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Résumé

L’artériopathie oblitérante des membres inférieurs (AOMI) touche plus de 230 millions
de personnes dans le monde. Généralement causée par l’athérosclérose, elle se carac-
térise par un rétrécissement ou une occlusion des artères des membres inférieurs. En
raison de sa nature souvent asymptomatique, l’AOMI est fréquemment diagnostiquée
à un stade avancé, ce qui augmente le risque de complications cardiovasculaires et
d’amputation. Ainsi, l’AOMI est associée à une forte mortalité et morbidité, représentant
un problème majeur de santé publique. L’angiographie par tomodensitométrie (CTA)
est couramment utilisée pour évaluer les lésions artérielles et l’anatomie vasculaire,
et pour guider les stratégies de revascularisation. Cependant, l’analyse manuelle des
CTA est chronophage et dépendante de l’opérateur, ce qui souligne le besoin d’outils
automatisés pour aider la prise de décision clinique. Cette thèse vise à développer un
système basé sur l’intelligence artificielle pour l’évaluation complète et automatisée de
l’AOMI, facilitant la planification de traitements personnalisés. Le principal défi abordé
concerne la segmentation des petites artères tortueuses avec de fréquentes occlusions,
ainsi que des plaques de calcification et des stents artériels. La segmentation de ces
structures dans les membres inférieurs doit permettre l’extraction de caractéristiques
anatomiques et pathologiques précises afin de fournir aux cliniciens les informations
nécessaires pour guider la planification préopératoire de l’AOMI. Pour relever ce défi de
segmentation, nous proposons deux contributions méthodologiques et une application
clinique : (1) SoftMorph est une méthode pour convertir toute opération morphologique
binaire en un équivalent probabiliste dérivable, permettant son intégration dans les
réseaux de neurones soit comme couche finale, soit au sein de la fonction de coût. Les
filtres probabilistes sont définis comme l’espérance du filtre binaire sur l’ensemble des
configurations binaires possibles et exprimés sous la forme d’un polynôme multilinéaire
dérivé de sa table de vérité. Pour les cas complexes, des approximations sont obtenues
via des opérateurs quasi-probabilistes en appliquant divers opérateurs de logique floue
à l’expression booléenne définissant l’opération morphologique, tout en préservant la
complexité du filtre original. Les expériences ont démontré des améliorations en termes
de préservation topologique pour la segmentation des structures tubulaires. (2) Regional
Hausdorff Distance losses : une famille de fonctions de coût développée pour améliorer la
précision des bords de structures segmentées, particulièrement pertinente pour certaines
lésions pathologiques. La méthode repose sur une fonction de distance dérivable basée
sur un opérateur d’érosion, permettant un calcul dérivable des distances régionales maxi-
males, modifiées et moyennes de Hausdorff. Ces fonctions de coût ont atteint de bonnes
performances sans nécessiter de fonctions auxiliaires pour l’entraînement des réseaux de
segmentation pour plusieurs modalités. (3) Enfin, ces innovations sont appliquées dans
un contexte clinique pour la segmentation des artères des membres inférieurs, des stents
et des plaques de calcification. PADSET, une base de données interne de CTA de patients
atteints d’AOMI, a été constituée et annotée afin de fournir des masques de référence
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pour chaque structure. Ensuite, des méthodes de segmentation automatique basées
sur l’apprentissage profond sont explorées, intégrant les deux contributions techniques
précédentes pour obtenir une segmentation automatique de haute performance sur le
jeu de données PADSET. De plus, l’approche permet l’identification automatique des
principales branches artérielles afin d’extraire la localisation précise des caractéristiques
cliniquement pertinentes. L’outil automatique réduit la variabilité inter-observateurs et
contribue à aider la planification préchirurgicale dans le traitement de l’AOMI.

Mots-clés : Segmentation d’images médicales, Apprentissage profond, Artères des
membres inférieurs, Artériopathie oblitérante des membres inférieurs, Angiographie par
tomodensitométrie, Calcifications, Stents.
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Abstract

Peripheral artery disease (PAD) affects over 230 million people worldwide. Generally
caused by atherosclerosis, it is characterized by the narrowing or occlusion of the arteries
in the lower limbs. Owing to its frequent asymptomatic presentation, PAD is often
diagnosed at advanced stages, increasing the risk of cardiovascular complications and
amputation. As such, PAD is associated with high mortality and morbidity, representing a
major public health concern. Computed Tomography Angiography (CTA) is commonly
used to assess arterial lesions and anatomy, guiding revascularization strategies. However,
current manual analysis of CTA is time-consuming and operator-dependent, underscoring
the need for automated tools to support clinical decision-making. This thesis aims
to develop an AI-based system for the comprehensive and automated assessment of
PAD, facilitating personalized treatment planning. The main challenge addressed is the
segmentation of small, tortuous arteries with frequent occlusions, as well as calcification
plaques and arterial stents. The segmentation of these structures in the lower limbs
should enable the extraction of precise anatomical and pathological features to provide
clinicians with the necessary information to guide the preoperative planning for PAD. To
overcome this segmentation challenge, we propose two methodological contributions
and one clinical application. (1) SoftMorph is a framework that converts any binary
morphological operation into a differentiable probabilistic counterpart, enabling its
integration into neural networks either as a final layer or within the loss function.
Probabilistic filters are defined as the expectation of the binary filter over all possible
binary configurations and expressed as a multi-linear polynomial derived from its truth
table. For intractable cases, approximations are obtained via quasi-probabilistic operators
by applying various fuzzy logic operators to convert the Boolean expression defining
the morphological operation, preserving the original filter’s complexity. Experiments
demonstrated improvements in topological preservation for the segmentation of tubular
structures. (2) Regional Hausdorff Distance losses are developed, a family of loss
functions to improve boundary precision in segmented structures, particularly relevant in
pathological contexts. The method relies on a fully differentiable erosion-based distance
function to produce differentiable computation of the maximum, modified, and averaged
regional Hausdorff Distances. These loss functions achieved state-of-the-art performance
without requiring any auxiliary losses for the training of segmentation networks across
multiple modalities. (3) Finally, these innovations are applied in a real clinical context
for the segmentation of lower-limb arteries, stents and calcification plaques. PADSET, an
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in-house CTA dataset of PAD patients, is curated and annotated to provide ground truth
masks of each structure. Then, deep-learning-based automatic segmentation methods
are explored, along with the application of the two previous technical contributions to
achieve high-performance automatic segmentation on the PADSET dataset. Additionally,
the approach involves automatically identifying key arterial branches to extract the
precise locations of clinically relevant features. The automatic tool reduces inter-observer
variability and supports pre-surgical planning for the treatment of PAD.

Keywords: Medical image segmentation, Deep learning, Lower limb arteries, Peripheral
artery disease, Computed tomography angiography, Calcifications, Stents.
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1.1 Thesis objectives

Peripheral artery disease (PAD) is a prevalent cardiovascular condition affecting an
estimated quarter billion people worldwide [Kullo, 2016; Nordanstig, 2024; Song, 2019].
It is characterized by the narrowing (stenosis) or complete occlusion (thrombosis) of the
arteries below the hips, leading to reduced blood flow and oxygen delivery to the lower
limbs (ischemia). The obstruction is generally due to the formation of plaques related
to atherosclerosis that thicken arterial walls and reduce lumen diameter [Kullo, 2016;
Song, 2019].

PAD represents a major public health concern as the disease is highly prevalent and is
associated with high rates of morbidity and mortality [Gerhard-Herman, 2017; Hirsch,
2001; Hirsch, 2006]. Despite its elevated risks of cardiovascular mortality and ampu-
tation, PAD remains underdiagnosed and underestimated [Criqui, 2015]. It is often
diagnosed at an advanced stage of the disease due to low patient awareness and partly
because early stages are often asymptomatic or manifest with atypical symptoms [Mc-
Dermott, 2015]. In addition, several studies have suggested that many patients may be
undertreated, pointing to the need to improve the use of evidence-based recommended
therapies in patients with PAD [Lee, 2019]. It is therefore crucial to detect PAD at an
early stage, establish an accurate diagnosis, and implement appropriate treatment to
effectively manage the disease and prevent complications.

Diagnosis typically combines a clinical examination, functional tests, and the identifi-
cation of arterial lesions with medical imaging. Among imaging modalities, computed
tomography angiography (CTA) is widely used as vascular surgeons rely on precise 3D
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visualization of arterial anatomy and lesion characteristics to plan interventions [Commit-
tee, 2015]. The extent and exact location of occlusions, calcifications, and prior stents,
as well as the overall arterial anatomy of the patient, strongly influence the revascular-
ization strategy [Nordanstig, 2024]. However, manual analysis of lower extremity CTA
is time-consuming, operator-dependent, and prone to variability. Thus, the automatic
segmentation of the lower-limb arteries, along with the detection of calcified plaque and
stents, could significantly improve pre-surgical planning. The automatic measurements
could help retrieve useful information, for example, to calculate standardized staging
scores (e.g., GLASS [Wijnand, 2021], TASCII score [Norgren, 2007]) from the imaging,
supporting consistent and personalized treatment decisions.

However, PAD presents unique segmentation challenges: arteries are often narrowed or
occluded, distal branches can be small and tortuous, and heavy calcifications and surgi-
cal stents cause imaging artifacts, degrading conventional segmentation performance.
Vessel segmentation algorithms may falsely interrupt vessels at occlusions or bleed into
high-contrast plaque. Clinically, missing a side branch or mis-measuring a lesion can
misguide revascularization decisions. The segmentation of clinical anomalies such as
calcifications and stents is also challenging due to their very small size and heterogeneous
presentation.

Deep learning (DL), and more importantly, convolutional neural networks (CNNs) have
transformed 3D medical image segmentation [Anaya-Isaza, 2021; Sermesant, 2021].
It has been used successfully to segment different types of arteries and calcification
plaques [Hilbert, 2022; Bagheri Rajeoni, 2023; Lareyre, 2021; Isensee, 2021], for
example, to segment carotid arteries and calcified plaques on CTA [Zhu, 2022]. Zhou et
al. [Ouyang, 2024] additionally proposed a general CTA model for multiple anatomical
structures and lesions, and outperformed prior methods on all evaluated structures,
notably including coronary arteries, aorta, and lower limb arteries. While these studies
show the potential of CNNs to segment vascular structures on CTA, most focus on major
vessels such as the aorta, coronaries, carotids or on classification tasks, but none of them
fully segment the total lower-limb arterial tree, typically stopping at the iliac or femoral
level. To further enhance the segmentation of fine tubular structures, loss functions
and architectures have been developed to improve, for example, the topology of the
segmentation, particularly relevant for vessels [Shit, 2021; Zhang, 2023; Weng, 2023;
Stucki, 2023; Qiu, 2023; Clough, 2020]. To our knowledge, these advances have yet to
be fully exploited for the entire lower limb vasculature in PAD patients.

The main goal of this thesis is to leverage recent advances in DL-based segmentation
to develop an automatic tool for the segmentation of the lower-limb arteries from CTA
scans. The anatomical and clinical features extracted from the segmentation will support
clinicians by accelerating pre-operative planning, and reinforcing decision-making con-
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fidence in selecting the appropriate revascularization strategy for PAD, and ultimately,
improving patient outcomes.

To meet this aim, the thesis is organized into three main objectives, progressing from
methodological development to clinical application as follows:

• Objective 1: The segmentation of the target structures in this thesis involves
addressing two distinct challenges. First, the arteries present as tortuous tubular
structures that require precise delineation to capture their complex geometry. Sec-
ond, the calcifications and stents appear as small, disconnected, and heterogeneous
components, which add complexity due to their size, shape variability, and image
appearance. Therefore, the initial objective is to develop and refine methodological
innovations in CNN-based segmentation that specifically target these challenges,
improving accuracy, robustness, and generalization for both tubular and discrete
structures.

• Objective 2: The second objective focuses on translating these methodological
advances into practical application within a real clinical setting. This involves
applying the proposed segmentation methods to CTA datasets from patients with
PAD, which often present with diverse pathological characteristics. Specifically, the
targeted structures include the entire lower-limb arterial tree from the abdominal
aorta to the fibular and posterior tibial arteries, together with the identification
of each distinct branch, calcification plaques and endoprosthetic stents. This step
aims to demonstrate the efficacy and adaptability of the segmentation framework
in handling clinically relevant, complex vascular anatomies and lesions.

• Objective 3: Finally, the third objective is to utilize the fully automated segmen-
tation outputs to extract detailed anatomical and clinical features that are critical
for personalized pre-surgical planning. These features will enable clinicians to
make informed decisions about the type and strategy of revascularization for PAD
patients, ultimately leading to improved treatment outcomes and patient care.

1.2 Thesis outline and Contributions

Table 1.1.: Overview of the main contributions and their relation to the thesis objectives.

Chapter 4 Chapter 5 Chapter 6 Chapter 7
O1: Methodological advances in segmentation ✓ ✓
O2: Application to clinical PAD dataset ✓ ✓
O3: Feature extraction and clinical analysis ✓

Table 1.1 indicates how each contribution chapter addresses the corresponding objectives
previously defined.
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The foundations of this work are presented in Part I:

Chapter 2. Peripheral Artery Disease. This chapter presents the clinical background
of PAD, with an emphasis on aspects directly relevant to this thesis. It reviews the
anatomy of the lower-limb arterial system and the characteristics of its main pathological
manifestations. It highlights the role of CTA in diagnosis and surgical planning in how
imaging findings influence the choice of revascularization strategy. The chapter also
provides essential reference material for understanding the vascular structures, lesions,
and implanted devices addressed in later sections of this work.

Chapter 3. Deep Learning-based Segmentation for Peripheral Artery Disease. This
chapter reviews the current state-of-the-art in DL for medical image segmentation, with a
focus on techniques and applications relevant to PAD. After a brief introduction to CNNs
in the context of segmentation, we survey existing work on the segmentation of lower-
limb arteries, calcification plaques, and endoprosthetic stents, including approaches
targeting similar small or topologically complex structures in other vascular territories.
Particular attention is given to methods designed for topological preservation and the
accurate delineation of fine or heterogeneous components. The chapter concludes by
identifying key limitations and challenges in the existing literature, thereby motivating
the methodological developments presented in this thesis.

With the theoretical and methodological foundations established, Part II details the
methodological contributions developed in this work for image segmentation:

Chapter 4. SoftMorph: Differentiable Probablistic Morphological Operators for
Image Segmentation. This chapter introduces SoftMorph, a novel framework to con-
vert any binary morphological operation into a differentiable probabilistic equivalent
that can be integrated into CNNs, either as a final layer or within the loss function.
Probabilistic morphological filters are defined as the expectation of the binary filter
over the probability of generating each possible binary configuration and expressed as a
multi-linear polynomial deduced from the truth table. For intractable truth tables, they
are approximated by a family of quasi-probabilistic operators, using various fuzzy logics
to directly convert the Boolean expression defining the morphological operation into
a differentiable expression, maintaining the complexity of the original binary filter. Its
application on multiple segmentation tasks leads to state-of-the-art performance in terms
of topological preservation for tubular structures.

Chapter 5. Regional Hausdorff Distance Losses for Medical Image Segmentation.
This chapter addresses the limitations of conventional overlap-based metrics such as the
Dice coefficient by focusing on the Hausdorff Distance, which provides a more sensitive
measure of boundary errors. Despite its clinical relevance, directly optimizing the HD
within CNNs remains challenging due to the non-differentiability of standard distance
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transform algorithms. We propose a novel family of regional Hausdorff Distance loss
functions, specifically the maximum, modified, and average variants, that overcome these
limitations without the need for auxiliary losses. Our approach is based on a fully differ-
entiable erosion-based distance function implemented using the previously presented
Softmorph framework, enabling accurate and stable approximation of signed, unsigned,
or positive distance maps. Validation on multiple public medical image segmentation
datasets demonstrates that these loss functions achieve competitive improvements in
distance-based metrics while maintaining high overlap accuracy.

The technical innovations developed are applied and evaluated within a practical clinical
context for PAD in Part III:

Chapter 6. PADSET: A Private CTA Dataset for Peripheral Artery Disease. This chapter
introduces PADSET, a dedicated dataset curated specifically for this thesis, consisting
of 196 lower-limb CTA scans collected at the Hospital of Nice. It details the dataset’s
key characteristics and the annotation protocol developed to generate high-quality
ground truth masks for arteries, calcification plaques, stents, and individual arterial
branches. The chapter also discusses the assessment of inter-annotator variability and the
strategies implemented to enhance annotation consistency and reliability. Annotation was
performed in close collaboration with clinical experts, ensuring both medical accuracy
and technical rigor.

Chapter 7. Automatic Segmentation of lower-limb Arteries on CTA for Pre-surgical
Planning of Peripheral Artery Disease. This chapter presents the application of the
methodological innovations developed earlier to the curated PADSET dataset. It de-
tails the implementation and evaluation of automatic segmentation methods for the
comprehensive delineation of the entire lower-limb arterial tree, the identification of
each arterial branch, as well as the detection of calcification plaques and endoprosthetic
stents. Comparative analyses with established segmentation techniques are provided to
highlight the improvements achieved. Furthermore, the chapter describes the extraction
of clinically relevant features from the segmentation outputs, accompanied by statistical
analysis to characterize the dataset and support clinical insights.

Finally, this thesis is concluded in Chapter 8:

Chapter 8. Conclusion. This chapter summarizes the key findings of the thesis, discusses
their implications, and outlines future perspectives from both methodological and clinical
viewpoints. It also highlights potential real-world applications and the broader impact of
this work.
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1.3 Publications

The contributions of this manuscript led to the following publications and submissions in
conferences and peer-reviewed journals.

1.3.1 International Conference Proceedings

• Differentiable Soft Morphological Filters for Medical Image Segmentation [Guzzi,
2024] Guzzi L, Zuluaga M A, Lareyre F, Di Lorenzo G, Goffart S, Chierici A, Raffort
J, Delingette H. The 27th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), 2024, Marrakech, Morroco.

• Regional Hausdorff Distance Losses for Medical Image Segmentation [Guzzi, 2025b]
Guzzi L, Zuluaga M A, Taiello R, Lareyre F, Di Lorenzo G, Goffart S, Chierici A,
Raffort J, Delingette H. The 16th International Workshop on Machine Learning in
Medical Imaging (MLMI 2025), held in conjunction with MICCAI, 2025, Daejeon,
Republic of Korea.

• Automatic Segmentation of lower-limb Arteries on CTA for Pre-surgical Planning
of Peripheral Artery Disease [Guzzi, 2025a] Guzzi L, Zuluaga M A, Lareyre F, Di
Lorenzo G, Goffart S, Chierici A, Raffort J, Delingette H. The Fourth Workshop on
Applications of Medical Artificial Intelligence (AMAI 2025), held in conjunction with
MICCAI, 2025, Daejeon, Republic of Korea.

1.3.2 National Conference Proceedings

• Application du modèle nnUNet pour la segmentation automatique du réseau artériel
des membres inférieurs dans le cadre de l’artériopathie oblitérante des membres
inférieurs Guzzi L, Di Lorenzo G, Lareyre F, Goffart S, Zuluaga M A, Delingette H,
Raffort J. Accepted for a poster presentation at Colloque Français d’Intelligence
Artificielle en Imagerie Biomédicale (IABM), 2024, Grenoble, France.

• SoftMorph: Differentiable Morphological Filters for Medical Image Segmentation
Guzzi L, Zuluaga M A, Lareyre F, Di Lorenzo G, Goffart S, Chierici A, Raffort J,
Delingette H. Accepted for a poster presentation at Sophia Summit 2024, Sophia
Antipolis, France.

• Des Filtres Morphologiques Dérivables pour la Segmentation d’Images Médicales
Guzzi L, Zuluaga M A, Lareyre F, Di Lorenzo G, Goffart S, Chierici A, Raffort J,
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Delingette H. Accepted for a poster presentation at Colloque Français d’Intelligence
Artificielle en Imagerie Biomédicale (IABM), 2025, Nice, France.

• Stratégies d’apprentissage pour la prédiction du risque d’amputation chez les patients
atteints d’artériopathie oblitérante des membres inférieurs Goffart S, Hart O, Lareyre
F, Guzzi L, Khashram M, Delingette H, Raffort J. Accepted for a poster presentation
at Colloque Français d’Intelligence Artificielle en Imagerie Biomédicale (IABM),
2025, Nice, France.

1.3.3 Journals

• Artificial Intelligence in Vascular Surgical Decision-Making [Lareyre, 2023] Lareyre F,
Yeung KK, Guzzi L, Di Lorenzo G, Chaudhuri L, Behrendt CA, Spanos K, Raffort J.
Seminars in Vascular Surgery. 2023.

• Artificial Intelligence Techniques for Prognostic and Diagnostic Assessments in Periph-
eral Artery Disease: A Scoping Review [Goffart, 2025b] Goffart S, Delingette H,
Chierici A, Guzzi L, Nasr B, Lareyre F, Raffort J. Angiology. 2025.

• Artificial Intelligence to Enhance Future Clinical Trials in Vascular Surgery [Goffart,
2025a] Goffart S, Chierici A, Guzzi L, Delingette H, Alouane A, Lareyre F, Raffort J.
Annals of Vascular Surgery. 2025.

• Deep Learning Strategies for Predicting Amputation Risk in Patients With Peripheral
Artery Disease [Goffart, 2025c] Goffart S, Hart O, Lareyre F, Guzzi L, Yeung KK,
Delingette H, Khashram M, Raffort-Lareyre J. EJVES. 2025.

• Imaging characterization of peripheral artery disease: a scoping review on current
classifications and new insights brought by Artificial Intelligence [Lareyre, 2025]
Lareyre F, Guzzi L, Nasr B, Alouane A, Goffart S, Chierici A, Delingette H, Raffort J.
In : EJVES Vascular Forum. 2025.

• Applications of artificial intelligence in liver cancer: A scoping review [Chierici, 2025]
Chierici A, Lareyre F, Iannelli A, Salucki B, Goffart S, Guzzi L, Poggi E, Delingette
H, Raffort J. Artificial Intelligence in Medicine. 2025.

• SoftMorph: Differentiable Soft Morphological Operators for Image Analysis Guzzi L,
Zuluaga M A, Lareyre F, Di Lorenzo G, Goffart S, Chierici A, Raffort J, Delingette H.
Under Review at Medical Image Analysis.
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This chapter provides the medical and anatomical background necessary to understand
the clinical challenges addressed in this thesis. It focuses on aspects of peripheral arterial
disease that directly influence image analysis requirements, with particular emphasis on
CTA as a diagnostic and surgical planning tool.

We first present the organization of the lower-limb arterial system and describe the
principal vascular territories that will be referenced throughout this work. We then
examine the main pathological processes affecting these vessels, including their clinical
manifestations, associated risk factors, and epidemiological impact. Special attention is
given to features that can be visualized in CTA, such as calcified atherosclerotic plaques
and implanted endovascular devices (stents), as these structures play a central role in
the segmentation tasks developed later.

Finally, the chapter discusses how imaging findings influence the choice of revasculariza-
tion strategy and surgical approach, highlighting the specific interpretation challenges
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posed by complex vascular anatomies, severe calcification, and the presence of stents.
This context serves both as a reference for understanding the dataset and as a clinical
framework for evaluating the practical utility of the proposed segmentation methods.

2.1 Anatomy of the Lower-Limb Arterial System

The lower limbs can be studied below the hips. The arterial anatomy in the lower limbs
is illustrated in Fig. 2.1.

Figure 2.1.: Common anatomy of lower limb arteries (illustration from [AbuRahma, 2013])

The arterial supply of the lower limbs originates from the abdominal aorta, which divides
into the common iliac arteries in each leg at the level of the L4/L5 vertebrae. Each
common iliac artery branches into an internal iliac artery, which primarily supplies the
pelvis, and an external iliac artery, which continues into the lower limb as the common
femoral artery after passing beneath the inguinal ligament. The common femoral artery
divides into the superficial femoral artery, which supplies the leg through the popliteal
and tibial branches, and the deep femoral artery, which supplies the hip and thigh through
the circumflex and perforating branches. Distally, the popliteal artery leads to the anterior
tibial artery and the tibioperoneal trunk. The latter quickly divides into the posterior
tibial artery, which supplies the posterior compartment and the plantar surface of the
foot, and the fibular artery, which supplies the lateral leg. Together, these vessels form
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an extensive network that ensures blood flow from the pelvis to the foot [Qazi, 2022;
Netter, 2022].

In cases of chronic arterial obstruction, collateral pathways can develop to maintain
distal blood flow, and their presence, number, and effectiveness vary between individuals
as an adaptive response [Macchi, 1996; Hardman, 2011; Kruse, 2017].

2.2 Disease Characterization

2.2.1 Pathophysiology

Peripheral artery disease is defined as the partial or complete obstruction of arteries from
the distal aorta to the foot, resulting in impaired blood flow to the lower extremities [Nor-
danstig, 2024], illustrated in Fig. 2.2.

Figure 2.2.: Illustration of a normal versus a diseased artery caused by atherosclerosis (Source:
University of Maryland Charles Regional Medical Center Blog, accessed October 7,
2025)

The obstruction is defined as a stenosis when the arterial lumen is narrowed and a
thrombosis when the artery is completely occluded. Their manifestation is caused by
atherosclerosis in 95% of cases [Frank, 2019; Hirsch, 2006; Gordon, 1972].

Atherosclerosis is a chronic inflammatory disease of the arteries driven by lipid accu-
mulation and immune responses. It usually begins with the damage or dysfunction of
the endothelium (the inner lining of blood vessels) that allows low-density lipoproteins
and other lipids to enter and accumulate in the innermost layer (intima) of arteries.
Inflammatory cells such as monocytes and macrophages are recruited, ingest lipids, and
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become foam cells, forming fatty streaks. Over time, smooth muscle cells migrate from
the media into the intima, proliferate, and secrete extracellular matrix molecules, which
thickens the arterial wall and forms a fibrous cap over a lipid core. This thickening is the
general cause of stenosis.

Occasionally, the fibrous cap becomes unstable and may rupture. When plaque ruptures,
lipid core contents and calcium debris may be exposed to the blood in the lumen,
triggering platelet aggregation, activation of coagulation cascades, and formation of a
thrombus, which can partially or completely block the artery.

Calcification deposits sometimes build up in the plaque, making it stiffer. It occurs when
inflammatory and metabolic changes within the plaque trigger vascular smooth muscle
cells (VSMCs) to undergo a phenotypic switch, adopting osteoblast-like properties. These
transformed VSMCs release matrix vesicles and bone-related proteins, which provide a
scaffold for calcium phosphate crystal deposition. In parallel, cell death within the plaque
releases apoptotic bodies that serve as nucleation sites for mineral deposition. Over
time, these processes lead to patchy or extensive calcification within the intima. While
some calcifications stabilize plaques by reinforcing the fibrous cap, others can increase
mechanical stress and make rupture more likely. Thus, calcification represents both an
adaptive response and a risk factor for plaque instability and thrombosis [Björkegren,
2022; Libby, 2021; Falk, 2006].

2.2.2 Clinical presentation

PAD has a broad spectrum of clinical manifestations. Many patients remain asymptomatic,
while the most common symptomatic form is intermittent claudication, typically described
as exertional leg pain that is relieved by rest [Criqui, 1996; Gardner, 2007]. However,
symptoms are often atypical or masked by comorbidities such as diabetes, neuropathy, or
limited mobility, which can lead to underdiagnosis [Santoro, 2018; Serhal, 2018]. In
more advanced stages, PAD may manifest as chronic limb-threatening ischemia (CLTI)
with rest pain, non-healing wounds, ulceration, or gangrene, particularly in patients with
diabetes (“diabetic foot”). Acute presentations can also occur due to sudden arterial
thrombosis or embolism, resulting in acute limb ischemia. This variability highlights the
importance of careful clinical evaluation and risk factor assessment in patients at risk of
PAD [Nordanstig, 2024].

2.2.3 Complications

If left untreated or in advanced stages, PAD can lead to serious complications. Local
consequences include poor wound healing, tissue necrosis, and eventual limb loss re-
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quiring amputation. Systemic risks are also significant, as PAD patients have a higher
incidence of major cardiovascular events such as myocardial infarction and stroke. In
addition, revascularization procedures carry their own risks, including bleeding, vessel
perforation, infection, and restenosis. Together, these complications make PAD not only a
limb-threatening but also a life-threatening disease [Nordanstig, 2024].

2.3 Epidemiology and risk factors

2.3.1 Prevalence and incidence worldwide

PAD affects hundreds of millions of people globally and its prevalence is rising [Kullo,
2016; Nordanstig, 2024; Song, 2019]. In 2015, an estimated 237 million adults aged 25
and older were affected worldwide, representing a 17% increase compared with 2010,
with the largest relative increases observed in low and middle-income countries [Fowkes,
2013; Song, 2019]. Prevalence estimates vary due to differences in study populations,
age, sex, ethnicity, and diagnostic methods, particularly the use of ankle-brachial index
(ABI) thresholds. The prevalence of the disease increases with age, reaching more
than 20% beyond 70 years. PAD is the local expression of a systemic disease whose
prognosis is influenced by cardiac and cerebrovascular complications (mortality at the
stage of intermittent claudication: 15% at 5 years; mortality at the stage of critical
permanent ischemia: 25% at 1 year) [Nordanstig, 2024]. In general population studies,
the prevalence of asymptomatic PAD often exceeds that of symptomatic disease: for
example, in adults aged 50–90 years, 18% had PAD by ABI criteria, and more than 60%
of these were asymptomatic [Cimminiello, 2010; Sigvant, 2007]. Risk factor prevalence,
demographic changes, and regional differences in awareness and screening contribute to
heterogeneity.

2.3.2 Key risk factors

Some risk factors increase the chances of suffering from PAD.

Lifestyle factors. Tobacco smoking is associated with increased risk of requiring revascu-
larization, of chronic limb-threatening ischemia (CLTI), and amputation [Reitsma, 2017],
and is the leading preventable cause of disease overall [Young, 2019]. Smoking cessation
is therefore a primary behavioral intervention for PAD patients. Additionally, regular
physical activity is recommended, as sedentary behavior increases PAD risk [Nordanstig,
2024].
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Metabolic disease. Obesity and diabetes mellitus significantly increase the risk of PAD
by promoting atherosclerosis and vascular dysfunction. Diabetes, in particular, is strongly
associated with distal small-vessel disease, higher rates of foot ulcers, and progression to
CLTI. Dyslipidaemia and hypertension are also major contributors, accelerating plaque
formation and arterial stiffening [Nordanstig, 2024].

Intrinsic risk factors. Age is a major non-modifiable risk factor, with PAD prevalence
increasing sharply after 50 years. Male sex is slightly more likely to develop symptomatic
PAD in some cohorts, though differences are less pronounced for asymptomatic disease.
Additional contributors include chronic kidney disease, systemic inflammation, and a
history of cardiovascular disease [Nordanstig, 2024].

2.4 Diagnosis of PAD

2.4.1 Clinical assessment

The diagnosis of PAD begins with a thorough clinical assessment, focusing on patient-
reported symptoms and physical examination. Notably, the Ankle-Brachial Index (ABI) is
a simple, non-invasive diagnostic test for PAD that compares the systolic blood pressure at
the ankle with that at the brachial artery. An ABI ≤ 0.90 is generally considered indicative
of PAD. An ABI ≥ 1.40 suggests an arterial impressibility and high cardiovascular risk. In
that case, the ankle pressure can not be used for the diagnosis and must be measured
on the first toe instead. At the stage of intermittent claudication in the absence of
calcifications, the ankle blood pressure is > 50 mm Hg and the ABI <0.90 [Høyer, 2013;
Mills Sr, 2014].

The treadmill test is used for patients with suspected intermittent claudication and a
normal ABI at rest. The ABI is measured before and after exercise, and the maximum
walking distance is assessed during a graded treadmill test as the distance covered
until the patient needed to stop due to claudication symptoms [Gardner, 1991; Birkett,
2021].

2.4.2 Imaging Modalities

Imaging is crucial for planning a revascularization procedure to determine the presence,
location and extent of atherosclerotic lesions [Nordanstig, 2024]:

• Duplex Ultrasound (DUS): Combines B-mode imaging with Doppler to visualize
vessel morphology and blood flow. Although it benefits from low costs compared
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to other imaging modalities, it suffers from large inter-observer variability and
reduced accuracy in obesity, excessive bowel gas and calcified lesions [Nordanstig,
2024; Collins, 2007].

• Digital Subtraction Angiography (DSA): Formerly the gold-standard technique
providing high-resolution vascular images [Takahashi, 1984]. It has now been
replaced by CTA and MRA, which are less invasive [Nordanstig, 2024].

• Computed Tomography Angiography (CTA): Uses X-rays and iodine-based con-
trast agent to generate high-resolution cross-sectional images of the vasculature.
The sensitivity and specificity for the detection of arterial lesions are over 90% com-
pared to the DSA reference standard [Nordanstig, 2024; Collins, 2007]. However,
drawbacks include radiation exposure and potential misinterpretation of heavily
calcified lesions.

• Magnetic Resonance Angiography (MRA): Uses magnetic fields and radio waves
to create detailed images of blood vessels without ionizing radiation. The sensitivity
and specificity for the detection of arterial lesions are over 90% compared to the
DSA reference standard [Nordanstig, 2024; Collins, 2007]. However, this imaging
modality does not provide information on calcification burden, and it is difficult
to assess the lumen within metal stents. It also costs more than CTA and is
contraindicated in patients unsuitable for MRI.

Therefore, CTA is particularly valuable in PAD and has become the gold standard due to
its ability to provide detailed anatomical information on the arterial lumen, calcification
plaques, and metallic stents. Tissue density differences are expressed in Hounsfield units
(HU), allowing clear differentiation between vessels, plaques, and surrounding tissue.
However, the artery lumen can show diverse HU ranges depending on the time between
the injection of the contrast product and the image acquisition. Modern CTA systems offer
high isotropic resolution, enabling visualization of small arterial branches and complex
lesions.

2.5 Treatment strategies

2.5.1 Medical management

First-line management of PAD focuses on controlling risk factors and symptom relief.
Lifestyle interventions such as smoking cessation and supervised exercise programs are
foundational [Nordanstig, 2024]. Pharmacologic therapies include antiplatelet agents
(e.g., aspirin, clopidogrel) to reduce thrombotic risk, statins to manage lipid levels, and
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medications addressing comorbidities such as hypertension and diabetes [Nordanstig,
2024]. These measures aim to slow disease progression, alleviate symptoms, and prevent
cardiovascular events.

2.5.2 Revascularization options

When medical therapy is insufficient, revascularization may be required (Fig. 2.3).
Endovascular procedures are minimally invasive and commonly used for focal lesions.
These include balloon angioplasty, where the vessel is dilated to restore flow, stent
placement, which maintains lumen patency, and atherectomy, a technique in which a
catheter-based device mechanically removes plaque from within the vessel. Endovascular
approaches are particularly suited for short-segment or distal lesions, but may be limited
by severe calcification or vessel tortuosity [Nordanstig, 2024].

Surgical bypass is considered for long-segment occlusions or when endovascular inter-
vention is not feasible. It involves creating an alternative conduit for blood flow using
either an autologous vein or prosthetic grafts, connecting proximal and distal healthy
vessels. Endarterectomy, a surgical technique that removes plaque directly from the
arterial lumen, may also be performed in selected cases, particularly in larger proximal
vessels. The selection of bypass type, target site, and conduit material is dictated by
lesion location, vessel quality, and patient comorbidities. Hybrid approaches, which com-
bine endovascular and open surgical techniques, are increasingly employed for complex
or multilevel diseases, offering the flexibility to treat different segments according to
anatomical and pathological considerations [Nordanstig, 2024].

Figure 2.3.: Surgery strategies for revascularization. a. Balloon and stenting angioplasty, illus-
tration from [Attias, 2018]. b. endarterectomy. c. Bypass grafting.
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2.5.3 Main classification systems

The choice of treatment modality depends on multiple interrelated factors. Classification
systems for PAD traditionally rely on clinical symptoms. The Fontain and Rutherford
classifications are commonly used in clinical practice, but others additionally consider the
severity and extent of vascular lesions from medical imaging. There is currently no single
universally accepted classification system for PAD, but together, they can help decide the
optimal treatment strategy [Nordanstig, 2024].

The Fontaine Classification: Is the oldest system [Fontaine, 1954]. It entirely relies on
clinical symptoms and does not contain objective measures besides the maximum walking
distance in stage II. It is used in clinical practice to guide decisions on conservative or
invasive treatment [Nordanstig, 2024]:

• Stage I: Asymptomatic

• Stage IIa: Intermittent claudication after walking >200 meters

• Stage IIb: Intermittent claudication after walking <200 meters

• Stage III: Rest pain

• Stage IV: Ulcers or gangrene

The Rutherford Classification: Also considers patients’ symptoms but also adds objective
characteristics such as Doppler measurements, ABI, treadmill test and pulse volume
recordings [Rutherford, 1997]:

• Grade 0: Asymptomatic

• Grade 1: Mild claudication

• Grade 2: Moderate claudication

• Grade 3: Severe claudication

• Grade 4: Rest pain

• Grade 5: Minor tissue loss

• Grade 6: Major tissue loss
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Other classification systems rely on anatomical and clinical characteristics measured
from imaging modalities [Lareyre, 2025; Nordanstig, 2024]. Lesion length and severity
are primary considerations: short, focal lesions are usually amenable to endovascular
therapy, whereas long occlusions may require bypass surgery. Lesion location, including
proximal versus distal vessels and the presence of bifurcations, affects accessibility and
intervention success. Vessel quality, particularly in heavily calcified or fragile arteries,
dictates the suitability of stenting or bypass.

One of the most commonly used classification methods relying on imaging features is
the Trans-Atlantic Inter-Society Consensus (TASC II) [Committee, 2015]. The arterial
lesions are categorised into four categories based on the location and extent of lesions to
guide decision-making of the revascularization technique. The Bollinger classification
system was designed to describe the severity of the lesion based on the occlusion and
atherosclerotic plaque patterns [Bollinger, 1981]. It enables the evaluation of atheroscle-
rosis progression through follow-ups and can be used for assessment of angiograms and
CT images [Chowdhury, 2017; Hardman, 2014]. In the case of CLTI, the global anatomic
staging system (GLASS) score [Conte, 2019] aims to estimate the chance of success
and patency of revascularization based on the extent and distribution of atheroscle-
rotic lesions to improve the decision-making process. Finally, a classification system
has been proposed for diabetic patients who present different lesions to categorize the
severity of the disease into seven classes to facilitate the assessment of improvement in
post-endovascular treatment [Graziani, 2007].

Additionally, vascular calcifications can also be assessed with specific scoring methods
adapted from the Agatston score [Janowitz, 1991].

Patient-specific factors, such as age, comorbidities, and surgical risk, are also weighed to
determine the optimal approach. Comprehensive imaging evaluation allows clinicians to
integrate these considerations and plan individualized interventions.

2.5.4 Current challenges

PAD remains underdiagnosed and undertreated, contributing to delayed intervention
and increased morbidity. While imaging-based assessment can improve the diagnosis and
guide the revascularization strategy supported by classification systems, it is overall time-
consuming and subject to inter-observer variability, particularly in complex cases with
small, distal arteries, severe calcifications, or altered anatomy due to prior interventions.
Additional challenges include occlusions that render vessels invisible on CTA due to
the blockage of the blood flow and therefore of the contrast agent, high anatomical
variability of collaterals, and confounding appearances of stents, bypass grafts, or bone
on CTA due to similar HU ranges. Automatic segmentation and anatomical analysis
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tools could accelerate diagnosis and intervention planning, reduce variability, and enable
quantitative evaluation of lesion characteristics and vessel connectivity, providing critical
support for patient-specific risk assessment and procedural guidance.
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This chapter examines deep learning-based segmentation methods in the context of
peripheral arterial disease. Given the clinical and anatomical background presented pre-
viously, the focus here is on image analysis techniques capable of accurately delineating
the lower-limb arterial tree, calcified plaques, and endovascular stents from CTA data.

We begin with a concise methodological overview of convolutional neural network
architectures and evaluation metrics relevant to medical image segmentation, intended
to provide essential context for readers from diverse backgrounds. The chapter then
presents an in-depth review of related work, organized into distinct thematic areas:
segmentation approaches developed specifically for PAD, and methods targeting similar
structures in other anatomical regions.

The chapter concludes with a synthesis highlighting current gaps and unresolved chal-
lenges, which motivate the contributions introduced in the following chapters.

3.1 Brief methodological background

In medical imaging, segmentation refers to the delineation of anatomical structures
or pathological regions within an image, often at the pixel or voxel level. Traditional
methods such as thresholding, region growing, or watershed algorithms relied heavily
on handcrafted rules and low-level image features like intensity, edges, or texture
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descriptors [Pham, 2000; Rogowska, 2009; Sharma, 2010]. While these approaches
were effective in simple scenarios, they often failed in the presence of noise, anatomical
variability, or imaging artifacts. The emergence of deep learning, and in particular
convolutional neural networks (CNNs), has transformed this field by enabling models
to automatically learn rich and hierarchical features directly from data, surpassing the
performance and robustness of traditional methods [Shen, 2017].

3.1.1 CNN-based Segmentation

CNNs are a class of deep learning models designed to process images by learning spatially
localized features through convolutional filters [LeCun, 1989; LeCun, 1998; LeCun,
2002]. CNNs automatically learn meaningful image representations directly from data,
making them particularly powerful for medical image analysis [Shen, 2017].

In the context of segmentation, CNNs are typically trained in a fully supervised paradigm.
The model is provided with pairs of input images and corresponding expert-annotated
masks ("ground truth"), and learns to predict pixel or voxel-wise segmentation maps.
Training proceeds iteratively over multiple epochs. During each epoch, batches of images
are passed through the network, and predictions are compared to the ground-truth
masks using a loss function. This loss quantifies the error in segmentation (e.g., mis-
match in overlap or boundary distance). The network’s parameters are then updated
through gradient-based optimization, using backpropagation to propagate errors back-
ward and adjust the convolutional filters so that predictions gradually improve over time,
progressively refining their ability to delineate structures.

The core building block of CNNs is the convolutional layer. Learnable filters, called
kernels, are systematically applied across the image, acting as localized detectors for
characteristic patterns such as edges, textures, or more complex features at deeper
layers. This scanning operation captures both local spatial correlations and hierarchical
structures in the data (Fig. 3.1). These layers are typically followed by non-linear
activations, which allow the network to capture complex relationships beyond simple
linear combinations. Following convolutions, CNNs often include pooling layers, which
downsample feature maps by summarizing local neighborhoods. The most common type
is max pooling, which retains the maximum value in each region, effectively preserving
the strongest activations while reducing spatial dimensions.

For medical image segmentation, CNNs are most often organized in an encoder-decoder
architecture. The encoder progressively reduces the image resolution through successive
convolutions and pooling operations, thereby extracting increasingly abstract and global
features. Conversely, the decoder upsamples the encoded representation back to the
original resolution, recovering spatial details required for precise delineation.
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Figure 3.1.: Basic CNN architecture. The network applies convolutional layers with learnable
filters that scan the input image to extract local features, interleaved with pooling
layers for downsampling and non-linear activations to capture complex patterns. A
learnable kernel (filter) H slides over the input image X, computing weighted sums
at each position. (illustration from [Cheung, 2020]).

Among the most widely adopted architectures in biomedical imaging is the UNet [Ron-
neberger, 2015] (Fig. 3.2), which has become the standard backbone for medical image
segmentation [Du, 2020; Siddique, 2020; Azad, 2024]. Its design, based on symmetric
encoder–decoder pathways and dense skip connections, has proven effective across a
wide range of anatomical targets. Skip connections between encoder and decoder stages
play a crucial role in this design, as they directly transfer fine-scale information lost
during downsampling. For volumetric imaging modalities such as CT or MRI, the 3D
UNet [Çiçek, 2016] extends the same principle to capture contextual information in three
dimensions. These architectures form the basis for many state-of-the-art segmentation
frameworks, including the nnU-Net [Isensee, 2021; Isensee, 2024], which automatically
adapts its configuration to the dataset at hand.

Therefore, CNNs are particularly well-suited to medical image segmentation because
they can integrate both local texture information and larger anatomical context, making
them ideal for capturing complex structures such as vascular trees.

3.1.2 Main loss functions for medical image segmentation

The loss function is a key component in the training of convolutional neural networks,
independently of the chosen architecture. Losses quantify the discrepancy between the
network’s predictions and the expert-provided ground truth segmentations. This error
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Figure 3.2.: Architecture of the UNet, showing the encoder-decoder structure with skip connec-
tions (illustration from [Ronneberger, 2015]).

signal is then backpropagated through the network to update its weights by gradient-
based optimization.

A wide variety of loss functions have been developed in recent years to mitigate these
challenges [LeCun, 2015; Ma, 2021]. While no single loss achieves universally optimal
results, the most commonly used formulations are summarized below.

Cross-Entropy Loss (CE). The cross-entropy loss is the most standard formulation for
classification problems, treating segmentation as voxel-wise classification. For a voxel
i with true label yi ∈ {0, 1, . . . , C − 1} and predicted probability p̂i,c for class c, the
multi-class cross-entropy is:

LCE = − 1
N

N∑
i=1

C∑
c=1

yi,c log(p̂i,c),

where N is the number of voxels, and yi,c is a one-hot encoded label. While effective,
CE is often sensitive to class imbalance, as the large background class can dominate the
optimization. Particularly in medical image segmentation, there is usually a strong class
imbalance between the background voxels and the target anatomical structures. For
instance, small-caliber vessels or small lesions may occupy only a tiny fraction of the
voxels in a 3D scan, which can bias the loss towards the background class.

Binary Cross-Entropy (BCE). For binary segmentation tasks, the CE can be reduced to
the binary cross-entropy:

LBCE = − 1
N

N∑
i=1

(
yi log(p̂i) + (1− yi) log(1− p̂i)

)
,
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where yi ∈ {0, 1} is the ground truth and p̂i ∈ [0, 1] the predicted probability. BCE is
simple and widely used, but suffers from the same imbalance issue as CE.

Dice Loss. The Dice loss directly optimizes the overlap between the predicted segmenta-
tion and the ground truth mask. For predictions p̂i,c and ground truth labels yi,c, the soft
Dice loss is defined as:

LDice = 1− 2
∑N

i=1
∑C

c=1 yi,cp̂i,c∑N
i=1

∑C
c=1 yi,c +

∑N
i=1

∑C
c=1 p̂i,c

.

Variants exist, for example, with squared terms in the denominator to further penalize
large mismatches. This formulation is less sensitive to class imbalance by normalizing
the overlap relative to the size of both prediction and ground truth.

Compound Losses. Compound losses are loss functions that combine two or more
individual losses, usually through a weighted sum. For instance, to simultaneously
optimize voxel-wise accuracy and region-level overlap, the CE and Dice losses are often
combined:

L = αLCE + β LDice,

where α and β are weighting factors controlling the relative contribution of each loss.
This hybrid approach leverages the complementary strengths of both losses, improving
overall performance.

Beyond Classical Losses. In addition to the commonly adopted formulations described
above, a wide variety of task-specific loss functions have been proposed in the literature.
For instance, the Tversky loss [Salehi, 2017] and the focal loss [Abraham, 2019] introduce
re-weighting strategies to emphasize hard-to-classify voxels or underrepresented classes.
Other formulations target boundary precision, topological preservation, or uncertainty
modeling for instance, depending on the application at hand.

3.1.3 Main evaluation metrics

Final predicted segmentations are evaluated by measuring their similarity or distance to
the ground truth annotations. In medical image segmentation, a range of metrics are
commonly used to quantify both volumetric accuracy and structural fidelity [Taha, 2015;
Müller, 2022].

Overlap-based metrics. These metrics evaluate the agreement between the predicted
segmentation P and the ground truth G in terms of shared voxels.
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The Dice Similarity Coefficient quantifies the volumetric overlap between prediction and
ground truth. It ranges from 0 (no overlap) to 1 (perfect overlap):

Dice (P, G) = 2 |P ∩G|
|P |+ |G|

A related metric is the Jaccard Index or Intersection over Union (IoU):

Jaccard (P, G) = |P ∩G|
|P ∪G|

Precision and Recall assess over and under-segmentation tendencies:

Precision = TP

TP + FP
Recall = TP

TP + FN

where TP , FP , and FN denote true positive, false positive, and false negative labeled
voxels, respectively.

The F1 Score is the harmonic mean of precision and recall, providing a balanced mea-
sure:

F1 Score = 2 · Precision · Recall
Precision + Recall

True Positive Rate (TPR) and False Positive Rate (FPR) are formulated such that:

TPR = TP

TP + FN
, FPR = FP

FP + TN

Distance-based metrics. These metrics evaluate the spatial accuracy of boundaries.

The Hausdorff Distance (HD) measures the maximum distance between predicted and
ground truth boundaries:

HD (P, G) = max
{

sup
p∈P

inf
g∈G

d(p, g), sup
g∈G

inf
p∈P

d(g, p)
}

where d(p, g) is the Euclidean distance between points p and g. The 95th percentile HD
(HD95) is commonly reported to reduce sensitivity to outliers.

Topology-based metrics. These metrics aim to assess the preservation of anatomical
continuity and connectivity, which are crucial in vascular segmentation.
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The centerline Dice (clDice) [Shit, 2021] score extends the traditional Dice metric by
emphasizing the alignment of tubular structures along their centerlines. It ensures that
not only the volume but also the continuity of structures is preserved.

clDice = 2 · (|SP ∩G| /SP ) · (|SG ∩ P | /SG)
(|SP ∩G| /SP ) + (|SG ∩ P | /SG)

where SP and SG are the skeletonized prediction and ground truth masks.

Betti numbers (β0, β1, β2) quantify the number of connected components, loops, and
enclosed cavities, respectively. The Euler characteristic is defined as:

χ = β0 − β1 + β2

Betti number errors can be reported as the mean absolute difference between predicted
and ground truth values.

Detection-based metrics. These metrics assess the accuracy of identifying discrete
structures. Precision and recall can be computed at the object level, evaluating whether
individual structures are correctly detected. In practice, a predicted object is typically
considered correct if it overlaps sufficiently with a ground-truth object, allowing object-
level evaluation to focus on detection rather than exact voxel-level agreement.

The Free-response Receiver Operating Characteristic (FROC) [Bunch, 1977] curve plots
the sensitivity (recall) of object detection against the average number of false positives
per image or volume. It is particularly useful when multiple discrete structures exist per
scan, and allows evaluation of performance across varying confidence thresholds.

The Mean Average Precision (mAP) [Buckley, 2017; Padilla, 2020] calculates the area
under the precision-recall curve for each class and then averages across classes or
targets:

mAP = 1
Nobjects

Nobjects∑
i=1

APi

where APi is the average precision for object i, computed from the precision-recall
curve.

Detection-based evaluation complements overlap metrics, particularly when segmenting
small or sparsely distributed objects, where voxel-level measures may underestimate
clinical relevance.

Together, these metrics provide a comprehensive assessment of segmentation quality,
capturing both voxel-wise accuracy and higher-order anatomical fidelity.
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3.2 Deep learning segmentation applications for
PAD

In vascular imaging, CNN-based architectures have been widely adopted to tackle the
challenges of segmenting small, thin, and highly connected structures, such as arteries
and veins. In this section, we first review existing CNN-based approaches for the
segmentation of vessels, then we examine the state-of-the-art for the segmentation
of lower-limb arteries and PAD-relevant structures. The section concludes by highlighting
key opportunities and remaining challenges in the automated segmentation of arteries,
calcifications and stents in the context of PAD.

3.2.1 Vascular segmentation

Automated segmentation of blood vessels is a distinct and technically demanding subdo-
main of medical-image segmentation that has been extensively studied [Moccia, 2018].
Recently, the segmentation of vessels through CNNs has been explored for diverse vessel
structures such as the aorta [Mohammadi, 2019; Lareyre, 2021; Imran, 2025], coronary
arteries [Dong, 2022; Song, 2022; Wolterink, 2019], cerebral vasculature [Livne, 2019;
Phellan, 2017; Hilbert, 2020] and other type of vessels [Tan, 2021; Nardelli, 2018;
Taha, 2018; Xiao, 2018].

Vessel segmentation poses distinct challenges compared to the segmentation of other
anatomical structures. Vessel voxels constitute only a very small fraction of the total
image volume, leading to a severe class imbalance. This is particularly pronounced
in distal branches, which often have very small radii, whereas deep learning models
operate under the assumption that the object being segmented takes up a significant
portion of the image [Deng, 2009; Shelhamer, 2017; Dang, 2022]. Additionally, vascular
structures exhibit a wide range of scales and can extend over long anatomical distances,
necessitating network architectures capable of capturing both fine local details and global
context. Variability in contrast timing, imaging artifacts, and differences across imaging
modalities further complicates model generalization. Another significant challenge is the
labor-intensive nature of fully manual 3D annotation of entire vascular trees, which limits
the availability of large, multi-center annotated datasets and impedes the training of
data-intensive models. Collectively, these factors make vessel segmentation a particularly
demanding task in medical image analysis.

To address these challenges, a variety of model architectures and methodological strate-
gies have been proposed.

30 Chapter 3 Deep Learning-based Segmentation for Peripheral Artery Disease



CNN encoder-decoder based models

UNet-based networks remain the backbone for vessel segmentation because they combine
multilevel features with skip-connections that recover spatial detail [Livne, 2019; Chen,
2019; Pan, 2021; Xie, 2020].

The self-configuring nnUNet framework is widely adopted as a strong baseline for medical
image segmentation [Isensee, 2021], because it automates preprocessing, patch sizing
and hyperparameters to the dataset. Applications of nnU-Net span a wide range of
vascular contexts, for example, in carotid artery and calcified plaque segmentation in
CTA [Zhu, 2022] to general-purpose models covering coronary arteries, the aorta, and
iliac vessels [Ouyang, 2024].

Building on the U-Net paradigm, several specialized architectures have been proposed to
address the challenges inherent to vascular structures. For instance, BRAVE-NET [Hilbert,
2020] extends the 3D U-Net with multiscale feature extraction and deep supervision,
enhancing sensitivity to small cerebral arteries. Similarly, 3D residual U-Nets [Yu, 2019]
and models incorporating residual or dense blocks allow improved gradient flow and
feature reuse, increasing segmentation accuracy in fine vascular structures.

Beyond traditional U-Net extensions, other encoder-decoder CNNs have been devel-
oped to further enhance vessel segmentation. SegResNet [Myronenko, 2018] integrates
residual connections within its encoder to facilitate deeper network training and im-
proved feature propagation, while DiNTS [He, 2021] leverages differentiable neural
architecture search to automatically optimize U-Net-like topologies for a given dataset.
DeepVesselNet [Tetteh, 2020] exemplifies a design that explicitly predicts centerlines and
bifurcations in addition to segmentation masks, reducing topological errors. Its archi-
tecture avoids downsampling layers that can erase thin vessel structures and employs
cross-hair 3D convolutions, which capture spatial information in all three dimensions
efficiently, making it particularly effective for vascular segmentation.

Attention mechanisms

Attention modules enhance these architectures by emphasizing relevant vascular features
and suppressing background noise across multiple scales. Attention U-Net [Oktay, 2018]
introduces attention gates within skip connections, enabling the decoder to focus on
pertinent encoder activations, thereby improving the detection of small vessels without
significant computational overhead. Subsequent models have integrated advanced
attention mechanisms: CS2-Net [Mou, 2021] employs both channel and spatial attention
modules to capture hierarchical representations of curvilinear structures. GCA-Net [Ni,
2020] utilizes a global channel attention mechanism to capture long-range dependencies,
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improving the segmentation of intracranial vessels in CTA images. SA-UNet [Guo, 2021]
introduces cross-scale spatial attention in all skip connections, strengthening multi-
scale feature fusion and enhancing segmentation performance on retinal vessel datasets.
Overall, attention mechanisms enhance recall and focus on vessels, particularly when
training data is limited, though they can increase computational cost, network complexity,
and sensitivity to small datasets.

Transformers and hybrid CNN–Transformer models

Vision Transformers (ViT) [Dosovitskiy, 2020] bring a complementary strength for explicit
modeling of long-range dependencies and global context. In vessel segmentation, these
properties help connect discontinuous, low-contrast branches and relate distal anatomy
to upstream trunks.

A representative hybrid model is TransUNet, which employs a CNN front-end to extract
fine-grained local features and a Transformer encoder on tokenized patches to capture
global context [Chen, 2021; Chen, 2024]. Its decoder then recovers fine localization
through skip connections, making this design a practical compromise that has demon-
strated improved performance across a range of medical segmentation tasks, including
recent applications in vessel segmentation [Zhang, 2024; Lim, 2025].

While vanilla ViTs operate with global self-attention, their quadratic complexity makes
them computationally prohibitive for high-resolution volumetric images. To address this,
the Swin Transformer [Liu, 2021] introduces two key innovations: a window-based self-
attention, which restricts computations to local non-overlapping windows, and shifted
windows, which allow cross-window information exchange. Together with hierarchical
patch merging, these properties make Swin Transformers structurally analogous to CNNs
and well-suited for dense prediction tasks such as segmentation.

Building on this foundation, Swin-Unet [Cao, 2022], UNETR [Hatamizadeh, 2022],
and Swin-UNETR [Hatamizadeh, 2021] adapt transformer backbones for medical seg-
mentation. Swin-Unet is a transformer U-Net-like model, in which both encoder and
decoder are composed of hierarchical Swin Transformer blocks (with shifted windows)
and patch-expanding layers, without any convolutional backbone. By contrast, UNETR
employs a vanilla patch-embedding transformer encoder (ViT-style) that directly operates
on volumetric 3D inputs, with multi-scale features linked via skip-connections to a CNN
decoder. Swin-UNETR adopts a hybrid design: a hierarchical Swin Transformer encoder,
summarizing multi-scale features via shifted windows, feeds into a convolutional decoder
through U-Net-style skip pathways. All three methods enhance the ability to capture
long-range dependencies across anatomy, but Swin-Unet and Swin-UNETR are especially
efficient for high-resolution or large-volume inputs due to their local-windowed attention.
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Moreover, Swin-UNETR has been shown to benefit from self-supervised pretraining,
which mitigates data scarcity in volumetric medical segmentation.

Finally, recent studies have applied transformer architectures directly to vascular seg-
mentation [Maurya, 2022; Kesari, 2025; Li, 2024]. These directions remain promising,
though progress is still constrained by the limited availability of annotated vascular
datasets and by domain shifts across imaging modalities. Overall, transformers offer
distinct advantages when long-range anatomical consistency is critical, but they remain
computationally intensive and sensitive to data distribution.

Topology preservation and connectivity-aware losses

Preserving the topological integrity of vascular structures is a central challenge in vessel
segmentation, as even small discontinuities or broken branches can have clinically signifi-
cant implications. Consequently, a variety of losses and methods have been introduced to
explicitly encourage connectivity and topology preservation.

A key contribution in this domain is the centerline Dice (clDice) loss [Shit, 2021], which
optimizes the intersection between predicted masks and ground-truth skeletons. By rely-
ing on a differentiable soft-skeletonization algorithm, the clDice loss provides a training
signal that encourages continuity along vessel centerlines and has been widely adopted
for tubular structure segmentation. However, subsequent studies have questioned the
strict topological reliability of the skeletonization step [Menten, 2023], motivating refine-
ments. Extensions such as the centerline-boundary Dice (cbDice) [Shi, 2024] integrate
centerline preservation with boundary-awareness to address vessel diameter imbalance,
while the Skeleton Recall Loss [Kirchhoff, 2024] improves efficiency by reducing computa-
tional overhead. Together, these approaches attempt to balance connectivity preservation
with geometric fidelity across a range of vessel sizes.

In parallel, topology-aware losses derived from persistent homology have been proposed.
These methods compute persistence diagrams of predicted and ground-truth segmenta-
tions and penalize discrepancies in topological features such as connected components or
loops. For example, Clough et al. [Clough, 2020] introduced a cost function that enforces
agreement between the persistence barcodes of the predicted segmentation and the
theoretical Betti numbers of the target object. More recently, Stucki et al. [Stucki, 2023]
designed a loss that spatially matches topological features between predictions and
ground truth, achieving a coherent correspondence of observed structures. While these
approaches are powerful in enforcing global topological constraints, they are computa-
tionally demanding and require careful hyperparameter tuning to remain stable during
training, which can limit their applicability, particularly for 3D volumetric datasets.
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Beyond centerline and topology-specific losses, boundary-based formulations offer com-
plementary perspectives. Losses such as the boundary loss [Kervadec, 2021], distance
map loss [Caliva, 2019], and Hausdorff distance loss [Karimi, 2019] explicitly minimize
distances between predicted and reference vessel surfaces. These distance-based losses,
however, typically require auxiliary region-based losses such as the soft Dice loss to
ensure stable training. Moreover, the differentiability of the distance transform function
used in [Karimi, 2019] is not addressed.

Other methods explicitly incorporate anatomical priors to enhance vascular structure
delineation. [Zhang, 2023] proposed TopoLab, a framework that integrates anatomical
connections into the network design through intra and inter-segment feature interactions,
along with an anatomy-aware connection classifier. Complementarily, [Zhou, 2025]
recently introduced the Global-to-Local Connectivity Preservation (GLCP) framework,
which jointly learns global segmentation, skeleton maps, and local discontinuity maps
via an Interactive Multi-head Segmentation module. The addition of a Dual-Attention-
based Refinement module further enhances segmentation quality, demonstrating superior
accuracy and continuity in tubular structure. Finally, post-processing strategies have
emerged to restore connectivity after segmentation [Qiu, 2023].

Trends and best practice

The segmentation of arterial systems has been the focus of several dedicated benchmarks,
including the TOPCoW (Topology-Aware Anatomical Segmentation of the Circle of Willis)
challenge [Yang, 2024] and the Aortic Segmentation Challenge [Imran, 2025]. These
initiatives have stimulated the development of diverse segmentation strategies, ranging
from classical CNN-based models to more recent transformer-based variants.

Overall, the nnU-Net framework has consistently emerged as the dominant baseline [Isensee,
2024]. Its self-configuring design enables automatic adaptation to new datasets and
modalities, making it not only a universal starting point but also a strong upper bound
that many domain-specific methods seek to surpass. The repeated success of nnU-Net
across challenges underlines both its robustness and its role as the backbone upon which
most competing methods build, often complemented with specialized loss functions,
ensembling techniques and specific pre and post-processing pipelines.

These challenges additionally explore multi-class segmentation problems for semantic
arterial labeling. Leading methods frequently extend baseline frameworks with targeted
augmentations. For instance, winning solutions for TOPCoW 2024 employed a 3D
nnU-Net backbone with topology-preserving loss functions.
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3.2.2 Segmentation of the arteries of the lower limbs

While deep learning has been increasingly applied to PAD for tasks such as stenosis
classification or severity grading [Dai, 2021; Goffart, 2025a; Ara, 2019; McBane, 2024],
segmentation of lower-limb arteries remains a much less explored domain. Despite its
clinical relevance, only a limited number of studies have specifically investigated the
segmentation of PAD-relevant vascular structures in the lower limbs. This scarcity can
be attributed to several challenges. First, lower limb arteries extend over a very long
anatomical course, which increases the computational burden of automatic segmentation.
For the same reason, manual annotation is highly labor-intensive, and consequently, no
open-source reference dataset currently exists for this anatomy. Moreover, distal vessels
such as the tibial and fibular arteries are very small in caliber, further complicating
segmentation. In pathological cases of PAD, the vasculature demonstrates marked inter-
patient variability due to the presence of collateral pathways, occlusions, calcifications,
stents, and surgical bypasses. These factors increase the complexity of the task and
hinder the development of robust and generalizable segmentation models.

The first attempts to address this problem relied on traditional model-driven tech-
niques. [Chen, 2015], for example, proposed a semi-automated method for black-blood
MRI in which manually initialized landmarks were refined using geometric operators and
a 3D deformable model guided by intensity and gradient information to delineate the
lumen and outer wall of femoral arteries. This approach achieved relatively low mean
absolute distances (0.43 and 0.59 mm), but remained dependent on user input and was
never extended to distal vessels.

More recently, the field has shifted towards CNN-based segmentation of CTA. [Bagheri
Rajeoni, 2023] employed a U-Net with a pretrained ResNet-34 encoder to jointly segment
the arterial lumen and calcifications, reporting a Dice score of 0.83 for arteries, yet their
work was limited to iliac arteries down to the patella, therefore not including below-knee
vessels. Similarly, [Guidi, 2022] developed an automatic segmentation framework for
CTA focused on the aorta and iliac arteries, including calcification quantification, but
did not attempt segmentation of peripheral vessels. [Zulfiqar, 2026] combined YOLOv8
for region-of-interest localization with a vascular segmentation network, achieving a
Dice score of 0.91, yet their dataset contained mostly proximal arteries, with only 18%
of cases including tibial vessels, and none of the samples represented pathological
presentations. Other approaches have emphasized detection rather than full voxel-wise
segmentation. [Anwer, 2025] used a region-based CNN (R-CNN) with a ResNet-101
backbone and a custom loss function to detect arteries and classify stenoses from the
iliac arteries to the mid-knee level, reporting very high accuracy (98.79%, AUC = 0.95).
However, their annotations were limited to bounding boxes and excluded below-knee
vessels.
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Beyond CTA, deep learning has also been explored for magnetic resonance angiography
(MRA). [Ghodrati, 2022] proposed a 3D U-Net with local attention gates and a focal
Tversky loss to segment arteries and veins from FE-MRA. By leveraging the temporal
dynamics of time-resolved imaging, they separated arteries from veins and obtained
promising results (F1 = 0.81, recall = 0.84). However, as with the CTA-based studies,
the dataset was largely limited to proximal vessels above the knee and did not include
cases with calcifications or occlusions.

Regarding calcifications, [Zou, 2025] applied an nnU-Net to calcification segmentation in
the lower limbs, but performance was poor (Dice = 0.48), likely due to the small dataset
of only 27 cases. Additionally, there is no information on the exact anatomical coverage.
In coronary imaging, several methods have targeted plaque detection and characterization
from intravascular optical coherence tomography (IVOCT) or CT. Approaches range from
conventional encoder–decoder models such as SegNet refined with conditional random
fields [Gharaibeh, 2019] to two-step pipelines combining detection and segmentation
networks [Lee, 2020], as well as lightweight 3D CNNs for calcium scoring across multiple
arteries [Santos, 2025].

Stent and graft segmentation constitutes another technically demanding task due to
metallic artifacts and complex geometry. Early approaches relied on geometric graph-
based methods for detecting stent grafts in the aorta [Klein, 2012], whereas more recent
studies have leveraged 3D U-Nets with specialized patching strategies to improve lumen
and stent delineation in the aorta [Sabrowsky-Hirsch, 2021].

Taken together, these works reveal important common limitations. Anatomical coverage
remains restricted, with the majority of methods stopping at the femoral or popliteal level
and rarely extending to tibial vessels, even though distal arteries are clinically relevant
in PAD. Pathological robustness is also limited, as nearly all reported datasets consist of
healthy or minimally diseased cases and do not always explicitly handle calcifications,
occlusions, or metallic stents. Target structures are generally restricted to the lumen,
with little attention given to calcifications or stents. Overall, despite recent progress, PAD-
specific segmentation of lower-limb arteries remains in its infancy as current methods
either stop at proximal levels, fail to include pathological cases, or only address partial
structures. These gaps highlight the need for dedicated approaches capable of robustly
segmenting the full vascular tree and PAD-relevant structures in real clinical data.

3.2.3 Synthesis: gaps, challenges and opportunities

Despite significant advances in vessel segmentation across various anatomical regions,
few studies have specifically targeted lower-limb arteries. Existing works are generally
limited to proximal arteries, rarely encompassing the full lower-limb arterial tree. Even
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fewer approaches have addressed segmentation in pathological contexts characteristic
of PAD, where occlusions, calcifications, and stents introduce additional complexity.
While some efforts have attempted to segment calcifications or stents, these are often
constrained either by limited anatomical coverage or by suboptimal performance. Notably,
calcification segmentation appears to benefit from prior artery lumen segmentation,
which likely provides crucial anatomical context. To date, no studies have specifically
addressed stent segmentation or branch identification for lower-limb arteries in PAD.

Segmentation strategies developed for related vascular structures, however, illustrate both
the versatility of deep learning approaches and the persistence of common challenges,
including class imbalance, preservation of small or thin structures, and mitigation of
imaging artifacts. Across diverse domains, nnU-Net has consistently demonstrated
robustness, emerging as the preferred backbone in numerous segmentation challenges
and serving as a foundation upon which task-specific refinements can be applied. This
suggests that PAD-focused segmentation could similarly benefit from leveraging nnU-Net
as a base, augmented with methods designed to explicitly preserve vascular topology and
fine-scale structural details.

Recent methodological advances provide additional avenues for improvement, particu-
larly in enforcing topological consistency and reducing boundary errors. For instance,
refinements to skeleton-based losses, such as clDice, and to boundary-aware losses,
including Hausdorff distance variants, could enhance the continuity of segmented vessels
and better capture complex morphologies.

Collectively, these observations highlight clear opportunities for future work in applying
and developing PAD-specific segmentation methods that comprehensively cover the entire
lower-limb arterial tree in pathological conditions, integrate lumen, calcification, and
stent information, and identify branch locations. Methodologically, there are additional
opportunities to refine artery segmentation. For example, improvements could address
the limitations of the skeletonization algorithm used in clDice, enhancing the topological
preservation of segmented vessels. Similarly, refinements to Hausdorff distance–based
losses could tackle both differentiability and numerical stability issues, enabling more
reliable boundary-aware optimization.
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Building on the gaps and challenges identified in the previous chapter, particularly
the need for improved topological preservation in vascular segmentation, this chapter
introduces SoftMorph, a novel framework for integrating accurate morphological oper-
ations directly into deep neural networks. The motivation originated from limitations
observed in the original clDice loss formulation, where the skeletonization step could
produce unreliable centerlines, ultimately affecting topological performance. This raised
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a broader question: how can we embed robust mathematical morphological operations
into convolutional networks in a way that remains fully differentiable and trainable?

SoftMorph addresses this challenge by reformulating any binary morphological operation
into a differentiable probabilistic equivalent, enabling seamless integration either as a
component of a loss function or as a final network layer. The approach preserves the
logical structure of the original operation while allowing gradient-based optimization.
Initially developed to provide a more consistent skeletonization process for clDice, the
framework is also evaluated as a final segmentation layer across multiple segmentation
tasks and imaging modalities, with a focus on the topological performance for tubular
structures.

Beyond the specific applications explored here, such as skeleton-based losses and mor-
phological post-processing, SoftMorph lays the groundwork for broader use in medical
image analysis and potentially other computer vision tasks, offering a generalizable tool
to incorporate morphological reasoning into deep learning pipelines.

The work presented in this chapter was accepted to MICCAI 2024 [Guzzi, 2024] and
currently under review for the journal Medical Image Analysis.

The code is publicly available on GitHub1.

4.1 Introduction

Mathematical morphology is a fundamental theory used to process images by extracting
or enhancing information based on geometrical shapes, structures, and spatial relation-
ships [Serra, 1994]. Its methodology revolves around two fundamental operations:
dilation expands the foreground objects in an image, increasing their size and connectiv-
ity, while erosion shrinks the foreground, eliminating small objects. Dilation and erosion
can be combined or iterated to achieve more complex operations. These operations can
enhance the essential shape and characteristics of an image, and extract shape features
such as edges, holes, cracks, and corners [Shih, 2017]. Morphological operations op-
erate on a Structuring Element (SE) that defines the pattern of the image feature to
be processed, encompassing a large variety of shapes and sizes. Originally defined on
binary images, morphological operations have subsequently been extended to gray-scale
images. An important extension involves fuzzy morphological operators [Sinha, 1992;
Bloch, 1995], which adapt the operations to continuous values, mainly by replacing
erosion and dilation with minimum and maximum operations. Therefore, morphological
operations are particularly useful for many image analysis and processing tasks such as

1https://github.com/lisaGUZZI/SoftMorph2.
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image segmentation [Nomura, 2005; Xia, 2006; Said, 2006; Yucheng, 2009], feature ex-
traction [Angulo, 2008; Feehs, 1987; Krishnapuram, 1992; Angulo, 2003; Zhao Yu-qian,
2005], noise reduction [Asano, 2004; Schonfeld, 1991; Peters, 1995; Stringhini, 2019;
yong, 2010], or image enhancement [Mukhopadhyay, 2000; Román, 2021; Kimori, 2011;
Amutha, 2011].

For instance, morphological operations were applied in radar imaging for image restora-
tion by effectively removing noise while retaining critical information [yong, 2010].
Similarly, new operations were designed for edge detection in noisy medical imag-
ing [Zhao Yu-qian, 2005]. In medical applications, skeletonization is the operation that
extracts the centerline of a segmented structure such as vessels or the heart. It is often
used to assess the organ’s topology, connectivity and trajectory [Lidayová, 2017].

Morphological operations can enhance the performance of convolutional neural networks
(CNNs) by extracting meaningful structural information to analyze images. Researchers
have started integrating these operations into loss functions to improve specific charac-
teristics of segmentation tasks [Jurdi, 2021; Shit, 2021]. Moreover, some operations
such as dilation and erosion could be integrated as layers within CNN architectures,
allowing to handle different patterns and tasks than traditional convolutional layers,
hereby refining complex image analysis [Bloch, 2021; Nogueira, 2021]. However, tradi-
tional binary morphological operations are based on Boolean expressions, and some are
implemented using minimum and maximum operations, ill-suited for the gradient-based
optimization methods used in deep learning models. Indeed, that optimization process
requires differentiable functions that are smooth and continuous to compute gradients
effectively during the training phase [LeCun, 2015; Kumar, 2024]. Binary decisions
and min/max operations lead to discontinuous or undefined gradients, making them
inherently non-differentiable.

To address this, fuzzy morphological neurons were designed to align operators with
gradient-based optimization, by approximating the soft minimum and maximum functions
[Oh, 1998; Nakashizuka, 2009]. Standard min/max operations can also be seen as piece-
wise differentiable, directly replacing erosion and dilation with min and max-pooling
layers, and combining them to achieve more complex operations [Franchi, 2020; Mondal,
2019; Jurdi, 2021; Shit, 2021]. Although these methods can successfully incorporate
morphological operators in neural networks, they do not generalize beyond a restricted
subset. Additionally, the use of min and max-pooling only, can lead to discontinuous
skeletons and homotopy inaccuracies [Menten, 2023; Bloch, 2017]. Others have focused
on Learning Morphological Operations by training CNNs to replicate specific morpho-
logical operations [Nguyen, 2021; Panichev, 2019]. These models can backpropagate
gradients and be integrated into deep learning pipelines. However, they correspond to
approximative morphological operators trained on a specific domain and may require
fine-tuning. Lastly, one may consider Convolution-like approaches such as successive

4.1 Introduction 43



convolutional layers with pre-defined kernels to replicate a particular operation [Menten,
2023], but this method can be hard to apply to some complex operations. To the best of
our knowledge, there is no existing approach to integrate any morphological operation
with any SE into a CNN in a smooth and differentiable manner.

To address these limitations, we introduce SoftMorph, a family of operators based on
various fuzzy logics, to extend binary morphological operations on probability maps
that can be seamlessly integrated into neural networks either as a loss function or as a
final morphological layer. It provides a generalized approach for translating any binary
morphological operator with any SE into differentiable and probabilistic equivalents.
This chapter presents the following contributions:

• We define probabilistic morphological operators as the expectation of the binary
operator over the probability of generating each possible binary configuration,
expressed as a multi-linear polynomial deduced from the truth table.

• We propose a family of quasi-probabilistic operators for intractable truth tables of
binary morphological operators. We use various fuzzy logic operators to convert
the Boolean expression defining the morphological operation into a soft, differen-
tiable expression. These quasi-probabilistic operators approximate the probabilistic
operator while maintaining the complexity of the original binary operator. Unlike
previous works on fuzzy morphological operators that applied to erosion and di-
lation only, our proposed expressions are applicable to any Boolean expression,
hence easily adaptable to new custom operations.

• We validate the SoftMorph operators in a binary context to ensure consistency with
the corresponding binary counterparts, and assess their backpropagation capability
to ensure their smooth integration into deep learning pipelines.

• We demonstrate applications of this framework to various 2D and 3D segmentation
tasks. We integrate the SoftMorph operators as final layers of a neural network’s
architecture and in loss function applications.

Overall, these contributions make the SoftMorph framework a powerful tool for inte-
grating morphological operations into deep learning models. In section 4.2, we review
related works to make soft, differentiable morphological operations and their integration
into CNNs. Section 4.3 details the methodology of SoftMorph. We validate the soft mor-
phological operators in a binary setting in section 4.4.3 and in section 4.4.4 we evaluate
the backpropagation capability of the proposed operator representations. Finally, we
demonstrate segmentation applications of the framework across multiple datasets in
section 4.4.5.
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4.2 Related Works

4.2.1 Continuous fuzzy morphological operators

Mathematical morphology has been extended from binary to gray-scale image processing
partly through fuzzy set theory, as introduced by [Sinha, 1992]. In this context, gray-
scale images are treated as fuzzy sets, where each pixel value is interpreted as a degree
of membership to a set, and morphological operators are redefined within that fuzzy
space. This approach enables more nuanced image analysis and has led to various
representations, employing fuzzy conjunction and disjunction operators. The most
notable are the minimum and maximum operations to represent erosion and dilation
respectively [Bloch, 1995].

4.2.2 Differentiability of morphological operators

Subsequent works have addressed the differentiability of morphological operators through
different techniques to integrate them into deep learning pipelines.

Counter harmonic mean

The counter harmonic mean (CHM) has been studied to approximate the erosion and
dilation operations in [Angulo, 2010]. This approach involves raising the pixel values
of an image to a certain power, combining them with weights, and normalizing the
result. Thus, morphological dilation and erosion correspond to the limit cases when the
power tends to +∞ (dilation) and −∞ (erosion). The differentiable nature of the CHM
formulation facilitates gradient-based optimization and its application in CNNs [Masci,
2013; Mellouli, 2017; Mellouli, 2019]. A morphological neuron, the so-called Pconv layer,
implements the CHM filter to learn the appropriate power value and weight parameters
to optimize the operations. However, this method is subject to exploding gradients due
to the power function [Franchi, 2020].

Log-Sum-Exp

The morphological operations have also been approximated using differential approx-
imations of the minimum and maximum operations with the Log-Sum-Exp function.
In [Nakashizuka, 2009] and [Shih, 2019], it has been tailored to optimize the SE of
the morphological operations. In [Shen, 2022], it is furthermore improved to learn
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non-flat SEs by applying bias variables to correct the rounding errors caused by the soft
approximation of min/max.

Non-smooth minimum and maximum operators

In theory, minimum and maximum operations are not fully differentiable. While they
are differentiable almost everywhere, they lack a well-defined gradient at points where
multiple arguments of the operations are equal. In practice, these operations are treated
as piece-wise differentiable. That means that the gradient is propagated only towards
the maximum or minimum element during backpropagation. Consequently, the gradient
is non-zero only at the element where the maximum or minimum is attained. When
multiple arguments share the same maximum or minimum value, different strategies
are employed depending on the context. In typical minimum/maximum operations, the
gradient is distributed equally between those arguments. In commonly used max-pooling
layers, the gradient is assigned exclusively to the first occurrence of the maximum value
within each pooling window. Therefore, some researchers argue that these non-smooth
operators can be used in deep learning pipelines to replicate the erosion and dilation
operators, while still ensuring the optimization of models. For example, in [Jurdi, 2021],
the combination of min and max-pooling layers allows to obtain the borders of the
foreground. Similarly, the pooling layers are iterated to extract the skeleton in [Shit,
2021]. It is obtained by iteratively getting the difference between the erosion of the
image and the opening of that erosion. However, this method leads to inconsistencies,
creating disconnected skeletons and topological errors. As the standard pooling layers are
fixed with a square SE, [Franchi, 2020] and [Mondal, 2019] proposes to replace them
with learned morphological pooling layers that can optimize the SE. In [Franchi, 2020],
non-flat SEs are optimized to learn the exact morphological operators.

Learning-based emulation of morphological operations

Morphological operations trained from data by neural networks inherently support
gradient-based optimization. It can provide differentiable solutions for complex opera-
tions such as skeletonization, trained in CNNs for example in [Nguyen, 2021; Panichev,
2019]. Other works optimize the morphological operation and the SE learned from
training data, by alternating dilation and erosion-like convolution layers [Aouad, 2022].
However, training from data is prone to domain shift and can produce topological
errors [Menten, 2023].
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Convolution-like approaches

A specific operation can be emulated by applying several convolution layers with pre-
defined kernels to detect expected configurations and patterns in an image. For example,
[Menten, 2023] detects simple points, corresponding to pixels that can be removed from
the foreground to obtain a skeleton, only using convolutional and matrix operations
followed by non-linear functions. They defined specific kernels to recognize 2D and 3D
configurations and their rotational equivalent to check the presence of simple points.
That process requires 57 convolutions to match the Boolean rules for simple point
detection. The reparametrization trick is employed as the detection is based on binary
criteria. Depending on the operation to replicate, this method can be computationally
expensive due to the high number of convolutions required. Designing specific kernels
to detect various configurations and their rotational equivalents can be complex and
time-consuming, potentially limiting its adaptability.

4.2.3 Morphological operations in deep learning applications

Through the aforementioned methods to approximate differentiable morphological oper-
ations defined on continuous values, several applications of these operators have been
explored in neural networks [Mondal, 2022; Hirata, 2021; Bloch, 2021].

Deep morphological neural networks

There has been a growing interest in replacing traditional convolutional layers of CNNs
with morphological operations. Deep Morphological Neural Networks (DMNNs) leverage
the inherent non-linearity of morphological operations to substitute the linear convolution
and non-linear activation functions typically used in CNNs. These networks define
morphological layers that approximate the erosion or dilation operations and optimize the
SE based on target data. In some works, the appropriate sequence of erosion and dilation
within the network architecture is also learned [Shen, 2022; Mondal, 2020; Masci, 2013].
DMNNs can alternate morphological layers with standard convolutional layers, and fully
connected layers for classification tasks [Shen, 2022; Mellouli, 2019; Mellouli, 2017].
Other main applications of these networks include image restoration [Franchi, 2020;
Mondal, 2019; Masci, 2013] and edge detection [Franchi, 2020]. Besides, [Mellouli,
2019] consider these networks more interpretable than usual CNNs because the learned
sequence of morphological operations can be explicitly recovered and analyzed.
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Loss functions with morphological operators

Some morphological operations can extract specific image features to be used in the
loss function of a CNN to improve particular characteristics of the model. The clDice
loss function in [Shit, 2021] requires the extraction of the skeleton to compute its
intersection with the foreground volume, to maximize the topological preservation in
the segmentation of tubular structures. In [Jurdi, 2021], they extract the boundaries of
the segmentation to minimize the perimeter difference of the prediction with the ground
truth volume. The segmentation of small and thin structures is enhanced in [Pihlak,
2021] by integrating the white top-hat operation to detect small structures. Compared
to existing methods, our approach does not involve optimizing the SE or learning the
morphological operations. Instead, we focus on adapting any known binary operator into
a differentiable and probabilistic form, that one might want to use in a CNN to optimize
an image analysis problem. It provides a solution to precisely replicate the binary operator,
that can be integrated either in the loss function of a CNN or as a post-processing layer
within the network. One key innovation of our approach is defining the differentiable
operators on probability maps, enhancing their applicability. Additionally, we ensure
to define quasi-probabilistic operators that match the computational complexity of the
binary operators. Previous methods either approximate those operations, resulting in
a mismatch with the exact binary operator, or are challenging to apply to complex
operations. Overall, our method offers a more precise and flexible solution to incorporate
morphological operations into deep learning frameworks.

4.3 Methodology

4.3.1 Definition of binary morphological operators

We define an image X consisting of N voxels {Xn}, n = 1 . . . N and its corresponding
binary segmentation image Y with Yn ∈ {0, 1}.

A binary morphological operator F () is applied to the binary image Y resulting in a final
binary segmentation Z such that Z = F (Y ) ∈ {0, 1}N .

This operator F () takes as input k binary variables selected from the neighborhood func-
tionN (i, n), providing the index of the ith neighbor of the voxel n in Y as YN (1,n), . . . , YN (k,n).
It outputs a binary variable Zn = F (YN (1,n), . . . , YN (k,n)) ∈ {0, 1}. The neighborhood
function corresponds to the SE of F . It defines the domain of the geometrical features
processed in the morphological operation. For instance, in a 2D image, typical neighbor-
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hoods are defined as k = 4 + 1 (Fig 4.1a) or k = 8 + 1 (Fig 4.1b). Similarly, in 3D they
are defined as k = 6 + 1, 18 + 1 or 26 + 1.
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Figure 4.1.: Definition of the neighborhood variables in a 2D image. (a) 4+1 neighborhood. (b)
8+1 neighborhood. (c) Representation of the truth table of FEx on a hypercube.
Each dimension corresponds to a binary input variable of the morphological operator.

The binary operator F () is a Boolean function that has 2k different possible input values
and outputs a binary variable. The exhaustive list of those values F (a) ∈ {0, 1}, for
a ∈ {0, 1}k is called the truth table of F () and can be provided exhaustively for small
values of k. Besides, it can be shown that any Boolean function can be written as a
propositional formula involving the k binary variables with the logical operators AND
(∧), OR (∨) and NOT (¬). In fact, two operators are sufficient in Boolean logic, since
the AND and OR operators can be expressed with the remaining two according to De
Morgan’s theorem [Copi, 2016]. Similarly, the XOR (⊕) operator can rewritten as:
(A⊕B) = (A ∨B) ∧ ¬(A ∧B).

Based on the notation defined in Fig.4.1, the dilation operator acting on a 4 + 1-
neighborhood of a 2D image can be written as fDil = Y0 ∨ Y1 ∨ Y2 ∨ Y3 ∨ Y4 whereas the
erosion operator is fEro = Y0 ∧ Y1 ∧ Y2 ∧ Y3 ∧ Y4.

As an example, the operator fEx will be reused throughout this section to illustrate key
concepts. The operator fEx is defined on a 1x3 grid such that Zn = fEx(Yn−1, Yn, Yn+1) =
FEx(Y1, Y2, Y3). It is computed with the Boolean expression:

FEx = Y2 ∧ ((Y1 ∧ ¬Y3) ∨ (¬Y1 ∧ Y3))

Consequently, with k = 2 + 1, there are 8 possible input configurations represented on
the 3-hypercube of Fig. 4.1c.

4.3.2 Definition of probabilistic morphological operators

We want to extend these morphological operators to the output of segmentation algo-
rithms. Typically, the output of a neural network consists of probabilities yn, which
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Figure 4.2.: Given a 2x2 input grid with probabilistic values, the probability of each possible
binary configuration is calculated. By applying a specific morphological operator to
each binary configuration, we compute the expectation over all configurations to
estimate the result of the soft operator on the probabilistic input.

correspond to the posterior probability yn = p(Yn = 1|X) ∈ [0, 1] of the binary variables
Yn ∈ {0, 1}.

We seek to formalize the definition of a probabilistic morphological operator F⋆() applied
on the probabilistic segmentation image Y = {yn} ∈ [0, 1]N and generate a new prob-
abilistic image Z = {zn} ∈ [0, 1]N = F⋆(Y). This operator should generalize the given
binary operator Z = F (Y ) such that both give the same result when the input probabilis-
tic image is binary Z = F (Y ) = F⋆(Y ). More precisely, we aim to apply the deterministic
morphological operator F () on a binary image Y only known through its posterior
probability Y = p(Y |X). Therefore, we estimate the posterior zn = p(Zn = 1|X) of the
final segmentation Z knowing that it results from the application of the morphological
operation Z = F (Y ).

Lemma 1 The posterior probability zn can be obtained through the law of total probability
as the expectation of the filtered binary segmentation F (a) :

zn = p(Zn = 1|X) =
1∑

Y1=0
. . .

1∑
YN =0

p(Zn = 1|Y ) p(Y |X)

=
∑

a∈{0,1}N

F (a) p(a|X) = Ea∼p(Y |X)F (a)

Lemma 1, as represented in Fig.4.2, defines implicitly the relationship zn = F⋆(Y) of the
soft morphological operator.

4.3.3 Soft operators using Multi-linear polynomials

It is furthermore required to make the operator differentiable, i.e., to estimate the
derivatives ∂F⋆(Y)

∂ym
. To provide a closed-form expression of a soft operator defined in
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Lemma 1, we propose to adopt a polynomial representation of the Boolean function
F (a), a ∈ {0, 1}k. Indeed we can associate with any Boolean function F (a) a multilinear
polynomial F⋆(x), x = (x1, . . . , xk)T ∈ Rk defined as:

F⋆(x) =
∑

a∈{0,1}k

F (a)
k∏

i=1
xai

i (1− xi)1−ai (4.1)

It is easy to see that F (a) = F⋆(a), i.e., that the polynomial F⋆(x) coincides by
construction with the Boolean function on the hypercube {0, 1}k. Each monomial
F (a)

∏
i:ai=1 xi

∏
i:ai=0(1− xi) is equal to 0 if x ̸= a and equal to F (a) otherwise. Besides,

it is of degree k and linear with each variable xj , making the polynomial multilinear.
This property leads to the following result:

Theorem The expectation of a Boolean function F (a) ∈ {0, 1}, a ∈ {0, 1}k over a set of k

independent variables with a ∼ Bernoulli(p), p ∈ [0, 1]k is F⋆(p)

Proof It is easy to show that Eai∼Bernoulli(pi)(α + βai) = α + βpi using the linearity of
expectation. Thus, we have :

Ea1(F (a)
k∏

j=1
a

aj

j (1− aj)1−aj )

= F (a)pa1
1 (1− p1)1−a1

k∏
i=2

aai
i (1− ai)1−ai).

By taking the expectation over each variable ai, we get :

Ea(F (a)) =
∑

a∈{0,1}k

F (a)
k∏

i=1
pai

i (1− pi)1−ai = F⋆(p).

□

Therefore, assuming that the marginal posteriors yn = p(Yn|X) are independently dis-
tributed (which is the case when dealing with the output of segmentation neural networks
or mean field approximations), we define the soft morphological operator associated
with the binary operator F () as the polynomial value F⋆(yN (1,n), . . . , yN (k,n)) ∈ [0, 1].

With our example binary operator FEx, we get the multi-linear polynomial representation
of the soft operator :

F⋆
Ex(y1, y2, y3) =

∑
a∈{0,1}3,F (a) ̸=0

3∏
i=1

yai
i (1− yi)1−ai

= y1y2(1− y3) + (1− y1)y2y3

= y1y2 + y2y3 − 2y1y2y3
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This function defined over the 3D cube can be seen as the trilinear interpolation of
the binary truth table as illustrated in Fig. 4.3a. More generally, the probabilistic
morphological operator defined in Theorem 1, can be interpreted as the multilinear
interpolation of the binary operator F over the hypercube. Multilinear interpolation
is among the most basic interpolation methods and is symmetric with respect to all
variables, which makes it a natural extension of the binary operator F to the probabilistic
context.

4.3.4 Limitations of Multi-linear polynomial representation

The construction of the multilinear polynomial F⋆() (Eq.equation 4.1) requires the
summation over non-zero elements F (a) of the truth table of size 2k. For non-trivial
truth tables, writing such polynomials requires the use of symbolic computation software
such as SymPy or Maple. But the complexity of such polynomials grows exponentially
with the number k of variables. For example, if k = 26 + 1 in a 3D images, there are
227 = 134 217 728 possible input configurations. In practice, when k > 10 for non-trivial
operators, the number of monomials often becomes prohibitively large.

4.3.5 Quasi-probabilistic operators using fuzzy logic

The computation of F⋆ is based on the exhaustive list of positive binary configurations
which can become intractable to produce. We are looking for alternative computation
methods that have the same complexity as the binary operator F (a), a ∈ {0, 1}k. To
this end, we notice that the probabilistic version of the AND operator is the product
of the probabilities AND(X1, X2) −→ x1x2 while the OR operator is transformed into
OR(X1, X2) −→ x1 + x2 − x1x2 = 1 − (1 − x1)(1 − x2) and the NOT operator as
NOT(X1) −→ 1 − x1. For any Boolean operator F () represented by a proposition
formula, involving the AND, OR and NOT operators, we propose to create a soft quasi-
probabilistic operator F•() by substituting the logical operators AND, OR, and NOT by
their probabilistic versions. This soft operator is a polynomial expression which can be of
a degree greater than k, and is not necessarily multilinear. However, its computational
complexity is the same as the one of the propositional form of the operator since we
have substituted a simple logical expression with another simple polynomial one. The
quasi-probabilistic polynomial corresponds to a compact and factorized form whereas
the multi-linear polynomial corresponds to its polynomial expansion combined with the
application of the idempotence rule xi = x, ∀i > 0 on all probability variables. The quasi-
probabilistic polynomial can be interpreted as an alternative non-linear interpolation
method of the values over the hypercube whereas the probabilistic polynomial is a (multi)
linear one.
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While AND, OR and NOT operators were substituted by their probabilistic versions,
one could think of other ways to replace the 3 logical operators with algebraic expres-
sions of continuous values in the range [0, 1]. This has been the focus of the Fuzzy
logic [Novák, 1999] and Fuzzy set theories. They introduce Triangular Norms (T-norms),
and Triangular Conorms (S-norms) as substitutes for the AND and OR operators with the
complementation operator 1− x as the substitute for the NOT operator. T and S-norms
are defined on the unit square [0, 1]× [0, 1] with values on the unique segment [0, 1], and
follow the commutativity, monotonicity, associativity and element identity properties.
Besides, an S-norm S() is dual of a T-norm T () under the action on the complementation
operator, S(x1, x2) = 1− T (1− x1, 1− x2), which can be seen as the generalization of
the De Morgan’s rules.

There exist many different T/S-norms proposed in the literature, which admit a partial
pointwise ordering as follows:

T1 ≤ T2 if T1(a, b) ≤ T2(a, b) for all a, b ∈ [0, 1].

The expressions of the main T and S-norms are listed in Table 4.1 and their graphs
on the unit square are displayed in Fig. 4.4. The Product T-norm corresponds to the
probabilistic AND operators introduced previously and it is easy to see on Fig. 4.4 that
the Drastic T-norm is the smallest whereas the Minmax logic is the largest. A number
of those T-norms have additive generators [Dombi, 1982], which means that there
exists a function f : [0, 1] −→ R+ such that T (x, y) = f−1(f(x) + f(y)). This is the
case for the Product logic (with f(x) = − log(x)) and this allows to easily factorize
multiple applications of the T and S-norms. For the Product rule, we have for instance :
AND(Y0, Y1 . . . , Yl) ≡ y0y1 . . . yl, OR(y0, y1 . . . , yl) ≡ 1− (1− y0)(1− y1) . . . (1− yl)

With each T-norm, we can substitute the AND, OR, and NOT operations of the binary
function F () to obtain an approximation F•() of the associated probabilistic opera-
tors F⋆(). Both functions coincide on the vertices of the unit hypercube, but they
correspond to different interpolation functions inside the hypercube. Thus, we call
SoftMorph the family of soft operators derived from a binary morphological operator
F (YN (1,n), . . . , YN (k,n)) which can be either probabilistic operators as multilinear poly-
nomials F⋆(yN (1,n), . . . , yN (k,n)) or quasi-probabilistic operators F•(yN (1,n), . . . , yN (k,n))
as derived from a T / S-norm. The Einstein and Product logic generate smooth and
differentiable expressions whereas the other T-norms are only piecewise differentiable,
in particular due to the min and max functions. As an example, the SoftMorph operator
associated with the binary function FEx using Product logic writes as F•

Ex(y1, y2, y3) =
y2(1 − (1 − y1(1 − y3))(1 − y3(1 − y1))). This is a factorized polynomial which differs
from its probabilistic version and its expansion involves monomials of degree 5 (instead
of 3 for the multilinear case) y1y2 + y2y3 − 3y1y2y3 + y2

1y2y3 + y1y2y2
3 − y2

1y2y2
3. Both

polynomials have the same values on the unit hypercube, but differ elsewhere as seen in
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Table 4.1.: T-norms and S-norms formula for different fuzzy logics
Logic Operation Formula

Boolean AND a ∧ b
OR a ∨ b

Drastic T-norm min(a, b) if max(a, b) = 1, else = 0
S-norm max(a, b) if min(a, b) = 0, else = 1

Bounded T-norm max(0, a + b− 1)
S-norm min(1, a + b)

Einstein T-norm (ab)/(2− (a + b− ab))
S-norm (a + b)/(1 + ab)

Product T-norm a ∗ b
S-norm a + b− ab

Hamacher T-norm 0 if a = b = 0,
else (ab)/(a + b− ab)

S-norm 1 if a = b = 1,
else (a + b− 2ab)/(1− ab)

Min-Max T-norm min(a, b)
S-norm max(a, b)

Fig. 4.3. The largest difference between the probabilistic and quasi-probabilistic functions
on the unit cube is only around 0.06, showing that F•

Ex is a good approximation of F⋆
Ex.

In this simple case, there is no benefit to use F•
Ex instead of F⋆

Ex, but for more complex
functions, one must resort to quasi-probabilistic SoftMorph functions.

Figure 4.3.: Field plots of the probabilistic (a) and Product-based quasi-probabilistic (b) morpho-
logical operators of FEx over the hypercube. (c) Field plot of the difference between
the two operators. The maximum difference is reached at the center of the faces or
of the volume.

Computational Complexity of Probabilistic and Quasi-Probabilistic Operators

The probabilistic operator F⋆() is defined as a multilinear polynomial computed from the
full truth table of a Boolean function with k binary inputs. Given its expression in Eq. 4.1,
the expansion of the formula has a worst-case time and space complexity of O(k · 2k).

54 Chapter 4 SoftMorph: Differentiable Probablistic Morphological Operators for Image

Segmentation



Figure 4.4.: Graphs of the Drastic, Bounded, Einstein, Product, Hamacher and minmax T-norms
on the [0, 1]×[0, 1] unit square. The red dashed contours correspond to the isocontour
at 0.5.

This arises because the full truth table of size 2k must be traversed, and each entry yields
a unique monomial term of up to degree k. For the quasi-probabilistic operators F•(),
logical operators in the Boolean expression are directly replaced by their fuzzy logic
counterparts. Let m denote the number of logical operations in the Boolean expression
defining F . Then the soft operator F•() has O(m).

Unlike F⋆(), which must be fully expanded in advance, F•() is obtained by a symbolic
substitution of logic operators with fuzzy arithmetic, leading to the same computational
complexity as the binary boolean expression F . A direct runtime comparison between
F⋆() and F•() is generally not meaningful since the cost of evaluating F⋆() depends
on the size of the truth table (2k), whereas F•() depends solely on the size of the logic
expression (m). In summary, F⋆() is feasible and exact for small k and when the full
truth table is available while F•() is tractable for any k and is recommended for large
structuring elements (Table 4.2). Although F⋆() and F•() may have similar evaluation
times for a fixed input once constructed, the construction of F⋆() is exponential due
to the truth table size, while the construction of F•() is linear in the number of logical
operations in the original Boolean formula. This makes F•() preferable for scalability
and deployment.

Table 4.2.: Comparison of operator complexity.

Operator Construction Time Variable

Binary F O(m) Depends on the logic expression
Probabilistic F⋆() O(k · 2k) Depends on the structuring element
Quasi-prob. F•() O(m) Depends on the logic expression

4.3.6 Relation to prior work

The dilation and erosion operators have been defined on any grayscale images using the
notion of supremum and infimum[Shih, 2017]. On finite sets, dilation and erosion are
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obtained by considering the maximum, and minimum values within a SE. They have
been further generalized as fuzzy morphological operators [Bloch, 1995] with fuzzy
(i.e. within the [0, 1] range) SE and based on fuzzy logic (T / S-norms). However, when
restricted to binary SEs, the fuzzy erosion and dilation operators are also equivalent
to the ones defined in mathematical morphology (independently of the selected fuzzy
logic), i.e. taking the maximum/minimum values in the neighborhood of a pixel.

It is important to note that those dilation and erosion operators are specific cases of the
quasi-probabilistic morphological operators when adopting the Min-Max logic to these
particular operations. Therefore, the SoftMorph operators are novel soft formulations of
binary morphological operators that supersede the existing erosion and dilation opera-
tors. Those multi-linear and Product-based operators are smooth and fully differentiable
whereas most other quasi-probabilistic ones require to adopt smooth min-max approx-
imations to be differentiable. Furthermore, probabilistic morphological operators and
their approximations are "averaged morphological operators" as the expectation of a
binary operator. This implies that the SoftMorph closing and opening operations are not
idempotent (producing the same output irrespective of the number of times it is applied)
unlike the classical closing and opening using the Min-Max logic.

4.3.7 Morphological operators of interest

In this chapter, we generate the SoftMorph operators on 5 main morphological operations:
erosion, dilation, closing, opening, and skeletonization. Depending on the SE and the
image dimension, the erosion and dilation FDil Boolean expressions are written as
FEro =

∧k
i=1 Yk and FDil =

∨k
i=1 Yk. The closing operation is a dilation followed by an

erosion whereas the opening is an erosion followed by a dilation.

Skeletonization is a more complex morphological operation for which many algorithms
have been proposed [Lam, 1992]. This operation involves repeated thinning operations,
applied iteratively in all directions (North, South, East, West in 2D, with Up, Down added
in 3D) until the final skeleton is obtained. We have translated the morphological thinning
Boolean expression on 2D images proposed by Wagner et al. [Wagner, 2020] and the 3D
thinning algorithm proposed by Palàgy [Palàgyi, 1998], as described in A.1.1 and A.1.2.
In binary skeletonization, the algorithm ends when the binary structure is stable upon
the application of each thinning sub-iteration. However, the SoftMorph are in general
not idempotent (except with the Min-Max logic) and therefore a stopping criterion must
be defined. We propose to stop the soft thinning process when the change between
two thinning operations is less than 2% for all pixels in the initial foreground object
(Algorithm 1).
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Algorithm 1 Skeletonization operation

procedure SKELETON(img)
obj← sum(img)
img_temp← img
change← true
while change do

change← false
for orientation in {North, South, East, West, (Up, Down)} do

img← apply_thinning_formula(img, orientation)
end for
change← TEST_CHANGE(img_temp, img, obj)
img_temp← img

end while
return img

end procedure

procedure TEST_CHANGE(img_temp, img, obj)
change← sum(img - img_temp) / obj
return change > 0.2

end procedure

4.4 Experiments

4.4.1 Experimental setup

Datasets

Experiments are conducted on six 2D and two 3D datasets. In 2D, The DRIVE dataset [Staal,
2004] corresponds to retinal blood vessels. The Massachusetts Road [Mnih, 2013] dataset
comprises satellite images of road networks. Labeled images are extracted from the
Open Images Dataset V7 [Krasin, 2017] for classes Sea turtle, Starfish and Croissant.
The Butterfly dataset [Wang, 2009] is composed of butterfly images. In 3D, We use the
Vessap dataset featuring synthetic brain vessels [Paetzold, 2019] and the Liver task from
the Medical Segmentation Decathlon [Antonelli, 2022].

Evaluation metrics

To evaluate the experimental performance on the final segmentations, we use the Dice
similarity coefficient to measure the overlap with the ground truth. For datasets contain-
ing tubular structures we additionally use the clDice metric [Shit, 2021] to assess the
topological preservation. Given the importance of topological accuracy in morphological
operations, we compute the mean absolute error of topological invariants: The Betti
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numbers β0, β1, β2, representing respectively number of objects, holes and cavities, and
Euler’s characteristic (β0− β1 + β2). We use a connectivity of 26 in 3D and of 8 in 2D in
the foreground.

Implementation

Experiments are implemented with Python 3.11.4, Pytorch 2.0.1 and 3 Nvidia A40 PCIe
GPUs.

4.4.2 Skeletonization threshold

In the binary case, skeletonization terminates when there are no changes in pixel values
between two consecutive thinning iterations. As discussed in Section 4.3.7, SoftMorph
operators are generally not idempotent, meaning the skeletonization operation does not
converge to a stable result without a clearly defined stopping criterion in a probabilistic
setting. To address this, we aim to define a convergence criterion based on the relative
change in pixel values between successive iterations. Specifically, we quantify the absolute
pixel-wise difference between two consecutive thinning steps, and normalize it by the
total sum of pixel values in the original image:

∆t =
∑

i,j |It(i, j)− It−1(i, j)|∑
i,j I0(i, j)

where It(i, j) denotes the pixel value at position (i, j) after the t-th thinning iteration,
and I0 is the original input image. We monitor ∆t over 20 iterations to evaluate the
convergence behavior of each SoftMorph operator as illustrated in Fig. 4.5.

The analysis is first conducted on the whole DRIVE dataset. To accommodate probabilistic
inputs, each binary mask is transformed into a continuous-valued representation by com-
puting the signed distance transform, followed by min-max normalization to constrain
values to the [0, 1] interval. To validate generality, we replicate the experiment on a syn-
thetically generated dataset comprising 50 random probabilistic images of varying sizes
(64×64 to 256×256). The images represent a combination of six morphologically distinct
blob types: circular, elliptical, irregular star-like, branched, connected multi-component
structures, and multiple separate blobs. Pixel intensities within object boundaries are
randomly sampled from a uniform distribution over [0, 1] (Example images are shown
in A.2).

Results from both datasets reveal consistent convergence behavior across operators. The
Min-Max and Hamacher operators show rapid early changes followed by fast convergence.
The multi-linear and Product operators follow a similar pattern, but with a slower decay.
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Figure 4.5.: Percentage of pixel-wise change between thinning operations ∆t, evaluated on the
DRIVE dataset and a controlled synthetic dataset.

In contrast, the Einstein operator shows a more gradual reduction in change magnitude
across iterations. The Drastic and Bounded operators produce minimal per-iteration
change, likely due to their restrictive formulations.

Empirically, all operators converge below 2% pixel-wise change within the first 15
iterations. Based on this observation, we set the stopping criterion at this value for all
subsequent experiments.

4.4.3 Validation of SoftMorph on binary images

We evaluate the reliability of our designed probabilistic morphological operators on
binary images, as summarized in Table 4.3. The primary objective is to ensure that
our probabilistic operators replicate accurately the binary operators. The reference
corresponds to the non-differentiable morphological operations for erosion, dilation
and skeletonization, from the widely used scikit-image package [Van der Walt, 2014].
We do not assess the opening and closing operations as they correspond to iterative
applications of erosion and dilation. Additionally, we compare the performance of our
operators against other existing differentiable morphological operators on binary images.
For the erosion and dilation operations, we test the max and min-pooling layers with a
kernel of 3x3 to simulate a k = 8 + 1 SE. For skeletonization, we compare our method
with the soft-skeleton approach from the clDice paper [Shit, 2021] (corresponding to a
combination of min and max-pooling layers) and the method by Menten et al. [Menten,
2023] (corresponding to the convolutional layers with specific kernels to detect simple
points). In 2D, we also assess a neural network model trained for skeletonization
from [Nguyen, 2021]. Each method is evaluated on 15 randomly selected images in 2D
from the DRIVE dataset and in 3D with the VesSap dataset.
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Our method precisely replicates the erosion and dilation operations of the reference,
whereas the min and max-pooling layers demonstrate significant topological errors when
the SE of the operations is defined on the k = 4+1 neighborhood. Especially, the soft min-
pooling approach exhibits an average β0 absolute error of 214.10. These discrepancies
do not arise when the reference SE is set to k = 8 + 1. This is because these pooling
layers are defined with a 3x3 kernel that corresponds to the k = 8 + 1 SE. Because they
are limited to square SEs, they can not replicate the k = 4 + 1 SE as defined in 4.1a.

The skeletons produced by our method and from Menten et al.are both topologically
accurate. However, the soft-skeleton from clDice and the trained model show high
topological errors. It is important to note that the Dice score is not an optimal metric
to assess skeletonization performances compared with the reference. Multiple valid
skeletons can be derived from the same initial volume, making the definition of the
centerline ambiguous, for example when the width of the object is set on an even
number of pixels. Therefore, the Dice scores from our method and Menten et al. indicate
similarities with the reference with values of 0.65 in 2D and 0.71 in 3D.

Although our probabilistic operators are considerably slower than other methods, this
trade-off ensures topological correctness. These results demonstrate that our probabilistic
morphological operators are accurately designed and can replicate the exact traditional
binary morphological operators, whereas most other differentiable methods lack topolog-
ical reliability or the adaptability to scale to various morphological operations.

Table 4.3.: Validation of differentiable morphological operators in a binary setting to verify the
replication of the binary operators.

β0 ↓ β1 ↓ Euler ↓ Dice ↑
DRIVE Dilation Ours 0 0 0 1

2D dataset (k = 4 + 1) maxpooling 3x3 0.10 ±0.31 6.65 ±6.64 6.75 ±6.60 0.95 ±0.002
maxpooling 2x2 0.10 ±0.31 4.05 ±3.10 4.05 ±3.05 0.92 ±0.003

(k = 8 + 1) Ours 0 0 0 1
maxpooling 3x3 0 ±0 0 ±0 0 ±0 1 ±1
maxpooling 2x2 0.20 ±0.41 7.40 ±8.54 7.50 ±8.59 0.90 ±0.0031

Erosion Ours 0 0 0 1
(k = 4 + 1) minpooling 3x3 214.10 ±98.27 7.60 ±3.69 211.80 ±92.64 0.85 ±0.02

minpooling 2x2 204.15 ±55.66 5.50 ±2.42 209.65 ±55.69 0.82 ±0.01
(k = 8 + 1) Ours 0 0 0 1

minpooling 3x3 0 0 0 1
minpooling 2x2 86.75 ±93.79 13.10 ±5.07 87.25 ±102.54 0.74 ±0.02

Skeleton Ours 0 0 0 0.65 ±0.02
Neural Network 206.15 ±19.66 22.30 ±14.27 226.85 ±30.40 0.77 ±0.02

Soft-skeleton 1414.20 ±191.19 66.50 ±15.63 1480.70 ±203.26 0.65 ±0.01
Menten et al. 0 0 0 0.65 ±0.01

VesSap Skeleton Ours 0 0 0 0.72 ±0.002
3D dataset Soft-skeleton 8362.20 ±360.33 8.80 ±4.30 8371.00 ±358.99 0.64 ±0.003

Menten et al. 0 0 0 0.71 ±0.001
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Figure 4.6.: Comparison of 2D differentiable skeletonization methods in a binary setting. Red
arrows highlight significant differences.

Figure 4.7.: Comparison of 3D differentiable skeletonization methods in a binary setting. Blue
arrows highlight significant differences.
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4.4.4 Backpropagation capability of SoftMorph

We quantify the backpropagation capabilities of the probabilistic and quasi-probabilistic
representations to evaluate their impact on gradient computation for optimization within
neural networks. This experiment is similar to the one described in [Menten, 2023]. We
initialize a tensor with random values that we pass through a morphological operator.
The soft-Dice is used to compute the loss between the operation’s output and a ground
truth image that is also passed through the same operator. The propagation of gradients
enables the adjustment of the tensor’s values until the operation’s output converges
towards that of the ground truth image. The experiment is performed for dilation,
erosion (with the SE k = 4 + 1) and skeletonization operations, converging with a
learning rate set to 1 over 20 epochs. The operators compared are the probabilistic
multi-linear polynomial operator, and the family of proposed quasi-probabilistic operators
based on fuzzy logic. We record the loss values at each epoch, as shown on Fig 4.8 to
compare the convergence speed and performances of the different operators.

For dilation, the Drastic and Bounded logic-based operators fail to facilitate gradient
backpropagation across all epochs. The other operators converge around the 15th epoch,
with the Product and Einstein operators reaching the best final loss values of 0.01 and 0
respectively. For erosion, we observe the same trend for the Drastic and Bounded logic
operators, whereas all other operators converge to the exact ground truth operation
output values after around 8 epochs only. In the skeletonization operation, the Drastic
and Bounded logic operators achieve the best convergence after 10 epochs, fully learning
the operation’s output. The Hamacher and Product operators follow, reaching a loss
of approximately 0.10, with the Einstein and multi-linear operators trailing at 0.20,
0.24. The Min-Max operator obtains a Dice loss of 0.47 after 20 epochs, although the
Eintein, multi-linear and Min-max do not appear to have fully converged within this time
frame.

Overall, the Product-based operator emerges as the most stable operator representation,
allowing an efficient convergence across all operations. The Hamacher and Einstein
operators also perform effectively but are less consistent than the Product operator.
Finally, the Drastic and Bounded logic exhibit unique behavior: their very restricted
formulations seem to hinder the backpropagation in simpler operations like erosion
and dilation, yet allowing effective gradient backpropagation in the more complex
skeletonization operation, compensating for their inherent sparsity and rigidity. Therefore,
most of these operators effectively support gradient backpropagation for the optimization
of CNNs. The Product-based logic is recommended for such use due to its consistent
performance.
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Figure 4.8.: Results of the backpropagation capability between the SoftMorph probabilistic and
quasi-probabilistic operators for dilation, erosion and skeletonization.

4.4.5 Applications

Final morphological layer for segmentation

We test the integration of the probabilistic morphological operators into a CNN’s archi-
tecture, specifically in the U-net model [Ronneberger, 2015] for semantic segmentation.
In our implementation, we add the Product-based quasi-probabilistic morphological
operator as the final layer of the network, following a sigmoid activation function. The
operator is applied twice to enhance its effect on the network. We use a simple U-Net im-
plementation in 2D using the soft-dice loss, a batch size of 16, and a learning rate of 1e−3
over 250 epochs. For the 3D Liver dataset, we use the nnUNet model [Isensee, 2021].
The training is conducted using the soft-dice and cross-entropy loss function, with an
automatically determined batch size of 2 over 1000 epochs. The dataset is split into 80%
for cross-validation (65% training, 15% validation) and 20% for testing. The operators
tested include the erosion, dilation, opening and closing operators with a SE of k = 4 + 1
in 2D and k = 6 + 1 in 3D as the final network layers. We compare these configurations
against the baseline model without any morphological operator. The averaged results on
the test set are presented in Table 4.4. The clDice metric is only measured for the tubular
structures (DRIVE, Croissant and Massachusetts datasets).

Our results indicate a tendency for topological improvements across all datasets with the
application of morphological operators. The β0 absolute error is significantly lower with
the inclusion of the morphological operators while maintaining a high Dice score on the
DRIVE dataset. Euler’s number absolute error is also significantly reduced with all but
the Erosion operator, and the β1 with the Dilation. The clDice is also maintained in the
tubular structures. Examples are shown in Appendix A.2. However, no definitive pattern
emerges to predict which operator can yield the best performances based on the data
characteristics. We conclude that integrating morphological operators as final layers of
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Table 4.4.: Double morphological operators as final U-Net layers. Bold indicates improved
performance over baseline; blue cells (⋆) mark statistically significant improvements
using the Wilcoxon rank test.

DATASET Final layer β0 ↓ β1 ↓ β2 ↓ Euler ↓ Dice ↑ clDice ↑
DRIVE (2D) Normal 36.00 ±7.26 33.80 ±15.75 - 69.90 ±16.37 0.84 ±0.02 0.89 ±0.03

Opening 24.10⋆ ±6.29 30.95 ±16.12 - 55.05⋆ ±16.41 0.84 ±0.02 0.89 ±0.03
Closing 25.45⋆ ±8.49 31.45 ±13.80 - 56.90⋆ ±11.40 0.84 ±0.02 0.89 ±0.03
Erosion 28.20⋆ ±8.58 33.90 ±15.50 - 62.10 ±20.03 0.84 ±0.02 0.89 ±0.03
Dilation 27.65⋆ ±8.31 21.30⋆ ±14.60 - 48.55⋆ ±16.37 0.82 ±0.01 0.89 ±0.03

Croissant Normal 3.30 ±2.52 3.55 ±5.42 - 4.55 ±5.56 0.57 ±0.32 0.56 ±0.32
Opening 3.30 ±3.06 5.15 ±10.82 - 6.55 ±9.48 0.60 ±0.33 0.59 ±0.33
Closing 1.80⋆ ±2.19 3.40 ±6.06 - 3.90 ±7.30 0.60 ±0.34 0.58 ±0.34
Erosion 7.15 ±4.82 4.45 ±6.16 - 5.60 ±5.59 0.57 ±0.29 0.53 ±0.27
Dilation 2.85 ±2.54 4.25 ±5.38 - 4.80 ±5.45 0.58 ±0.32 0.57 ±0.32

Massachusetts Normal 31.00 ±29.18 30.71 ±31.66 - 61.47 ±49.27 0.57 ±0.12 0.64 ±0.13
Opening 26.71 ±19.58 29.65 ±31.84 - 56.35 ±43.30 0.54 ±0.10 0.67 ±0.14
Closing 23.29 ±17.55 29.82 ±31.43 - 53.00 ±41.32 0.58 ±0.13 0.65 ±0.15
Erosion 20.41 ±18.04 31.24 ±32.17 - 50.94 ±42.01 0.56 ±0.11 0.64 ±0.13
Dilation 19.29 ±15.70 20.71 ±26.85 - 37.29⋆ ±29.24 0.54 ±0.11 0.69 ±0.15

Butterfly Normal 1.45 ±1.50 1.25 ±1.68 - 1.80 ±1.47 0.87 ±0.25 -
Opening 1.20 ±1.32 0.70 ±1.22 - 1.40 ±1.64 0.86±0.0.27 -
Closing 1.45 ±1.90 1.60 ±2.54 - 2.45±3.55 0.86 ±0.23 -
Erosion 1.90 ±1.80 2.55 ±3.39 - 2.75 ±2.65 0.88 ±0.17 -
Dilation 2.55 ±2.82 3.30 ±4.66 - 2.65 ±2.89 0.86 ±0.20 -

Sea turtle Normal 6.00 ±4.83 2.60 ±2.37 - 4.80 ±3.49 0.54 ±0.28 -
Opening 5.65 ±4.49 3.20 ±3.02 - 4.55 ±3.65 0.56 ±0.28 -
Closing 3.20 ±2.38 1.90 ±2.59 - 3.70 ±3.51 0.41 ±0.30 -
Erosion 9.15 ±9.30 2.70 ±3.21 - 8.25 ±6.88 0.57 ±0.26 -
Dilation 5.70 ±5.02 3.90 ±3.73 - 4.50 ±2.56 0.54 ±0.28 -

Starfish Normal 4.1 ±6.89 2.9 ±3.70 - 5.3 ±6.21 0.60 ±0.31 -
Opening 5.35 ±4.46 2.6 ±3.39 - 5.45 ±5.16 0.55 ±0.32 -
Closing 4.75 ±6.09 2.95 ±3.44 - 5.40 ±4.51 0.54 ±0.30 -
Erosion 5.00 ±4.93 2.15 ±2.92 - 5.65 ±5.48 0.55 ±0.35 -
Dilation 4.30 ±4.79 3.25 ±4.73 - 4.05 ±4.61 0.53 ±0.37 -

Liver (3D) Normal 2.81 ±3.84 3.19 ±4.29 2.48 ±3.57 5.15 ±4.37 0.94 ±0.07 -
Opening 3.00 ±3.16 3.07 ±4.57 2.07 ±3.21 4.15 ±3.16 0.92 ±0.07 -
Closing 1.85 ±2.14 3.07 ±2.80 1.33 ±2.32 4.04 ±4.47 0.92 ±0.07 -
Erosion 1.63 ±1.88 3.70 ±4.58 1.63 ±3.19 3.85 ±3.37 0.92 ±0.07 -
Dilation 1.19 ±1.55 2.59±3.86 2.04 ±3.24 3.00 ±2.13 0.92 ±0.07 -

a U-net architecture for segmentation tasks can considerably improve the topological
accuracy. Currently, determining the most beneficial morphological operation for a
specific dataset is based only on a trial-and-error approach.

clDice loss function

We test the integration of the probabilistic morphological operators into a loss function.
The loss corresponds to the clDice loss [Shit, 2021] designed to improve the topological
preservation of tubular structure segmentation. This loss is combined with the SoftDice
loss, weighted by a parameter α. We compare the segmentation performance on the
2D DRIVE dataset with the SoftDice alone, and the combination of clDice and SoftDice
with α = 0.5 and α = 0.7. In clDice, it is required to extract the skeleton from both the
prediction and the ground truth. To do so, we test the soft-skeleton from clDice [Shit,
2021], the method from Menten et al., and our Product-based quasi-probabilistic skeleton
operator. We also evaluate the effects of dilation and erosion as final layers (with the
k = 4 + 1 SE) of the network in conjunction with the clDice loss computed with our
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Table 4.5.: 2D U-Net segmentation performance on DRIVE dataset. Blue cells (⋆) denote statisti-
cally significant differences with soft-skeleton and Menten et al. methods having the
same α value using the Wilcoxon rank test.

LOSS \METRICS β0 ↓ β1 ↓ Euler ↓ Dice ↑ clDice ↑
BCE 48.55 ±13.52 40.75 ±15.16 89.30 ±19.08 0.81 ±0.03 0.85 ±0.04

SoftDice (baseline) 45.35 ±6.58 35.15 ±16.32 80.50 ±17.99 0.82 ±0.02 0.86 ±0.03
clDice α=0.7 Soft-Skeleton 17.90 ±4.63 27.2 ±14.54 44.60 ±14.92 0.79 ±0.01 0.88 ±0.02

Menten et al. 18.15 ±5.14 38.40 ±14.20 56.55 ±14.37 0.76 ±0.04 0.85 ±0.03
Ours 14.70 ±4.37 27.95 ±15.28 42.65 ±14.68 0.81±0.01 0.89 ±0.02

α=0.5 Soft-Skeleton 24.70 ±4.69 32.05 ±14.57 56.75 ±15.41 0.82 ±0.02 0.88 ±0.03
Menten et al. 25.20 ±6.34 34.35 ±15.10 59.55 ±15.75 0.78 ±0.04 0.87 ±0.03

Ours 16.50⋆ ±5.72 32.90 ±15.04 49.40 ±16.83 0.83 ±0.02 0.89⋆ ±0.03
clDice Ours α=0.7 Dilation 11.30⋆ ±4.74 30.35 ±15.16 41.65 ±16.94 0.80 ±0.02 0.90⋆ ±0.03

+ final layer Erosion 10.15⋆ ±4.33 32.75 ±14.49 42.90 ±15.87 0.82⋆ ±0.01 0.89 ±0.03
Ours α=0.5 Dilation 11.10⋆ ±4.71 30.55 ±15.67 41.55⋆ ±16.08 0.81 ±0.02 0.90⋆ ±0.03

Erosion 11.10⋆ ±4.23 36.85 ±15.09 47.95 ±15.82 0.83 ±0.02 0.89 ±0.03

Product operator. We use a U-Net model trained with a batch size of 16 and a learning
rate of 1e−4 over 500 epochs.

Our results in Table 4.5 show that topological performances are improved with the clDice
loss function compared to BCE and SoftDice alone. The application of clDice with our
skeletonization method yields the best topological performances in terms of β0 and
Euler numbers, while also maintaining or even slightly improving the Dice and clDice
scores compared to other methods. The addition of the final morphological layer further
enhances these results by significantly reducing the number of topological errors.

In conclusion, our skeletonization method demonstrates the best overall performance
compared to the other skeletons. The soft-skeleton method is prone to topological
errors[Menten, 2023], which likely contributes to its lower performances. The lower
performances with the skeleton from Menten et al. may be due to the reparametrization
trick used in that method. This trick involves a sensitive set of parameters that can be hard
to tune for the specific characteristics of the task and dataset. Here it is applied with the
default parameters proposed by Menten et al. In this experiment, training and inference
times were comparable across skeletonization methods, despite our operator being slower
in standalone validation [Guzzi, 2024], suggesting its computational overhead is minimal
within CNNs.

Therefore, these findings suggest that SoftMorph operators can effectively enhance
topological performance in segmentation tasks by extracting accurate morphological
features that can be integrated into loss functions or used as the final layer of a neural
network. It can achieve improved results without requiring any parameter tuning.

4.4 Experiments 65



4.4.6 Operator comparison

Last Layer

We compare in more detail the influence of the different fuzzy logic operators and SE
when integrated as the final layers of the segmentation network following the previous
experiments (Table 4.6). Specifically, we apply a double dilation layer as last layers of
the Unet to segment the DRIVE dataset with each SoftMorph operators. The training is
conducted over 250 epochs, with a learning rate 1e−3, a batch size of 16, the softDice
loss, and the same train/test split as in prior experiments. We consider the Min-Max
operator with two SE configurations: k = 4 + 1 and k = 8 + 1. For comparison, we also
evaluate MaxPooling layers with kernel sizes 2× 2 and 3× 3.

Among all tested operators, the Min-Max consistently yields the best segmentation per-
formance, maintaining high Dice and clDice scores while achieving low Betti number and
Euler characteristic errors. In contrast, the Drastic, Bounded, and Hamacher operators
result in poor performance, with Dice and clDice scores below 0.4, indicating insufficient
gradient flow for effective optimization. The Product and Einstein operators significantly
outperform the baseline in terms of topological accuracy, suggesting improved structural
preservation. For the Min-Max operator, the k = 4 + 1 SE outperforms the k = 8 + 1 con-
figuration, highlighting the impact of SE size on the learning dynamics. Surprisingly, the
MaxPooling layers perform worse than Min-Max operator, even though the mathematical
formulation is the same. These differences is easily explainable for the square 2x2 kernel
as it does not exactly exactly replicate the k = 4 + 1 SE. However, the 3x3 kernel yields
the exact k = 8 + 1 SE, and in this case, this discrepancy may result from implementation
differences in PyTorch. Indeed, as stated in section 4.2.2, standard MaxPooling layers
propagate gradient exclusively through the first occurrence of the maximum value within
each pooling window, whereas the minimum/maximum operations distribute gradients
evenly across all equal elements. Additionally, the Maxpooling layers underperform
Einstein and Product-based operators overall, particularly in β1 and Euler characteristic
errors.

Loss function

We evaluate the impact of the different SoftMorph operators within the clDice loss
function for the skeletonization operation, using the same training setup as the previous
experiment (Table 4.6).

All operators except Hamacher lead to a statistically significant reduction in topological
errors, including connected components (β0) and Euler characteristics. The Min-Max
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Table 4.6.: 2D U-Net segmentation performance on DRIVE dataset comparing SoftMorph opera-
tors, structuring element, and Pooling layers. Bold indicates improved performance
compared to the baseline; Blue cells (⋆) denote statistically significant improvements
using the Wilcoxon rank test.

Loss Layer Logic β0 ↓ β1 ↓ Euler ↓ Dice ↑ clDice ↑
SoftDice None (Baseline) 36.00 ±7.26 33.80 ±15.75 69.90 ±16.37 0.84 ±0.02 0.89 ±0.03

Dilation Product 27.65⋆ ±8.31 21.30⋆ ±14.60 48.55⋆ ±16.37 0.82 ±0.01 0.89 ±0.03
k = 4 + 1 Einstein 15.75⋆ ±3.93 28.40 ±15.21 44.15⋆ ±16.14 0.83 ±0.02 0.89 ±0.04

Min-Max 16.40⋆ ±4.60 17.95⋆±14.40 17.75⋆ ±12.27 0.82 ±0.02 0.88 ±0.03
Drastic 0.75⋆ ±0.79 65.50 ±15.63 65.55 ±15.45 0.32 ±0.03 0.01 ±0.04

Bounded 0.95⋆ ±1.10 67.50 ±15.63 66.55 ±15.45 0.22 ±0.02 0.04 ±0.18
Hamacher 0.95⋆ ±1.10 67.50 ±15.63 66.55 ±15.45 0.22 ±0.22 0.04 ±0.18

MaxPool 2x2 23.50⋆ ±6.11 35.00 ±15.34 58.50⋆ ±15.02 0.83 ±0.01 0.89 ±0.03
k = 8 + 1 Min-Max 42.90 ±8.37 36.65 ±15.19 79.55 ±18.00 0.79 ±0.01 0.87 ±0.04

MaxPool 3x3 61.90 ±16.10 38.20 ±16.83 100.10 ±21.23 0.78 ±0.01 0.87 ±0.04
clDice None Product 21.90⋆ ±5.81 30.60 ±15.86 52.50⋆ ±16.92 0.83 ±0.02 0.90 ±0.03
α = 0.5 Einstein 15.80⋆ ±3.72 33.25 ±17.17 49.05⋆ ±17.73 0.83 ±0.02 0.90 ±0.03

Min-Max 13.25⋆ ±3.74 30.45 ±13.65 43.70⋆ ±14.30 0.83 ±0.01 0.89 ±0.03
Drastic 23.00⋆ ±6.12 34.65 ±14.68 57.65⋆ ±14.27 0.83 ±0.02 0.89 ±0.03

Bounded 15.45⋆ ±6.05 35.55 ±14.32 51.00⋆ ±15.86 0.83 ±0.02 0.90 ±0.03
Hamacher 0.95⋆ ±1.10 64.35 ±15.51 63.30 ±15.33 0.27 ±0.03 0.22 ±0.07

operator achieves the best overall topological performance, with the lowest error in
Euler number (43.70) and β0 (13.25). Contrary to the previous dilation experiment, the
Bounded and Drastic operators are functional in this experiment, yielding significant
improvements compared to the baseline. These results coincide with the backpropagation
experiment of section 4.4.4. The Hamacher operator, consistent with earlier observations,
failed to facilitate effective learning. It resulted in a poor Dice score (0.27) and clDice
(0.22), indicating low segmentation accuracy.

4.5 Discussion

In this work, we have demonstrated that SoftMorph operators can be effectively inte-
grated into deep learning pipelines, either as last layers of a segmentation network or
directly within loss functions requiring a morphological operation. Their integration
showed topological improvements across multiple segmentation tasks compared to the
baseline and other existing differentiable morphological operators. Our experiments
reveal key considerations to adopt the SoftMorph framework:

Regarding the choice of morphological operation to apply as the final layer in a seg-
mentation network, dilation delivered the best performance across the evaluated tasks.
However, this difference is marginal in some applications where other operations showed
comparable results. These differences suggest that the optimal morphological operation
is task-dependent and should be selected empirically.

Secondly, the size and shape of the SE play a crucial role. In our evaluations, the k = 4+1
SE in 2D and k = 6+1 SE in 3D provided the most consistent improvements in topological
accuracy. Nevertheless, these results may not generalize universally, and tuning the SE
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based on the characteristics of the target structure may have an important impact on
performance.

Lastly, all SoftMorph operators can be used interchangeably in terms of interface and
integration. However, their gradient propagation characteristics vary substantially. Specif-
ically, the Drastic and Bounded operators were not able to backpropagate gradients for
simple morphological operations like dilation and erosion, but were very effective for
more complex operations such as skeletonization. Accordingly, they enabled significant
segmentation improvements when integrated for the skeletonization operation of the
clDice loss compared to the dilation and erosion layers applications. Conversely, the
Hamacher operator theoretically supports gradient flow but exhibits poor empirical
performance in our segmentation experiments. The Min-Max, Product, and Einstein op-
erators consistently provided both strong topological improvements and reliable gradient
propagation. Notably, the Min-Max operator yielded the best results overall and should
be considered a default choice when converting traditional morphological operations
into differentiable forms. While conventional min-pooling and max-pooling layers can
replicate erosion and dilation, respectively, they lack the flexibility to generalize to more
complex morphological operations. Furthermore, their performance was consistently
inferior to the Product, Einstein, and Min-Max SoftMorph operators, highlighting the
practical advantages of our approach.

The transition from a probabilistic to a fuzzy interpretation with the quasi-probabilistic
operators corresponds to a change in semantics rather than an exact equivalence. In
the probabilistic formulation, input values represent Bernoulli probabilities and morpho-
logical operators are defined as expectations over all binary configurations. In contrast,
fuzzy logic interprets values as degrees of membership and combines them deterministi-
cally using T/S-norms. In this work, fuzzy operators are not introduced as probabilistic
models, but as computationally tractable surrogates that preserve key properties of the
probabilistic operators, with an exact agreement on binary inputs, bounded outputs,
and smooth interpolation for intermediate values. Among these, the product T-norm is
of particular interest as it coincides with probabilistic conjunction under independence
assumptions. The evaluation of alternative fuzzy logics, including min/max, bounded,
and drastic norms, was conducted to assess the robustness of the proposed framework
beyond the product logic.

For new applications, we recommend starting with the Product, Min-Max, or Einstein
operators, and empirically testing different SEs and operations tailored to the specific task.
Meanwhile, Drastic and Bounded operators, while limited in simple operations, can be
highly effective for more structurally complex transformations like skeletonization. One
can use SoftMorph to design new morphological operations based on a logic expression,
specific for an image analysis task, and that needs to be integrated into deep learning
segmentation networks.

68 Chapter 4 SoftMorph: Differentiable Probablistic Morphological Operators for Image

Segmentation



4.6 Conclusion

We presented SoftMorph, a family of differentiable probabilistic and quasi-probabilistic
morphological operators for deep learning frameworks. SoftMorph successfully bridges
the gap to translate any morphological operation defined on any SE in its soft counterpart
while maintaining the computational complexity of the original binary operator. We
have demonstrated that probabilistic operators can be defined as the expectation of
the binary operator and represented as a multi-linear polynomial. We have also shown
that the factorized form of the original binary operator can be approximated as a quasi-
probabilistic operator using fuzzy logic. Besides, these operators replicate the exact
output of binary operators on binary images while enabling gradient-based optimization
and handling probabilistic maps. Integrating some basic morphological operations can
improve the topological performances of segmentation networks when inserted as the
final layer or within loss functions. Possible improvements include the optimization
of the Boolean 2D and 3D skeletonization algorithms, the definition of morphological
operations with non-flat (fuzzy) SEs, and learning new morphological operations and
their associated optimal SE. This work focuses on binary morphological operators, as
they are naturally expressed through Boolean formulas and thus admit a probabilistic
extension via expectation over binary configurations. Grayscale morphological operators,
by contrast, are defined directly on complete lattices of real-valued functions and already
possess continuous formulations. Extending the proposed probabilistic framework to such
operators would therefore require a different theoretical construction and is left for future
work. Overall, this work opens avenues for defining new task-specific morphological op-
erations. Their application could be extended to other image analysis applications, neural
network architectures, and new loss functions requiring the extraction of morphological
features.
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Building on the SoftMorph framework introduced in the previous chapter, which enabled
the integration of differentiable morphological operations into convolutional neural
networks, we next explored its potential for defining more reliable distance-based loss
functions. In particular, we focused on the Hausdorff Distance, a metric that captures
spatial boundary errors and is especially relevant for small or thin structures where
overlap-based measures such as the Dice coefficient can be less informative.

Using SoftMorph, we implemented a fully differentiable erosion-based distance transform
that can be applied directly to probability maps. This allowed us to compute positive,
signed, and unsigned distance maps without relying on binary inputs, enabling stable
optimization within neural network training. From the positive distance transform, we
derived three novel formulations of regional Hausdorff Distance losses: the maximum,
modified, and averaged, encouraging precise boundary alignment without the need for
auxiliary losses.

We validated these loss functions on multiple public medical image segmentation datasets,
demonstrating that they substantially reduce distance-related metrics while maintaining,
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and in some cases improving, performance on standard overlap metrics. This effect was
particularly notable for small lesions such as small tumors, highlighting the relevance
of this approach to the segmentation challenges addressed in this thesis for the small
structures with hard-to-define boundaries such as calcifications or stents.

The work presented in this chapter was accepted at the 16th International Workshop on
Machine Learning in Medical Imaging (MLMI 2025), held in conjunction with MICCAI
2025.

To foster reproducibility, our code is publicly available on GitHub1

5.1 Introduction

The Hausdorff Distance (HD) metric quantifies the distance between two point sets [Hut-
tenlocher, 1993]. In medical image analysis, it is widely used to assess the segmentation
performance of deep learning models [Crum, 2006; Taha, 2015]. Unlike the Dice Similar-
ity Coefficient (DSC), which only measures the volumetric overlap between a predicted
and the ground truth segmentation, the HD metric offers a more sensitive assessment of
boundary discrepancies by explicitly capturing the maximal distance between misaligned
parts. This makes it particularly relevant for assessing the quality of the delineation of
small structures such as tumors or lesions by highlighting the worst-case mismatch be-
tween two objects [Rizzetto, 2020], or the boundary alignment of anatomical structures
like the heart or the liver [Moradi, 2019]. Despite its importance, few attempts have been
reported to directly optimize the HD metric during the training of deep learning-based
image segmentation.

Some studies have designed losses to optimize the boundary accuracy without explicitly
reproducing the HD [Kervadec, 2021; Caliva, 2019; Yang, 2019; EL Jurdi, 2021]. The
weighted Hausdorff Distance loss from [Ribera, 2019] approximates the average HD
for isolated points but is designed only for points, not image masks. Only the work
from [Karimi, 2019] aims to reduce the HD by approximating an HD loss, relying on the
Euclidean Distance Transform (EDT) of the segmentation boundaries. They also propose
an alternative loss through morphological operations, which underperformed compared
to the EDT-based formulation. While this loss improved performance regarding HD, it
must be combined with Dice loss to prevent any instabilities, and its formulation does not
exactly replicate the HD formula. Additionally, the EDT-based loss lacks differentiability
properties. Indeed, Distance Transform Maps (DTM) provide an alternative represen-
tation of a binary shape where each voxel’s intensity corresponds to its distance from
the nearest foreground boundary voxel [Rosenfeld, 1968]. This representation enables

1https://github.com/lisaGUZZI/HD-Loss
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explicit distance computations between point sets. However, conventional distance trans-
form algorithms are inherently non-differentiable [Zhang, 2022]. The differentiability of
the approach in [Karimi, 2019] is not explicitly addressed, raising questions about its
suitability for gradient-based optimization.

Several studies have tried approximating soft distance transforms (DT) by emulating
the operation through CNN-based learning [Bai, 2017; Bui, 2019; Navarro, 2019]. For
instance, in [Bai, 2017], a CNN-based approach was introduced to learn a watershed
transform for instance-based segmentation. Other methods have directly regressed the
DTM as a CNN output to be used as a loss function or as a regularization term [Wang,
2020; Dangi, 2019; Xue, 2020]. However, these approaches are prone to domain shift
since the learned DT is dataset-dependent, and some require additional geometry-aware
refinements to improve generalization. Recent works have proposed Convolutional-
based differentiable Distance Transform (CDT) operations [Zhu, 2024; Zhang, 2022;
Pham, 2021]. One major limitation of CDT is that the kernel size must be as large as
the image diagonal to process sparse binary images correctly. If the kernel size is too
small, background pixels far from the foreground will mistakenly receive a zero-distance
value. This leads to increased computational complexity due to the large kernel size
and potential numerical instability when the kernel’s exponential term approaches zero,
particularly in large images with only a few foreground pixels. A cascaded CDT approach
was proposed by [Pham, 2021] to mitigate these issues, but it requires soft binarization
of segmentation outputs, hence not directly applicable to raw probability maps.

In this chapter, we propose a novel family of regional HD-based loss functions that rely on
a soft and differentiable DT. As a first contribution, we introduce a novel morphological
erosion-based differentiable distance transform that can be applied directly on probability
maps. This method allows to compute the accurate signed, unsigned, and positive
distance maps in a differentiable manner, ensuring compatibility with deep learning
models. In a second contribution, we derive three well-established variations of the HD
loss leveraging the differentiable distance transform. Specifically, we provide a smooth
formulation of the Hausdorff, Modified Hausdorff, and Symmetric Averaged Hausdorff
Distances. These losses achieve state-of-the-art performance without auxiliary losses.

We analyze the effect of key hyperparameters and validate our method through controlled
validation experiments. Then, we evaluate the applicability of our losses across various
public 2D and 3D medical segmentation datasets, proving the applicability of the soft
distance transforms and the effectiveness of the proposed loss functions to minimize the
distance of the predicted masks to the ground truth while maintaining an equivalent Dice
score.
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5.2 Method

5.2.1 Definition of distance transforms

We define a ground truth binary segmentation X consisting of N voxels such that
X = {Xn}Nn=1, Xn ∈ {0, 1}. The boundary ∂X of the foreground object in the image
is defined as ∂X = {q | Xq = 1, ∃r such that Xr = 0, dt(q, r) ≤ 1} where dt(q, r) is
a chosen distance metric between two voxels, typically the Euclidean or Manhattan
distance.

The distance transform map D(X) assigns to each voxel Xn its minimum distance to the
closest foreground boundary voxel q such that:

D(Xn) = min
q∈∂X

dt(Xn, q) (5.1)

Eq. 5.1 actually corresponds to the unsigned distance transform Du where the distance is
computed for each voxel, both inside and outside the boundary ∂X. Alternatively, one
can also compute the signed distance transform Ds such that the distance is negative
inside the object and positive outside:

Ds(Xn) =

minq∈∂X dt(Xn, q), if Xn = 0 (outside the object)

−minq∈∂X dt(Xn, q), if Xn = 1 (inside the object)
(5.2)

The positive distance transform D+ assigns a distance of 0 to all foreground voxels and
computes the distance only for background voxels:

D+(Xn) =

minq∈∂X dt(Xn, q), if Xn = 0

0, if Xn = 1
(5.3)

The relationships between these distance transforms are therefore given by: Du(X) =
D+(X) + D+(1 −X) and Ds(X) = D+(X) − D+(1 −X). Also, Du(X) = |Ds(X)| and
D+(X) = max(Ds(X), 0).
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Figure 5.1.: Illustration of distance transforms Ds, Du, D+ on a binary image X.

5.2.2 Distance transforms with morphological operations

The positive distance transform D+ can be computed with morphological operations,
specifically using successive erosions, when morphological distances are considered. The
maximum distance corresponds to the number of erosions required to completely remove
the background. The erosion filter ⊖ is defined by an isotropic structuring element k

(typically k = 4 + 1 or k = 8 + 1 in 2D, and k = 6 + 1, k = 18 + 1 or k = 26 + 1 in 3D)
which defines the unit ball of the considered metric. The erosion of shape X with the k

structuring element is written as X ⊖ k, and we note X ⊖i k its ith eroded shape.

We propose to compute the positive distance transform D+ as:

D+(X) =
I∑

i=1
[(1−X)⊖i k] (5.4)

where I represents the number of iterations required to compute the complete distance
map, or in other words, the number of successive erosions to perform to remove the
background. Therefore, each background voxel receives a value equal to the number of
erosions required to remove the shape complement 1−X. The other distance transforms
Du and Ds can then be derived from their respective relationships to D+.

Algorithm 2 Positive Distance Transform with Morphological Erosions

procedure POSITIVEDISTANCE(img, I, k)
D+ ← 0 ▷ Initialize distance map
img_temp← 1− img ▷ Work on background complement
for i← 1 to I do
D+ ← D+ + img_temp
img_temp← EROSION(img_temp, k)
if sum(img_temp) = 0 then

break ▷ Stop if background fully eroded
end if

end for
return D+

end procedure

5.2 Method 75



5.2.3 Soft distance transforms

Neural networks typically output a segmentation Y of an image X corresponding to
the probability map Y = {yn} ∈ [0, 1]N with yn = p(Xn = 1|X) ∈ [0, 1]. We want to
formalize the Du, Ds and D+ distance transforms to their probabilistic equivalents du,
ds and d+ which can be applied on the probabilistic segmentation Y. The probabilistic
distance transform d should generalize to the discrete case D(Y ) = d(Y ) such that both
give the same output when Y is binary.

Given the soft and differentiable morphological filters introduced in the previous chapter
and corresponding publication [Guzzi, 2024], we propose to compute the soft distance
transform by replacing the binary erosion filter⊖ik in Eq. 5.4 with a soft erosion filter⊖i

sk

applied on the probability segmentation Y . The soft erosion ⊖s is expressed as the multi-
linear polynomial (Y ⊖s k)n =

∏
j∈N k(n) Yj , where N k(n) are the neighboring pixels of

voxel n according to the selected structuring element. This soft erosion operator makes
the soft distance transforms applicable on probability maps and fully differentiable.

5.2.4 Regional Hausdorff Distance Losses

The Hausdorff Distance (HD) quantifies the maximum discrepancy between two point
sets. Given the point sets A and B, the HD is defined as:

HD = max(max
a∈A

dt(a, B), max
b∈B

dt(b, A))

where the directed distance of a point a to the set B is given by dt(a, B) = minb∈B dt(a, b).
This formulation of the HD satisfies the triangle inequality property. However, its
sensitivity to outliers has led to the introduction of alternative HD formulations.
The Modified Hausdorff Distance (MHD) [Dubuisson, 1994] averages the minimal
distance instead of taking the maximum:

MHD = max

 1
|A|

∑
a∈A

dt(a, B), 1
|B|

∑
b∈B

dt(b, A)

 (5.5)

The Symmetric Averaged Hausdorff Distance (MHDsym) [Dubuisson, 1994] takes the
mean of the two directed distances:

MHDsym = 1
2

 1
|A|

∑
a∈A

dt(a, B) + 1
|B|

∑
b∈B

dt(b, A)

 (5.6)

The MHD is more robust in matching objects based on edge points than the HD [Dubuis-
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son, 1994], while MHDsym provides a smooth alternative with a slightly reduced dis-
criminatory power.

To optimize the HD into neural network-based segmentation, we propose differentiable
approximations of the HD formulas based on the positive distance transform D+(X) and
its probabilistic counterpart d+(Y).

Given a binary ground truth segmentation X and a probabilistic prediction segmentation
Y, we define:

The Hausdorff Loss (LH), approximating the classical HD:

LH = smax(smax(D+(X)n ◦ Yn), smax(d+(Y)n ◦Xn)) (5.7)

The Averaged Hausdorff Loss (LAH):

LAH = smax
(

1
|Y |+ ϵ

∑
n

D+(X)n ◦ Yn,
1

|X|+ ϵ

∑
n

d+(Y)n ◦Xn

)
(5.8)

The symmetric Averaged Hausdorff Loss (LAHsym):

LAHsym = 1
2

(
1

|Y |+ ϵ

∑
n

D+(X)n ◦ Yn + 1
|X|+ ϵ

∑
n

d+(Y)n ◦Xn

)
(5.9)

where smax(x) is a smooth approximation of the maximum operator implemented
using the LogSumExp function (with a α scaling parameter), ◦ represents the Hadamard
product and ϵ a small positive constant. The directed distance D+(X)n◦Yn represents the
false positive points of Y and their distance to the ground truth X whereas d+(Y)n ◦Xn

is the directed distance representing the distance of the false negatives to X.

5.2.5 Computational complexity.

Considering that the complexity of the soft dice loss is O(b · c · V ), the proposed losses
have a complexity of O(I · b · c · V ) where I is the number of soft erosion iterations, and
b,c,V denote batch size, number of channels, and number of voxels, respectively. To
reduce computational overhead, we propose constraining I to a small fixed value (e.g.,
2–5), resulting in a saturated positive distance transform. The truncation attenuates
the influence of distant errors without removing them, maintaining meaningful gradient
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signals and additionally improving numerical stability during optimization, ensuring that
overly large distances do not dominate the loss.

5.3 Results

5.3.1 Experimental Setup

Datasets. We evaluated our method on five public datasets: the DRIVE dataset of 2D
retinal blood vessels [Staal, 2004], the 3D CT Liver, Spleen, Pancreas and Hepatic vessels
datasets from the Medical Segmentation Decathlon [Antonelli, 2022], and the ACDC
dataset [Bernard, 2018] comprising multi-slice 2D cine MRI images of the heart. 3D
datasets were considered as a stack of 2D slices when used in the 2D applications.

Evaluation Metrics. We evaluated segmentation performance using the Dice coefficient,
conventional HD, HD95, modified HD (MHD) to verify that Hausdorff distance losses
regress distance metrics, and clDice [Shit, 2021] to assess the global shape and object-
level alignment.

Implementation Details. Experiments were conducted with Python 3.12.8 and Pytorch
2.5.1 on 3 Nvidia A40 PCIe GPUs.

5.3.2 Validation of Distance transforms

Our differentiable distance transforms, based on morphological operations, is sensitive
to the connectivity choice. To evaluate the validity of the generated distance maps,
we analyzed the variance of the gradient norm of the signed distance map computed
with Ds under different connectivity settings. Indeed, the ideal configuration should
exhibit minimal variance, as the norm of the gradient should be equal to 1 everywhere:
∥∇Ds(X)∥ = 1. We considered signed distance maps produced with a connectivity of
4 and 8 in 2D and of 6, 18, and 26 in 3D. We additionally compared these results with
i) the distance_transform_edt function from scipy which provides the exact distance but
is not differentiable, and ii) the convolutional distance transforms from [Zhu, 2024]
and [Pham, 2021]. In Table 5.1, we reported the variance averaged over a database of
50 images randomly selected from the DRIVE, Liver, Spleen, and ACDC datasets, both in
2D and 3D. In 2D, our method achieved a lower norm of the gradient variance around
the value 1 than SciPy with both 8 and 4-connectivity. In 3D, the Scipy package got
the smallest variances, and the 26-connectivity led to the smallest variance to 1. In the
remainder, a connectivity of 4 is selected in 2D and of 26 in 3D.
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Table 5.1.: Variance of the norm of the gradient of different SDT.
Modality DT Variance to 1 ↓ Variance to mean ↓

2D Scipy 0.96 0.03
CDT [Zhu, 2024] 2.80 2.16

cascaded CDT [Pham, 2021] 0.24 0.21
Ours 4 connec 0.14 0.02

8 connec 0.12 0.12
3D Scipy 0.97 0.03

CDT [Zhu, 2024] 4.68 4.18
Ours 6 connec 74.64 72.63

18 connec 21.87 21.62
26 connec 19.89 19.69

5.3.3 Evaluation on Public Datasets

2D Applications.

We used our Hausdorff loss functions to train a 2D U-Net [Ronneberger, 2015] for the
segmentation of the DRIVE and Spleen datasets (Table 5.2). Datasets were split into 75%
training, 15% validation, and 15% testing sets, and the network was trained with a batch
size of 16 through 250 epochs and a learning rate of 1e-3 for the DRIVE dataset and of
1e-4 for the Spleen. We set the number of erosion to compute the distance transform
to 5 iterations for the LH loss and to 2 for LAH and LAHsym . The α scale factor of the
LogSumExp function was empirically set to α = 150. We compared our method with
models trained with the same UNET and the Dice loss as a baseline and the HD loss
proposed in [Karimi, 2019].

All of our loss functions improved the HD metrics (HD, HD95, MHD) compared to the
baseline (Dice loss) and the additional CE+Dice loss while maintaining equivalent Dice
and clDice scores on both datasets. The Hausdorff loss from [Karimi, 2019] did not show
any improvement compared to the baseline. Best results were obtained with LAH for the
Spleen dataset with a HD of 5.51 compared to 10.95 for the baseline, while achieving
the same Dice score of 0.93. For the Drive dataset it is the LAHsym loss that yielded best
results with a HD of 14.80 compared to 16.77 for the baseline while keeping the Dice
score at 0.82. Additionally, while the losses significantly improved the HD metrics on the
Spleen dataset, the results were less significant regarding the retinal dataset. We believe
this is because the DRIVE dataset contains images of retinal blood vessels that are dense
and spread through the entire image while the Spleen contains masks that are smaller
and centered in the image, meaning that the distance of false positive points could be
higher and the losses correct these segmentation discrepancies more effectively.
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Table 5.2.: 2D U-Net segmentation on the Spleen and DRIVE datasets.
Dice ↑ HD ↓ HD95 ↓ MHD ↓ clDice ↑

Spleen Dice (baseline) 0.93 10.95 10.10 5.93 0.96
CE + Dice 0.93 25.11 24.34 19.60 0.96

HD [Karimi, 2019] 0.88 15.08 13.97 11.56 0.92
LH 0.90 6.82 5.62 3.51 0.94

LAH 0.93 5.51 4.50 0.87 0.96
LAH sym 0.92 9.66 8.88 5.32 0.95

Drive Dice (baseline) 0.82 16.77 2.20 0.50 0.84
CE + Dice 0.80 16.36 2.80 0.50 0.82

HD [Karimi, 2019] 0.78 17.80 3.04 0.67 0.81
LH 0.80 15.58 2.10 0.49 0.82

LAH 0.80 15.53 1.96 0.48 0.84
LAH sym 0.82 14.80 1.85 0.45 0.84

When we compared the number of erosion iterations to compute the distance map
(Table 5.3 and 5.4), increasing the number of erosion for the LH loss decreased the HD
metrics in both datasets. However, the averaged losses LAH and LAHsym did not exhibit
the same behavior as the performance sometimes decreases as the number of iterations
increases. This could be because the LAH criterion is a regularized version of LH, which
does not verify the triangular inequality and can entail extra local minima. Indeed, the
normalization term by the size of the predicted mask Y can lead to a local minimum for
slightly over-segmented predicted masks. Increasing the number of iterations to compute
the distance transform might increase the chances of attaining those local minima.

Table 5.3.: 2D U-Net segmentation on the DRIVE dataset comparing the number of erosion
iterations to compute the positive distance map.

Dice ↑ HD ↓ HD95 ↓ MHD ↓ clDice ↑
Soft Dice (baseline) 0.82 16.77 2.20 0.50 0.84

LH 1 iter 0.81 16.59 2.38 0.56 0.83
2 iter 0.81 15.91 2.13 0.48 0.83
5 iter 0.80 15.58 2.10 0.49 0.82

LAH 1 iter 0.82 16.09 2.05 0.51 0.84
2 iter 0.80 15.53 1.96 0.48 0.84
5 iter 0.80 16.14 1.88 0.46 0.83

LAH sym 1 iter 0.82 15.68 1.96 0.48 0.84
2 iter 0.82 14.80 1.85 0.45 0.84
5 iter 0.81 16.31 1.85 0.47 0.84
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Table 5.4.: 2D U-Net segmentation on the Spleen dataset comparing the number of erosion
iterations to compute the positive distance map.

Dice ↑ HD ↓ HD95 ↓ MHD ↓ clDice ↑
Soft Dice (baseline) 0.93 10.95 10.10 5.93 0.96

LH 1 iter 0.92 11.02 10.06 7.52 0.95
2 iter 0.92 10.75 8.68 4.25 0.95
5 iter 0.90 6.82 5.62 3.51 0.94

LAH 1 iter 0.92 8.76 6.74 5.08 0.96
2 iter 0.93 5.51 4.50 0.87 0.96
5 iter 0.92 6.84 5.87 2.12 0.95

LAH sym 1 iter 0.92 5.37 4.40 2.78 0.95
2 iter 0.92 9.66 8.88 5.32 0.95
5 iter 0.93 12.10 11.29 7.61 0.95

3D Applications.

We used our Hausdorff loss functions to train a 3D nnUNet [Isensee, 2021] for the
segmentation of the Pancreas (Table 5.5) and Hepatic vessels (Table 5.6) datasets in 3d
full resolution. Each dataset has two labels: Pancreas and Cancer for the Pancreas dataset
and Vessels and Tumor for the Hepatic vessels. Datasets were split into 65% training, 15%
validation, and 20% testing sets, and the network was trained with a batch size of 12
through 250 epochs and an initial learning rate of 1e-2. We set the number of erosion to
compute the distance transform to 2 iterations in every case. The α scale factor of the
LogSumExp function was still set to α = 150. We compared our methods with an nnUNet
trained with the Dice loss as baseline. We also investigated the integration of the CE loss
with every Hausdorff loss and the baseline (CE + Dice).

The three Hausdorff losses consistently improved the distance metrics across all labels,
with the largest gains observed for the cancer and tumor classes. An exception was the
MHD with LH , which showed only marginal improvement in the Pancreas dataset and
no improvement for the Hepatic Vessels. This behavior can be explained by the fact that
the other two losses are directly aligned with the MHD formulation, making them more
effective for optimizing this metric. On the Pancreas dataset, clDice was improved for
both labels. The Dice score was also improved using LAH compared to the baseline. The
cancer and tumor labels exhibited the most substantial improvements in both datasets,
including in Dice. This effect is likely due to their structure, as they typically consist of
multiple small, disconnected components. Such structures are difficult to capture using
overlap-based losses like Dice alone, whereas distance-based losses are better suited to
recover the precise locations of these small objects. This advantage is also evident in the
qualitative examples (Figure 5.2 and Figure 5.3).
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Table 5.5.: 3D nnU-Net segmentation on the Pancreas dataset.
Dice ↑ HD ↓ HD95 ↓ MHD ↓ clDice ↑

Pancreas Dice (baseline) 0.77 25.14 13.37 524.49 0.72
LH 0.77 25.22 12.22 519.86 0.73

LAH 0.80 24.65 10.43 282.03 0.75
LAH sym 0.82 16.94 7.10 221.80 0.79

CE + Dice (baseline) 0.81 17.63 7.08 162.20 0.78
CE + LH 0.80 16.96 6.74 261.21 0.77

CE + LAH 0.80 18.69 8.16 314.91 0.77
CE + LAH sym 0.81 17.10 6.09 161.46 0.79

Cancer Dice (baseline) 0.43 42.28 29.95 1018.01 0.48
LH 0.42 23.75 20.79 948.13 0.52

LAH 0.48 23.29 20.73 867.23 0.53
LAH sym 0.54 22.09 19.23 283.82 0.60

CE + Dice (baseline) 0.46 20.12 17.66 355.61 0.48
CE + LH 0.48 21.41 15.99 398.72 0.54

CE + LAH 0.49 16.51 14.00 523.89 0.57
CE + LAH sym 0.52 17.00 13.92 306.56 0.56

When combined with the CE loss, the improvements over the baseline became less
pronounced overall, although distance metrics and Dice score, particularly for the cancer
and tumor labels, still benefited from the HD losses.

5.4 Conclusion

We introduced regional Hausdorff Distance (HD) losses to regress the Hausdorff, modified
Hausdorff, and average Hausdorff Distances in CNN-based medical image segmentation.
The introduced method relies on a smooth formulation of the distance transform that
can be applied to probability maps. Finally, we have shown that these losses reduce the
HD while preserving the Dice score without requiring any auxiliary loss. Furthermore,
we show that only two iterated erosions are sufficient to compute the regional HD losses
and improve the performance in terms of HD. In future work, we aim to investigate
more accurate distance maps in 3D, such as Chamfer distances, and the adoption of
other smooth maximum functions, rather than the LogSumExp function. Furthermore,
alternative normalization terms for LAH and LAHsym could be explored to mitigate the
issue of local minima that arises with an increasing number of erosion iterations. This
work holds the potential to improve the segmentation of medical structures where the
HD is of higher relevance, offering a new paradigm for optimizing segmentation models
beyond Dice-centric metrics.
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Table 5.6.: 3D nnU-Net segmentation performances on the Hepatic Vessels dataset combining
the losses with the Cross Entropy (CE) Loss.

Dice ↑ HD ↓ HD95 ↓ MHD ↓ clDice ↑
Vessels Dice (baseline) 0.61 104.16 22.56 765.84 0.69

LH 0.58 109.76 17.07 809.26 0.65
LAH 0.61 73.46 16.04 698.74 0.69

LAH sym 0.63 68.80 15.22 707.71 0.71
CE + Dice (baseline) 0.63 64.76 15.67 681.14 0.70

CE + LH 0.58 82.50 16.47 864.52 0.65
CE + LAH 0.62 71.82 15.93 660.60 0.69

CE + LAH sym 0.62 59.49 15.39 687.80 0.70
Tumor Dice (baseline) 0.55 109.36 71.33 992.69 0.60

LH 0.60 66.74 46.50 980.03 0.70
LAH 0.64 72.48 44.01 751.71 0.71

LAH sym 0.63 79.08 45.71 688.56 0.70
CE + Dice (baseline) 0.66 70.70 42.80 499.33 0.72

CE + LH 0.62 61.71 39.94 837.60 0.73
CE + LAH 0.67 62.06 33.11 600.73 0.76

CE + LAH sym 0.66 67.22 34.88 529.09 0.74

Figure 5.2.: Qualitative example based on the axial view of segmentation results on the Pancreas
Dataset with the Dice and Hausdorff distance loss functions. The Pancreas label is
in red, and the cancer label is in cyan. The white arrows show missing labels.
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Figure 5.3.: Qualitative example based on 3d rendering of the cancer label segmentation results
on the Pancreas Dataset with the Dice and Hausdorff distance loss functions. The
cancer label is in green. The white arrows show mislabelings.
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Part III

Clinical Application





6PADSET: A Private CTA Dataset for
Peripheral Artery Disease
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While the previous chapters introduced the methodological contributions of this thesis,
their full potential could only be assessed in a realistic and clinically relevant setting.
For Peripheral Artery Disease, however, no open-source CTA dataset exists that offers
the level of detail and annotation required for the type of analyses presented here. This
motivated the creation of PADSET, a dedicated in-house dataset curated specifically for
this work.

In this chapter, we present PADSET, consisting of lower-limb CTA scans acquired at
the Hospital of Nice, accompanied by high-quality annotations of the arterial lumen,
calcification plaques, stents, and individual arterial branches. The manual segmentation
of lower-limb arteries in CTA is particularly challenging due to their small size in distal
regions, the frequent presence of collateral arteries, and the large number of slices per
scan, sometimes exceeding more than 2000 slices. These difficulties required a carefully
designed annotation protocol and close collaboration with clinical experts to ensure both
anatomical accuracy and consistency across the dataset.
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6.1 Motivations

Lower-limb CTA is the clinical gold standard for assessing PAD due to its non-invasive
nature, high spatial resolution, and rapid acquisition time. Despite this, no publicly
or privately available dataset currently provides comprehensive coverage of the entire
lower-limb arterial tree with sufficient data in either healthy individuals or PAD patients.
Table 6.1 summarizes existing datasets. Several are limited in scope, focusing only on
the aorto-iliac region [Imran, 2025; Radl, 2022], which excludes the femoral, popliteal,
and below-the-knee arteries that are frequently affected in PAD. Other resources rely on
alternative imaging modalities such as Ferumoxytol-enhanced MRA (FE-MRA) [Ghodrati,
2022]. This technique corresponds to an MRI-based vascular imaging using ferumoxytol
as a contrast agent. While FE-MRA provides high-quality vascular images, it is insensitive
to calcium, prone to artifacts in the presence of metallic implants, and is less commonly
used in clinical practice compared to CTA. As a result, it is unsuitable for studying
calcification plaques or stents. A few recent private CTA datasets do cover the lower
limbs, but they remain insufficient for robust research and, most critically, they are
not publicly accessible. For instance, the dataset in [Zulfiqar, 2026] contains only 36
volumes without cases of occluded arteries, while the dataset in [Anwer, 2025] includes
80 volumes, of which only about 10 have detailed annotations. Moreover, annotations
are restricted to bounding boxes [Anwer, 2025], and anatomical coverage is either partial
or not clearly specified. Hence, there is a lack of a relevant dataset designed explicitly for
the research presented in this thesis.

To address this gap, we curated a dedicated lower-limb CTA dataset that encompasses a
wide spectrum representation of PAD lesions, including calcifications and stents, with
annotations of artery lumen, calcification plaques, and stents. We additionally generated
annotations of each arterial branch in the lower limb arterial tree. This dataset enables
the development and evaluation of segmentation methods for PAD on clinically realistic
data, capturing the full complexity of lower-limb arterial anatomy and pathology.

6.2 Presentation of the dataset

A dataset of 196 lower-limb CTA anonymized scans from patients with PAD was acquired
from the Hospital of Nice. The study was conducted in accordance with the World Medical
Association Declaration of Helsinki and French ethical regulations, and was approved
by the University Hospital of Nice’s review board (register n°294). Twenty-five scans
were excluded due to suboptimal image quality, including issues related to anatomical
coverage, resolution, or non-visible contrast agent in the arteries. The remaining 171
scans were converted from DICOM to NIfTI format to stack 2D axial slices in a single
3D volume, resulting in 3D images with a mean image dimension of 512 × 512 × 1657
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Table 6.1.: Summary of available datasets for the segmentation of lower-limb arteries.

Dataset Modality Size Anatomy Limitations

AVT (Public)
[Radl, 2022]

CTA 56 scans from
KiTS [Heller, 2019;
Heller, 2021],
RIDER [Zhao, 2015],
Dongyang Hospital

Aorta and major
branches (arch vessels,
thoracic/abdominal
aorta, bilateral iliac
arteries)

Stop at iliac arteries, no
PAD patients

AortaSeg24
MICCAI Chal-
lenge (Public)
[Imran, 2025]

CTA 100 scans from multi-
ple institutions

23 classes covering
the aorta and main
branches. Includes iliac
branches (common,
external, internal)

Stop at iliac arteries, no
PAD patients

Private
(UCLA) [Gho-
drati, 2022]

FE-MRA
(Ferumoxy-
tol MRA)

45 images Segmentation of all
blood vessels in calves,
including arterial and
venous trees

Poor signal for calcifi-
cations and stents, low
number of samples,
no indication on the
anatomical coverage

Gennimatas
datasets [Zul-
fiqar, 2026]
(private)

CTA 36 scans from Gen-
nimatas Hospital,
Athens, Greece

Labels for the common,
external and internal il-
iac arteries, common
femoral, popliteal and
anterior and posterior
tibial arteries from PAD
patients

Small data amount and
no coverage of superfi-
cial femoral arteries and
fibular artery. Absence
of partially or fully oc-
cluded arteries

CTA dataset
[Anwer, 2025]
(Private)

CTA 67,850 slices from 80
subjects.

Aortoiliac,
femoropopliteal and
proximal tibial ar-
teries from patients
with suspected PAD.
Bounding-box anno-
tations on a subset of
13,429 slices.

Low amount of data
(on average 848 slices
per patient, with only
one-fifth of slices anno-
tated.), no fibular arter-
ies and no delineation
annotations, released re-
cently (2025)
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Figure 6.1.: Flowchart of dataset distribution across tasks. Blue: initial CTA scans acquired
and retained for artery, calcification, and stent segmentation. Red: excluded
patients. Green: scans selected for inter-annotator evaluation. Yellow: scans
pseudo-annotated with nnUNet for artery, calcifications, and stents labels, with a
subset manually corrected to increase the number of annotated images. Orange:
subset of pseudo-annotated and manually annotated artery masks used to generate
secondary annotations of individual arterial branches.

slices (± 595) and a mean voxel spacing of 0.81 × 0.81 × 0.77 mm (± 0.11 × 0.11 ×
0.83 mm).

6.3 Annotation of Arteries, Calcifications, and Stents

6.3.1 Manual annotation protocol

From the 171 selected CTA scans, 88 were randomly selected for manual segmentation
(Fig. 6.1). After some training guided by an expert vascular physician to recognize PAD-
specific structures, we performed the initial delineations of arteries, calcification plaques,
and stents (Fig. 6.2). To assess inter-annotator variability, a subset of 12 manually
annotated scans was also independently annotated by the physician.
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(a) (b)

Figure 6.2.: (a) A 3D representation of Artery, Calcification, and Stent segmentation. (b) Axial
CTA representation with and without segmentation annotations.

Manual segmentation was performed using ITK-SNAP v4.0 [Yushkevich, 2016] with an
adaptive brush tool based on the watershed algorithm. The arterial tree was annotated
in the axial plane, beginning at the abdominal aorta and extending to the fibular and
tibial arteries. Collateral arteries and secondary branches were segmented up to their
first bifurcation or until they became indistinguishable.

Manually segmenting each image took on average 3 to 4 hours due to the number of
slices in the dataset (on average, 1657 axial slices per scan), the number of classes and
the difficulty in delivering precise annotations.

6.3.2 Inter-annotator evaluation

The inter-annotator agreement was assessed on the set of 12 independently labeled scans
using the same tools by ourselves and the expert (the vascular physician) reported in the
first row of Table 6.2.

The agreement for the global arterial tree achieved a Cohen’s kappa agreement of
κ = 0.91, indicating an almost perfect concordance [Landis, 1977]. When looking at
the artery sub-regions as illustrated in Fig. 6.3, agreement was lower for distal branches
in the below-knee region, reaching fair agreement (κ = 0.40), compared to the Aorto-
Iliac (κ = 0.94) and Femoral-Popliteal (κ = 0.88) regions, reflecting greater variability
in segmenting small-caliber vessels. This reduced agreement is attributed firstly to
mislabelled annotations from our part due to inexperience, the sensitivity of the Dice
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metric to minor boundary differences in small structures and in the difficulties of manually
segmenting very long and thin vessels. Qualitative assessment of differences per region
is shown in Fig. 6.4.

Figure 6.3.: Representation of the Aorto-Iliac, Femoral-Popliteal and Below-Knee artery regions.

For calcifications and stents, inter-annotator agreement was substantially lower, with a
moderate agreement of κ = 0.42 for the calcifications and a fair agreement of κ = 0.21
for the Stents. This is mainly due to the small size of these structures and the inherent
difficulty in visually identifying their exact boundaries in CTA as shown in Fig. 6.5, but
also due to mislabeling between stents and calcifications due to lack of expertise on
our part as shown in Fig. 6.4. It highlights the subjectivity and variability of manual
annotation for such small targets and the importance of expert knowledge.

Table 6.2.: Inter-annotator evaluation of artery, calcification and stent masks.
Kappa κ Global Artery Aorto-Iliac Femoral-Popliteal Below knee Calcifications Stents
Initial 0.91 0.94 0.88 0.40 0.42 0.21

Corrected 0.91 0.94 0.88 0.40 0.43 0.40

6.3.3 Semi-automated labeling of calcifications and stents

Due to the difficulty of manually delineating the exact boundaries of calcifications and
stents, we developed a semi-automatic tool to reduce human operator bias in detecting
boundaries, and therefore improve annotation consistency.

A positive distance transform was first applied to the previously annotated artery mask
to extract voxels located within a 10-voxel radius around it. Within this region, Gaussian
mixture clustering was performed on voxel intensities using Scikit-learn [Pedregosa,
2011], with full covariance matrices and K-means initialization, EM optimization up to a
maximum of 100 iterations with convergence tolerance of 1e−3 and default regularization
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Figure 6.4.: Representation of manual annotation differences between our annotations and the
expert clinician’s annotations. Arteries are in red, Calcifications in green, and stents
in yellow. Subtle differences are highlighted with blue arrows. From left to right:
differences in the aorto-iliac; femoral-popliteal; below-knee regions; mislabeling of
stent annotation.

of 1e−6. We set the number of clusters to 3, which generally corresponded to anatomical
structures (including the artery lumen), the background, and high-density structures such
as calcifications and stents. Respectively, the mean intensities of each cluster correspond
to Hounsfield Units (HU) of around 100, -600 and 1100. Since calcifications and stents
typically appear with saturated intensities in CTA (HU values above 700), the cluster with
the highest mean intensity was initially assigned to the generic class "calcifications".

However, because stents and bones may overlap in intensity with calcifications, manual
corrections were applied post-clustering to distinguish between these structures accu-
rately, manually replacing the calcification components that should be labeled to the
stent class, and removing components that actually correspond to bone structures.

This semi-automatic approach improves consistency and reliability in segmenting calcifi-
cations and stents compared to purely manual annotation, as shown in Fig. 6.5.

6.3.4 Final ground truth

Final ground truth segmentations of the artery, calcification, and stent masks were es-
tablished through a systematic review by the vascular physician, in which our initial
annotations were revised to rectify mislabeled objects and ensure clinical accuracy. For
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Figure 6.5.: Representation of annotation differences between our annotations, the expert clini-
cian’s annotations and the semi-automatic tool with correction for calcifications and
stents. Calcifications in green, and stents in yellow.

arteries, this refinement did not alter the overall Cohen’s kappa coefficient between the
expert annotations and our corrected segmentations (Table 6.2). Agreement for calcifica-
tions showed only a marginal improvement (κ = 0.43 vs. 0.42), whereas agreement for
stents improved more substantially, though it remained low overall (κ = 0.40 vs. 0.21).
These findings underscore that even when there is consensus on the anatomical struc-
tures to be delineated, manual annotations remain prone to substantial inter-annotator
variability, particularly for complex structures such as small arteries, calcifications, and
stents. This challenge has been consistently reported in the literature [Falcetta, 2025;
Renard, 2020; Joskowicz, 2019].

Each segmentation underwent further refinement by removing small connected compo-
nents (< 5 voxels). For each segmentation label, Tukey’s fences method [Tukey, 1977]
was applied to identify voxel intensity outliers, defined as values lying outside the interval
spanning 1.5 times the interquartile range beyond the first and third quartiles.

After the initial manual segmentations, a preliminary nnUNet [Isensee, 2021] model
was trained on the 88 labeled images and applied to 25 additional unlabeled scans to
alleviate the manual segmentation burden. These pseudo-labels were manually corrected
to increase the sample size to 113 annotated scans (Fig. 6.1).

The correction process after the clinical verification took on average 30 minutes up
to one hour per image, and the correction of the pseudo-annotated scans with the
nnUNet took around one hour per image. Based on time estimations, the full annotation
process required approximately 461 hours. Assuming an average of 7 hours of effective
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annotation per day, this corresponds to an annotation effort of roughly 66 full working
days.

6.4 Annotation of Arterial Segments

6.4.1 Landmark annotation protocol

A second segmentation protocol was implemented to label individual arterial segments
on 98 scans, specifically to differentiate main artery branches, secondary branches and
bypass arteries (Fig. 6.6). The clinical expert provided proximal and distal landmarks
for each branch over the artery mask, including the aorta, common iliac artery, external
iliac artery, superficial femoral artery, popliteal artery, tibial artery, posterior tibial artery,
fibular artery, tibio-peroneal trunk and bypass grafts. All other segments were categorized
as secondary branches.

Figure 6.6.: 3D representation of main branches of the arteries of the lower limbs.

6.4.2 Semi-automated branch annotation protocol

A semi-automatic labeling pipeline connected the annotated landmarks over the binary
artery mask to assign unique labels to each arterial segment.

In details, we denote the previously segmented binary artery mask A ∈ {0, 1}N3
,

where A(v) = 1 denotes artery voxels, and the expert-provided branch landmarks
b = {bn

p , bn
d}Nn=1, where each branch n ∈ {1, . . . , N} is defined by a set of proximal (bn

p )
and distal (bn

d) landmarks. In most cases, it results in two landmarks per leg if the branch
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is visible. The objective is to produce a branch mask B ∈ {0, 1, . . . , N}N3
, such that each

artery voxel labeled in A is assigned to exactly one branch identity in B.

The procedure is as follows:

1. Landmark extraction. For each branch n, all connected components corresponding
to its proximal and distal landmarks are extracted from b. In each leg, the proximal
and distal landmarks are used to define a spatial bounding box. Specifically, let

xn
min = min{x(bn

p ), x(bn
d )}, xn

max = max{x(bn
p ), x(bn

d )},

and analogously for y and z. The bounding box is then

Ωn = [xn
min, xn

max]× [yn
min, yn

max]× [zn
min, zn

max].

2. Label propagation. All voxels inside the artery mask A and within the bounding
box Ωn are assigned to branch n:

B(v) = n if A(v) = 1 and v ∈ Ωn.

This ensures that only voxels belonging to the artery mask are labeled, and that
each branch label corresponds to a subregion of A.

3. Leg handling. In cases where four landmarks are provided (two sets of proximal
and distal landmarks corresponding to one set in each leg), the algorithm estimates
a central dividing sagittal plane Π between paired landmarks. Voxels within Ωn are
then partitioned by Π to preserve left–right assignment.

4. Iteration. The process is repeated for all n = 1, . . . , N . The final mask B thus
partitions the binary artery mask into branch-specific subregions, with each voxel
belonging uniquely to one labeled arterial segment.

5. Secondary branches. All artery voxels that did not receive a branch identity in B

are assigned to the secondary branch label.

6.4.3 Final ground truth

Because bounding box assignments occasionally exceeded anatomical limits or overlapped
with neighboring vessels, manual corrections were applied to the branch mask to verify
and refine the accuracy of branch labeling. The images were subsequently reviewed and
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corrected by the vascular expert. The overall correction took around 30 minutes per
image, adding a total of around 49 hours, which corresponds to 7 full working days.

6.5 Final dataset characteristics

We analyzed the voxel intensity distribution of the global artery, calcifications and stents
class across the dataset in Table 6.3 and compared it to the expected HU ranges reported in
the literature for CTA [Wright, 2022; Fosbinder, 2011; Bolliger, 2009]. Extreme minimum
and maximum values most likely reflect outlier voxels from manual segmentation errors
or imaging artifacts. The interquartile range (25th-75th percentiles) closely matches the
expected HU distribution for the corresponding tissue classes.

In addition, we assessed the class distribution across the annotated dataset on Table 6.4.
There is a significant class imbalance for stents (present in 42.48% of images), and
especially for bypass grafts (7.14% of images). Bypass arteries and stents are surgically
implanted, and thus are underrepresented compared to native arteries. Moreover, bypass
grafts exhibit highly variable anatomical presentations, as they are designed to revascu-
larize occluded arterial segments that may occur at different locations along the arterial
tree. This variability, combined with their limited prevalence, makes the learning of these
classes especially challenging.

Table 6.3.: Statistics of voxel intensities for each main manually segmented class in PADSET
across 113 samples.

Artery Calcifications Stents
Expected HU 200-400 200-1000+ >1000
Mean 352.32 978.12 1052.43
std 128.98 392.60 561.52
min -1002.00 -291.00 -857.00
max 3032.00 5234.00 3080.00
Q1 (25th) 263.00 333.00 425.00
Q2 (median) 690.00 900.00 1191.00
Q3 (75th) 942.00 1319.00 3080.00

6.6 Conclusion

In this chapter, we introduced PADSET, a curated dataset of lower-limb CTA scans with
high-quality annotations of arterial lumen, individual arterial branches, calcification
plaques, and stents. The manual segmentation process, supported by semi-automatic
tools and validated through inter-annotator agreement, demonstrated that proximal
arteries are easier to consistently delineate than distal branches. This reflects both their
larger diameters and the inherent difficulty of annotating small-caliber vessels, where
minor boundary inconsistencies can have a disproportionate effect on segmentation accu-
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Table 6.4.: Class distribution for each manually segmented images in PADSET across 113 samples
for the main classes and across 98 samples for the arterial branches.

Main labels Branches

Total Images Percentage Total Images Percentage
Artery 113 113 100% Aorta 98 98 100%
Calcifications 113 100% Collaterals 98 100%
Stents 48 42.48% Common iliacs 97 98.98%

External iliacs 97 98.98%
Common femoral 97 98.98%
Superficial 97 98.98%
Popliteal 86 87.76%
TPT 82 83.67%
Anterior Tibial 82 83.67%
Posterior Tibial 81 82.65%
Fibular 82 83.67%
Bypass 7 7.14%

racy. The inclusion of semi-automatic annotation tools improved boundary consistency
for calcifications and stents, highlighting their value for generating reproducible ground
truth.

98 Chapter 6 PADSET: A Private CTA Dataset for Peripheral Artery Disease



7Automatic Segmentation of
lower-limb Arteries on CTA for
Pre-surgical Planning of Peripheral
Artery Disease

Contents
7.1 Automatic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1.1 Segmentation models and training setup . . . . . . . . . . . . 100

7.1.2 Branch post-processing . . . . . . . . . . . . . . . . . . . . . . 103

7.1.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.5 Application of methodological contributions . . . . . . . . . . 110

7.2 Estimation of pathological features. . . . . . . . . . . . . . . . . . . . 113

7.2.1 Anatomical features . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.2 Clinical features . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

This chapter demonstrates the clinical application of the methodological innovations
introduced earlier on the curated PADSET dataset. We focus on the automatic segmen-
tation of the lower-limb arterial tree with each arterial subsegment, the detection of
calcification plaques, and the identification of endoprosthetic stents. Both conventional
state-of-the-art methods and our novel approaches are applied and evaluated.

As conventional voxel-based metrics can underestimate performance for small objects
with uncertain boundaries, we introduce object-level detection metrics to reflect the
identification of calcifications and stents more faithfully.

The segmentation enables automated extraction of anatomical and pathological biomark-
ers, including vessel diameters, lengths, tortuosity, plaque distribution, and stent lo-
cations. Subsequent statistical analysis of these biomarkers characterizes the PADSET
population and demonstrates the clinical utility of the dataset by providing actionable
insights for surgical strategy selection, reproducible quantification of disease severity,
and a foundation for automated stenosis and thrombosis assessment.
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This chapter demonstrates that high-quality automatic segmentation can directly inform
patient-specific pre-surgical planning in peripheral artery disease.

7.1 Automatic segmentation

7.1.1 Segmentation models and training setup

The CNN-based nnUNet [Isensee, 2021] has consistently set the benchmark for state-
of-the-art medical image segmentation for a large set of anatomical structures since its
introduction in 2018. Only a handful of methods have surpassed it, typically by narrow
margins and at the cost of substantially higher computational complexity [Isensee, 2024].
Although transformer-based architectures have recently gained attention in medical
image segmentation, CNNs still dominate in practice. The advantages of CNNs stem
from data efficiency, inductive biases toward local patterns, and computational scalability.
In contrast, transformer-based models demonstrate their strengths primarily when very
large annotated datasets are available and when modeling global context is essential.
Moreover, most Vision Transformer (ViT)-based approaches are limited to 2D settings
due to their high memory requirements. Consequently, in this research and in medical
imaging in general, the limited availability of labeled data and the need for precise
boundary delineation generally favor CNNs models [Isensee, 2024; Roy, 2023].

Based on these observations, the nnU-Net was selected as the backbone for developing a
robust and efficient automatic segmentation framework for PAD on the PADSET dataset.
Its self-configuring nature and computational efficiency make it particularly well-suited
for high-resolution CTA images, which require training on very large volumes. Moreover,
to justify the effort invested in producing high-quality manual artery segmentations, we
also benchmarked several recent models aiming to generalize vessel segmentation across
datasets with few to no additional training. Specifically, we evaluated the foundation
model VesselFM [Wittmann, 2025], Universeg [Butoi, 2023], and the pre-trained nnU-
Net model TotalSegmentator [Wasserthal, 2023], comparing their performance against
the nnU-Net model trained on PADSET.

The segmentation experiments are conducted on two annotation sets: the global artery
set with the artery, calcifications, and stent classes, and the branch annotation set with
the 12 classes of each main arterial segment. Characteristics of each annotation sets are
summarized in table 7.1.

For the first annotation set of the global artery segmentation, scans were divided into 76
scans for the training, 20 scans for validation and 17 scans for the independent test set.
For the second annotation set of branch segmentation, we divided the 98 annotated scans
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into 63 training, 16 validation, and 19 scans for the independent test set, making sure
that each label is represented in each set. The branches each correspond to a submask of
the global artery mask. Here, the task is considered as a multi-class segmentation directly
extracted from the CTA images.

Table 7.1.: Annotation sets description.
Annotation set 1 Annotation set 2

Objective Global artery Main branch arteries
Number of classes 3 12
Classes description global artery, calcifications, stents Each main arterial segments and bypass
Annotation set size 113 98
Training set 76 63
Validation set 20 16
Test set 17 19

Training was conducted for all experiments on Nvidia A40 PCIe GPUs.

The nnUNet [Isensee, 2021] is a self-configuring deep learning framework designed for
biomedical image segmentation. It automatically determines the model parameters based
on the dataset’s properties, including pre and post processing steps, training parameters,
data augmentation techniques and the network architecture. For both annotation sets,
the training of the segmentation framework was conducted in a 5-fold cross-validation
setup, and then inferred and evaluated on a separate test set.

The intensity normalization was automatically applied by nnUNet; foreground voxel
intensities from all training images were collected to compute the 0.5th and 99.5th per-
centiles. Voxel intensities were clipped to this range, followed by z-score normalization.
Patch size was set to 96 × 320 × 80 voxels, voxel spacing was resampled to 0.838 × 0.62
× 0.828 mm, the training was performed with Adam optimizer and an initial learning
rate of 0.01 across 1000 epochs. Data augmentation includes random rotations, scal-
ing, elastic deformation, gamma correction, and mirroring. The network configuration
was empirically set to a 3D network with full resolution of the image (3d_fullres), and
compared with the 2D configuration (2D), 3D low resolution (3d_lowres), and cascaded
networks (3d_cascaded) [Isensee, 2021].

For the loss function, the default nnUNet uses a combination of cross entropy (CE) and
Dice loss. In addition, we investigated the use of skeleton-based topology preserving
losses, including the clDice loss [Shit, 2021], cbDice loss [Shi, 2024], and the skeleton
recall loss (skel_recall) [Kirchhoff, 2024]. In this additional experiment, the compound
losses are defined as:

LCE+Dice+clDice = λ1 × LCE + λ2 × LDice + λ3 × Ltopological_loss (7.1)

where λ is a weighting factor controlling the contribution of each term. In our experi-
ments, the values of λ1, λ2, λ3 were set respectively to 2, 1, 1 following the implemen-
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tation described in [Shi, 2024] for the clDice and cbDice losses, and to 1, 1, 1 for the
skeleton recall loss following the implementation in [Kirchhoff, 2024].

We compared our main automatic segmentation protocol with mainstream automatic
models that could be directly applied to the raw scans with little to no training required.
These models are described below.

VesselFM [Wittmann, 2025] is a foundation model designed specifically for vascular
segmentation to generalize across diverse imaging modalities and anatomical regions.
Built on a UNet backbone, the model is trained on multiple vessel-centric datasets,
enabling robust performance across a wide range of vascular structures. Specifically,
domain generalization is achieved through training on three data sources: a collection
of annotated datasets from diverse tissue types and modalities, domain-randomized
data, and synthetic data generated from a flow matching-based model. Its architecture
supports few-shot adaptation to new domains with fine-tuning, making it well-suited for
clinical scenarios involving variable imaging protocols. As VesselFM is desgined for global
vessel segmentation, it was tested on our in-house dataset for the first annotation set of
global artery, exclusively for the artery class with 0-shot, 1-shot, 10-shot, and 76-shot
fine-tuning (corresponding to the number of samples used during fine-tuning).

UniverSeg [Butoi, 2023] is a 2D deep learning segmentation framework designed to
generalize across a wide range of medical imaging modalities and anatomical structures.
It achieves this by training on a large number of medical images, and incorporating
cross-attention layers called CrossBlocks. These CrossBlocks align features between a
small set of labeled support images and the unlabeled query image during inference. This
mechanism enables the model to perform few-shot segmentation tasks to specialize in
new anatomies or modalities with only a handful of examples, without requiring further
gradient-based training. We also tested UniverSeg only for the global artery segmentation
set, exclusively on the artery class, providing either 10, 50, 100, or 500 randomly selected
support images.

TotalSegmentator. [Wasserthal, 2023] is a general-purpose anatomical segmentation
model trained using the nnUNet framework on a large dataset of contrast-enhanced CT
angiography (CTA) images covering multiple organs. With a few classes available for
vascular segmentation, the model was evaluated specifically on the aorta and iliac artery
classes of the branch annotation set. The model does not provide other labels of interest
for this work.

102 Chapter 7 Automatic Segmentation of lower-limb Arteries on CTA for Pre-surgical Planning of

Peripheral Artery Disease



7.1.2 Branch post-processing

Following the initial segmentation obtained with the nnUNet framework, a dedicated
post-processing pipeline was applied to refine the identification of each arterial branch.

First, small disconnected components with fewer than five voxels were discarded to
eliminate noise. Second, anatomical consistency was enforced by correcting false label
transitions along the arterial tree. The algorithm analyzes each axial slice sequentially,
from the aorta down to the distal vessels, while ignoring secondary branches. The
expected order of branch labels was compared against the observed order of connected
components along the superior–inferior axis in each leg. Specifically, the expected order
corresponds to the anatomical sequence of arteries from the upper body to the lower
extremities, with the fibular and tibial arteries treated as a single anatomical level for
simplicity, and excluding bypass arteries (refer to Chapter 2 for anatomical details).
Whenever an inconsistency was detected (e.g., a popliteal artery component appearing
above a femoral artery), the algorithm compared the sizes of the conflicting components.
If the superior component was more than three times larger than the inferior one, the
inferior component was considered erroneous and relabeled according to the superior
branch. Otherwise, the superior one was relabeled. This rule-based correction ensures
that the sequence of arterial branches follows the expected anatomical hierarchy while
minimizing the risk of systematic mislabeling.

7.1.3 Evaluation metrics

To assess inter-annotator manual annotations and evaluate automatic segmentation
methods, we used a range of overlap, topological, and detection-based metrics that are
specifically relevant to this dataset.

Overlap-based metrics. We evaluated the predictions using the Dice score, the Precision,
Recall, the Hausdorff Distance (HD) and its (HD95).

Topological-based metrics. These metrics assess the preservation of anatomical continu-
ity and connectivity, crucial in vascular segmentation. The clDice [Shit, 2021] metric
extends the traditional Dice metric by emphasizing the alignment of tubular structures
along their centerlines. To evaluate topological consistency, we computed the mean abso-
lute difference of Betti numbers where β0, β1, and β2 respectively represent the number
of connected components, loops, and cavities. Additionally, the Euler characteristic χ is
defined as: χ = β0 − β1 + β2. We used a connectivity of 26 in the foreground and of 6 in
the background.
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Detection metrics. Segmenting calcifications and stents presents a unique challenge due
to their small size and the inherent subjectivity in delineating their exact boundaries. As
a result, traditional voxel-wise metrics such as the Dice score can be overly sensitive to
minor discrepancies. In clinical applications, the primary objective is to reliably detect
the presence and approximate extent of each calcification or stent, rather than achieving
perfect boundary accuracy.

To assess detection performance, we employed an object-level matching detection algo-
rithm that compares individual segmented components between the ground truth and
predicted segmentation masks. All connected components are extracted from both the
ground truth and predicted segmentations. An object from the predicted segmentation
is matched to a ground truth object if they share at least one voxel. In cases where
multiple objects from one segmentation overlap with the same object in the other seg-
mentation, those objects are merged into a single group to avoid redundant matches.
For each matched object pair or group, the volumetric overlap is computed. An object is
considered successfully detected if it overlaps by at least 30% (set empirically) with its
corresponding ground truth object.

This approach yields object-level counts of true positives (TP), false positives (FP), and
false negatives (FN). Using these counts, we compute detection precision and recall,
using the same formulas as voxel-based metrics but applied to objects rather than voxels.
To distinguish them, we denote these metrics as D_Pre and D_Rec. The F1 Score is the
harmonic mean of precision and recall and gives a balanced measure of segmentation
accuracy.

7.1.4 Results

Automatic segmentation of the vascular system

Global artery mask: We compared artery segmentation performance of the first annota-
tion set of the global artery on the artery class across different nnUNet configurations,
VesselFM, and UniverSeg in Table 7.2 and illustrated in Fig. 7.1.

The 3D cascaded nnUNet achieved the best overall performance, with a Dice score of 0.93
and a clDice of 0.87. The performance was nearly identical to that of the 3D full-resolution
nnUNet, which achieved a Dice of 0.93 and a clDice of 0.86. For the 3D network with
low resolution, Precision reached 0.93, whereas Recall was lower at 0.73, suggesting
a tendency toward under-segmentation. Notably, the 2D nnUNet outperformed the 3D
low-resolution variant despite the loss of spatial context, underlining the importance of
preserving fine spatial detail, as when resolution is reduced, thin vessels are frequently
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overlooked, leading to a drop in recall and topology preservation. Overall, the 3D
cascaded and full-resolution networks achieved comparable accuracy, with differences
falling within the margin of variability. However, the cascaded approach requires a
two-stage pipeline, consisting of an initial 3D low-resolution network followed by a
second high-resolution refinement network, which substantially increases training and
inference complexity. By contrast, the full-resolution configuration is simpler to deploy
and more computationally efficient while retaining equivalent performance. For these
reasons, the 3D full-resolution nnUNet was selected for all subsequent experiments.

For UniverSeg, the best results were obtained when using 500 example images, with
an average Dice of 0.29 and an HD of 324.90. However, the gain from 100 to 500
examples was marginal, indicating the model’s limited capacity to adapt further to our
data distribution. The poor segmentation can likely be attributed to its inherently 2D
design, as 2D support examples fail to capture the longitudinal continuity of the arterial
tree across hundreds or thousands of slices, and the lack of volumetric context leads to
discontinuities and missing vessels. This illustrates a limitation of slice-based few-shot
approaches for highly structured 3D anatomy such as vascular trees.

VesselFM demonstrated weak performance in the zero-shot setting, characterized by
very low Precision (0.03) but high Recall (0.90), indicating severe over-segmentation.
Qualitatively, while the model roughly localized the main arterial tree, it frequently
mislabeled surrounding structures, such as bones, soft tissues, or background, as arteries.
Performance improved progressively with the number of fine-tuning samples (shots),
reaching its best values with 76 shots, corresponding to the entire training set. This
trend highlights that pretrained vision-language models like VesselFM may capture some
vascular priors, but without sufficient task-specific supervision, they introduce substantial
false positives. Moreover, achieving clinically acceptable accuracy still requires a large
volume of carefully annotated data. This underscores the importance of PADSET and the
manual annotation efforts.

We further investigated the effect of different loss functions on the 3D full resolution
nnUNet artery segmentation (Table 7.3). Incorporating clDice alongside Dice and CE in
the loss improved all metrics compared to the baseline, improving boundary delineation
and topological continuity. The final model reached a Dice of 0.94 and a clDice of 0.88,
confirming that explicitly enforcing connectivity constraints is beneficial for vascular
segmentation, where preserving topology is essential for downstream analysis. However,
the integration of the skeleton recall loss and the cbDice loss did not improve the Dice
and clDice metrics compared to the baseline. The best HD results were obtained with the
cbDice loss (83.87).
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Table 7.2.: Automatic segmentation of arteries of the lower limbs using: nnUNet framework
with different network configurations, VesselFM with different number of shots, and
Universeg with different number of support samples.

Model Configuration Dice ↑ clDice ↑ HD ↓ HD95 ↓ Prec. ↑ Rec. ↑ β0 ↓ β1 ↓ β2 ↓ χ ↓
nnUNet 3dfullres 0.93 0.86 103.36 5.59 0.93 0.93 35.06 67.00 25.29 69.00

3dlowres 0.81 0.65 83.18 11.97 0.94 0.73 36.82 70.47 27.18 70.47
3d cascaded 0.93 0.87 95.85 4.80 0.94 0.93 36.74 66.53 25.65 69.18
2d 0.89 0.79 93.55 11.95 0.91 0.88 38.94 66.82 28.47 73.53

VesselFM 0-shot learning 0.06 0.04 955.81 953.04 0.03 0.90 5536.71 1896.88 603.71 4243.53
1 shots 0.24 0.17 769.84 735.89 0.15 0.69 1579.82 471.47 278.94 1413.65
10 shots 0.27 0.24 413.35 293.75 0.22 0.41 855.24 114.53 32.18 784.53
76 shots 0.40 0.27 341.36 163.34 0.29 0.77 438.82 164.18 78.29 378.35

UniverSeg N=10 samples 0.11 0.08 259.59 179.95 0.23 0.08 126.00 66.53 27.29 163.47
N=50 0.25 0.15 348.54 254.65 0.48 0.19 80.88 66.18 27.29 118.71
N=100 0.29 0.14 331.80 240.76 0.59 0.21 61.47 68.59 27.29 100.76
N=500 0.29 0.17 324.90 229.71 0.64 0.20 70.73 85.64 24.91 126.36

Figure 7.1.: 3D volume representation of artery segmentation of ground truth
label (GT), nnUNet with the different network configurations
(2d,3d_lowres,3d_fullres,3d_cascaded,3d_fullres with additional clDice loss
function), VesselFM (with 76 and 0 shot) and Universeg (with 500 or 10 support
images).
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Table 7.3.: Automatic segmentation of arteries of the lower limbs using the nnUNet framework
with different loss functions: Cross Entropy (CE) + soft Dice baseline compound loss,
with the addition of either the skeleton recall loss (skel_recall), the cbDice loss, or
the clDice loss.

Dice ↑ clDice ↑ HD ↓ HD95 ↓ Prec. ↑ Rec. ↑ β0 ↓ β1 ↓ β2 ↓ χ ↓
CE+Dice 0.93 0.86 103.36 5.59 0.93 0.93 35.06 67.00 25.29 69.00
+skel_recall 0.90 0.78 142.56 25.56 0.86 0.95 104.00 59.18 23.53 137.88
+cbDice 0.93 0.85 83.87 6.06 0.92 0.93 24.41 66.24 23.88 58.18
+ clDice 0.94 0.88 93.42 3.43 0.93 0.95 24.65 59.53 22.12 54.29

Main arterial segments: We compared the segmentation performance on the second
annotation set of main branch arteries with the nnUNet in a 3D setting with full resolution,
and with TotalSegmentator.

We evaluated the performance of TotalSegmentator on the aorta and iliac branches
(Table 7.4). The model achieved mean Dice scores of 0.81 and 0.55, and clDice scores
of 0.75 and 0.74, for the aorta and iliac arteries, respectively. The discrepancy between
Dice and clDice in the iliac arteries suggests that most of the segmentation errors are
attributable to the unspecificity of the common and external/internal iliacs or boundary
inaccuracies rather than complete detection failures. Nonetheless, a fundamental limi-
tation of TotalSegmentator is its inability to segment peripheral lower-limb arteries, as
these structures are not included in its training label set.

For comparison, we report the averaged segmentation performance of the 3D full-
resolution nnUNet, both before and after post-processing in Table 7.5, with detailed
results per branch provided in Table 7.6. The nnUNet achieved a Dice score of 0.96
for the aorta and 0.79 for the iliac arteries, underscoring the benefit of domain-specific
training for these vascular regions. Performance declined in more distal arteries, with the
popliteal, tibioperoneal trunk, and posterior tibial arteries all yielding Dice scores below
0.50. This drop aligns with the inter-annotator variability analysis, where distal arteries
also showed reduced consistency due to their small caliber, ambiguous boundaries, and
frequent pathological alterations. The lowest performance was observed for bypass grafts,
with a Dice of 0.19 and a clDice of 0.34. This outcome is consistent with the limited
representation of bypasses in the dataset (present in only seven scans) and their high
variability in surgical placement and morphology, which hampers model generalization.

In summary, branch-wise segmentation accuracy was highest for large, proximal arteries
(aorta, iliac, femoral) and progressively decreased for smaller distal branches, particularly
below the knee. These trends closely mirror inter-annotator agreement, suggesting that
reduced boundary clarity and greater anatomical variability in distal vessels represent
intrinsic challenges for both human annotators and automated models.

Before post-processing, a significant error often occurred with the popliteal artery label
present in the superficial femoral artery, as shown in Fig. 7.2. The Post-processing helped
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Table 7.4.: Automatic segmentation of arteries of the lower limbs using TotalSegmentator for
the segmentation of the Aorta and the Iliacs (common + external) arteries.

Artery Dice ↑ clDice ↑ HD ↓ HD95 ↓ Prec. ↑ Rec. ↑ β0 ↓ β1 ↓ β2 ↓ χ ↓
Aorta 0.81 0.75 418.37 31.15 0.74 0.92 4.50 9.10 7.45 5.65
Iliacs 0.55 0.74 64.81 35.89 0.40 0.90 2.45 2.85 1.40 3.50

correct these discrepancies by enforcing the anatomical order of labels. These corrections
were more comprehensive to assess qualitatively rather than quantitatively, as the final
results in the appendix Table B.1) show minor improvements compared to before post-
processing results. The main improvements were observed in HD and topological metrics
(Table 7.5).

Table 7.5.: Averaged automatic segmentation of the main branches of the lower limbs with the
nnUNet framework before and after applying post-processing.
Dice clDice HD HD95 Precision Recall β0 β1 β2 χ

Before 0.62 0.70 188.22 78.65 0.79 0.57 6.05 1.49 0.90 6.30
After 0.62 0.70 183.86 78.01 0.80 0.57 5.51 1.34 0.90 5.80

Table 7.6.: nnU-Net segmentation performance of each arterial branch.
Dice ↑ clDice ↑ HD ↓ HD95 ↓ Prec. ↑ Rec. ↑ β0 ↓ β1 ↓ β2 ↓ χ ↓

Aorta 0.96 0.90 402.78 2.85 0.97 0.94 3.85 8.65 6.89 6.20
Second. 0.68 0.61 245.90 52.00 0.75 0.65 5.58 0.85 0.30 5.55
C. iliac 0.79 0.84 28.93 13.05 0.81 0.81 0.60 1.25 1.05 1.10
E. iliac 0.79 0.87 39.25 11.43 0.83 0.79 1.50 1.75 0.30 2.05
C. fem. 0.67 0.72 78.29 63.69 0.71 0.69 1.10 0.45 0.05 1.50
S. fem. 0.75 0.78 156.49 48.16 0.78 0.76 7.80 3.25 1.50 7.15
Popliteal 0.49 0.62 169.40 111.10 0.74 0.40 2.27 0.47 0.06 2.06
TPT 0.45 0.60 35.45 29.02 0.79 0.33 1.53 0.12 0.06 1.47
A. Tib. 0.70 0.80 95.92 21.24 0.88 0.60 3.47 0.36 0.00 3.35
P. Tib. 0.32 0.55 73.15 33.92 0.97 0.20 32.70 0.18 0.06 32.83
Fibular 0.63 0.75 70.45 50.33 0.81 0.54 6.23 0.06 0.00 6.30
Bypass 0.19 0.34 862.67 507.00 0.50 0.12 6.00 0.50 0.50 6.00

Automatic segmentation of anomalies

We reported segmentation performance of the 3d full-resolution nnUNet for calcifica-
tions and stents in Table 7.7. The incorporation of the clDice loss function improved
performance across all detection, overlap, and topological metrics across both structures.
Calcifications were segmented with a Dice score of 0.82 and an F1-score of 0.83, while
stents achieved a Dice score of 0.69 and an F1-score of 0.69. Despite the challenges
of manual annotation, both structures were segmented with acceptable accuracy. This
performance can be attributed in part to the semi-automatic annotation workflow, which
reduced inter-annotator variability at structure boundaries and ensured more consistent
ground-truth labels. Stent segmentation likely exhibited lower performance due to their
limited representation in the dataset, being present in only 42% of the annotated images.
The results highlight that even small, high-intensity structures with complex morphology
can be reliably captured when supported by consistent annotation and topology-aware
loss functions.
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Figure 7.2.: 2D projection representation of segmentation of each arterial branch before and
after processing. Post-processing corrections observed inside the dark blue rectangle
region, errors in the prediction before post-processing highlighted by red arrow.

Table 7.7.: nnU-Net segmentation performance of the calcification and stent masks with and
without incorporating the clDice loss.

D_Pre D_Rec F1 β0 β1 β2 χ Dice HD HD95
Calcif. - 0.78 0.89 0.82 16.65 27.76 4.06 27.53 0.80 180.04 12.70

+clDice 0.79 0.88 0.83 13.06 27.34 4.18 28.59 0.82 175.39 6.58
Stents - 0.65 0.82 0.65 7.60 85.50 5.50 82.00 0.68 137.14 74.90

+clDice 0.66 0.85 0.69 6.00 90.50 5.70 85.60 0.69 162.73 109.03
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7.1.5 Application of methodological contributions

Due to the high resolution and large size of the PADSET images (average volume size
of 512 × 512 × 1645 voxels, with voxel spacing of 0.81 × 0.81 × 0.77 mm), training a
3D full-resolution nnU-Net across 1000 epochs with 5-fold cross-validation is extremely
time-consuming, averaging more than 15 hours per fold. As the proposed methodological
contributions introduce additional complexity to the pipeline, running this full protocol
for every methodological configuration would therefore be computationally prohibitive,
requiring several months of GPU time.

To enable a systematic evaluation of the methodological contributions under realistic
time constraints, we adopted a reduced training regime of 250 epochs. While this
shorter training schedule may not fully saturate performance, it provides a consistent
and computationally tractable framework for controlled comparisons between methods.
Importantly, all baselines and proposed variants were trained under identical conditions,
ensuring fairness in the evaluation.

The full 1000-epoch setting was already established in the previous experiments to
demonstrate the upper-bound performance of the baseline nnU-Net. Here, the focus is
instead on relative gains introduced by the methodological contributions, which remain
meaningful even under shorter training.

SoftMorph

We evaluated the SoftMorph morphological filters introduced in Chapter 4, as final layers
of a 3D full-resolution nnU-Net applied to PADSET for calcification plaque segmentation.
The results are summarized in Table 7.8.

We report only D_pre, D_rec, and F1, as these directly reflect detection and classification
performance for calcifications. Other overlap-based metrics (such as Dice) did not
provide additional insight in this context. Furthermore, morphological filtering did not
yield improvements for arteries or stents, so we focus here exclusively on calcification
detection, where the impact was the most meaningful. Here, the model was trained
exclusively to predict calcification with the usual multi-class segmentation of arteries and
stents.

Without morphological filtering, the network achieved a detection precision (D_pre) of
0.72 and an F1 score of 0.75. Incorporating morphological operations as final layers
improved the results. The closing and opening filters increased both precision and F1,
with the opening filter reaching 0.79 precision and 0.79 F1. The erosion filter yielded the
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best trade-off, achieving the highest precision (0.91) and F1 (0.81), although at the cost
of a reduced recall (0.84 compared to 0.96 without filtering).

This trade-off highlights the effect of morphological filtering as the erosion filter elim-
inated small false-positive predictions (boosting precision), it can also remove subtle
true positives, thereby lowering recall. From a clinical standpoint, the higher precision is
particularly valuable, as reducing false positives can increase the reliability of automated
detection of calcified plaques.

Table 7.8.: Detection results of PADSET with different SoftMorph last layers. (⋆) denote statisti-
cally significant improvement compared to the baseline.

Final Layer D_pre ↑ D_rec ↑ F1 ↑
Baseline 0.72 0.96 0.75
Closing 0.75 0.92 0.77
Opening 0.79 0.92 0.79
Erosion 0.91⋆ 0.84 0.81

Hausdorff Distance Losses

We trained the 3D full-resolution nnU-Net using two baselines (Dice loss and CE+Dice
loss) and compared them with the proposed Hausdorff losses. Results are summarized
in Table 7.9. Training was limited to 250 epochs, which proved sufficient to optimize
artery and calcification segmentation, but was insufficient to fully converge on the third
label (stents). Consequently, stent segmentation performance remained suboptimal
across most configurations, with Dice values below 0.30 except for the CE+Dice and the
CE+LAHsym losses.

For arteries, all Hausdorff-based losses consistently improved distance-based metrics
compared to their corresponding baselines, with the exception of CE+LAH, which
degraded performance. The best results were obtained with CE+LAHsym, achieving a
Dice score of 0.92 (vs. 0.89 for the baseline), and a substantial reduction in Hausdorff
distance (HD: 118.7 vs. 337.9; HD95: 8.0 vs. 214.5). In addition, clDice improved from
0.64 to 0.83, indicating gains not only in overlap but also in topological consistency.
Qualitatively, the example shown in Fig. 7.3 demonstrates that while the other losses
encouraged mainly the delineation of larger vessels, the LH and LAHsym losses enabled
to capture the whole arterial tree down to the smaller vessels, explaining the significant
increase in clDice.

Results for calcifications followed a similar trend, although improvements were less
consistent. The LH loss alone drastically reduced Dice to 0.40 and degraded all metrics.
LAH and LAHsym provided moderate improvements over the Dice baseline, with LAH

also improving the detection metrics (F1: 74.55 vs. 67.73). Only CE+LAHsym achieved
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performance comparable to CE+Dice, with slight improvements in HD95 (30.1 vs. 35.7),
clDice (0.79 vs. 0.78), and detection metrics (F1: 81.31 vs. 79.07). Overall, while
distance losses did not substantially boost calcification overlap metrics, they contributed
to small improvements in boundary accuracy and detection metrics.

As noted, 250 epochs were insufficient to optimize the stent class, due to its small
representation and complex appearance. Nevertheless, CE+LAHsym outperformed the
baseline across all metrics (Dice: 0.64 vs. 0.62; HD95: 47.6 vs. 235.1; clDice: 0.67 vs.
0.62, F1: 55.85 vs. 38.00), suggesting that the loss can still extract more reliable spatial
information even under limited training.

Across structures, CE+LAHsym provided the most consistent improvements, especially
for the artery mask, where it achieved significant gains in both overlap and distance-
based metrics. These results indicate that the averaged symmetric Hausdorff loss is the
most effective configuration for enhancing boundary-sensitive vascular segmentation in
PADSET, though additional training epochs would likely be required to fully assess its
impact on stent segmentation. Moreover, all Hausdorff distances were set with 2 erosion
iterations. Further studies on the optimal number of iterations tailored to this dataset
should be conducted.

Table 7.9.: 3D nnU-Net segmentation performances on PADSET comparing the baselines Dice
and CE+Dice losses with the proposed HD losses for the artery, calcifications and
stents masks. (⋆) denote statistically significant improvements compared to the
baseline using the Wilcoxon rank test.

Dice ↑ HD ↓ HD95 ↓ clDice ↑ D_pre ↑ D_rec ↑ F1 ↑
Artery Dice (baseline) 0.86 442.86 330.09 0.61 - - -

LH 0.85 377.87 237.56 0.58 - - -
LAH 0.86 369.41 251.33 0.61 - - -

LAH sym 0.87 300.16 189.62⋆ 0.63 - - -
CE + Dice (baseline) 0.89 337.86 214.45 0.64 - - -

CE + LH 0.91 129.64⋆ 15.01⋆ 0.78⋆ - - -
CE + LAH 0.87 340.26 223.77 0.63 - - -

CE + LAH sym 0.92⋆ 118.71⋆ 8.02⋆ 0.83⋆ - - -
Calcif. Dice (baseline) 0.65 273.03 134.52 0.68 64.93 62.55 67.73

LH 0.40 442.09 193.90 0.43 30.86 83.89 43.40
LAH 0.69 181.12 78.16 0.71 78.76⋆ 73.54 74.55

LAH sym 0.75⋆ 193.57 39.97⋆ 0.76 57.02 72.11 62.02
CE + Dice (baseline) 0.78 170.51 35.71 0.78 77.50 82.83 79.07

CE + LH 0.61 191.26 56.22 0.60 57.03 72.11 62.02
CE + LAH 0.72 171.54 49.15 0.76 70.29 84.19 75.73

CE + LAH sym 0.78 215.57 30.06 0.79 80.31 83.68 81.31
Stents CE + Dice (baseline) 0.62 459.81 235.12 0.62 63.85 33.61 38.00

CE + LAH sym 0.64 214.56 47.56⋆ 0.67 63.86 68.47⋆ 55.85
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Figure 7.3.: 3D volume representation of artery segmentation of ground truth label (GT), and
nnUNet full resolution with the different loss functions.

7.2 Estimation of pathological features.

The final segmentation volumes provide quantitative information on both anatomical and
pathological characteristics of each patient. These measurements are directly relevant
for presurgical planning in peripheral artery disease (PAD) and can be mapped to
standardized scoring systems such as GLASS or TASC II.

7.2.1 Anatomical features

Anatomical descriptors capture patient-specific vascular geometry and are essential for
treatment planning, including stent placement and surgical access routes. They also allow
objective assessment of arterial narrowing. We report example metrics such as artery
length, diameter, and tortuosity for each vascular branch in Table 7.10, all extracted
using VesselVio [Bumgarner, 2022].

Specifically, the length computed for each segment is defined as the sequence of con-
nected centerline voxels between two branch points or endpoints. Length is calculated as
the sum of Euclidean distances between consecutive centerline voxels.
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Table 7.10.: Average artery diameter (mm) , length (mm) and tortuosity per branch across
PADSET.
Aorta C. i. E. i. C. f. S. f. Popliteal TPT A. t. P.t. Fibular

Diameter 8.73 4.58 4.04 4.87 3.23 3.26 2.31 1.76 1.67 1.61
Length 14.71 16.98 36.38 20.96 61.53 55.45 33.40 82.53 101.96 91.29

Tortuosity 1.26 1.23 1.17 1.10 1.09 1.03 1.67 1.04 1.05 1.04

Vessel radii are estimated from the Euclidean distance between each centerline voxel
and the surrounding background. A cubic search region is expanded until at least four
background voxels are identified, and the mean of the four smallest distances is taken
to reduce noise and anisotropy bias. Because a standard Euclidean Distance Transform
systematically overestimates the true vessel radius (as vessel walls lie on voxel borders
rather than centers), a corrected distance lookup table (LUT) is applied. In this LUT,
distances to face-connected neighbors are reduced by half the voxel resolution, while
edge- and corner-connected distances remain unchanged. This correction yields radius
estimates that more accurately represent the true lumen boundary. The vessel diameter
is obtained by doubling the corrected radius.

Tortuosity is quantified as the ratio of centerline length to the Euclidean distance between
segment endpoints. A perfectly straight vessel has a tortuosity of 1, with higher values
indicating increasing curvature.

We can also extract the number and location of secondary branch, specifically by
extracting the number of connected components for this label, along with their exact
slice position, and matching them to the main branch locations. For example, (Fig. 7.4)
exhibits seven secondary branches: one in each iliac artery (corresponding to the internal
iliac), two collaterals arising from the right common femoral artery, and three branches
in the superficial femoral arteries (corresponding to the deep femoral).

7.2.2 Clinical features

Clinical descriptors capture disease burden and previous interventions, both of which are
essential for presurgical planning.

We computed the average calcification burden for each vascular branch by calculating
the ratio of calcification volume to arterial volume within each segment in Table 7.11.
Fig. 7.5.a. shows the distribution of calcification volumes for patient_001. Each bar
represents the number of segmented calcifications falling within a given volume range.
For instance, the majority of calcifications have small volumes (<50 mm³), whereas a
few larger lesions are also present (of 300 and >400 mm³). This demonstrates that
the segmentation allows us to quantify lesion burden not only in terms of presence
but also distribution and size. Fig. 7.5.b. shows the distribution of total calcification
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Figure 7.4.: Example anatomy of patient_001, with secondary artery branches highlighted in
cyan.

Table 7.11.: Averaged ratio of calcified artery per branch and probability of occurrence of stents
for each branch across PADSET. C.i .: Common iliac, E.i .: External iliac, C.f .:
Common femoral, S.f .: Superficial femoral, A.t .: Anterior tibial, P.t .: Posterior
tibial.
Aorta C. i. E. i. C. f. S. f. Popliteal TPT A. t. P.t. Fibular

Calcified 0.07 0.25 0.20 0.15 0.12 0.06 0.15 0.12 0.06 0.09
Stent 0.12 0.10 0.17 0.11 0.01 0.14 0.01 0.00 0.01 0.00

volumes across all patients in the dataset. For each patient, the cumulative volume of
all segmented calcifications was computed, and the resulting density is displayed. This
illustrates the heterogeneity of arterial calcification in PAD and highlights the ability of
the segmentation approach to quantify patient-level disease burden.

In addition, stent locations were systematically retrieved from the segmentation masks.
Across the annotated dataset, 42% of scans contained at least one stent, with patients
having on average 1.67 stents. The frequency of stent placement was further reported
per arterial branch in Table 7.11, highlighting common intervention sites.

Together, these features demonstrate how the proposed framework supports automated,
branch-specific quantification of vascular anatomy and pathology, thereby enabling
integration into standardized imaging-based scoring systems and presurgical decision
support.
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Figure 7.5.: (a) Distribution of calcification volumes for patient_001, x-axis shows the volume of
individual calcifications (mm³), y-axis indicates the number of calcifications within
each volume range. (b) Distribution of the total calcification volume across patients
in PADSET, x-axis represents the total segmented calcification volume per patient
(mm³), y-axis shows the corresponding density.

7.3 Conclusion

In this chapter, we focused on benchmarking and advancing segmentation methodologies
for the segmentation of the lower-limb arteries on the PADSET dataset introduced
previously. Importantly, benchmarking against general-purpose pre-trained models
revealed poor performance in this domain, underlining the need for a dedicated dataset
and models tailored to the lower-limb arterial tree, which has been largely neglected in
existing work.

We then evaluated segmentation performance on PADSET using both baseline nnU-Net
models and our methodological contributions. Results showed that classes with lower
prevalence and poorer annotation consistency, such as distal arteries, remain the most
challenging to segment. Despite these challenges, the nnUNet baseline achieves high
overall performance for the major arterial structures. Nevertheless, the introduction of
the topology-preserving loss clDice, of the Hausdorff losses and SoftMorph morphological
filters improved segmentation outcomes in clinically meaningful ways: calcification de-
tection was substantially enhanced with SoftMorph, while artery segmentation benefited
from losses that prioritize topological preservation and boundary accuracy.

Finally, we demonstrated the clinical utility of segmentation outputs by extracting quanti-
tative anatomical and pathological descriptors, including artery length, diameter, tortu-
osity, calcification burden, and stent frequency. These features capture patient-specific
pathology and can be directly mapped to standardized scoring systems. Beyond re-
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producing existing clinical scores, they also enable consistent quantification of vascular
disease, providing clinical insights for pre-surgical planning and revascularization strategy
selection.

Overall, this chapter bridges advanced segmentation methodologies with the clinical
context of PAD. By explicitly labeling individual branches, integrating plaque and stent
detection, and extracting standardized vascular features, our framework provides a
reproducible and quantitative basis for presurgical decision support. This work fills a
critical gap in the automated analysis of the full lower-limb arterial tree, where no prior
dataset or specialized models existed.

In future work, we aim to extend this framework towards improved segmentation of
small distal branches, particularly in the below-the-knee region, and to build upon
the presented features to enable automatic detection and quantification of stenosis
and thrombosis lesions. Together, these advances would establish a comprehensive,
automated pipeline for patient-specific PAD assessment and intervention planning.
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This final chapter synthesizes the contributions of this thesis and outlines perspectives for
future work. We first summarize the methodological and clinical advancements achieved,
then highlight opportunities to extend this work, emphasizing avenues that leverage the
curated dataset, refined segmentations, and novel analysis pipelines to enhance further
diagnosis, surgical planning, and patient-specific evaluation in PAD.

8.1 Summary of the Main Contributions

PAD is a prevalent disease characterized by the obstruction of arteries in the lower
limbs. Revascularization strategies are chosen based on the anatomical and pathological
characteristics observed on CTA scans. However, its analysis is time-consuming, complex
and prone to operator-dependent variability. The main goal of this thesis was to help
analyze PAD-relevant features on CTA using recent advances in DL-based automatic
segmentation to accelerate and reinforce the decision-making process for the presurgical
planning of PAD. Specifically, the work addressed:

Two methodological innovations to improve the segmentation of tubular and small
structures: We introduced a novel morphological strategy for deep learning–based
segmentation that explicitly incorporates differentiable morphological operators into
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convolutional neural networks to promote topological consistency. This strategy, referred
to as SoftMorph (Chapter 4), can improve the segmentation of tubular structures. We
introduced Regional Hausdorff Distance losses in Chapter 5 to enable distance-aware
optimization of segmentation. Both approaches significantly improved the segmentation
of tubular and discrete structures.

The translation of the methodological innovations into a real clinical context: We
deployed these methods on PADSET, an in-house CTA dataset of patients with PAD in
Chapter 7. We curated PADSET with annotations of PAD-relevant structures in the whole
lower-limb arterial tree using semi-automatic tools and refinement methods. We bench-
marked automatic segmentation methods and validated the clinical relevance of our
methodological contributions, achieving high segmentation accuracy. We leveraged seg-
mentation outputs for the automatic retrieval of anatomical and pathological descriptors
directly relevant to revascularization strategy planning, providing a reproducible and
objective basis for decision-making, reducing reliance on subjective visual assessment.

The work demonstrated that automatic segmentation is not only technically feasible but
also provides clinically relevant information, providing a foundation for standardized,
quantitative, and patient-specific vascular assessment. We summarize in more detail each
contribution below.

8.1.1 SoftMorph: Differentiable Probablistic Morphological
Operators for Image Segmentation

In Chapter 4, we introduced SoftMorph, a novel framework to integrate morphological
operations directly into CNNs. While original morphological filters are not differentiable
and therefore do not support the gradient-based optimization used in CNNs, previous
works have proposed to integrate specific operations through various methods. However,
these methods can produce homotopy errors or are hard to translate to complex opera-
tions. To address these gaps, SoftMorph proposes a generic method to accurately extend
any binary morphological operator with any structuring element into a differentiable and
probabilistic equivalent.

Specifically, we proposed a definition of probabilistic morphological filters as the expecta-
tion of the filter over the probability of generating each possible binary configuration,
that can be expressed as a multi-linear polynomial deduced from its truth table. We
then presented a family of quasi-probabilistic operators for intractable truth tables, based
on fuzzy logic. The quasi-probabilistic operators represent a direct translation of the
Boolean expression into a differentiable expression. They approximate the probabilistic
filter while maintaining the computational complexity of the original binary one. We
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validated SoftMorph in a binary context to ensure that the proposed operators accurately
correspond to their binary counterparts, and assessed their backpropagation capability.
Finally, we demonstrated the utility of SoftMorph through various applications, notably
in segmentation tasks by integrating SoftMorph operators as final layers of a CNN or
inside the loss function. Our experiments revealed that its integration into CNNs could
improve the topological preservation of segmentation prediction for tubular structures.

Despite these advances, some limitations can be noted. While the quasi-probabilistic op-
erators exactly replicate the complexity of the Boolean formula underlying the operation,
certain formulas, such as skeletonization, are intrinsically very complex and can lead
to a large increase in CNN training time. Moreover, tuning the structuring element and
selecting the fuzzy operator type is not straightforward and usually requires empirical
testing to adapt to the dataset. In the same way, there is no clear guideline on which
morphological layer will improve segmentation results. More work is therefore needed
to establish intrinsic rules for parameter selection based on dataset characteristics. One
possible improvement would be to extend the approach to non-flat (fuzzy) structuring el-
ements and to allow the learning of new morphological operations by directly optimizing
both the logical formula and the structuring element with fuzzy operators.

Nonetheless, SoftMorph constitutes a generic framework applicable to any segmentation
problem where a morphological operation may be required by bridging the gap between
rigid mathematical morphology and CNNs. It offers a new paradigm for shape-aware
medical image analysis, offering the possibility to define novel operations tailored to the
requirements of specific tasks.

8.1.2 Regional Hausdorff Distance Losses for Medical Image
Segmentation

Chapter 5 presents the second methodological contribution, introducing three formu-
lations of regional Hausdorff Distance losses. The HD is a boundary-sensitive metric
widely employed in medical image analysis to assess segmentation quality, particularly
for small or geometrically intricate anatomical structures. Despite its importance, the
HD is rarely directly optimized during CNN training. Previous attempts have proven
unstable, often relying on auxiliary losses, and do not fully address the differentiability
of the underlying Euclidean distance function, limiting reliable gradient backpropagation
during CNN optimization. Although differentiable distance transform methods exist, they
are prone to numerical instability or require soft binarization of segmentation outputs.
To overcome these challenges, we developed a family of regional HD losses, implemented
via differentiable erosion-based distance transforms derived from a direct application of
the SoftMorph framework.
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In detail, we introduced a novel morphological erosion-based differentiable distance
transform formulation to compute the signed, unsigned, and positive distance maps
in a differentiable manner and directly applicable to probability maps. Based on the
formulation of the differentiable positive distance transform, we derive three well-
established variations of the HD to propose smooth formulations of the Hausdorff,
Modified Hausdorff and the Symmetric Averaged Hausdorff Distance losses. We assessed
the effect of connectivity hyperparameters and the applicability of the losses through
various 2D and 3D medical segmentation tasks. We demonstrated that these losses enable
CNNs to effectively minimize boundary discrepancies without requiring auxiliary losses
and with only 2 erosion iterations, showing consistent improvements in distance-based
metrics while maintaining or sometimes improving the Dice score.

However, no single formulation consistently outperformed the others, which complicates
the choice of the optimal loss function. Additionally, increasing the number of erosion
iterations in the averaged HD losses led to numerical instabilities and substantially
increased computational cost. Future work should investigate strategies to mitigate
these instabilities, such as exploring alternative numbers of erosion iterations, alternative
normalization terms, or directly regressing the distance transform using the CNN.

Despite these limitations, this chapter establishes a methodological framework for
distance-aware optimization, broadening the range of loss functions available for medical
image segmentation beyond traditional overlap-based losses.

8.1.3 Clinical application

The third contribution translated the methodological advances into a realistic and clini-
cally relevant setting for PAD. For this purpose, we curated PADSET, a dedicated dataset
of lower-limb CTA scans with comprehensive annotations of the full arterial tree, calcifi-
cation plaques, stents, and branch-level identities, presented in Chapter 6. Annotations
were performed using a semi-automatic workflow in close collaboration with vascu-
lar surgeons, ensuring reproducibility and consistency while reducing inter-annotator
variability.

In Chapter 7, we systematically investigated the performance of the 3D nnU-Net frame-
work, exploring multiple configurations to identify optimal settings for high-resolution,
large-volume PADSET images. In addition, we benchmarked other automatic segmenta-
tion tools that required minimal or no training to assess their ability to generalize to this
specific anatomical context. We further integrated skeleton-based topology preserving
losses to enforce topological preservation, where the clDice contributed to improved
segmentation of arteries, calcifications and stents. Methodological contributions such as
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SoftMorph and regional Hausdorff losses enhanced the detection of calcifications and
refined arterial topology, confirming their practical value on real clinical data.

Despite these advances, several limitations remain. Distal arteries remain challenging
to segment due to their small caliber, imaging artifacts, and the difficulty of producing
fully consistent manual annotations, which can result in small vessel discontinuities that
may be misinterpreted as occlusions rather than segmentation errors. Bypass grafts also
pose a challenge because of their low representation in the dataset and high anatomical
variability. Furthermore, there is currently no external dataset available for independent
validation of the methods. Finally, the full potential of the proposed methodological
contributions could not be assessed under maximal training configurations due to the high
resolution and large size of the PADSET images, which require substantial computational
resources.

Nonetheless, this work establishes a robust foundation for automated lower-limb arterial
segmentation and pathology quantification in PAD. It demonstrates the feasibility of
integrating advanced neural architectures and topology-aware losses into clinically
meaningful workflows, providing a strong basis for future developments in imaging-
based decision support and personalized pre-surgical planning.

8.2 Perspectives and Future Applications

While the methods and clinical applications developed in this thesis provide a compre-
hensive framework for automated segmentation and pathology quantification in PAD,
they also open new avenues for further research. The approaches presented highlight
both opportunities and challenges to refine morphological operations, enhance vessel
continuity, and leverage segmentation outputs for higher-level clinical tasks. In the
following, we outline several promising directions that could extend and build upon this
foundation.

8.2.1 Learning morphological operation

Deep morphological neural networks (DMNNs) have emerged to replace convolutional
layers in CNNs by morphological operations [Mondal, 2022; Hirata, 2021]. In some of
these applications, the flat or non-flat structuring element is optimized [Nakashizuka,
2009; Shih, 2019; Shen, 2022], or the appropriate sequence of erosion and dilation is
also learned [Shen, 2022; Mondal, 2020; Masci, 2013] based on the target data and task.
However, the operations are always selected between erosion and dilation operations
only.
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A natural extension of the SoftMorph framework presented in Chapter 4 is to move
beyond manually defined morphological operations and toward learning optimal log-
ical rules and structuring elements directly from data. Currently, SoftMorph relies on
pre-defined logical formulas to implement operations such as dilation, erosion, or skele-
tonization. While it allows precise control, it limits flexibility and may not always capture
dataset-specific nuances. Future work could formalize a differentiable optimization
process in which the Boolean logic itself becomes a trainable parameter. Each candidate
Boolean formula could be parameterized as a probabilistic combination of truth table
entries or as a differentiable logical function using fuzzy operators, allowing the network
to select the operation that minimizes a loss function. This approach is inherently related
to learning the structuring element, since it is determined by the logical expression
itself. This extension could introduce the definition of completely new morphological
operations learned for a specific data or task beyond traditional sequences of erosion and
dilation.

This line of work is highly relevant as it bridges the gap between human-designed
morphological intuition and data-driven optimization, offering the possibility of dataset-
adaptive, task-specific morphological filtering. Moreover, learning these operators could
directly address the limitations observed in this thesis, such as spurious disconnections in
small vessels or inconsistent labeling at bifurcations, without requiring extensive manual
tuning.

8.2.2 Improved segmentation for artery continuity

Despite the overall high performance of the 3D nnU-Net framework on PADSET and
the integration of the topology-preserving clDice loss [Shit, 2021], small-caliber distal
arteries and tortuous vessels remain prone to spurious disconnections and small holes
in the segmentation mask. These errors, while minor in voxel count, can critically
affect downstream applications such as branch-specific feature extraction, thrombosis
detection, and surgical planning, where precise connectivity and anatomical continuity
are essential.

To address these challenges, future work could explore morphological and graph-based
post-processing strategies specifically designed to correct disconnected components with-
out violating true anatomical occlusions. Traditional methods have explored similar ideas
using geodesic minimum spanning trees to infer vascular topology from angiographic
images [Moriconi, 2018], demonstrating how quantitative features such as location,
direction, scale, and bifurcations can be used to reconstruct continuous vessel trees.
Recent works use walk algorithms to reconnect broken vessel segments [Qiu, 2023], but
can enforce reconnection of broken vessels at thrombosis locations where the network
should not be reconnected.
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More recent deep learning–based methods explicitly aim to restore vessel continuity. For
instance, [Cavicchioli, 2025] proposed D2-RD-UNet, which applies a centerline-based
post-processing step to reconnect fragmented hepatic vessels while also providing local
radius-based branch evaluation. Similarly, [Carneiro-Esteves, 2024] introduced a learned
post-processing model capable of restoring connectivity.

Graph-based approaches provide a complementary solution by representing the seg-
mented vasculature as a node-and-edge structure, where nodes correspond to centerline
points and edges encode anatomical connectivity. In this framework, spurious disconnec-
tions appear as missing edges, which can be selectively reconstructed based on vessel
diameter, orientation, and local connectivity priors. Modern deep learning approaches,
including graph neural networks (GNNs), extend these concepts to capture the global
arterial connectivity [Shin, 2019]. In [Esmaeilzadeh, 2025], a loss function is designed
to penalize both false positive and false negative connections by optimizing a graph
connectivity metric.

The application of these methods in the context of PAD could enhance the clinical
reliability of automated segmentation, ensuring that derived metrics such as branch
length, tortuosity, and diameter are accurate and free from artifacts caused by mistakenly
disconnected voxels. It also strengthens the utility of the segmentation outputs for
higher-level applications, including automated detection of stenosis and thrombosis or
computational hemodynamic modeling, for instance.

8.2.3 Branch Identification

In Chapter 7, we approached the task of branch identification as a multi-task segmentation
problem performed directly on CTA scans. While effective for major vessels, this approach
remains challenging for underrepresented branches in the dataset and for small-caliber
vessels. An alternative strategy could rely on artery segmentation as the image on which
the branches are then segmented. However, our experiments suggest that anatomical
context beyond the vessel lumen is often required to reliably identify specific branches,
particularly in regions with complex bifurcations.

Several methods for branch recognition have been proposed in other vascular territories,
such as the circle of Willis [Yang, 2024; Essadik, 2022; Nader, 2023]. Most of these
approaches rely on segmentation networks, while some build upon a preliminary seg-
mentation and exploit geometric or topological cues. For instance, [Nader, 2023] extracts
a 3D graph from the vessel mask to detect bifurcation point coordinates, selects local
3D patches in the image around these coordinates, and classifies each bifurcation patch
using a dedicated classifier. Similarly, [Essadik, 2022] derives geometric descriptors of
bifurcations (e.g., vessel diameter, length, and branching angles), applies dimensionality
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reduction, and trains a classifier on the resulting features to identify each bifurcation.
In [Riffaud, 2022], aortic branches are identified by extracting geometric and topological
features from an artery segmentation and matching them to known reference branches,
from the celiac artery to the iliac ones, using similarity measures.

Other traditional methods have explored the explicit modeling of vascular connectivity
and anatomical labeling through graph representations. For example, approaches for the
Circle of Willis have represented the vasculature as a rooted attributed relational graph,
where bifurcations are vertices characterized on a Riemannian manifold. Anatomical
labels are then assigned using a maximum a posteriori estimate that combines local bifur-
cation features with prior knowledge of the global topology [Bogunović, 2013]. Another
strategy jointly optimizes segmentation and labeling by constructing an overcomplete
vascular graph and selecting the subset of edges that best represent the true vasculature.
This is formulated as an integer program, balancing image evidence and connectivity
priors, and has been shown to outperform standard sequential segmentation-labeling
pipelines [Robben, 2014; Robben, 2016]. These works illustrate the value of explicitly
leveraging graph-based models and topological priors for robust branch identification.

Such strategies have not yet been systematically applied to the lower-limb arterial
tree. A key difficulty arises from the pathological characteristics of PAD as occlusions
and calcifications frequently disrupt vessel continuity, complicating graph construction.
Moreover, not all branch distinctions arise from bifurcations. This is the case of the
superficial femoral and popliteal arteries, which form a continuous segment. If these
challenges are overcome, branch recognition could leverage geometric and topological
features to assign each segment its most probable label within expected anatomical
ranges. This would provide a robust alternative or complement to direct multi-task
learning, particularly for underrepresented branches where annotated training data
remain scarce.

8.2.4 Automated detection of stenosis and thrombosis

Building upon the comprehensive segmentation outputs obtained in Chapter 7, a natural
extension is the automated detection of arterial stenosis and thrombosis, which are
clinically critical for guiding revascularization strategies in PAD patients.

In [Dai, 2021], a parallel efficient network (p-EffNet) was used to classify the degree of
stenosis of lower extremity arteries on 2D axial slices of CTA. The model operates on
smaller, manually defined regions of interest (ROIs) cropped from the full image using
a prior segmentation. Our automatic segmentation can serve as an automatic way to
extract ROIs to apply this method. In [Jin, 2022], radiomic features were extracted from
an initial artery segmentation and plaque detection for the coronary arteries on CTA.
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The radiomic features were used to train classifiers for plaque classification and stenosis
grading. This method could be similarly tested for PAD.

Otherwise, the approach could leverage the branch-wise labeled arterial masks to quantify
local vessel diameters along each segment. By computing the diameter at each centerline
voxel or along small overlapping windows, the relative reduction in lumen can be
assessed compared to proximal or reference segment diameter, allowing the identification
of stenosis when diameter reductions exceed clinically relevant thresholds (between
50–70% of diameter reduction). Occlusions due to thrombosis can be inferred as abrupt
interruptions in the artery mask, especially when the precise segmentation continuity
is preserved, as the central challenge arises from false positives in small-caliber vessels,
where segmentation errors or minor disconnections could mimic stenoses or occlusions.

An alternative or complementary strategy involves direct deep learning detection of
stenosis and thrombosis on raw CTA volumes, bypassing segmentation errors entirely.
CNNs or vision transformer-based architectures could be trained to predict localized di-
ameter reduction or occlusion probability maps from the native image, similar to [Zhang,
2020] in coronary artery disease or [Qiu, 2022] for intracranial arteries, where stenosis
is detected directly from CTA without explicit lumen segmentation. In this scenario,
the branch-level segmentation masks could still provide anatomical priors to constrain
predictions, improving localization and reducing false positives in areas prone to artifacts,
such as distal arteries or calcified segments.

This research direction can provide quantitative indicators of lesion severity and support
surgical planning, improving reproducibility, and providing a foundation for downstream
predictive modeling of disease progression and treatment outcomes.

8.2.5 Detection and prognostic modeling using Imaging
features

As PAD remains underdiagnosed and undertreated [Criqui, 2015], several studies have
tried to employ AI models to diagnose the disease or to predict the likely course and
outcomes of patients [Goffart, 2025c; Goffart, 2025b]. While these approaches have
shown encouraging performance for predicting complications such as mortality, limb
adverse events, major bleeding, or progression to CLTI, they often rely on limited or
manually curated input features. In particular, detailed image-based vascular descriptors
are not currently used, which restricts the models’ ability to fully capture patient-specific
anatomical risk factors.
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The segmentation outputs generated by our framework provide a rich set of anatomical
and pathological features, including vessel diameters, lengths, tortuosity, plaque distri-
bution, and stent locations. These imaging-derived descriptors can be directly used as
input for predictive models, for example, to estimate patient-specific outcomes such as
survival, risk of restenosis, or post-operative complications. Implementing models that
rely solely on these automatically extracted imaging features would already constitute a
practical and clinically useful application of the proposed framework.

As an extension, these imaging features could be combined with non-imaging clinical
variables (e.g., age, comorbidities, smoking status, previous interventions) to build
more comprehensive predictive models. Approaches such as gradient-boosted trees,
random forests, or deep learning architectures capable of handling heterogeneous data
could integrate these multimodal features. This combined strategy is likely to improve
predictive performance and enable a complete, patient-specific risk assessment.
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AAppendix Chapter 4

A.1 Thinning formula

A.1.1 2D

The morphological thinning on 2D images proposed by Wagner et al. [Wagner, 2020]
is divided into 4 sub-iterations, one for each North, East, South, and West directions. It
consists of the following Boolean function for the North direction defined on the k = 8+1
neighborhood as :

F1 = ¬Y6 ∧ ¬Y7 ∧ (Y2 ⊕ Y5 ⊕ ¬Y1) ∧ (Y5 ⊕ Y8) ∧ (Y5 ⊕ Y4)

F2 = (Y6 ⊕ Y8) ∧ (Y2 ⊕ Y8) ∧ (Y1 ⊕ ¬Y8) ∧ ¬Y4 ∧ ¬Y7

F3 = Y2 ∧ Y1 ∧ ¬Y7

F4 = ¬Y6 ∧ Y1 ∧ Y4

F5 = Y2 ∧ Y1 ∧ Y4

F6 = ¬Y6 ∧ ¬Y2 ∧ ¬Y5 ∧ Y4 ∧ Y7

F = ¬Y3 ∧ (F1 ∨ F2 ∨ F3 ∨ F4 ∨ F5 ∨ F6).

The Boolean formula must be rotated for the 3 other directions.

A.1.2 3D

Boolean formula defining the sub-iterative North 3D thinning operation on a k = 26 + 1
neighborhood :

F1 = ¬Y0 ∧ ¬Y1 ∧ ¬Y2 ∧ ¬Y3 ∧ ¬Y5 ∧ ¬Y6 ∧ ¬Y7 ∧ ¬Y8 ∧ Y25 ∧ (Y9 ∨ Y10 ∨ Y11 ∨ Y12 ∨
Y13 ∨ Y14 ∨ Y15 ∨ Y16 ∨ Y17 ∨ Y18 ∨ Y19 ∨ Y20 ∨ Y21 ∨ Y22 ∨ Y23 ∨ Y24)

F2 = ¬Y8 ∧ Y25 ∧ ((Y3 ∨ Y4 ∨ Y5 ∨ Y6 ∨ Y7 ∨ ¬Y10) ∨ (Y1 ∨ Y2 ∨ Y3 ∨ Y4 ∨ Y5 ∨ ¬Y16) ∨
(Y0 ∨ Y1 ∨ Y2 ∨ Y3 ∨ Y7 ∨ ¬Y14) ∨ (Y0 ∨ Y1 ∨ Y5 ∨ Y6 ∨ Y7 ∨ ¬Y12))
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F3 = ¬Y8 ∧ Y25 ∧ ((Y5 ∨ Y6 ∨ Y7 ∨ ¬Y10 ∨ ¬Y12) ∨ (Y5 ∨ Y4 ∨ Y3 ∨ ¬Y10 ∨ ¬Y16) ∨ (Y1 ∨
Y2 ∨ Y3 ∨ ¬Y16 ∨ ¬Y14) ∨ (Y0 ∨ Y1 ∨ Y7 ∨ ¬Y14 ∨ ¬Y12))

F4 = ¬Y1 ∧¬Y3 ∧¬Y5 ∧¬Y7 ∧¬Y8 ∧ Y25 ∧ ((Y0 ∨ Y4 ∨ Y6 ∨¬Y11 ∨¬Y2)∨ (Y2 ∨ Y4 ∨ Y6 ∨
¬Y0 ∨ ¬Y9) ∨ (Y0 ∨ Y4 ∨ Y2 ∨ ¬Y6 ∨ ¬Y15) ∨ (Y0 ∨ Y6 ∨ Y2 ∨ ¬Y4 ∨ ¬Y13))

F5 = ¬Y0 ∧¬Y1 ∧¬Y2 ∧¬Y3 ∧¬Y4 ∧¬Y5 ∧¬Y6 ∧¬Y7 ∧¬Y8 ∧¬Y25 ∧ ((Y13 ∨ Y14 ∨ Y15 ∨
Y21 ∨ Y22 ∨ Y23 ∨¬Y18 ∨ (Y9 ∨ Y10 ∨ Y11 ∨ Y12 ∨ Y16 ∨ Y17 ∨ Y19 ∨ Y20 ∨ Y24))∨ (Y13 ∨ Y12 ∨
Y11 ∨ Y21 ∨ Y20 ∨ Y19 ∨¬Y24 ∨ (Y9 ∨ Y10 ∨ Y14 ∨ Y15 ∨ Y16 ∨ Y17 ∨ Y18 ∨ Y22 ∨ Y23))∨ (Y9 ∨
Y10 ∨ Y11 ∨ Y17 ∨ Y18 ∨ Y19 ∨¬Y22 ∨ (Y15 ∨ Y14 ∨ Y13 ∨ Y12 ∨ Y16 ∨ Y23 ∨ Y21 ∨ Y20 ∨ Y24))∨
(Y9∨Y16∨Y15∨Y24∨Y17∨Y23∨¬Y20∨ (Y14∨Y10∨Y11∨Y12∨Y13∨Y18∨Y19∨Y22∨Y21)))

F6 = ¬Y0 ∧¬Y1 ∧¬Y2 ∧¬Y3 ∧¬Y4 ∧¬Y5 ∧¬Y6 ∧¬Y7 ∧¬Y8 ∧¬Y25 ∧ ((Y14 ∨ Y15 ∨ Y16 ∨
Y22 ∨ Y23 ∨ Y24 ∨¬Y18 ∨¬Y20)∨ (Y14 ∨ Y12 ∨ Y13 ∨ Y22 ∨ Y20 ∨ Y21 ∨¬Y18 ∨¬Y24)∨ (Y10 ∨
Y11∨Y12∨Y18∨Y19∨Y20∨¬Y24∨¬Y22)∨ (Y9∨Y10∨Y16∨Y24∨Y17∨Y18∨¬Y22∨¬Y20))

F = ¬(F1 ∨ F2 ∨ F3 ∨ F4 ∨ F5 ∨ F6)

This formula must be rotated in the other 5 directions for complete thinning operation.

A.2 Generated dataset

Figure A.1.: Example blobs from the controlled randomly generated dataset.
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Figure A.2.: Qualitative segmentation results from the DRIVE, Sea Turtle, Starfish, Croissant,
and Massachusetts datasets. This figure compares the real image (Image), the
ground truth segmentation mask (Label), the segmentation output from the U-Net
without any morphological layers (Baseline), and the U-Net outputs with double
final morphological layers using different operators (Closing, Opening, Erosion,
Dilation).

A.3 Additional qualitative results

We provide additional visual results of segmentation outputs on the 2D datasets, where a
SoftMorph morphological operator is applied twice as final layers of a U-Net in Fig. A.2.
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BAppendix Chapter 7

Table B.1.: nnU-Net segmentation performance of each arterial branch after post-processing.
Dice ↑ clDice ↑ HD ↓ HD95 ↓ Prec. ↑ Rec. ↑ β0 ↓ β1 ↓ β2 ↓ χ ↓

Aorta 0.96 0.90 402.90 2.04 0.98 0.94 5.0 8.65 6.89 6.25
Second. 0.68 0.62 245.90 52.01 0.75 0.65 5.80 0.85 0.30 5.55
C. iliac 0.79 0.84 25.29 8.80 0.81 0.81 0.65 1.25 1.05 0.95
E. iliac 0.80 0.87 38.71 11.21 0.83 0.79 1.55 1.75 0.30 2.10
C. fem. 0.68 0.73 41.62 27.54 0.73 0.70 0.90 0.45 0.05 1.20
S. fem. 0.75 0.79 143.29 46.05 0.77 0.77 4.55 2.15 1.50 6.00
Popliteal 0.48 0.62 170.96 146.98 0.79 0.38 1.74 0.32 0.05 1.58
TPT 0.45 0.59 35.44 29.01 0.79 0.33 1.52 0.12 0.06 1.47
A. Tib. 0.71 0.80 95.92 21.23 0.88 0.61 3.47 0.35 0.00 3.35
P. Tib. 0.32 0.54 73.15 33.92 0.97 0.20 32.71 0.18 0.06 32.82
Fibular 0.63 0.76 70.44 50.33 0.82 0.55 6.24 0.06 0.00 6.29
Bypass 0.18 0.34 862.67 507.00 0.50 0.11 2.00 0.50 0.50 2.00

Table B.2.: 3D nnU-Net segmentation performances on PADSET comparing the baselines Dice
and CE+Dice losses with the proposed HD losses for the artery, calcifications and
stents masks with standard deviations.

Dice ↑ HD ↓ HD95 ↓ clDice ↑ D_pre ↑ D_rec ↑ F1 ↑
Artery Dice 0.86± 0.07 442.86± 313.58 330.09± 266.83 0.61± 0.22 - - -

LH 0.85± 0.08 377.87± 261.50 237.56± 226.47 0.58± 0.20 - - -
LAH 0.86± 0.07 369.41± 322.46 251.33± 266.47 0.61± 0.21 - - -

LAH sym 0.87± 0.08 300.16± 281.34 189.62± 237.64 0.63± 0.21 - - -
CE + Dice 0.89± 0.05 337.86± 299.73 214.45± 255.73 0.64± 0.20 - - -
CE + LH 0.91± 0.04 129.64± 41.10 15.01± 16.45 0.78± 0.06 - - -

CE + LAH 0.87± 0.07 340.26± 309.26 223.77± 265.96 0.63± 0.22 - - -
CE + LAH sym 0.92± 0.04 118.71± 38.75 8.02± 8.30 0.83± 0.05 - - -

Calcif. Dice 0.65± 0.13 273.03± 76.86 134.52± 51.13 0.68± 0.12 64.93± 13.11 62.55± 14.43 67.73± 11.58
LH 0.40± 0.24 442.09± 257.17 193.90± 248.47 0.43± 0.26 30.86± 18.95 83.89± 27.30 43.40± 22.18

LAH 0.69± 0.18 181.12± 85.38 78.16± 80.59 0.71± 0.19 78.76± 12.42 73.54± 20.10 74.55± 15.35
LAH sym 0.75± 0.14 193.57± 94.77 39.97± 55.80 0.76± 0.15 57.02± 18.55 72.11± 20.91 62.02± 18.89

CE + Dice 0.78± 0.12 170.51± 99.51 35.71± 54.25 0.78± 0.13 77.50± 14.17 82.83± 12.67 79.07± 10.57
CE + LH 0.61± 0.17 191.26± 94.71 56.22± 62.96 0.60± 0.20 57.03± 18.55 72.11± 20.91 62.02± 18.89

CE + LAH 0.72± 0.13 171.54± 100.26 49.15± 63.38 0.76± 0.13 70.29± 14.12 84.19± 11.64 75.73± 10.65
CE + LAH sym 0.78± 0.13 215.57± 190.98 30.06± 54.27 0.79± 0.13 80.31± 11.88 83.68± 11.55 81.31± 9.58

Stents CE + Dice 0.62± 0.28 459.81± 340.76 235.12± 366.31 0.62± 0.31 63.85± 35.18 33.61± 30.82 38.00± 24.90
CE + LAH sym 0.64± 0.29 214.56± 188.09 47.56± 76.18 0.67± 0.32 63.86± 35.18 68.47± 38.07 55.85± 35.49
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