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Abstract—Deep Q-Networks (DQN) are a promising technol-
ogy for Al-driven traffic signal control (TSC), but their training
requires complex input data. Modeling can be conducted at ei-
ther microscopic or macroscopic levels. While microscopic mod-
eling captures detailed traffic dynamics, it requires extensive
parameter calibration. In contrast, macroscopic modeling offers
faster setup and reduced computational cost with less precision.
To evaluate the trade-offs, the study compare models trained on
both data types under two DQN configurations: one with fixed
decision intervals, and another allowing decisions every second
with enforced pauses after phase changes. All traffic data used
in this study is synthetically generated using the SUMO traffic
simulator, ensuring full control over experimental conditions
and flow scenarios. Results show that macroscopic data enables
faster convergence and comparable, if not better, performance.
Although the microscopic model offers finer control, it suffers
from instability when combined with coarse decision intervals.
These findings highlight that high-fidelity data is not strictly
necessary to train effective traffic signal control policies, which
is particularly advantageous for large-scale urban simulations
and city-scale digital twins.

Index Terms—Traffic Signal Control, Reinforcement Learn-
ing, Traffic Flow Modeling, SUMO (Simulation of Urban
MObility), Intelligent Transportation Systems

I. INTRODUCTION

Urban congestion represents a major contemporary chal-
lenge, leading to significant delays for commuters and sub-
stantial environmental impact due to increased greenhouse
gas emissions [1]. To address this growing issue, the devel-
opment of intelligent traffic light systems based on Artificial
Intelligence (AI) has emerged as a promising approach to
improve traffic flow and reduce emissions [2].

However, designing and optimizing such systems is based
on robust simulation tools capable of accurately modeling
urban traffic dynamics. Despite a wide variety of traffic
simulation models, there is currently no consensus on the
most appropriate level of detail to use in Al-based traffic
signal training [3]. Simulations vary in granularity, from
microscopic models, which simulate individual vehicles [4],
to macroscopic models, which treat traffic as aggregated
flows [5]. Microscopic simulations offer high fidelity but re-
quire substantial calibration and computing resources. Macro-
scopic models, while coarser, are easier to configure and
faster to run.

In recent years, reinforcement learning (RL) has shown
strong potential for adaptive traffic light control, allowing

agents to learn optimal policies by interacting with simulated
environments [6]. RL performance critically depends on
the quality and structure of simulation data used during
training. Yet, little attention has been paid to the influence of
simulation granularity, microscopic versus macroscopic, on
the learning process and final performance of RL agents.

In practice, Al-based TSC systems commonly adopt one
of two agent operation modes: fixed decision intervals or
high-frequency decision-making. These modes reflect real-
world constraints and design preferences in control systems.
However, their interaction with the level of data granularity
used during training has not been systematically explored.
This study addresses a key open question in the field: is
high-fidelity microscopic data necessary to effectively train
reinforcement learning agents for traffic light control? We
investigate how data granularity and agent operation modes,
such as per-second actions versus fixed intervals, jointly
affect the performance of DQN, focusing on their impact
on convergence speed and policy robustness.

Our objective is to clarify the trade-offs between data gran-
ularity and learning efficiency in RL-based traffic signal
control. By comparing observation granularities and agent de-
cision frequencies, this study seeks to identify configurations
that provide strong performance while reducing simulation
and training complexity. These findings contribute to ongoing
efforts toward scalable and efficient RL training strategies,
particularly relevant for future applications in large-scale
networks and digital twin platforms [7].

The rest of this paper is organized as follows: Section II
reviews granularity in traffic signal control modeling. Sec-
tion III describes the methodology followed in this paper.
Section IV provides performance comparisons. Section V
discuss the impact of this study and presents future work.

II. STATE OF THE ART

A. Modeling Granularity

Traffic simulations can be categorized according to their
level of granularity, with two main modeling scales com-
monly distinguished in the literature: macroscopic and mi-
croscopic [8].



1) Macroscopic Models: Macroscopic models describe
traffic flow at an aggregate level, without representing in-
dividual vehicles. These models treat traffic similarly to fluid
dynamics, using variables such as traffic density, average
speed, and flow rate to characterize vehicle movement [5].
They are particularly efficient in terms of computational
resources and are well-suited for large-scale network analysis.
One of the most well-known macroscopic frameworks is the
Cell Transmission Model (CTM) proposed by Daganzo [9],
which discretizes both space and time. The model is derived
from the Lighthill-Whitham-Richards (LWR) fluid-dynamic
equations and applies them in a cellular structure. Each cell
has a maximum vehicle capacity and a fundamental diagram
governing the relationship between flow and density. Traffic
propagation is modeled based on the supply and demand of
adjacent cells.

2) Microscopic Models: Microscopic models provide a
detailed representation of individual vehicle behavior. Each
vehicle is explicitly modeled with its own position, speed,
acceleration, and route. These models are highly accurate
and suitable for evaluating local control strategies [4]. A
common modeling approach in this category is based on
car-following models, where the acceleration of a vehicle
depends on its relative position and speed with respect to
the leading vehicle. Popular examples include the Intelli-
gent Driver Model (IDM) [10] and the Gipps model [11],
which incorporate reaction times, desired speeds, and vehicle
lengths. Another class of microscopic models focuses on
lane-changing behavior, which can be motivated by either
route requirements (e.g., needing to turn) or by the desire to
maintain a higher speed.

Understanding the underlying traffic simulation models is
essential, as the choice of modeling scale directly influences
the type and precision of data available for training control
strategies. Building upon this foundation, the next section
focuses on the various approaches that have been developed
to control traffic signals.

B. Traffic Signal Control Strategies

Traffic signal control is essential for managing urban mo-
bility and alleviating congestion at intersections. Traditional
strategies range from static fixed-time plans derived from
offline traffic studies and invariant to real-time traffic con-
ditions. In contrast, adaptive approaches dynamically adjust
signal phases using real-time data from sensors such as
inductive loops or cameras, typically following predefined
rule-based logic to respond to traffic fluctuations. Coordi-
nated systems further enhance flow by synchronizing multiple
intersections, particularly along main corridors [12].

More recently, Artificial Intelligence (AI) has introduced
new paradigms for traffic optimization. In particular, Rein-
forcement Learning (RL) has emerged as a promising alterna-
tive, enabling agents to learn optimal signal policies through
interaction with a simulated environment [13]. Unlike rule-
based systems, RL methods adapt autonomously to varying
traffic patterns and aim to maximize long-term network
performance. This has led to growing research interest and

the development of diverse learning architectures, explored
in the following sections.

C. Reinforcement Learning for Traffic Signal Control

Reinforcement Learning (RL) provides a powerful frame-
work for sequential decision-making, where an agent learns
to optimize its actions through interaction with an envi-
ronment [14]. In traffic signal control, this environment
represents the traffic network, and the agent aims to manage
signal phases at intersections to minimize congestion-related
metrics such as delay, queue length, or number of stops [3].

This interaction is modeled as a Markov Decision Process
(MDP), defined by the tuple (S, A, P, R,~), where S is the
set of traffic states (e.g., densities, queues), A the set of signal
phase actions, P(s’|s,a) the state transition probabilities,
R(s,a) the reward function, and ~ the discount factor for
future rewards [15]. The agent seeks to learn a policy
m: S — A that maximizes the expected cumulative reward:
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Among the most widely used algorithms is the Deep Q-
Network (DQN), which approximates the optimal action-
value function Q*(s, a) via deep neural networks and derives
the policy as:

7w (s) = arg max Q*(s,a) 2)

The learning process is guided by the minimization of the
Bellman loss:

2
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where experiences (s,a,r,s’) are drawn from a replay
buffer D, and 6~ denotes parameters of a target network
used to stabilize learning.

The performance of RL agents in traffic environments
depends critically on the type and quality of data provided
during training. Modern simulators such as SUMO [16]
provide access to a wide range of traffic indicators, but
their availability depends on the level of simulation gran-
ularity. Microscopic models provide detailed, vehicle-level
data (e.g., positions, speeds, and lane changes), which en-
able fine-grained control strategies for reinforcement learn-
ing agents) [17] [18]. However, they require substantial
calibration effort and computational resources. In contrast,
macroscopic models, which aggregate traffic features such as
lane occupancy and average queue length, are often used by
other RL approaches [19] [20] due to their ease of extraction
and better scalability for large-scale simulations.

Despite growing interest in RL-based traffic control, there
is no clear consensus on the most effective type of obser-
vation data [3]. While some approaches rely on detailed
microscopic inputs, others suggest that coarser macroscopic
data can achieve similar performance. To clarify this, we
conduct a systematic comparison using a unified DQN ar-
chitecture under consistent traffic scenarios, evaluating how




data granularity and agent decision frequency jointly affect
learning efficiency and policy quality, a combination rarely
explored in prior work.

III. METHODOLOGIES
A. Simulation tools

The simulation environment used in this study is SUMO
(Simulation of Urban MObility), a microscopic traffic sim-
ulator widely adopted [3] with open-source integration. One
of the key advantages of SUMO is its ability to generate both
microscopic data such as individual vehicle positions and
speeds and macroscopic data, including lane-level densities
and queue lengths. This makes it particularly well-suited for
evaluating the impact of observation granularity in reinforce-
ment learning-based traffic control.

Custom traffic scenarios were created to simulate a single
four-leg intersection controlled by a traffic light, fig 1. The
simulation duration is fixed at one hour, during which varying
traffic densities are applied to the four approaches (north,
south, east, and west).

The SUMO-RL interface is used to allow real-time com-
munication between the simulator and the RL agents, en-
abling dynamic decision-making during training.
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Fig. 1. Illustration of the traffic environment and demand setup.

B. Traffic Scenario

The training scenario consists of a four-leg intersection
regulated by a single traffic light, operating with four distinct
signal phases. Two of these are primary phases, allowing
traffic flow from the north-south and east-west directions,

respectively. Intermediate yellow phases are inserted between
transitions to satisfy standard safety constraints.

Traffic demand is defined using several types of input
flows, characterized by constant vehicle insertion rates rang-
ing from O to 7 vehicles per minute. These flows are applied
over a simulation period of 1200 seconds (Fig. 1). All
vehicles are modeled as homogeneous passenger cars (5
meters in length), allowing the study to focus solely on the
effect of control policies without the added complexity of
multi-modal dynamics.

Using constant traffic flows during training ensures that
the agent is exposed to well-defined, stable traffic densities.
Because each decision by the agent alters the environment
significantly, a consistent flow rate guarantees that the sys-
tem remains within a specific density regime. This setup
is designed to promote focused learning under controlled
conditions, thereby facilitating the association between traffic
density and optimal phase selection.

C. Decision Timing Strategies: Fixed vs. Reactive DON

In reinforcement learning for traffic control, the timing
of decision-making plays a crucial role in both learning
dynamics and the effectiveness of the resulting policy. In
this study, we evaluate two distinct decision-making Deep Q-
Network (DQN) variants, differing in the temporal resolution
at which they interact with the environment. For clarity, we
introduce the names DQNFixed and DQNReact to distinguish
these two agent types throughout the paper. These are not
standardized terms in the literature but are defined here solely
for the purpose of comparison.

The DQNFixed agent [13], [18], [21] selects an action at
fixed intervals of duration D. This mirrors traditional fixed-
time signal control, producing phase durations that are strict
multiples of D. While simple to implement, this structure in-
troduces temporal rigidity in duration phase. Moreover, such
fixed-interval control can cause observation discontinuities,
especially with microscopic data: the identity and position
of vehicles may vary significantly between observations,
making it difficult to learn stable state-action mappings. In
contrast, macroscopic features like lane density or queue
length evolve more gradually and are less sensitive to such
temporal sampling gaps.

To address these limitations, this study adopts a reactive
control protocol commonly used in the literature [17], re-
ferred to here as DQNReact. In this setup, the agent observes
the environment at every second and can act at any time step.
Once a phase change occurs, it becomes inactive for a fixed
duration D, ensuring compliance with minimum green and
yellow time requirements.

This frequent interaction improves temporal consistency
in the observation space and allows for a greater variety
of phase durations. It is particularly beneficial when using
high-resolution (microscopic) inputs, as it reduces variability
between consecutive states and enables the agent to better
adapt signal timing to real-time traffic dynamics.

In our experiments, D is set to 7 seconds (5 seconds green
+ 2 seconds yellow) to meet safety requirements.



For benchmarking, the study use Webster’s formula [22]
to compute an optimal fixed cycle length:

1.5L+5

1-Y
Where L is the total lost time per cycle (in seconds), and
Y = > %, is the sum of flow ratios across phases. This
reference enables us to assess whether RL policies converge
toward near-optimal timing.

Copt = (4)

D. Replay Memory Filtering Strategy

Traditionally, reinforcement learning agents store all ob-
served transitions, comprising state, action, reward, and next
state in a replay memory buffer to stabilize training through
experience replay [14]. However, in the context of traffic
signal control, many environmental states may occur in
the absence of any vehicles, particularly during low-traffic
periods. Storing such transitions provides little to no learning
signal and may introduce noise during training.

To enhance learning efficiency, this study filters the replay
memory to retain only transitions involving at least one
vehicle, ensuring relevance to decision-making. Additionally,
the next state s’ is limited to vehicles present at the time of
the action, focusing learning on directly impacted traffic and
avoiding uncertainty from unobserved future flows.

Overall, this selective replay strategy reduces learning
noise, accelerates convergence, and reinforces policy learn-
ing on traffic states where control actions have meaningful
impact.

E. Observation Space

Two observation vectors were implemented to investigate
the impact of data granularity on learning performance. The
SUMO simulator enables the extraction of both microscopic
and macroscopic traffic information, allowing the agent to
perceive the environment through either level of abstraction
(see Table I).

The microscopic observation vector provides detailed
vehicle-level information, while the macroscopic observation
vector captures aggregated traffic states. The key character-
istics of each observation type are summarized in Table L
Notably, microscopic features include fine-grained informa-
tion such as individual vehicle speeds, positions, and blinkers,
allowing the agent to anticipate maneuvers like left turns
that could cause blockages. In contrast, macroscopic features
offer a coarser but more stable view through lane occupancy
densities and queue lengths, facilitating scalable learning.

F. Reward Function

The reward function is based on the cumulative waiting
time of vehicles. After each action, the agent stores the IDs
of the vehicles present at the intersection. At each decision-
making, the environment calculates the total waiting time
accumulated by these vehicles. This formulation encourages
the agent to reduce waiting times in successive decisions.

1 it V, =0
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TABLE I
COMPARISON OF OBSERVATION VECTORS USED IN THE DQN MODEL

Observation Type Features Included in the Observation Vector
Microscopic

One-hot encoding of the current traffic light phase

Speeds of the 10 closest vehicles

Positions of the 10 closest vehicles relative to the intersection

Turn indicators (blinkers) of the 10 closest vehicles
Macroscopic

One-hot encoding of the current traffic light phase

e Lane occupancy densities for all incoming lanes

¢ Queue lengths on each approach to the intersection

where w, is the cumulative waiting time of vehicle v ob-
served over the delay interval D after the action is taken,
and V; is the set of vehicles present at the intersection at
time ¢.

IV. EXPERIMENTATION

The experimental protocol is divided into three distinct
studies, each targeting a specific aspect of the proposed rein-
forcement learning framework for traffic signal control. All
experiments are conducted using the simulation environment
described in Section III-B.

A. Experiment 1: Impact of Replay Memory Filtering

This experiment aims to evaluate the contribution of two
specific mechanisms within the reinforcement learning frame-
work: (i) selective storage of transitions in the replay memory,
and (ii) targeted vehicle selection for computing rewards and
next states, as described in Section III-D.

To this end, this experimentation compare two agents
using the DQNFixed architecture. Both are trained under
identical conditions using the microscopic observation vec-
tor (Section III-E), the simulation environment detailed in
Section III-A, and the training traffic scenario presented in
Section III-B. The baseline agent uses a standard replay
memory that stores all observed transitions indiscriminately
and computes rewards based on all vehicles present at the
next state. The enhanced agent implements selective replay
memory filtering and restricts reward computation to vehicles
present at the moment the action was taken.

Results show in Fig. 2 that both agents successfully
converge toward a good mean waiting time. However, the
enhanced agent exhibits significantly more consistent per-
formance across training epochs, with lower variance in
average vehicle waiting times. This suggests that focusing the
learning process on meaningful, vehicle-relevant transitions
improves the stability and robustness of the learned policy.

Having established the benefits of selective replay memory
and vehicle filtering on training stability, the next experi-
ment focuses on evaluating the limitations of fixed decision
intervals, particularly in the context of high-resolution micro-
scopic observations.

B. Experiment 2: Impact of Observation Granularity with
Fixed Decision Frequency

The working hypothesis is that the microscopic observation
vector, due to its higher level of detail, would enable the
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Fig. 2. Final performance comparison between DQNFixed agents with and
without replay memory filtering. Each box represents the distribution of
average waiting times over the last 10 episodes of 5 training runs of 100
episodes.

agent to learn more precise traffic control policies and reduce
average vehicle waiting times. However, this increased gran-
ularity also introduces greater variability in the input space
across successive time steps, particularly when decisions
are made at coarse intervals. For instance, vehicle identities
and positions may change drastically between two actions,
reducing temporal coherence in the observed state.
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Fig. 3. Convergence comparison of DQNFixed using microscopic and
macroscopic observation vectors over 5 training runs. Curves are approx-
imated by an exponential function y(z) = me~*/T 4 b, where the time
constant 7 indicates the convergence rate.

As shown in Fig. 3, the macroscopic model converges
significantly faster, reaching 90% of optimal performance
with a 41.29% improvement in convergence rate compared
to the microscopic model. It also yields better overall results,
with a 33.11% reduction in average vehicle waiting time. This
outcome is likely due to the increased noise and instability
introduced by high-dimensional microscopic features when
combined with infrequent decision updates.

These findings confirm that the use of coarse decision
intervals in DQNFixed impairs the agent’s ability to exploit
the richer but more volatile microscopic data. In contrast,
macroscopic inputs offer more temporally stable representa-
tions, which are better suited to fixed-interval architectures.

To further investigate whether these limitations can be
overcome through more frequent agent-environment inter-
actions, the next experiment introduces a reactive agent
architecture (DQNReact), which evaluates the environment
at every time step while still respecting safety constraints on
phase duration.

C. Experiment 3: Observation Granularity under DQN-
React

The third experiment aims to evaluate whether high-
frequency decision-making, enabled by the DQNReact ar-
chitecture, improves traffic signal control performance and
reduces learning variability. In particular, this experiment
investigates whether the use of fine-grained microscopic
observations is necessary to achieve high performance, or
whether macroscopic inputs combined with reactive control
can yield comparable results.

As in previous experiments, the two observation vectors
defined in Section III-E are tested under identical traffic
conditions and simulation settings. The DQNReact agent
evaluates the environment every second and is capable of
taking an action at any time step, while still respecting the
minimum phase duration constraints (see Section III-C). Its
ability to act more frequently than the DQNFixed agent is
expected to alleviate the limitations of fixed control cycles
identified in Experiment 2.

As shown in Table II, the DQNReact agent achieves
lower average waiting times compared to its DQNFixed
counterpart, regardless of the observation vector used. The
microscopic observation provides only a marginal improve-
ment over the macroscopic variant (2.19% gain), suggesting
that high-resolution data may not be necessary when using a
reactive control strategy.

More importantly, DQNReact demonstrates a substantial
reduction in performance variability. The standard deviation
of average waiting time across five runs drops to approxi-
mately 1 second, compared to 3.26 seconds for DQNFixed
with microscopic inputs. This suggests that increasing the
frequency of decision-making not only improves performance
but also enhances the robustness and stability of the learning
process.

These findings support the idea that macroscopic observa-
tions, when combined with a responsive control architecture,
are sufficient to train effective reinforcement learning models
for traffic signal control, without the need for costly and
complex microscopic simulation.

D. Discussion and Insights

Overall, the experimental results demonstrate, with selec-
tive replay memory, that macroscopic observation vectors,
despite being less detailed, are sufficient to train efficient
traffic signal controllers with DQN. In fact, they lead to
faster convergence and more stable behavior, particularly
when combined with a reactive decision-making strategy.

The comparison between DQNFixed and DQNReact also
reveals that frequent decision-making significantly improves
policy robustness and reduces performance variability across



TABLE 11
PERFORMANCE COMPARISON OF DIFFERENT DQN STRATEGIES AGAINST OPTIMIZED FIXED-TIME TRAFFIC LIGHT (BASELINE/WEBSTER’S FORMULA).

Metric Webster’s formula DQN_Fixe Micro
Average waiting time (seconds) 89.26 30.80

% Reduction from baseline - 65.49%
Standard deviation over

the last 10 epochs (5 runs) - 3.26

training runs. While microscopic data may offer marginal
improvements in average waiting time, its benefits do not
justify the added complexity and computational cost, es-
pecially when simpler, aggregated features can yield near-
optimal performance.

These findings support the idea that lower-resolution data
can be both effective and practical for reinforcement learning-
based traffic control, which opens the door to more scalable
training strategies using macroscopic simulation environ-
ments.

V. CONCLUSION

This study investigated the impact of data granularity on

reinforcement learning-based traffic signal control (TSC),
using the Deep Q-Network (DQN) architecture as a learning
framework. We compared two agent configurations: DQN-
Fixed, which makes decisions at regular fixed intervals,
and DQNReact, which operates at a higher frequency with
enforced pauses after phase changes. Our experiments eval-
vated how these configurations perform when trained on
either microscopic (vehicle-level) or macroscopic (flow-level)
observation data.
The results show that fine-grained microscopic data is not
essential for effective policy learning. In particular, DQNRe-
act, benefiting from more frequent decision-making, achieved
robust and stable performance even with coarse macroscopic
inputs. These findings challenge the common reliance on
detailed, heavily calibrated microscopic simulations, and sug-
gest that macroscopic modeling provides a more scalable and
computationally efficient alternative for training RL agents
in large-scale or real-time TSC scenarios Future work will
aim to translate these findings into real-world contexts by
applying DQN-based models to multi-intersection traffic net-
works using real data. A promising direction is to first learn
decentralized control strategies from real-world aggregated
data using macroscopic models, and then transfer the learned
policies to more detailed environments.
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