist
of 128 neurons, whereas the third hidden layer contains 32
neurons. Except for the last layer of the model that uses a
linear activation function, the other layers are followed by the
Tanh function. The model employs the Huber loss function
and Adam optimizer. For a fair comparison, all previously
mentioned training parameters are consistently maintained for
FedMec and SplitMec without any modifications. TABLE
outlines the parametric settings used in the evaluation process.

C. Performance Metrics

1) Learning Performance:

o Loss: It is a standard metric that quantifies the error
between model prediction and the actual ground truth
values in the training data. In our case, we selected the
Huber as a loss function that can be derived using the
equation [T}

. Ly —9)? if [y —g| <4
L<y,y>:{2<y) ly =3l <

1
§(ly — 9| — 36) otherwise W

e« Mean Absolute Error (MAE): is the average of the
absolute differences between the predicted and actual
values.

2) Computing Performance:

« Model storage complexity: It denotes the client’s neces-
sary memory to store its related segment for each model,
calculated as the total number of client-side parameters
multiplied by the size of each parameter.

« Memory usage (during training): denotes the amount of
memory consumed throughout the training process.

o Communication overhead: It represents the data size
sent between clients and servers (weights, activation,
gradients, etc.).

o Total training time: It represents the time necessary to
complete the training process between the clients and the
Sserver.

o Bandwidth: It refers to the quantity of data conveyed
between the clients and the server within a specific
amount of time.

D. Numerical Results and Discussion

From Fig. 2] we can observe that initially SplitMec records
a low level of loss compared with FedMec and SFMec. This
is mainly due to the synchronous training mode of SplitMec,
where the current participating client does not start the training
with randomly initialized weights but rather downloads the
model’s pre-existing weights from its previous neighbor. This
knowledge transfer among neighbors accelerates the learning
process. After 40 rounds, the curve appears in a decreasing
trend for the three models. Thereafter, a minor decrease
in FedMec loss is observed, whereas SplitMec and SFMec
exhibit a high degree of similarity throughout the 200 rounds.

Fig. E] demonstrates the mean absolute error of FedMec,
SplitMec and SFMec for the dataset used. As can be seen,
the MAE values of FedMec and SFMec remain consistent and
illustrate a close correlation as the number of rounds increases,
indicating stability in the results. However, the MAE of the
SplitMec model is slightly higher than FedMec and SFMec
with small fluctuations. This discrepancy can be attributed to
the fact that FedMec and SFMec share the same aggregation
rule, which plays a crucial role in smoothing the results,
reducing fluctuations, and enhancing the model generalization.
However, SplitMec does not use any aggregation strategy that
could reduce the risk of variations in the results obtained.

Next, we proceed with a comparative analysis of the com-
putational performance across the different models within the
UAV system. The comparison is made in terms of model
storage complexity, memory usage, average training time,

0,4

splitMec . |
SFMec

s FedMeC 0,2

T .
vc\}",){A y

0,1

y e A ¢
B | il A

splitMec 23.86

20.6

e FedMec

Avg. Training Time (s)
w
8

Fig. 2: Loss vs Number of rounds

communication overhead and bandwidth. For the total training
time (see Fig. @), SplitMec and SFMec gave the best results,
with SFMec coming second out of three and being slightly
outperformed by SplitMec. In addition, we see that both Split-
Mec and SFMec offered a remarkable performance compared
to FedMec in terms of model footprint (see Fig. [5). They could
save more than half of the FedMec storage space, with only
0.27 MB compared to FedMec which requires 0.85 MB. This
is due to the reduction in the number of trainable parameters to
only 7168, which is more than three times less than the 223393
parameters in FedMec (see Fig. [6). It is also important to note
that SFMec and SplitMec outperform FedMec in optimizing
memory utilization during training. As can be seen in Fig.
SplitMec and SFMec take up only 68.6 MB and 81 MB of
memory during training, while FedMec occupies 306.7 MB
(the reported results pertain to one round). In terms of commu-
nication overhead and bandwidth, as highlighted in Figures [§]
and [0} it is evident that FedMec outperforms both SplitMec
and SFMec. This is because SFMec (as well as SplitMec)
involves additional data to manage communication between
learners and the server, including smashed data and gradients.
Consequently, this leads to an increased overhead and higher
bandwidth consumption on the network. In contrast, in the
FedMec approach, only the weights are transmitted between
the UAVs and the server.

Based on these findings, we can deduce that, except for the
communication overhead that directly impacts the consumed
bandwidth, SFMec framework has proved its superiority in
terms of computing performance compared to FedMec, and
it could cope with the characteristics of aerial vehicles. Fur-
thermore, as seen above, SFMec offers better results than
SplitMec in terms of learning performance. All in all, we could
say that SFMec achieves a good trade-off between learning
performance and computing performance.

This first part of the study constituted an essential step
in identifying the key limitations of split federated learning
in resource-constrained UAV environments. Specifically, the
high number of request-response exchanges between UAVs
and servers, leading to significant communication overhead.
The next section introduces the SFMecLite framework, an
enhancement of SFMec that addresses this issue by optimizing
the communication process.

SRESEEREsEgHY

Fig. 3: MAE vs Number of rounds

HEREEEE

FedMec SplitMec SFMec

Fig. 4: Average Training Time

V. COMMUNICATION OPTIMIZATION FOR
CLIENTS-SERVERS INTERACTIONS

A. SFMecLite: Novel Architecture for Optimal Connectivity
and Performance

To model the system, suppose that M is the SFL model to
train, p denotes the number of training rounds, n is the number
of learners (drones), m represents the number of samples in
the dataset, k indicates the number of samples for each batch.
NR,4in and N Ry.q are the number of requests between the
clients and the main/fed server respectively. The task is to
train M for p rounds among n drones using a dataset of m
samples.

In the traditional architecture, the total number of requests
between the drones and the main server is typically

NRmainZQ*i*p*m/k’,ie{l,n} 2)

If we consider that UAVs forward their local weights
towards the fed server after each round, then, the total number
of requests between the drones and the fed server is

3)

To minimize clients-servers communication, consider the
proposed architecture design illustrated in Fig. In the
proposed system, existing base stations in the network are
leveraged as central relay points for communication between
drones and the main/fed server. Each participating node sub-
mits its individual activations/weights, identified by a client-
specific ID, to the base station. The latter aggregates the
received data into a batch of smashed data or weights, which
are then transmitted to the main/fed server. Upon receiving the
data batch, the main server proceeds with the backpropagation
phase for each learner (drone). Subsequently, the main server
forwards the vector of gradients back to the relay point (BS).
The BS acts as an intermediary, efficiently propagating the
computed gradients to the respective learners involved in the
learning process. In our design, we have opted for a fixed
base station for several reasons. First, a fixed base station
provides high transmission power, ensuring stable and reliable
communication between drones and servers. Furthermore, it
has more computational resources and storage capacity. In
addition, it is more scalable, supporting a higher number of
UAVs and larger data flows. We recognize that there are
scenarios, such as in remote areas, where the deployment
of a fixed base station is impossible. In this situation, a
temporary mobile base station, such as one of the UAVs,
can be deployed. However, selecting the appropriate drone

NRypeq=p=(i+1),i€{l,n}

x10°

223393 306.7

Total params
-

71168 71168

Model Storage Complexity (MB)

FedMec SplitMec SFMec

FedMec SplitMec ~ SFMec

Fig. 5: Storage Com- Fig. 6: Total Parameters Fig. 7: Training Mem- Fig. 8: Communication

plexity ory Usage
b 3 ~ > & —— ~ > -
N P = -
- ® ® o o -« o p i‘ . . B
UAVs Neural Section & S e { A 3 ol
L Bs S
() RS
Smuhed Data t 3o
g BS: Base Station
s B rtocalpata
S -
S .
X / :
Global Model. Cath
; - - / -y j
KRR
. adih . é -
= Sk
— e 4 4 & @
= &= &&=
e == Main Serves

Cut Layer Neural Section

Fig. 10: New design for reduced client-server exchanges

to serve as a BS involves some challenges that must be
carefully managed. These include the high mobility of UAVs
that causes communication interruptions, frequent handover,
increased overhead, and latency. Furthermore, the limited
battery life and computational resources of UAVs restrict their
operational capacities and time. It is important to note that
while these challenges are significant, they are beyond the
scope of this research and require a separate study to fully
explore and address the issues related to mobile base station
deployment.

With the proposed design, the total requests between the
base station and the main/fed server will be minimized to

and NRgeq=2%p “)

Here, it is important to mention that SFMecLite serves to
mitigate the communication costs in terms of additional data
(headers and control information) between the clients and the
server, but does not directly contribute to the reduction of
the SFMec data (smashed data and gradients). For instance,
if we consider that the original SFMec payload is sent by
the standard TCP protocol that has a minimum header size
of 20 bytes, each client that establishes a connection with the
server will incur an overhead associated with the TCP header
size and the three-way handshake process. Forwarding a
batch of data through a single connection minimizes overhead
by reducing connection establishment costs for each learner.
Furthermore, this helps optimize resource utilization on both
the client and server sides. The subsequent section addresses
the minimization of the original data associated with split
federated learning.

NRpain =2xpxm/k

B. OptSFMec: Particle Swarm Approach for Balancing Multi-
Objectives in Split Federated Learning

Traditional hyperparameter optimization algorithms involve
iterative adjustment of model parameters to optimize (min-

FedMec SplitMec SFMec

10.35

Comm Overhead (MB;
&
Bandwidth (Mbps)
>

@
N

0.82

o o

FedMec SplitMec ~SFMec FedMec SplitMec ~SFMec

Fig. 9: Bandwidth
Overhead

imize or maximize) the cost function (accuracy, loss, etc.).
However, in the context of distributed learning (e.g., split
federated learning), where multiple entities are considered,
additional metrics beyond the traditional ones, such as com-
munication cost and computation time, become a significant
consideration, and extended optimization is required. Our
objective is to consider trade-offs between communication
cost, computational time, and learning performance (loss).
There is no known polynomial-time algorithm that guarantees
an optimal solution for all these factors. Furthermore, the
decision-parameter space is high-dimensional and non-convex,
making it computationally challenging, even impractical, to
explore exhaustively, especially when dealing with complex
models. In the literature, metaheuristics have been successfully
applied to address similar optimization problems in Deep
Neural Networks (DNN) and federated learning [34] [35].

In this section, we determine an optimal set of model
parameters using an evolutionary technique, namely particle
swarm optimization (PSO) [36] and prove that it is an efficient
way to acquire satisfactory results.

1) Overview of Particle Swarm Optimization (PSO): 1t is
a population-based metaheuristic inspired by bird flocking
behavior during food search. It is widely used to solve complex
optimization problems, including constrained, multiobjective,
multimodal and discrete problems. The algorithm starts with
a population (aka swarm) of particles with random locations
and velocities in the N-dimensional search space. Each particle
1 represents a potential solution. During each iteration, the
population is updated based on two best values, namely: pbest!
which represents the best position found by particle ¢ so far,
and gbest? which is the best position obtained by any particle
in the swarm so far. The process continues until the iteration
limit or a satisfactory solution is reached.

2) Problem Formulation: Let us denote the set of clients
as D = {dy,da,...,d,}, the main server as M, and the fed
server as F'. First, we formulate the terms that contribute to
the overall value of the objective function f(X).

o Communication cost C'(X): It is the total data size
transmitted between the clients and the servers. Tak-
ing A;pp as the input matrix for batch b of client
d; € D during round p, W is the weight matrix, z
is the bias vector, o represents the activation function,
V refers to the gradient operator and 6 denotes the
model parameters. The total data transmitted of an SFL
training is represented by

CX) =D 3> (0(Aipp-W+2)+VoLipp(0))

1EN peN beN

In practice, the real-world communication cost is measured
using network monitoring for each client in each round. For
clarity, if we assume that S¢’° is the smashed data size sent
from client ¢ to the main server in round r. G;° is the
gradients size from the main server to the client ¢ in round
T. ngf is the weights size sent from the client c to the fed
server in round r and F, is the size of the new submodel
broadcasted from the fed server to all clients. Formally, the
communication cost can be expressed as

SN (85 G W)

ceCr=1

R

+Y) F,

r=1

C(X) =

o Computation time 7'(X): It quantifies the duration that a
split federated learning system invests in model training.
If we consider that CF'PT5 is the time complexity for
the forwarding pass during round j, and SFPTj is
the time complexity of the main server for the same.
Similarly, CBPT'j and SBPT}j represent the client and
main server time complexities for backward pass during
round j. T%. .., is the time required for the fed server to
regenerate the global client sub model in round j. Then,
the computation time of an SFL model training can be
formulated as

p
=Y [(CFPT; +SFPT;+ SBPT; + CBPT;)|
j=1

+ Z TF \regen

(6)
For clarity and without loss of generality, in what follows, we
provide further details on how each term of equation [6] can be
computed.

In equation [/} we show that the time complexity for per-
forming the forward pass depends on the computational power
of the client, the batch size, the architecture of the client-
side neural network, and the network bandwidth. Therefore,
CFPTj can be expressed as

CFPT = f(SbZ;O(NNt) P) +T'trans,i,j,b

B Z i Spi - o NN)) Sy (7
i=1 b=1 BW
Where: Sy, ; is the batch size of client d; € D. O(NN;) is the
computational complexity of the client side neural network. P;
is the processing rate of the client d; (UAV). Tirans,i,5,5 denotes
the transmission time of batch b between client d; and the main
server M during round j and BW is the network bandwidth.
Similarly, equation [§] describes that the increase/decrease in
the time required for the main server to execute the forward
pass is also influenced by the size of the smashed data,
the architecture of the server-side neural network, and the
computational capacities of the server. Therefore, SFPT'; can
be represented as

SFPT; = f(Sas, O(NNy), Par) = NNM)

3y SO0

=1 a=1

®)

Where: S, ; is the activation size sent by client d; € D,
O(NNy) is the computational complexity of the server side
neural network for processing the smashed data and Py is
the processing rate of the main server M.

The total time required by the main server to calculate
the gradients for itself and its associated clients, represented
by SBPT;, consists of the time needed to compute both
gradients (774" and Td’e;” respectively), update the server
weights (7;70057), and forward the client’s gradients to the
respective client (7i"). This depends on the number of
parameters of the server side sub-model, denoted as s, and the
client side sub-model, denoted as n., as well as the processing
rate of the main server P,;. Therefore, it can be formulated
as

__ mserver clzent server client
SBPT j — grad Tgra update Tsend
j :j : (ns : gradgewer, b) + Ne - O(gradclienl, i, b)
N P,
i=1 b=1 M

server, b)

ng - O update
(
Py

client,i
+ Sgrad
BW
9)

If we assume that O(grad,....,) = O(gradg.. i p) =
O(update.. ,) = Of(grad;), then equation E] will be

simplified to
client,i
! O(gradi, h) + Sgrad)

(2ns + nc
SBPT; = ZZ < o i

i=1 b=1

Where Sg?jgt” represents the size of the gradients for client
d; € D.

Equation 10| defines the amount of time it takes the client to
update its weights using the gradients received from the main
server M

CBPT; = ZZ ("“

i=1 b=1

(10)

updateLllent, i, b))

’L

To express the time required by the fed server F' to regen-
erate the client-side submodel, we need to consider the time
to upload the weights of each client d; € D to F|, represented
by Tupioad (%, F). Furthermore, the time required by the fed
server to aggregate all client weights, denoted as T4, and the
time required to broadcast the new global client submodel to
all clients, Ty,oadcast- Equation u 11| models the calculation of

T;‘ \regen
T%‘ \regen Z Tupload(i, F) + Tagg + Tbroadcast
i=1
_ Z (updateweights) : §Weights (11)
Pr
+ M

BW

Where: Sy, ; is the size of the weights of client d; € D,
n is the number of participating clients, Sypgae represents the

average size of the clients weights, Pr is the processing rate
of the fed server, and S j;ent—submod 1S the size of the new
global client side submodel.

Note that O in all equations refers to the computational
complexity of each of the mentioned terms.

e Loss L(x): It quantifies the extent to which the model’s
predictions deviate from the true values (refer to equa-
tion [I)).

Additionally, we introduce the following decision variables
X = [NSa C(unilw Mll,unitSa Ml2,units> 57 b]

Where Nj represents the sequence length, Cyyys is the number
of neurons on the client side, My ynis and M ynis are the
numbers of neurons for the first and second layers on the
server side, respectively, and b expresses the batch size. We
consider a mono-objective minimization problem defined as
follows

min f(X)=a-CX)+3-T(X)+~v LX) (12
S.t,
a+B8+~v=1, a,pB,veERT (13)
2
Cunits < Zle# (14)
Vd; €D : Cq, (X) S TAY Ca(X) <7 (15)
i=1
Viep:T(X); <p (16)
If(p=J) then L(X);<¢ (17)

In the objective function (I2)), our primary goal is to min-
imize the computation time, communication costs concerning
the original data associated with SFL, and improvement in
learning performance, measured by reduction in loss. These
objectives are pursued while adhering to the following con-
straints. Constraint (I3]) ensures that the sum of the coefficients
«, B and v adds up to 1. Each coefficient indicates the
relative importance of the associated term. In our experi-
ments, we assign equal importance to all terms; therefore,
a=p=v= % The primary objective of constraint l|
is to ensure that clients always have fewer parameters than
the server, respecting the limited resources of UAVs. The
number of parameters for the client must be less than or
equal to 50% of that of the server. Constraint aims to
minimize communication overhead while avoiding exceeding
the threshold 7. The value of 7 can be set by the network
operator based on the link conditions or fixed to co in the
absence of restrictions. Constraint guarantees that the
round execution time must not exceed a predefined threshold
p. Finally, constraint (I7) ensures that in round j the loss
reaches or goes below ¢. We set 7, p on the basis of the best
values obtained from our previous experiments. We specified
7 to be 5.11, representing the minimum overhead achieved by
FedMec (see Fig. [8). We configured p to 14.47, reflecting the
minimum average training time obtained with SFMecLite. For
, the optimization algorithm is expected to achieve a target

value better than SFMecLite (equal or lower than 0.004 within
30 rounds).

TABLE III: Side Constraints

Parameters Ns b CVunils Ml 1, units MZZ ,units J
Initial Min 5 8 32 32 32 0.1
Initial Max 20 128 128 128 128 1
Selected Min 5 100 32 96 96 0.1
Selected Max | 20 130 128 256 256 1
TABLE IV: PSO Parameters

Parameter | w Dp Dg minstep | minfunc | swarmsize
Value 05|05 05| 1e-8 le-8 4

3) OptSFMec Implementation and Optimization Strategy:
To implement the proposed OptSFMec, we have used
pyswarm, a Python package for particle swarm optimization
(PSO) with constraint support [37]. The PSO parameters are
set to the values mentioned in TABLE[[V] The optimization is
terminated when two conditions are met: (1) if all constraints
are satisfied and (2) the difference between the values of the
objective function from three successive iterations is less than
a defined tolerance of 0.01. This criterion is implemented to
prevent unnecessary iterations.

The selection of decision variables is a crucial step in
the optimization process. Properly chosen decision variables
reduce the computational burden associated with searching in
unfeasible regions and lead to faster convergence. In addition,
it contributes to the generation of high-quality solutions. To
achieve this, we carefully considered the lower and upper
bounds of each decision variable. We started by setting the
decision variables with values commonly utilized in ML/DL
algorithms. We have chosen a sequence length ranging from
5 to 20. This selection aims to strike a balance, avoiding
the computational expense and potential memory limitations
associated with processing longer sequences while ensuring
the model captures relevant patterns within a reasonable time.
For the batch size, Fig. [T] explores how varying this decision
variable influences the satisfaction of our problem constraints
and then the convergence process. As can be seen, when batch
sizes of 8 to 50 are used, the time constraint is consistently not
met. Thus, opting for a batch size value outside this range is
imperative to ensure better alignment with the specified time
constraint. As depicted in Fig. [TTb with batch sizes between
51 and 128, the time constraint is more often adhered to than
breached while the algorithm violates the constraint only twice
when employing a batch size from 100 to 130, as illustrated
in Fig. This limited occurrence of violations served as a
motivating factor in opting for this specific range. Furthermore,
given the expected higher computational capacities on the
server side compared to the client side, it iS more optimal
to opt for an expanded range of the number of neurons on the
server side. This permits effective utilization of computational
power while enabling the server-deployed neural network to
capture complex data patterns, enhancing its convergence and
generalization. In addition, this increases the likelihood of
satisfying constraint and achieving the desired outcomes.
Finally, we opted for a ¢ range between 0.1 and 1 to strike

TABLE V: PSO Solution

Parameter N b Clnits Mll,units Ml2,units 0
Solution 5 123 | 33 129 176 0.1

a balance between robustness to outliers and sensitivity to
data variations. Figures [12] and [I3] illustrate that, with the
adopted parameters, the client and overhead constraints are
less violated compared to the initial parameters.

Time Constraint Violation

a [8-50]

b [51, 128]

c [100, 130]

Fig. 11: Time-constraint violation across varied batch sizes

C. Results and Analysis

To the best of our knowledge, no existing literature has
applied a metaheuristic approach to SFL for comparative
analysis. To demonstrate the effectiveness of OptSFMec, we
conducted comparisons with FedMec, SFMec and SFMecLite.
Comparison is always made in terms of learning performance
and computing performance. It is worth mentioning that for a
fair comparison, we have used the PSO-derived solution listed
in TABLE [Vl to train FedMec anew.

We have two different sets of results to explore. The first
part reveals the effectiveness of the proposed SFMecLite.

Fig. and demonstrate that SFMecLite has faster
updates and prevents the spikes observed in SFMec, demon-
strating a more consistent and stable learning curve. In contrast
to SFMec setup where the server receives all activations from a
single client, which can be exposed to a limited perspective of
the data, training in batches allows multiple clients to package
their activations into a single batch where each client may have
different data characteristics, allowing the server to capture
a more comprehensive set of patterns present in the overall
dataset. This diversity provides a richer variety of information,
helps the model generalize better, and enables it to adapt to
different aspects of the data, leading to faster convergence and
improved overall model performance. Furthermore, Fig.
shows that reducing the number of trips between clients and
servers significantly contributes to reducing training time. The
mean training time of SFMecLite has been reduced to 14.47 s,
in contrast to the SFMec that required 23.86s.

The second part of the results provides insights into the
results of the optimization process, starting with an analysis
of the learning performance. From Fig. and one
can easily observe the superiority of the proposed OptSFMec
over the other three models in terms of the loss. It is even
better than FedMec, which slightly outperformed SFMec in
our first experiments. The same observations hold true for the
MAE (Fig. and [I5b). OptSFMec reported a remarkable
better performance compared to the baseline SFMec. Also,
it exhibited better behavior than FedMec and SFMecLite

variants, as it converges faster. This confirms the efficiency
of OptSFMec in terms of learning performance over the two
variants, SFMec and SFMecLite, as well as FedMec.

We now compare the different variants of SFMec and
FedMec in terms of computing performance between the
four models. Fig. [16] indicates that OptSFMec is significantly
smaller than FedMec, SFMec and SFMecLite. The trainable
parameters on the client side for OptSFMec is more than ten
times better than the basic SFMec (as well as SFMecLite) and
negligible compared to the number of parameters of FedMec.
This directly influences the storage space necessary to save the
model. As illustrated in Fig. under OptSFMec, clients only
need 0.022 MB to store the model, making it ultra-lightweight
and highly suitable for resource-constrained UAVs, where
storing and running large models is infeasible. Moreover,
OptSFMec significantly optimizes the communication over-
head between the trainers and the servers. As shown in Fig.
compared to FedMec, it achieves a 71.24% reduction in over-
head, and compared to SFMec and SFMecL.ite, it reduces over-
head by 92.29% respectively, indicating a major improvement.
This low communication overhead makes the model ideal
for resource-constrained environments, as it decreases energy
consumption, and extends the operational time of resource-
limited clients. Moreover, the model scales more effectively in
networks with multiple clients, as reduced data transmission
helps minimize network congestion. Fig. [I9] outlines the
average training time (per round) for the four models. As
can be seen, OptSFMec achieves the fastest training time
(9.65 s) outperforming FedMec (27.39s), SFMec (23.86 s) and
SFMecLite (14.47s). This leads to lower energy consumption,
while also reducing memory and processing requirements.
Furthermore, Fig. [20] demonstrates that OptSFMec exhibits
significantly higher bandwidth efficiency compared to the three
models and performs even better than FedMec.

Through the presented results, we have experimentally
demonstrated that, in contrast to Hyperband, the PSO meta-
heuristic could be successfully used to deal with multi-
criteria and high-dimensional machine learning optimization
problems. The PSO solution has substantially decreased the
overhead and training time, leading to significant improve-
ments in the efficiency of the training process. The solution has
also provided adaptable parameters for clients with resource
limitations, enabling effective participation in the learning
process despite their resource constraints. More importantly,
these enhancements in efficiency and adaptability do not
come at the expense of the model’s learning performance. In
contrast, numerically speaking, OptSFMec has shown superior
results across all metrics compared to other proposed models.

VI. CONCLUSION

This work introduces three distributed, collaborative,
privacy-preserving and lightweight frameworks for resource
optimization in MEC-enabled UAV networks. The proposed
frameworks highlight a clear progression of enhancement.
The first variant, SFMec, achieves comparable learning per-
formance with FedMec, while significantly outperforming it in
terms of computational efficiency. SFMec optimizes the model

Client Constraint Violation Client Constraint Violation

60 a0
® Constraint Adherence
401 ue * Constraint Violation %0r . ‘® Constraint Adherence
Consuraint Vilation
200, 80
0f, *e -100
N
20F, *, e 120 e
000, 0° eo0c,, S R A R
40 o o, 0], VNN A
60l ® 2 . ot
B e .
*eesep2s 100
-80 -180
0 10 20 30 40 50 60 70 80 90 o 0 2 % W W 0 W 8 W

Iterations Iterations

a Initial Parameters b Adopted Parameters

Fig. 12: Client-constraint violation

—— SFilec
| = SFMecLite|
0025 —— OpisFies

|~ SFhMec
| ——— SFMecLite|
Opied

Complexity Time (s)

0005 L

0 20 40 60 80 100 120 140 160 180
Number of rounds

20 40 60 80 100 120 140 160 180 200
Number of rounds

0 20 40 60 8 100 120 140 160 180
Number of rounds

a Loss b MAE ¢ Training Time

Fig. 14: Learning performance and training time for SFMec,
SFMecLite, and OptSFMec

Fedlec 02
——OpisFhec
02

0.035

——— FedMec
—— OpiSFhec

0.12

01

001 0

0005 0.06

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 L ”@ 'Gb \?Q éa“ '&% 'LbQ
Number of rounds Number of rounds

Number of rounds
b MAE

0015

O
008 g .
018 2 o
0025 016 F —— FedMec
@ Y 2 —— OpiSFMec
9 o Sou 3
-3
E
5
0

a Loss ¢ Training Time

Fig. 15: Comparative analysis of learning performance and
training time complexity for OptSFMec and FedMec

size that each drone should train, enhancing both training
efficiency and computational performance. This makes it an
efficient baseline for high-performing UAV-based networks.
Building on SFMec, we proposed a second variant, SFMe-
cLite, which introduces significant enhancements to optimize
the iterative exchanges between UAVs and the main server.
Through empirical validation, we have demonstrated its effi-
ciency compared to the baseline SFMec. Finally, we proposed
a third variant, OptSFMec, that extends the enhancements
of both SFMec and SFMecLite, by integrating additional
optimization of the communication overhead between UAVs
and the main server, as well as the training time, while con-
currently enhancing the learning performance in comparison
to FedMec, SFMec, and SFMecLite. Future work will consider
unreliable and challenging network conditions between UAVs,
base stations and edge servers. We will also incorporate
additional parameters into the optimization process, evaluate
the impact of various PSO parameters on OptSFMec, and
explore alternative metaheuristics.

REFERENCES

[1] V. Lambey and A. Prasad, “A review on air quality measurement using
an unmanned aerial vehicle,” Water, Air, & Soil Pollution, vol. 232, pp.

Overhead

[2]

[3]

[4

flnar

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

Overhead Constraint Violation Overhead Constraint Violation

16 @ Constraint Adherence| 6
% Constraint Violation Constraint Adherence
14 * Constraint Violation

o * S AN A A ——

0 10 20 30 40 50 60 70 80 90
Iterations

10 20 30 40 50 60 70 80 90
lterations

a Initial Parameters b Adopted Parameters

Fig. 13: Overhead constraint violation

1-32, 2021.

C. Malang, P. Charoenkwan, and R. Wudhikarn, “Implementation and
critical factors of unmanned aerial vehicle (uav) in warehouse manage-
ment: A systematic literature review,” Drones, vol. 7, no. 2, p. 80, 2023.
A. Rejeb, K. Rejeb, S. J. Simske, and H. Treiblmaier, “Drones for
supply chain management and logistics: a review and research agenda,”
International Journal of Logistics Research and Applications, vol. 26,
no. 6, pp. 708-731, 2023.

S. Sharma, P. Kulkarni, and P. Pathak, “Applications of unmanned aerial
vehicles (uavs) for improved business management,” in 2022 Inter-
national Interdisciplinary Humanitarian Conference for Sustainability
(IIHC). 1EEE, 2022, pp. 53-57.

N. H. Mahmood, N. Marchenko, M. Gidlund, and P. Popovski, Wireless
Networks and Industrial IoT. Springer, 2020.

H. J. Hadi, Y. Cao, K. U. Nisa, A. M. Jamil, and Q. Ni, “A com-
prehensive survey on security, privacy issues and emerging defence
technologies for uavs,” Journal of Network and Computer Applications,
vol. 213, p. 103607, 2023.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal processing
magazine, vol. 37, no. 3, pp. 50-60, 2020.

X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning:
A new hybrid split and federated learning approach,” Trans. Wireless.
Comm., vol. 22, no. 4, p. 2650-2665, Apr. 2023.

P. Chhikara, R. Tekchandani, N. Kumar, M. Guizani, and M. M. Hassan,
“Federated learning and autonomous uavs for hazardous zone detection
and aqi prediction in iot environment,” IEEE Internet of Things Journal,
vol. 8, no. 20, pp. 15456-15467, 2021.

Y. Wang, Z. Su, T. H. Luan, R. Li, and K. Zhang, “Federated learning
with fair incentives and robust aggregation for uav-aided crowdsensing,”
IEEE Transactions on Network Science and Engineering, vol. 9, no. 5,
pp- 3179-3196, 2022.

A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and H. Karimipour,
“Federated learning for drone authentication,” Ad Hoc Networks, vol.
120, p. 102574, 2021.

A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” IEEE Internet
of Things Journal, vol. 9, no. 1, pp. 1-24, 2021.

C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proc. Thirty-Sixth
AAAI Conference on Artificial Intelligence, 2022.

B. Brik, A. Ksentini, and M. Bouaziz, “Federated learning for uavs-
enabled wireless networks: Use cases, challenges, and open problems,”
IEEE Access, vol. 8, pp. 53 841-53 849, 2020.

H. Zhang and L. Hanzo, “Federated learning assisted multi-uav net-
works,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11,
pp- 14 104-14 109, 2020.

Y. Wang, Z. Su, N. Zhang, and A. Benslimane, “Learning in the
air: Secure federated learning for uav-assisted crowdsensing,” IEEE
Transactions on Network Science and Engineering, vol. 8, no. 2, pp.
1055-1069, 2021.

Y. Pan, C. Zhu, L. Luo, Y. Liu, and Z. Cheng, “Fedtrack: A collaborative
target tracking framework based on adaptive federated learning,” /IEEE
Transactions on Vehicular Technology, 2024.

C. Shang, D. Thai Hoang, M. Hao, D. Niyato, and J. Yu, “Energy-
efficient decentralized federated learning for uav swarm with spiking
neural networks and leader election mechanism,” IEEE Wireless Com-
munications Letters, vol. 13, no. 10, pp. 2742-2746, 2024.

M. Na, S. Cho, F. Solat, T. Na, and J. Lee, “Energy-efficient hybrid fed-
erated and centralized learning for edge-based wireless traffic prediction
in aerial networks,” IEEE Access, 2024.

3

3

Total params
- hos B

o

5
5 x10

0

F12 30 30 14.72
305517 —FedVec 2 [_1FedMec 261 261 |_JFedVec 27.39 [IFedMec 15 IFedVec
——ISFMec <, [C_—ISFMec = [CISFMec s 23.86 [0 SFMec IsFMec
——ISFMecLite ’; [__1SFMecLite g [ISFMeclLitef £ [__1SFMecLite IsFMectite
EJopsevee| &, Eopisemec| < Eopisveq 2 [C_JOptSFMec §m —op(SFMed
g 3 E 8.93
15 £ o 14.47 =
O o6 T 15 c15 > £
o 3 < 2
=3 s H
Soa £ 10 st S0 9.65 3,
71168 71168 & 027 027 £ . @ a
502 S s b1 Zs 2.09 172
3 1
5808 <] 0.022 [
= o0 0 0 0

Fig. 16: Totals of pa- Fig. 17: Model Storage Fig. 18: Communication Fig. 19: Average Train- Fig. 20: Bandwidth
rameters (client side) = Complexity Overhead (per round) ing Time (per round)

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Q. V. Do, Q.-V. Pham, and W.-J. Hwang, “Deep reinforcement learning
for energy-efficient federated learning in uav-enabled wireless powered
networks,” IEEE Communications Letters, vol. 26, no. 1, pp. 99-103,
2021.

S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, “Battery-
constrained federated edge learning in uav-enabled iot for b5g/6g
networks,” Physical Communication, vol. 47, p. 101381, 2021.

Y. Shen, Y. Qu, C. Dong, F. Zhou, and Q. Wu, “Joint training and
resource allocation optimization for federated learning in uav swarm,”
IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2272-2284, 2022.
C. Wang, X. Tang, D. Zhai, R. Zhang, N. Ussipov, and Y. Zhang,
“Energy-efficient federated learning through uav edge under location
uncertainties,” IEEE Transactions on Network Science and Engineering,
vol. 12, no. 1, pp. 223-236, 2025.

T. Wang, X. Huang, Y. Wu, L. Qian, B. Lin, and Z. Su, “Uav swarm-
assisted two-tier hierarchical federated learning,” IEEE Transactions on
Network Science and Engineering, vol. 11, no. 1, pp. 943-956, 2024.
Q.-V. Pham, M. Le, T. Huynh-The, Z. Han, and W.-J. Hwang, “Energy-
efficient federated learning over uav-enabled wireless powered commu-
nications,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5,
pp. 4977-4990, 2022.

X. Liu, Y. Deng, and T. Mahmoodi, “A novel hybrid split and federated
learning architecture in wireless uav networks,” in ICC 2022-IEEE
International Conference on Communications. 1EEE, 2022, pp. 1-6.
W. He, H. Yao, F. Wang, Z. Wang, and Z. Xiong, “Enhancing the
efficiency of uav swarms communication in 5g networks through a
hybrid split and federated learning approach,” in 2023 International
Wireless Communications and Mobile Computing (IWCMC), 2023, pp.
1371-1376.

C. Zhao, M. Sheng, J. Liu, T. Chu, and J. Li, “Energy-efficient power
control for multiple-task split inference in uavs: A tiny learning-based
approach,” IEEE Internet of Things Journal, vol. 11, no. 12, pp. 21 146—
21157, 2024.

T. Sun, X. Wang, M. Umehira, and Y. Ji, “Split learning assisted multi-
uav system for image classification task,” in 2023 IEEE 97th Vehicular
Technology Conference (VIC2023-Spring). 1EEE, 2023, pp. 1-6.

T. Sun, X. Wang, X. Ye, and B. Han, “Stitch-able split learning assisted
multi-uav systems,” IEEE Open Journal of the Computer Society, vol. 5,
pp. 418-429, 2024.

H. Hafi, B. Brik, P. A. Frangoudis, A. Ksentini, and M. Bagaa, “Split
federated learning for 6g enabled-networks: Requirements, challenges
and future directions,” IEEE Access, 2024.

K. Géra, P. Smyczynski, M. Kujawinski, and G. Granosik, “Machine
learning in creating energy consumption model for uav,” Energies,
vol. 15, no. 18, 2022.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” Journal of Machine Learning Research, vol. 18, no. 185, pp.
1-52, 2018.

P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R.
Pastor, “Particle swarm optimization for hyper-parameter selection in
deep neural networks,” in Proceedings of the genetic and evolutionary
computation conference, 2017, pp. 481-488.

Z. Li, H. Li, and M. Zhang, “Hyper-parameter tuning of federated
learning based on particle swarm optimization,” in 2021 IEEE 7th
International Conference on Cloud Computing and Intelligent Systems
(CCIS). IEEE, 2021, pp. 99-103.

F. Marini and B. Walczak, “Particle swarm optimization (pso). a tuto-
rial,” Chemometrics and Intelligent Laboratory Systems, vol. 149, pp.
153-165, 2015.

P. Contributors. (2022) Welcome to pyswarms’s documentation! [On-
line]. Available: https://pyswarms.readthedocs.io/en/latest/index.html

Houda HAFI conducted her Ph.D. studies in com-
puter science at the University of Abdelhamid
Mehri, Constantine, Algeria, and the Engineering
School Polytech, Dijon, France. She obtained her

PLACE Ph.D. from the University of Abdelhamid Mehri in
PIfI-IEO};FI? 2019 and currently works as an Assistant Professor

at the same University. Her ongoing research centers
on wireless communications, vehicular and mobile
networks, and the application of Al, machine learn-
ing, and distributed learning techniques in network-
ing.

Bouziane BRIK received his Engineer degree
(Ranked First) and his Ph.D. degree in computer
science from Laghouat University, Algeria, in 2010
and 2017, respectively. He is currently working as

PLACE Assistant Professor at Computer Science department
PHOTO at University of Sharjah, UAE. He has also worked
HERE as an Assistant Professor at DRIVE department

of Bourgogne university in France. He has been
(still) working on resources management and se-
curity challenges of 5G networks and beyond. His
research interests also include Explainable Al, and
machine/deep learning for wireless networks.

Zakaria Abou El Houda received the Ph.D. degree
in computer science from the University of Montreal
in 2021. He is currently an Assistant Professor with
the National Institute of Scientific Research (INRS),
PLACE within the Energy, Materials and Telecommunica-
PHOTO tions Center (INRS-EMT), where he leads the Re-
HERE silient Cybersecurity Research Laboratory. He is a
member of the joint INRS-UQO Research Unit on
Cybersecurity and Digital Trust. His current research
interests include applied AI for intrusion detection
systems, security in distributed/federated machine
learning, and blockchain for network security.

ADLEN KSENTINI received the Ph.D. degree in
computer science from the University of Cergy-
Pontoise. Since 2016, he has been a Professor with
the Communication Systems Department, EURE-

PLACE COM. He is currently an IEEE COMSOC Distin-
PHOTO guished Lecturer on topics related to 5G and Net-
HERE work Softwarization. His current research focuses on

architectural enhancements to mobile core networks,
mobile cloud networking, NFV, and SDN. He re-
ceived the Best Paper Award from the IEEE WCNC
2018, IWCMC 2016, ICC 2012, ACM MSWiM
2005, and the IEEE Fred W. Ellersik Prize for the Best IEEE Communications
Magazine for 2017.

https://pyswarms.readthedocs.io/en/latest/index.html

	Introduction
	Literature Review
	Proposed Framework
	Overview
	Components and Operations

	Implementation and Evaluation
	Dataset
	Parameter Settings
	Performance Metrics
	Learning Performance
	Computing Performance

	Numerical Results and Discussion

	Communication Optimization for Clients-Servers Interactions
	SFMecLite: Novel Architecture for Optimal Connectivity and Performance
	OptSFMec: Particle Swarm Approach for Balancing Multi-Objectives in Split Federated Learning
	Overview of Particle Swarm Optimization (PSO)
	Problem Formulation
	OptSFMec Implementation and Optimization Strategy

	Results and Analysis

	Conclusion
	References
	Biographies
	Houda HAFI
	Bouziane BRIK
	Zakaria Abou El Houda
	ADLEN KSENTINI

