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Abstract

With the rapid evolution of wireless communication technologies, ensuring reliable and
efficient data transmission in high-mobility scenarios has become a critical challenge. In
particular, accurate channel estimation is essential to maintain communication quality
in environments characterized by significant Doppler effects and dynamic propagation
conditions. This thesis explores the design of waveforms for efficient sparse delay-Doppler
channel estimation in high-mobility wireless communication systems. As future wireless
networks demand robust and accurate channel estimation techniques, particularly in the
presence of high Doppler shifts, the study focuses on both on-grid and off-grid approaches

for doubly sparse linear time-varying (DS-LTV) channels.

In the first part, we investigate on-grid DS-LTV channel estimation and introduce
three different sparsity models that characterize practical propagation environments. We
propose an optimized estimation framework leveraging the minimum mean squared error
(MMSE) criterion and basis expansion models (BEMs). Through theoretical analysis
and simulations, we demonstrate that Affine Frequency Division Multiplexing (AFDM)
outperforms traditional waveforms such as Orthogonal Frequency Division Multiplexing
(OFDM) and Orthogonal Time Frequency Space (OTFS) in terms of pilot overhead

reduction and estimation accuracy.

In the second part, we extend our study to off-grid DS-LTV channel estimation,
addressing the issue of mismatches between actual Doppler shifts and predefined grid

points. By employing novel off-grid approximation techniques based on multiple shifted



Abstract

elementary BEMs, we enhance estimation robustness and improve channel prediction
capabilities. Our findings confirm AFDM’s efficiency in handling off-grid Doppler shifts
and its potential for adaptive transmission strategies.

Beyond channel estimation, we explore the broader implications of our research
for radar and sensing applications, demonstrating the feasibility of sub-Nyquist radar
techniques that optimize sampling rates while maintaining detection accuracy. This inter-
disciplinary approach highlights the impact of our work beyond wireless communication
systems. The conclusions drawn from this research provide valuable insights for the
development of next-generation communication technologies. Future work could explore
adaptive sparsity-aware estimation techniques, machine learning-based approaches, and
real-world experimental validations to further enhance the practical deployment of AFDM

in high-mobility scenarios.
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Résumé

Avec I’évolution rapide des technologies de communication sans fil, garantir une trans-
mission de données fiable et efficace dans des scénarios de haute mobilité est devenu un
défi crucial. En particulier, une estimation précise du canal est essentielle pour maintenir
la qualité de communication dans des environnements caractérisés par des effets Doppler

significatifs et des conditions de propagation dynamiques.

Cette these explore la conception de formes d’onde pour une estimation efficace des
canaux parcimonieux en delai-Doppler dans les systemes de communication sans fil a
haute mobilité. Alors que les futurs réseaux sans fil exigent des techniques d’estimation
de canal robustes et précises, en particulier en présence de forts décalages Doppler, cette
étude se concentre sur les approches sur grille et hors grille pour les canaux linéaires

temporellement variables (DS-LTV) a double parcimonie.

Dans la premiére partie, nous étudions l'estimation des canaux DS-LTV sur grille
et introduisons trois modeles de parcimonie différents caractérisant les environnements
de propagation pratiques. Nous proposons un cadre d’estimation optimisé exploitant le
critere de lerreur quadratique moyenne minimale (MMSE) et les modeles d’expansion
de base (BEMs). Grace a des analyses théoriques et des simulations, nous démontrons
que le multiplexage par division de fréquence affine (AFDM) surpasse les formes d’onde
traditionnelles telles que le multiplexage par division orthogonale de fréquence (OFDM)
et Pespace temps-fréquence orthogonal (OTFS) en termes de réduction de la surcharge

des pilotes et d’amélioration de I'exactitude de ’estimation.
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Résumé

Dans la seconde partie, nous étendons notre étude a ’estimation des canaux DS-LTV
hors grille, en abordant le probleme des écarts entre les décalages Doppler réels et les
points de grille prédéfinis. En employant de nouvelles techniques d’approximation hors
grille basées sur des modeles d’expansion de base élémentaires déplacées multiples, nous
améliorons la robustesse de I'estimation et les capacités de prédiction des canaux. Nos
résultats confirment 'efficacité de 'TAFDM dans le traitement des décalages Doppler hors
grille et son potentiel pour des stratégies de transmission adaptatives.

Au-dela de l'estimation de canal, nous explorons les implications plus larges de
notre recherche pour les applications radar et de détection, démontrant la faisabilité
des techniques radar sous-Nyquist qui optimisent les taux d’échantillonnage tout en
maintenant la précision de détection. Cette approche interdisciplinaire met en évidence
I'impact de notre travail au-dela des systémes de communication sans fil.

Les conclusions tirées de cette recherche fournissent des perspectives précieuses pour
le développement des technologies de communication de nouvelle génération. Les travaux
futurs pourraient explorer des techniques d’estimation adaptatives tenant compte de
la parcimonie, des approches basées sur ’apprentissage automatique et des validations
expérimentales en conditions réelles afin de renforcer le déploiement pratique de ’AFDM

dans les scénarios de haute mobilité.
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Notations

The next list describes an overview on the notation used throughout this manuscript. We

use boldface uppercase letters (A) for matrices, boldface lowercase letters for vectors (a),

and regular letters for scalars (a or A). Sets are represented by calligraphic uppercase

letters (A).

Bernoulli(p)
B(n,p)

CN (0,02
X~F

P

E[X]

Al

The Bernoulli distribution with probability p

Binomial distribution with parameters (n,p)
Zero-mean Complex Gaussian distribution with variance o
Random variable X has distribution F'

Probability measure associated with a random variable
Expected value of random variable X

Cardinality of the set A

Maximum between the real number z and 0, max(z,0)
Integer interval between [ and m (including [ and m)
Hermitian transpose of the matrix A

The c-th column of the matrix A

The r-th entry of the c-th column of the matrix A
Modulo N

Ceil function

Floor function

Fuclidian norm of the vector a

Absolute value of the variable a

Used for definition
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Chapter 1

Introduction

Supporting a wide range of services and applications is the stated aim of next-generation
wireless systems (beyond 5G/6G). This involves maintaining dependable communications
in settings characterized by high mobility, like diverse automotive communications
including communications like V2X and high-speed railway systems. As wireless networks
evolve to meet these demands, one key challenge remains: how to maintain robust,
efficient, and reliable communications in highly dynamic environments where mobility
introduces rapid time variations in the propagation channel, particularly in the case of

linear time-varying (LTV) channels.

The current backbone of wireless communication, Orthogonal Frequency Division
Multiplexing (OFDM), has proven effective in stable or slowly varying environments.
OFDM is central to modern communication standards such as 4G and 5G due to its
efficient spectrum utilization in typical terrestrial communication channels [I]. However,
OFDM begins to show limitations in high-mobility contexts, particularly where Doppler
shifts, resulting from relative motion between the transmitter and receiver, significantly
affect the communication channel. In such cases, the frequency channel becomes time-
varying, leading to interference, specifically Inter-Carrier Interference (ICI), which arises

from the mismatch in frequency synchronization between transmitters and receivers.



Chapter 1. Introduction

This interference degrades system performance and limits the effectiveness of OFDM in

high-mobility scenarios [2].

With the push towards higher frequency bands, such as millimeter-wave (mmWave)
bands, which offer vast bandwidth but are more susceptible to Doppler shifts, the
challenges for traditional OFDM systems are further exacerbated. The need for new,
more robust communication methods to handle these high-mobility, high-frequency
environments has never been more pressing [2]. However, existing methods often suffer
from high computational complexity and pilot overhead, making them inefficient in

practical deployments.

Traditional time-frequency (TF) domain-based methods for channel estimation strug-
gle to cope with these rapid variations inherent in LTV channels. These methods typically
assume slow or moderate channel dynamics, an assumption that does not hold in high-
speed, high-frequency scenarios where channel conditions can change dramatically over
short timescales. Furthermore, the need for frequent pilot signals in TF-based approaches
leads to a substantial waste of bandwidth, which could otherwise be used for transmitting
actual data. The delay-Doppler (DD) domain, on the other hand, offers a promising
alternative for channel estimation in such scenarios. In the DD domain, LTV channels
that exhibit rapid time variations appear almost stationary, simplifying the estimation
process by extending the time period over which the channel can be considered constant
[3]. However, despite this advantage, efficient channel estimation in the DD domain

remains a challenge due to the high-dimensional nature of the channel parameters.

Additionally, sparsity is a key characteristic of wireless channels that can be exploited
to reduce the amount of pilot overhead required for accurate channel estimation. In
systems operating in sub-6 GHz bands, the channel sparsity is primarily observed in the
delay domain [4, [5], where the number of significant delay taps is much smaller than the
total possible delay spread. In high-mobility scenarios, this sparsity extends into the

Doppler domain, where the number of significant Doppler shifts is also small, even for
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relatively high transmitter-receiver velocities.

A question thus arises as to which waveforms can offer for communications on LTV
channels both good data transmission reliability and efficient channel estimation schemes
that can take advantage of DD sparsity. To deal with high-mobility communications,
orthogonal time frequency space (OTFS) modulation has been recently proposed [6].
OTFS is a two-dimensional (2D) modulation technique that spreads the information
symbols over the delay-Doppler domain [3]. It has been proved that OTFS outperforms
OFDM in doubly selective channels [7]. However, channel estimation overhead in OTFS
cannot be reduced when the channel exhibits more sparsity (or at best it can be reduced
to a very limited extent) unless non-orthogonal pilot-data multiplexing is employed.
Indeed, one way of exploiting delay-Doppler sparsity in OTFS is according to [§] by using
a sparse superimposed pilot (SP-Sparse) scheme for channel estimation. SP-Sparse is a
non-orthogonal scheme where pilot symbols are superimposed on top of data symbols in
the transform domain of OTFS. When (the more practical) orthogonal pilot transmission
is instead maintained, the performance gap between OTFS and OFDM narrows in favor of
OFDM on channels with delay domain sparsity [9]. Another recently proposed waveform
for communications in high-mobility scenarios is Affine Frequency Division Multiplexing
(AFDM) [10, 11]. While in AFDM data and pilot symbols are not directly transmitted
in the delay-Doppler domain, AFDM can still reconstruct a DD representation of the
channel achieving full diversity on doubly dispersive channels. In the absence of DD
sparsity, AFDM has a comparable bit error rate (BER) performance to that of OTFS
but with the advantage of requiring less channel estimation overhead [10]. However, the
study of AFDM reliability and channel estimation performance under the assumption of

DD sparsity has not been investigated yet.

Therefore, in this thesis, we explore advanced waveform design strategies tailored for
sparse delay-Doppler channel estimation. Specifically, we analyze how different wave-

forms—such as OTFS, OFDM, single-carrier modulation (SCM) and AFDM—perform
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under varying sparsity conditions in high-mobility environments. Our objective is to
determine which waveform best exploits delay-Doppler sparsity to minimize pilot overhead
while maintaining accurate channel estimation.

Before addressing that problem, we first give in the next section some common
background material that will be useful for the remaining chapters of the thesis. This
includes a reminder on LTV channels and on AFDM—a waveform that has demonstrated
robustness in high-mobility scenarios and provides insight into practical communication

systems designed for such channels.

1.1 Background

1.1.1 Linear time-varying channels

This thesis deals mainly with waveform and pilot design solutions for wireless propagation
links that can be modeled as LTV channels that are further characterized by double
sparsity, in both their delays and Doppler components. In this section, we introduce the
mathematical representations of LTV channels. To accurately model and estimate such
channels, we adopt a probabilistic delay-Doppler representation, which provides a more
structured and intuitive framework for analyzing channel sparsity.

A LTV channel is a model of multipath propagation that is characterized by changes
in its impulse response over time, caused by Doppler frequency shifts. The received signal

at the channel output corresponding to a signal s(t) at its input is expressed as:

r(t) = /s(t)h(t,T)dT +2(t),t € R, (1.1)

T

where z(t) is the additive white Gaussian noise process and

NP
hit,7) =Y gpe®™ 7™ 5(r — 1), (1.2)
p=1
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is the continuous-time impulse response of the channel. Here, N, > 1 is the number of
paths (a random variable in general), §(-) is the Dirac delta function, and g, v, and 7,
are the (in general random) complex gain, Doppler shift (normalized with respect to
the subcarrier spacing Af i.e., the frequency resolution), and delay (normalized with
respect to the sample period Ty i.e., the time resolution) associated with the p-th path,
respectively. We define

Tp=lp+1p, (1.3)

where [, € [0..L — 1] is its integer part, while ¢, is the fractional part that satisfies
_71 < < % We also define

Vp = GQp+ Kp , (1.4)

where ¢, € [—Q..Q] is its integer part, while &, is the fractional part satisfying _71 <

N[

Kp <

In practice, the transmitted signal s(¢) is the continuous-time version of a discrete-
time signal s, = s (nTy) generated (assuming a sample rate T}) from a vector x of N
symbols (for some integer value N > 0). These symbols could be either data symbols,
pilot symbols or a combination of both. Defining r, = r(nT}) and z, = z(nT}), the
discrete-time version of the LTV channel model in (|1.1) becomes

Np
Ty = ngeZQ””P"AfTSS(nTS —Tp)+2n, NEL. (1.5)
p=1
From now on, 2z, ~ CN (0,03}) and the process (z,)nez is modeled as independent

identically distributed (i.i.d.).

The input-output relation in ((1.5)), while defining the LTV model, is not sufficient to
give a rigorous sense to delay-Doppler sparsity. Such a rigorous definition of delay-Doppler
sparsity is crucial to get the kind of mathematical model of doubly-sparse (DS)-LTV

channels that can enable developing sparsity-aware waveform, pilot design, and channel
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estimation solutions and for the thorough analysis of those solutions. Indeed, while it is
tempting to associate sparsity with the value of IV, being small relative to some relevant
measure, this does not correspond to many realistic wireless propagation scenarios which
are characterized simultaneously by a large value of IV, and effective sparsity. This
apparent contradiction disappears when we consider that many of the N, channel paths
have in real-world scenarios delay and Doppler frequency shift values that are very close
with respect to the time and frequency resolutions of the wireless transmission. To
remedy this limitation, a rigorous double-sparsity modeling is provided in Chapter [2| and
extended in Chapter

1.1.2 Affine frequency division multiplexing (AFDM)

A recently proposed waveform that can achieve robust communication performance
in high mobility scenarios is Affine Frequency Division Multiplexing (AFDM) [10, [11].
AFDM employs multiple orthogonal chirps generated using the discrete affine Fourier
transform (DAFT). With chirp parameters adapted to the channel characteristics, AFDM
can reconstruct a delay-Doppler representation of the channel, achieving full diversity on
doubly dispersive channels. In comparison with OTFS, AFDM has comparable bit error
rate (BER) performance but with the advantage of requiring less channel estimation

overhead [10].

In AFDM, modulation is achieved through the use of DAFT. DAFT is a discretized
version [12] of the affine Fourier transform (AFT) [10} [13] with chirp gm2m(cak® + y kntein?)
as its kernel(see Fig. |1.1]).In this work, we focus on a single design parameter, ¢, which is
adjusted to account for the level of sparsity in the channel, governed by its delay-Doppler
structure. The parameter c; is defined as ¢; = % by appropriately tuning c;, the
effective delay spread in the DAFT domain can be made large enough to minimize overlap
between channel taps. This facilitates better exploitation of the channel’s sparsity and

helps reduce inter-tap interference in the transformed domain.
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Figure 1.1: Time-frequency representation of three subcarriers of OFDM and AFDM
(c1 = %) Each subcarrier is represented with a different colour.

Consider a set of quadrature amplitude modulation (QAM) symbols denoted {zx }x—o...n—1-

AFDM employs inverse DAFT (IDAFT) to map {zk}x=0..N—1 t0 {sn tn=0..n—1 as follows:

—_

N—
1 mkez2w(02k2+%kn+c1n2),n —0.--N—1 (1.6)
0

Sy = ——
N =

with the following so-called chirp-periodic prefiz (CPP)

Sy = SN+n67127I'Cl(N2+2Nn), n = _LCPP R (17)
where Lcpp denotes an integer that is greater than or equal to the number of samples
required to represent the maximum delay of the wireless channel. The CPP simplifies to
a cyclic prefix (CP) whenever 2¢; N is integer and N is even, an assumption that will be

considered to hold from now on.

When AFDM is used for transmission on LTV channels, it has the property that a
channel path with a delay and a Doppler frequency shift equal in samples to respectively [
and ¢, appears in the DAFT domain as a path with an effective delay equal to —2Nc¢1l+gq.
This particular way of mixing delays and Doppler shifts in the DAFT domain that depends

on the AFDM parameters was shown in [10] to be the key to AFDM achieving the full
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diversity of LTV channels. Note that throughout this thesis we show the relevance of the
AFDM not only for achieving the full diversity of LTV channels but also for conceiving
efficient channel estimation solutions that can take advantage of the delay-Doppler

sparsity of doubly sparse linear time-varying (DS-LTV) channels.

1.2 Problem to solve

The problem addressed in this manuscript is the following.

1. To develop a comprehensive framework for efficient and accurate delay-Doppler
sparse channel estimation, including rigorous modeling and closed-form performance

analysis.

2. To use the developed framework to compare different wireless waveforms in terms of
sparse delay-Doppler channel estimation performance and to propose efficient pilot
schemes based on some of these waveforms capable of leveraging the delay-Doppler

sparsity of the channel.

To achieve this, we propose a mathematical representation of the channel that will
be formulated into two approximations: an on-grid and an off-grid model. The on-
grid approximation leverages a discretized delay-Doppler domain, facilitating structured
analysis and computational efficiency, while the off-grid model captures the continuous
nature of the channel in the Doppler domain, addressing inaccuracies introduced by
grid-based methods. Specifically, we propose a method for sparse channel estimation
based on an off-grid channel representation using multiple elementary basis expansion
models (BEMs). This channel representation will allow us to propose novel waveform
designs, and their related pilot schemes, that minimize channel estimation pilot overhead
while maintaining high estimation accuracy. These designs exploit the sparsity in both
the delay and Doppler domains, and closed-form asymptotic results will be derived to

quantify their associated minimal pilot overhead. Through both theoretical analysis and
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numerical simulations, we will demonstrate the superiority of the proposed framework,
particularly for practical system parameters, and highlight the potential benefits of
AFDM in terms of pilot overhead reduction and estimation accuracy.

We show in the next section that while previous research has explored the potential of
exploiting delay-Doppler sparsity for channel estimation, many of its approaches rely on
restrictive assumptions or fail to account for the full complexity of real-world propagation
environments. Specifically, existing methods either assume a grid-based discretization of
the delay and Doppler dimensions or rely on simplistic models that do not capture the
nuances of delay-Doppler sparsity. Furthermore, these approaches often fail to provide
analytical insights into the optimal pilot overhead or the performance comparison of

various waveforms under different sparsity levels.

1.3 State of the art

In this section, we provide a comprehensive overview of the background knowledge essential
for understanding the key contributions of this manuscript, summarizing existing solutions
and approaches related to the problem stated previously. We will go through the various
methods used for channel estimation, focusing on the exploitation of sparsity in the
delay and Doppler domains. This includes discussing grid-based approaches, compressive
sensing (CS) techniques, and off-grid methods, as well as their strengths and limitations
in high-mobility and high-frequency environments. By reviewing these existing strategies,
we will lay the groundwork for the novel contributions presented in this manuscript.
Sparsity plays a crucial role in wireless communication, particularly in the estimation
of LTV channels. The concept of sparsity emerges due to the limited number of dominant
scatterers contributing to signal transmission. By leveraging sparsity, advanced estimation
methods can mitigate the challenges posed by high-mobility scenarios where channel
variations are rapid and unpredictable. In wireless communication systems operating in

sub-6GHz frequency bands, sparsity is often observed in the delay domain, where only a
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few dominant delay taps carry most of the channel energy [4, 5]. Channel estimation
methods leveraging this delay-domain sparsity have been proposed in various studies,
such as [14], which uses grid-based discretization of the delay dimension to enable a
compressive sensing framework. However, in high-mobility scenarios, such as vehicular or
high-speed train communications, sparsity extends to the Doppler domain as well. Also,
in high-frequency bands, Doppler domain sparsity appears even at moderate transmitter-
receiver relative velocity values. Delay-Doppler sparsity was assumed in [15, [16] and
leveraged to conceive enhanced channel estimation schemes for time-varying channels
using the sparse Bayesian learning (SBL) framework. However, delay-Doppler sparsity
was modeled as the sparsity of a one-dimensional array with no way to assign different
sparsity levels to the delay and Doppler domains. The model in [I7] also assumes a form
of delay-Doppler sparsity, where one Doppler shift is considered per delay tap, though
this assumption can be restrictive for real-world wireless propagation channels. Other
studies have explored discretized delay-Doppler representations for improved channel
estimation, highlighting the efficiency of compressive sensing techniques in capturing
the sparse characteristics of wireless channels [3| [I8]. The authors of [19] use the virtual
channel representation i.e, multi-dimensional Fourier basis functions, to model multiple-
input multiple-output (MIMO) time-varying channels and introduce sparsity in the delay,
Doppler and spatial angle domains of that representation with no restriction on the
number of Doppler shifts per delay tap. Classical on-grid models assume that delay
and Doppler shifts are quantized to a predefined grid, allowing for structured sparse
recovery methods. This quantization simplifies estimation but introduces grid mismatch
errors [20], particularly in practical scenarios where the actual Doppler shifts do not
align perfectly with the assumed grid. Such mismatches degrade estimation accuracy

and necessitate advanced approaches capable of handling off-grid effects.

To overcome the limitations of strict grid-based models, off-grid channel estimation

techniques have been introduced. These methods relax the assumption of discretized

10
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Doppler shifts, enabling more accurate modeling of real-world wireless channels. Grid
refinement techniques have been explored to mitigate the performance degradation
caused by grid mismatches. [2I] presents a gridless approach for channel estimation, it
makes use of off-grid super-resolution techniques to effectively identify and reconstruct
doubly dispersive channels. Similar challenges arise in other fields, such as in microwave
imaging [22]. In a similar vein, other papers introduce the joint recovery of signals
with a continuous double domain formulation [23] 24]. The method in [23], based on
concatenated atomic norm minimization, is particularly applicable to delay-Doppler
sparsity in systems such as radar and communication networks, where signals are sparse
in both the delay and Doppler dimensions. The proposed approach significantly improves
the recovery of signals in the presence of off-the-grid frequency components, offering
advantages over traditional separate recovery methods. [25] highlights how delay and
Doppler sparsity are critical in radar imaging, particularly for rotating targets with off-grid
scatterers. The authors in [25] propose parameter-refined orthogonal matching pursuit
(PROMP), which enhances grid refinement using a nonlinear least-squares optimization,
thus improving scatterer position and reflectivity estimation. Off-grid sparse Bayesian
learning (SBL) [26] is another solution to handle sparsity in off-grid delay-Doppler models.
This method improves the accuracy of channel estimation by partially mitigating the
discretization errors associated with grid-based methods. However, the disadvantage of
this approach lies in its computational complexity, as it involves solving optimization
problems iteratively, which can be resource-intensive and may limit its applicability in
real-time or large-scale systems. Grid refinement methods improve frequency estimation
by increasing grid resolution, but they still face limitations. Despite finer grids, they
cannot fully eliminate basis mismatch between real-world signals and the grid, leading to
residual errors in cases with off-the-grid or continuous frequency components. This is
particularly the case, as is shown in Chapter|3] when the propagation link is characterized

by a large number of “physical” channel paths contribute to each of the (refined) grid

11
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points. A scenario that matches most of the real-world propagation environments.

Basis expansion models (BEM) can in principle offer an alternative to grid refinement.
Based on the BEM approach in [27] 28], the off-grid channel model demonstrates sparsity
in the delay domain, but this sparsity does not extend to the Doppler domain. The
approach in [27, 29] employs one BEM for each delay tap to capture channel variations,
without making any assumptions about sparsity in the Doppler domain. Similar to
this, [30, B1] introduces channel estimation scheme for OFDM systems over a doubly
selective channel leveraging compressive sensing and BEM and exploiting only delay
domain sparsity. These approaches fails to exploit both delay and Doppler domain
sparsity simultaneously, leading to inefficiencies in modeling complex, dynamic channels.
Resorting to BEM schemes aligns with the work in [32], which explores off-grid channel
estimation for OTFS systems with fractional delay and Doppler shifts. While the paper
addresses channel estimation in the delay-Doppler domain, it does not fully exploit DD

sparsity to achieve pilot overhead reduction.

As for the issue of waveform performance comparison under sparsity assumptions,
the work in [9] compares OFDM and OTFS under delay-Doppler sparsity in terms of
the pragmatic capacity i.e., the mutual information of the virtual channel having at
its input the constellation symbols excluding the pilot and guard symbols and at its
output the detector soft-outputs. While this overhead-aware comparison constitutes a
step forward, the restrictive sparsity model does not allow to do the comparison under
realistic propagation conditions nor to devise pilot patterns with adjustable time and
frequency densities for different delay-Doppler sparsity levels. Nonetheless, such works
point towards the fact that some waveforms are more suited to take advantage of delay-
Doppler sparsity than others. For instance, channel estimation overhead in OTFS cannot
be significantly reduced when the channel exhibits more sparsity unless non-orthogonal
pilot-data multiplexing is used as in [8]. For such a scheme, sparsity in the channel

delay-Doppler response lessens inter-pilot and pilot-data interference. However, the use

12
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of iterative detection methods becomes necessary which not only makes this approach
require high computational complexity but also makes it prone to error propagation. We
thus restrict our work in this thesis to the case of orthogonal resources for pilot and data

symbols.

1.4 Contribution

This thesis begins with a comprehensive overview in Chapter [I| establishing the founda-
tional knowledge necessary to understand the research contributions presented in this
manuscript. Following this, the key contributions of this work are outlined, with each

subsequent chapter expanding upon these advancements.

1. Chapter [2} Estimation of doubly sparse linear time-varying channels with the
on-grid approximation. This chapter introduces the concept of DS-LTV channels,
focusing on the on-grid modeling of delay-Doppler sparsity. The on-grid approach
assumes strict alignment with a predefined grid, simplifying analysis and practical
implementation. Three distinct delay-Doppler sparsity models—Type-1, Type-2,
and Type-3—are presented, capturing key characteristics of high-mobility and high-
frequency wireless communication environments. Furthermore, this chapter derives
statistical properties of the minimal pilot overhead required for reliable channel
estimation. Using these statistical findings, closed-form asymptotic results are
obtained for the average minimal pilot overhead and the mean squared error (MSE)
of four different waveforms. The results analytically demonstrate the superiority of
Affine Frequency Division Multiplexing (AFDM) in minimizing pilot overhead while
maintaining accurate channel estimation. Numerical simulations validate these

theoretical findings, confirming their relevance for practical transmission settings.

2. Chapter Estimation and extrapolation of doubly sparse linear time-varying

channels with off-grid Doppler shifts. This chapter extends the analysis to off-grid

13
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models, where Doppler shifts do not align perfectly with a predefined grid. A
novel off-grid approximation method is proposed, leveraging basis expansion models
(BEMs) to enhance channel estimation accuracy. The impact of off-grid Doppler
shifts on estimation performance is studied, and techniques for extrapolating
sparse delay-Doppler channels are introduced. The findings demonstrate significant
improvements in estimation robustness and predictive capabilities, which are critical

for high-mobility communication scenarios.

3. Chapter {4t Further applications. This chapter explores the broader applications of
delay-Doppler sparsity beyond wireless communications. It examines its potential
benefits in radar and sensing applications, particularly in sub-Nyquist radar systems,
where it enables reduced sampling rates and hardware complexity while enhancing

target detection and estimation.

The relation between the chapters and the publications is as identified in Table

14
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Table 1.1: Publications and their contributions to the chapters.
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Chapter 2

Estimation of Doubly Sparse Linear
Time-Varying Channels with the

On-grid Approximation.

This chapter begins by discussing on-grid delay-Doppler double sparsity, where channel
components align with a predefined grid, simplifying DS-LTV channel modeling. The
chapter then explores estimation techniques for known delay-Doppler profiles, comparing
SCM, OFDM, and AFDM in terms of minimal pilot overhead required by different wave-
forms to achieve identifiability or a target error performance. Next, it addresses unknown
delay-Doppler profile (DDP) using compressed sensing, introducing hierarchical sparsity
and recovery algorithm HiHTP. Finally, numerical results highlight AFDM’s efficiency
in minimizing pilot overhead while maintaining estimation accuracy, demonstrating its

advantages over other waveforms in DS-LTV channel estimation.
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2.1  On-grid doubly sparse linear time-varying channels

In a first approximation, we assume that both ¢, and &, are zero and we define L =

max, 7 + 1. Then the discrete-time LTV input-output model in (L.5]) becomes
p: e P s

L-1
Ty = Z Sp—thipm + 20, MNEZL. (2.1)

=0

The input-output relation in ([2.1]) defines an on-grid LTV channel with a L — 1 maximum

delay shift with the complex gain h;, of the I-th path varying with time index n as
NP
hin =Y o€ N6, l=0-L—1. (2.2)

p=1

Under this assumption, we define g, as:

9p = Uy, 11,.0, » (2.3)
where I 4 is given by:

1 if 3p such that (1,q) = (I, gp),
I, = (2.4)

0 otherwise.

The number of paths NV, as defined in equation ([1.2)), can now be expressed as:
L-1 Q
N, = Z Z I 4 (total # paths in the on-grid model) (2.5)
=0 ¢=-Q

Here, I}, for any [ and ¢ is a binary random variable that, when non-zero, indicates
that a channel path with delay I, Doppler shift ¢ and complex gain «; 4 is active and

contributes to the channel output. Note that the distribution of the random variables
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{114}, q controls the kind of sparsity the LTV channel might have. The complex gain is

assumed to satisfy oy 4 ~ CN (O, 03) with o2 satisfying the channel power normalization

L

|
—

Q
_Z [\al,qlzfz,q} =1. (2.6)

g

Definition 2.1.1 (On-grid Delay-Doppler double sparsity, [33]). The complex gain h;,, of

the [-th path of the LTV channel varies with time as
= Y auglie®™ N, 1=0,...,.L—1, (2.7)

and there exist 0 < pg,pp < 1 such that

Lg=11, Y(,q) €[0.L-1] x[-Q..Q], (2.8)

where I; ~ Bernoulli(py) and Lgl) ~ Bernoulli(pp). Moreover, I; , and «; 4 are indepen-

dent.

Fig. [2.1] illustrates three different delay-Doppler sparsity models, fully described in
[33] and dubbed Type-1, Type-2 and Type-3, that all fall under the scope of Definition
m each with an additional different assumption on I; and Lgl). Here, we just point out
that the difference between Type-2 and Type-3 of Figures [2.1b] and respectively,
is that in the latter the active Doppler bins per delay tap appear in clusters of random
positions but of deterministic length as opposed to the absence of clusters in the former.
The case where the delay taps have all the same (random) sparsity (as in Type-1 models
of Fig. |2 also falls under Definition 1| by setting I, M _ é ),Vl

The above models are not exhaustive. For instance, block sparsity can be extended
to the delay domain. Furthermore, each model can be extended by removing the on-grid
approximation. In that case, I; , will only represent the closest grid point in the delay-

Doppler domain to a channel path instead of representing the path itself. Nonetheless,
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Figure 2.1: Examples of channels satisfying the 3 types of delay-Doppler sparsity

the three models capture important features of wireless channels in high-frequency bands
that are subject to user mobility.

Note that under Definition sa = E Y., ] = paL is the mean number of active
delay taps in the delay-Doppler profile of the channel and can be thought of as the delay
domain sparsity level while sp = E {Zq Lgl)} = pp(2Q + 1) is the mean number of active
Doppler bins per delay tap and can be thought of as the Doppler domain sparsity level.

To ensure sparsity in a stronger sense i.e., with high probability (as L, @, Lpq, (2Q +

1)pp grow), we require that the following assumption hold.

Assumption 2.1.1. {[;},_,..;_; are mutually independent. Also, random variables {Lgft)} -
t=1---

are mutually independent for any (l1,q1), ..., (Ir,qr) (T < min(l,2Q+1)) such that ls # I

and qs # q¢ whenever s # t. Moreover, the complementary cumulative distribution func-

tion (CCDF) Fg,,(m) of the random variable Sp; = E?:_Q Lgl) for any l € [0..L —1]

is upper-bounded for any integer m > (2Q + 1)pp by the CCDF of B (2Q + 1,pp).

The CCDF upper bound condition in Assumption [2.1.1] is not arbitrary. Indeed,
Type-1 and 2 models easily satisfy it simply by requiring that {Iq(o)}q in the first
and {Lgl)}q for any [ in the second to be mutually independent (and to thus satisfy
Fs,,(m) = Fyag+1,pp)(m),¥m). For Type-3 models, Sp is deterministic and hence
its CCDF is trivially upper-bounded. As the following lemma rigorously shows, the

mutual independence of {I;},_,.. ;_; in Assumption guarantees strong delay domain
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sparsity while Doppler sparsity is guaranteed in a more explicit manner by the CCDF

upper bound.

2.2 Waveform definitions

In this section, we define the waveforms used for estimation in subsequent sections. For
that sake, let s be the N-long vector of samples s, at the input of the channel. Define x
as the vector of data symbols and embedded channel estimation pilots, which modulate
the waveform in use to produce the time-domain samples vector s. For all the considered

waveforms, we can write the dependence of s on x using a modulation matrix Py
s = Px. (2.9)

For single-carrier modulation (SCM), ®i, = Iy. For AFDM, ®y = ApFyA.,
with A, = diag(6_12”0”2, n=20,...,N —1) and Fy being the N-order discrete Fourier
transform (DFT) matrix. For an OFDM grid as the one shown in Figure composed
of Ng symbols each having Ng; sub-carriers and a cyclic prefix of length N¢,, ®ix =
blkdiag <TCpF%ﬁ%, ey TCPF%HJ with T, = 0, Incy being the matrix for cyclic prefix

TNy, Nie
insertion. For OTFS, @ = F?/Iotfs ® In,

ofs

At the receiver, let r be the N-long vector of the channel output samples r,, defined in
. Depending on the waveform employed, the receiver applies a demodulation matrix
P, to produce the vector of transform domain samples y. For both SCM and AFDM,
®,, = ®L. For the OFDM grid of Figure ®,, = blkdiag (F g Rep; - -, F g Rep)
and Rep = [0,1In,,] is the matrix for cyclic prefix removal. For OTFS, &, = ®LL.
Let P C [0..N — 1] designate the indexes of the received samples associated with NV,
transform domain pilots, of values {p,}y=1..., inserted at indexes {mp}pzlm N, within

the vector x and each surrounded with a waveform-dependent number of zero guard
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Tx Frame in time domain:
|d|--[d[ofo]o[pifo[o[o]d[d}-[d[d[o[o]o[p]o[o[o[d[d[d}--[d[d[d[o[o[oPro[o[o]d] |d]
e ——

L-1

Figure 2.2: An example of a SCM frame composed of data samples and pilot symbols,
each of the latter surrounded by 2L — 1 guard samples.

Tx Frame in time-frequency domain:

d d d d d
d Py 1 Nese+me 1 P 5 Nege +ms 1 pmt,Np,c Nege+me,1 d
d d d d d
d d d d d
d pmc,lefc-%—mf,prf pmc,szfc+mf,prf pmt,vat Neso+me, v, ¢ d
d d d d d

Figure 2.3: OFDM frame with pilot (blue), guard (light blue and red) and data (red)
subcarriers. Each symbol is preceded by L — 1 CP samples (light red)

samples (see Figures and [2.5)).

For SCM,
NP

P = JImp..mp+L—1]. (SCW) (2.10)
p=1

As for OFDM, let my, € [0..Ng — 1] be the time domain position of the p-th pilot and

mp, € [0.. Ngw — 1] be its frequency domain position. Then
P = {mp = mep Nagt + me ptpe=1--Npi,»  Np = NptNpg, (OFDM) (2.11)
pr=1--Np ¢

For OTFS, the set P is the vectorized form of the Frame shown in Figure 2.4,

While for AFDM, it holds [34] that

-1 Q
Yk = Z Z Oéz,qfl,qeﬁﬂ(clp’le“’?(mLkz))xk + wy
=0 ¢—0Q (2.12)

mé(k—q—i—ZNcll)N.

The samples related to the p-th pilot symbol thus occupy 2N|ci|(L — 1) +2Q + 1
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Figure 2.4: An OTFS symbol composed in the Zak domain of data samples (red), a pilot
sample (blue) and guard samples (light blue and red)

Tx Frame in DAFT domain:
\d|--[d|ofofoojofo[pi[o[ofo[o]o|o|d[d][d}-[d|d|[d]o]o]o[o[ofopxjo[ofo[ofojo|d}-[d]

Q 2N[a|(L-1)+Q

Figure 2.5: AFDM symbol composed of data samples, N}, pilot symbols and their guard
samples.
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DAFT domain indexes. More precisely, and in case ¢ is negative,

Np
P=JImp— Q..mp+2N|c1|(L - 1)+ Q. (AFDM) (2.13)
p=1

2.3 Channel estimation with known delay-Doppler profile

This section focuses on on-grid channel estimation in time-varying communication systems,
where Doppler shifts align with the predefined discrete grid. In this scenario, the channel
is modeled under the assumption that Doppler shifts are exactly represented by the
grid points, which simplifies the estimation process. The section presents techniques for
estimating channel coefficients by leveraging pilot symbols and applying minimum mean
squared error (MMSE) estimation considering that the knowledge of the delay-Doppler

profile (DDP) i.e., of {Ii g}, ;- at the receiver side is assumed. This bears

similarities with the knowledge of the power delay profile (PDP) for linear time-invariant
(LTT) channel estimation [35]. The performance of on-grid channel estimation is also
analyzed, with numerical results demonstrating its effectiveness in achieving accurate

and reliable estimates, while maintaining lower computational complexity due to the grid

alignment.

2.3.1 Estimation of DS-LTV channels with known DDP using different wave-

forms

We now turn our attention to the estimation of the DS-LTV channel using practical
waveforms and embedded pilots.

Let aqap = [,4) (1,g)s.8.1, ,=1 designate the vectorized form of the unknown channel
gains associated with active delay-Doppler components such that o = Aqogap (Qdap
being the restriction of the vector a to the DDP support) . For any of the above

waveforms, let y, £ [yr]kep be the vector of received pilot samples. Inserting (2-7) and
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(2.9) into (2.1]) gives the following signal model for recovery the vector agdp

Yp = ApMA, agqp + Wp (2.14)
——
£M,
where x;, is a vector of the same length as x with entries equal to py,...,pn, at indexes

{mp}p:1... Ny and to zero elsewhere, wy, are the corresponding noise samples and the

matrix M is a N x L(2Q + 1) partitioned matrix expressed as

M:[['YO,Q R (o) B o (A N REE 7L17Q]] (2.15)

with the columns of M being given as

M
Ya=Y pi [@rXAqH@gh . (2.16)
=1

Pq

Here, Ap is the |P|x N matrix that chooses from the transform domain received vector the
entries corresponding to P. A, is the matrix that augments aqq, with zeros corresponding
to I; 4 = O resulting in a L(2Q+1)-long vector Ayoqap. Ay = diag(e®?™" n=0---N—1),

II is the N-order permutation matrix.

The minimum mean squared error (MMSE) estimate, qqp, of aqqp based on yp, is
given by [36]

Oddp = Ugé(U?ngMp + aiI)_lMEyp : (2.17)

For any (I, q) satisfying I; , = 1, define &y, as the corresponding entry of vector éqqp.

For any (I,q) € [0..L — 1] x [-Q..Q] such that I; ;, = 0, set &, = 0. Finally, define
hin 22 oangle® N, n=0,... . N-1. (2.18)

as the resulting MMSE estimate of h;,. In what follows, we give indications on how

to set N, and c¢; based on the delay-Doppler sparsity level of the channel so that the
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minimal pilot overhead needed to guarantee a vanishing (with respect to an increasing
signal-to-noise ratio (SNR)) mean squared error (MSE) E[Zf:_ol + ZnN:_()l |hyp — ﬁl7n|2] =

E[[|é&adp — adpl|*]-

2.3.2 AFDM parameters setting for transmission over DS-LTV channels

In the case of AFDM, thanks to these zero guard samples, the amplitude of the pilot
symbols can be boosted as follows without violating the (time domain) transmit power

constraint:

il =V2/a[N(L-1)+2Q+1, i=1---M. (2.19)

Let ug{q) (m € Z) be the individual DAFT domain impulse response of the part of
the channel associated with delay-Doppler component oy 4. Since [0..L — 1] x [-Q..Q]
in the delay-Doppler domain maps to an interval in the DAFT domain that is either
[-Q..2|c1|N(L — 1) + Q] if ¢1 is negative or [—Q — 2|c;1|N(L — 1)..Q] if ¢; is positive,

the latter interval is the support of qu;q). We designate by DAFT domain representation

of the channel the collection {U&Q)}(l,q)e[[o..L—l]]><[[—Q..Q]] of all individual DAFT domain
impulse responses. Figure shows the DAFT domain representation of a channel in the
case c] = ﬁ while Figure shows that representation when ¢y = % In what follows
we restrict ¢ to be negative without loss of generality. Define the random variable X}, =
H{(,q) €[0..L —1] x [-Q..Q], 14 =1, — 21Nl = k}| for any k € [-Q..2|c1|N(L —
1)+ Q + 1], i.e., X}, is the number of non-zero components oy, appearing at index k
in the DAFT domain representation. It is also the number of terms in the mixture of
complex sinusoids that constitute the sample y; in and is thus closely related to
pilot overhead and channel estimation performance. For instance, under a given channel
realization, the minimal number of DAFT domain pilots needed for full identifiability
i.e., for the measurement matrix M}, in to have full column rank, should be at

least equal to Xi. We will also show that the distribution of X

max
ke[-Q..2|c1|N(L—1)+Q+1]
affects directly the MSE of &qqp. This is why we examine in what follows that probability
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Figure 2.6: DAFT domain representation of the channel realization of Figure for
different values of ¢;

distribution. First, by referring to the signal relation in we can see that with
“enough” sparsity i.e., if the number of nonzero channel components is sufficiently smaller
than the support [—Q..2|c1|N(L—1)+Q+1] of the channel DAFT domain representation,
it is unlikely that X} takes large values and hence it is unlikely that a large number of
DAFT domain pilots would be needed to get a target estimation error performance. This
can be seen from Figure [2.6| where m’?xXk = 3 when |c1]| = 7% and m’?xX r = 1 when
le1] = % The following lemma and the ensuing theorem give a rigorous confirmation of

the above intuition.

Lemma 2.3.1. For ¢; = —4 (P € N*) and any k € [-Q..2|c1|N(L — 1) + Q] the

complementary cumulative distribution function (CCDF) of Xy, under Assumption
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is upper bounded by the CCDF of B((2[%] + 1, papp).-

Proof. The proof of Lemma [2.3.1] is provided in Appendix O

For tractability and more insights, the asymptotic regime for N, L, () defined by the
following assumption will be helpful. Note that the numerical results given in Section

[2.3.3] are not asymptotic but are obtained with finite values of N, L, Q.

Assumption 2.3.1. L = O(K), Q = O(K), sq = O (K"4) and sp = O (K"P) for some

Kd, kKD € [0, 1).

Remark 1. Assuming L = O(K) and Q = O(K) implies that N = O (K?). Indeed,
assuming that the mazximum delay L increases to infinity as K implies that the transmission
bandwidth increases at the same rate. Also, assuming that the maximum Doppler shift
Q increases as K implies that the transmission duration increases at the same rate.

Therefore, the frame size in samples i.e., N, increases as K.

Theorem 2.3.1. Under Assumption and Assumption if we set P s.t. (L—1)P+
2Q+1 = O(sasp) then DAFT domain pilot overhead needed for the MSE E[||étaap—ctadp||?]

to tend to zero as K — 0o and 02, — 0 is O (K"a**p log K).

Proof. A sketch of the proof is given in Appendix [A22] O

Remark 2. Theorem implies that AFDM is order-optimal in terms of channel
estimation overhead for DS-LTV channels since the total overhead needed for vanishing
channel estimation MSE has the same asymptotic order (up to a logarithmic term) as the

smallest possible overhead which is equal to the average number of unknowns and thus to
E[{(l,q) € [0..L = 1] x [-Q..Q]s.t.I; = 1}|] = sasp = O (K"t"P) . (2.20)

This optimality of AFDM is confirmed by the comparison done in the following section
of its channel estimation overhead and channel estimation error performance to that

required by OFDM, OTFS and SCM.
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2.3.3 Numerical results

In this section, we compare the channel estimation performance of AFDM and OFDM
for DS-LTV channels, focusing on both the MSE and pilot overhead. We present results
that highlight the advantage of AFDM in terms of reduced overhead, particularly when
channel sparsity is high, and further discuss its optimal performance in terms of diversity

order and error performance compared to OFDM, SCM, and OTFS.

In Figure the channel estimation MSE of AFDM and OFDM are compared. The
simulations used 100 realizations of channels with a type-1 delay-Doppler sparsity, with
parameters set to N = 8192, L = 60, Q) = 15 (corresponding to a 12 MHz transmission at
a 70 GHz carrier frequency, a relative moving speed of 340 km/h, and a delay spread of 5
ps) and pg = 0.2. In the solid lines, the number of AFDM pilots N, and OFDM pilots
Np,¢ were chosen for each channel realization above Npmyin and Np ¢ min, respectively, to
achieve a 1073 MSE at SNR = 20 dB. The dashed line represents the MSE of OFDM
when N ¢ is reduced to match the pilot overhead of AFDM. As stated in Theorem
AFDM with P = 1 exhibits the lowest overhead, with E[N,] = 7, as shown in Figure
where pq = 0.2. Similarly, AFDM with P = 2 and E[N,] = 7 is observed in Figure [2.7b]
for pqg = 0.3. This confirms the results stated in Remark [2] which implies that AFDM is

order-optimal in terms of channel estimation overhead for DS-L'T'V channels.

In Figure the average pilot overhead needed to achieve the target MSE is plotted
for different values of pgq while pp = 0.2. As expected, the gain with respect to OFDM,
SCM, and OTFS is the largest when sparsity is the highest. When there is no sparsity (pq
close to 1), performance measures other than pilot overhead can be used, such as diversity
order or channel delay-Doppler components separability. AFDM has been shown to
achieve the optimal diversity order of LTV channels [10] in the general case, irrespective

of sparsity.
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Figure 2.7: MSE performance for N = 8192, L = 60,Q = 15,p = 0.2.

2.4 Channel estimation with unknown delay-Doppler profile

In this section, the estimation of DS-LTV channels is analyzed under the assumption
of an unknown delay-Doppler profile and an on-grid model. A hierarchical sparsity
framework is used to apply compressed sensing techniques, with theoretical guarantees
provided via the hierarchical restricted isometry property (HiRIP). Different waveforms,
including OTFS, OFDM, and AFDM, are compared, demonstrating AFDM’s superiority

in reducing pilot overhead while maintaining estimation accuracy.
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Figure 2.8: Channel estimation overhead for a target MSE = 1072 at SNR = 20 dB for
N =8192,L =60,Q = 15,pp = 0.2

2.4.1 Relation to hierarchical sparsity

Definition 2.4.1 (Hierarchical sparsity, [37]). A vector x € CN¥M is (s, spr)-sparse if it
consists of N blocks of size M, sy of which at most are non-zero, and each non-zero

block is sjs-sparse.

To analyze hierarchically sparse recovery schemes, a modified version of the restricted
isometry property (RIP) called the hierarchical RIP (HiRIP) was proposed in the litera-

ture.

Definition 2.4.2 (HiRIP, [37]). The HiRIP constant o of a matrix A is the smallest

SN>SM

§ > 0 such that for all (sy, spr)-sparse vectors x € CNVM
(1—4) [lxI* < Ax|* < (1 +6) x| (2.21)

DS-LTV sparsity is probabilistic while hierarchical sparsity of Definition [2.4.1] is

deterministic. The two models are nonetheless related under Assumption [2.1.1

Lemma 2.4.1. With probability 1 — e~ min(Q+Upp.Lra)) o s (sq,sp)-sparse under
Assumption [2.11]

Proof. The proof of Lemma [2.4.1] is provided in Appendix O
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Algorithm 2.4.1 HiHTP for compressive sensing of DS-LTV channels

1: Input: M, y,, maximum number of iterations kmax, 54, sD

260 =0,k=0

3: repeat

4 QUk+D) — L, sp, (a(k) + Mg (yp — Mpa(k)))

5: a1 = argmin {||y, — Mpz|| ,sup (z) ¢ QD1
6: k=k+1

7. until k = ke or QD = k) (whichever earlier)
8: Qutput: (sq, sp)-sparse &),

2.4.2 Compressed-sensing estimation of DS-LTV channels using different wave-

forms

For any of the above waveforms (see Figures , let yp £ [yx]kep be the

vector of received pilot samples. Inserting (2.7) and (2.9) into (2.1) gives the following

signal model for recovery of the hierarchically sparse (per Lemma [2.4.1)) vector o

=ApMa+w 2.22
Yp P p ( )

éMp

where M and Ap are defined in . Hierarchical hard thresholding pursuit
(HiHTP) [37] has been suggested in the literature for solving hierarchically-sparse recovery
problems. When applied to Problem it gives Algorithm

HiHTP is a modification of the classical hard thresholding pursuit (HTP) [38] by
replacing the thresholding operator employed at each iteration of HT'P with a hierarchically
sparse version Lg, 5. To compute Ly, s, (x) for a vector x € CL2@+1) firgt a sp-sparse
approximation is applied to each one of the L blocks of x by keeping in each of them the
largest sp entries while setting the remaining ones to zero. A sq-sparse approximation
is next applied to the result by identifying the sq blocks with the largest lo-norm. The
following theorems give the conditions guaranteeing the convergence of Algorithm

and the recovery of a.

Theorem 2.4.1 (HiRIP for SCM and OFDM based measurements). Under Assump-
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tion [2.1.1] and for sufficiently large L, Q, sufficiently small &, sufficiently small &,
Npy > O (%log2 (%tlog %—?SD log(2Q + 1)> and Np¢ > O (élog2 (%flog fs—cflsd log L), if
b = & = Iy and P = P (Npy) is defined by (2.10) then the HiRIP constant

. . . . —Q(longogS—D>
0sq,5p Of matriz My, satisfies s, s, < 0y with probability 1 — e /), If By =
blkdiag <TCpF]HVm, - TP ), ®p = blkdiag (Fay, Rep, - Fvg, Rep) and P =P (Np.i, Ny )
is defined by (2.11) then the HiRIP constant ds, s, of matriz My satisfies 0s, s <

— (i sd sp
0t + 0f + 0¢0¢ with probability 1 — e Q(mln{longog 3, 108 (2Q+1) log 37 })

Proof. The proof of the theorem is given in Appendix [A-4] O

Theorem 2.4.2 (HiRIP for AFDM based measurements). Assume ®¢ = AoFyAy,y = @11,
lc1| = &% and let P be set as the smallest integer satisfying (L — 1)P +2Q + 1 > sqsp
and P =P (Np) be defined by . Then under Assumption and for sufficiently
large L, Q, sufficiently small 6, and N, > O (6% log? %log M log(LP)log %), the
HiRIP constant ds, s, of matriz My, defined in satisfies 0s,,s, < 0 with probability

1— €—Q<log (2(%]—}—1) log W) '

Proof. The proof of the theorem is given in Appendix O

When P £ 2N|c| is set to 2Q + 1, AFDM achieves full diversity [10] and the
measurements are non-compressive. The setting P = 1 on the other hand is the most
compressive. By choosing for P a value between these two extremes as in the statement
of the theorem, each pilot instance gives in its (L — 1)P + 2Q + 1-long guard interval a
number of measurements close with high probability to the number sqsp of unknowns.
Of course, a number N, > 1 of pilot instances is still required as the sparsity support
needs to be estimated. But, asymptotically, this number has only a logarithmic growth
with respect to both delay and Doppler spreads. This property is to be contrasted with
the SCM and OFDM HiRIP result showing first-degree polynomial dependence of N, on

sq or sp as stated by Theorem [2.4.1
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Corollary 2.4.1 (Recovery guarantee for compressive sensing of DS-LTV channels). If M,
satisfies the conditions of Theorems 07" the sequence &®) defined by Algorithm
satisfies ||&®) — o < pFllal® — a + 7 ||wp|| where p < 1 and T are constants
defined in [37, Theorem 1].

Proof. Thanks to Theorems and matrix M, with large enough L, Q, N, can
be made to have a HiRIP constant that satisfies 35, 25, < % The conditions of [37,

Theorem 1] are thus satisfied, and the corollary follows from that theorem. O

2.4.3 Numerical results

In this section, we compare the sparse recovery performance of AFDM with that of
OFDM and OTFS, focusing on pilot overhead and MSE. The simulations assess the
effectiveness of each waveform in achieving target MSE performance while minimizing
the required pilot resources.

AFDM sparse recovery performance is now compared to that of OFDM and OTFS. For
OFDM, transmission is organized in N-long frames, each constructed from Ng =~ 2Q) + 1
OFDM symbols each of which costing L — 1 in CP overhead. Within each frame, N, ¢
subcarriers within N, OFDM symbols are set as pilots [33]. As for OTFS, subcarriers
are in the delay-Doppler domain forming a My X Noggs grid (with Moggs Notss = V).
OTFS with orthogonal data-pilot resources [39] requires at least Ny otes = 1 pilot symbols
with min(4Q + 1, Notgs) min(2L — 1, M) guard samples.

We used 100 realizations of channels having a Type-1 delay-Doppler sparsity with
pa = 0.2, pp € {0.2,0.4} and N = 4096, L = 30,Q = 7 (corresponding to a 30 MHz
transmission at a 70 GHz carrier frequency, a maximum target moving speed of 396
km/h and a maximum target range of 300 meters). For both AFDM and OFDM, sparse
recovery of a is done using HiHTP (Algorithm [2.4.1). For OTFS, since sensing is
done without compression, non-compressive estimation algorithms can be used [10]. For

each waveform, the number of pilots was set in such a way that the mean squared error
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MSE £ E[||& — ] is approximately 10~* at SNR = 20 dB. Fig. shows an advantage
of AFDM in terms of pilot overhead i.e., the number of samples in each frame needed as

pilots and guards to achieve the target MSE performance.
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Figure 2.9: MSE and pilot overhead for N = 4096,L = 30,Q = 7,pq = 0.2, Ny =
16, Noigs = 16, Mo = 256.

2.5 Conclusion

This chapter explored channel estimation for doubly dispersive wireless links that are

sparse in both the delay and the Doppler domains. A special focus was given to
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the minimal pilot overhead required by different waveforms to achieve a target error
performance while solving that problem. AFDM was shown to be optimal with respect to
that performance measure when compared to OFDM and OTFS using both mathematical
analysis and numerical results. In the case of an unknown DDP, DS channel has been
recovered by linking delay-Doppler sparsity to the paradigm of hierarchically-sparse
recovery. Numerical results confirmed AFDM’s superiority in reducing pilot overhead
while maintaining estimation accuracy, making it a promising approach for DS-LTV

channel estimation in next-generation wireless systems.

36



Chapter 3

Estimation and Extrapolation of

Doubly Sparse Linear Time-Varying
Channels with Off-grid Doppler Shifts

While the on-grid approximation of Definition is useful for the conception of LTV
channel estimation and sensing schemes and for the analysis of their performance as we
argued in Chapter [2] it lacks support for the finer Doppler resolution needed for channel
prediction or mitigation of channel aging. Indeed, most channel prediction paradigms
[40, [4T], 42, [43] involve, explicitly of implicitly, the estimation of Doppler frequency shifts
to within an error margin smaller than the frequency resolution characteristic of the
duration of the channel observation interval. For that sake, we now present a second
approximation for LTV channels that allows, in contrast to the first approximation in

Definition for fractional-valued Doppler frequency shifts.
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3.1 Off-grid doubly sparse linear time-varying channels

To make the sparse channel model closer to the original model in , we allow for
fractional-valued Doppler frequency shifts. In this case, only ¢, is zero, while x, may take
non-zero values with r, sampled from a uniform distribution i.e., s, ~ U([—3, 3]). Define
Np,q as the number of (sub-)paths with the same delays and Doppler shifts integer part

and which only differ in their Doppler shifts fractional part defined as:

Npug = Hplly =1Ly =g}, p=1...N, (3.1)

In this configuration, the (random) number of paths Ny, in (L.2) is expressed as follows:

N, = Z Z Npqliq (total # paths in the off-grid model) (3.2)

=0 ¢=—Q
Depending on the scenario, it is in principle possible to model Np;, either as a fixed
value or as a random variable, for example, a uniform random variable drawn over the
range [1..Np]. For simplicity, we opt for the first option, that is, Np;, = Np, VI, ¢ for
some value Np and we impose that the following channel power normalization should be

satisfied.
L

|
—

[’Oél,q,i‘2 Il,q] =1. (3.3)

I MUZ

I

Definition 3.1.1 (off-grid Delay-Doppler double sparsity). The complex gain h;,, of the

[-th path of the LTV channel varies with time as

+r)
him = ZIZanquZe nlogrs) , 1=0---L—1 (3.4)
=—Q
for some value Np and where I; ; retains the same description provided in Definition

2.1.1 and Ij ¢, {0q,g4, Ki};_ ... Np are statistically mutually independent. The complex gain
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Figure 3.1: An instance of the Delay-Doppler domain response of a doubly sparse time-
varying channel satisfying Definition [3.1.1]

is assumed to satisfy a; 4; ~ CA (0,02) with o2 chosen so that (3.3) is respected.

Figure [3.1] illustrates the delay-Doppler sparsity structure under the Type-2 model
in an off-grid scenario, where active components deviate from a predefined grid. This
figure effectively demonstrates the irregular yet structured sparsity inherent to the Type-2
model as defined in Definition 2. Note that the above model is an off-grid approximation

of a time-varying channel.

Remark 3. Maintaining the delay taps as integer values is not to the detriment of the core
message of this work since the same approach we develop to deal with off-grid Doppler
shifts can be extended to off-grid delays. Moreover, the effect of fractional delay values can
still be made to fall under the current model by increasing the value of the delay domain
sparsity parameter pq of the model sufficiently to account for leakage due to off-grid delay
shifts.

Estimating the unknown parameters of the off-grid channel model in remains a
challenging task. Indeed, the Np Doppler frequency shifts {g+ &; }i=1...ny, associated with
a grid point (I, q) are only different by their fractional part and hence render the prob-
lem of estimating the corresponding complex coefficients {al’w}i:l... Np ill-conditioned.
Moreover, the number of unknowns in the model i.e., N, could be prohibitively large.

For both these reasons, we propose a new model based on multiple “elementary” basis

39



Chapter 3. Estimation and Extrapolation of Off-grid DS-LTV Channels

expansion models (BEM), each set with a bandwidth equal to the frequency resolution
and shifted in frequency to be centered at one of the active grid points. Thanks to its
optimality in terms of time-frequency localization [44], we opt for BEM based on discrete

prolate spheroidal sequences (DPSS).

3.2 Background: DPSS basis expansion model

We begin with an overview of DPSS BEM modeling of a baseband signal h,, that occupies

a bandwidth (=W, W) in digital frequencies with W € (0, 1). DPSS basis vectors ul()ﬁ’w)
(b=1,...,N) are the eigenvectors of the prolate matrix [30]:
N-1
OV P = AV N =1 N =0 N 1 (3.5)
k=0
(N,W) . .
where C; "7 is the (k — n)-th entry of the prolate matrix:
C(N’W) . sin (27TW(]{J - n)) (36)

kn T w(k —n)

(N, W)

2
b ) = 1. The eigenvalues are ordered

The eigenvectors are normalized so that 27]1\/:1 (u

(N,W) (v

according to their values starting with the largest one: 1 > A; > .2 Ay ,I;V) > 0.

The eigenvalues )\éN’W) (representing energy concentration) are clustered near 1 for

b < 2W N, and rapidly drop to zero for b > 2W N [45].

In this study we employ multiple DPSS BEMs, each of which is used to represent the
channel signal component related to the fractional part of the Np Doppler shifts around
one of the grid points (I, q) i.e., ZfiDl al,qﬂ-el%%, and not the channel signal associated
with the whole Doppler spread i.e., h,. Each of these BEMs is defined using and
(3-:6) with W = k.

In the interest of simplicity, all parameters with the superscript (N, W) in their
(N,W)

notation, such as u; .
b}

, will be replaced by their simplified forms e.g., up .
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Figure 3.2: An illustration of how the leakage due to Sp clusters of off-grid Doppler

shifts {gs + Ki}s=1...55, can be captured by Sp frequency shifted copies of a DPSS BEM
i=1--Np
{ubn}p1..0pgy (Ubk in the figure being the DFT of up,;)

3.3 Off-grid approximation using multiple shifted elementary BEMs

The following term in (3.4) represents a signal occupying a frequency band centered at

digital frequency # and of a bandwidth equal to %

N
A 2 227 et ri)
hl,q,?’b = : : alyq’ze N (3'7)

i=1
Its baseband version defined as e 2™~ hi.qn can thus be modeled (see Figure using a
DPSS BEM of an order equal to Qpgnm (chosen large enough depending on the required

modeling precision) and a bandwidth (—W, W) with W = ﬁ by defining

e QBEM
hEg% L 2N Z Bl,q.pUb,n - (3.8)
b=1
In vector form
H H
Burg = UQBEME%th (3.9)
hpEM = E%PBEME% h;, (3.10)
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with Uggpy = [U1 - .. Uggp, ] and PPEM =Ug UgBEM being the orthogonal projection

matrix associated with the DPSS BEM representation and E £ diag (eﬂwfo e elQﬂf(N—l)).

Inserting the elementary BEMs defined in (3.8]) for each Doppler grid point into (3.4

gives

QBEM

Q
BEM 2 24
hoMt =) 1N Blq.bUb,ns
9=-Q b=1

7q7n ’

Q
= Z Il,thBEM l=0---L—1 (“multiple shifted elementary BEMs” model)
=—Q
(3.11)

The precision of the above representation in relation to the order of the elementary BEMs

in the model (3.11) is provided by the following theorem.

Theorem 3.3.1. For any € > 0, if we set Qpem > C’log% for some constant C then the
2
representation error of the model in (3.11)) satisfies ElL:_Ol E Uhl’n — hEEM ] < € for a

sufficiently large N.

Proof. The proof of Theorem is given in Appendix O

Theorem [3.3.1] states that the number of DPSS basis functions needed to represent
the channel component associated with a single delay-Doppler grid point grows only
logarithmically with the inverse of the target precision. The following figure (as well
as the numerical results of Section shows that as few as 4 DPSS basis functions
(@BrM = 4) are sufficient to get good enough precision. Note that this value is unrelated
to the Doppler spread value i.e., 2Q) + 1: a larger Doppler spread does not imply the need

for a larger value of QprMm-.
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3.4 DS-LTV off-grid channel estimation

Let B3 be the vectorized form of the BEM coefficients {3 44 }p=1...Qppy associated with
l,q,1;,4#0
the active delay-Doppler grid points. Define B as the following block-diagonal matrix

B — blkdiag (]§, . ,E) (3.12)

with B 2 []AS;,Q...]A?;Q] being a N x (2Q + 1)@Qprm matrix satisfying [ﬁq] , =

)

ﬁﬁb,(n—q) and f]bm = ﬁ Z,iV:_Ol ub7ke_12”nﬁk being the DFT of the DPSS basis vec-

tor up . Let Ag be the matrix that places the blocks of 3, each of size Qprm, within the
positions corresponding to I; 4 # 0 in a larger vector of length LQprm(2Q + 1) resulting

in a LQpeMm(2Q + 1)-long vector Ag/3 that is block sparse.Now, define
a2 BAgS. (3.13)
Inserting (3.13)) into ( , we can write the received pilot samples vector y,, as

Yp = ApMBAg 3+ w,, . (3.14)
—_——
éMp
where M and Ap are defined in (2.14). The minimum mean squared error (MMSE)
estimate, B3, of B based on ¥p is given by [36].

B =B (a2MIM, +o21)" My, . (3.15)

Note that the knowledge of the DDP at the receiver side is here assumed. Finally, define

QBEM

hPEM — Z I, Z Braptom, n=0,...,N—1. (3.16)
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as the resulting MMSE estimate of hlBEM. In vector form

hBEM Z IlqE UQBEMIB (3.17)

=0 %,_/
AhBEM

The mean squared error (MSE) conditioned on a given I; , realization is then written as

% |:HhBEM hBEMH ] <7Z Z I,E [HhBEM hBEMH:|
-Q

NND Nga?® U ] (3.18)

where the inequality is due to the triangle inequality and where the equality is due to the

definition of hBEM in ([3.17), to the fact that Z Z a=—qliqg= NDlgg per (3.3) and to
the fact that E%E% = Iy and UY_ Ugpey = Lopsy-

Assumption 3.4.1. The number Ny, of pilots is sufficiently large for the MSE associated

with estimating B (and hence hlBEM per (3.18))) to converge to zero as o2, — 0.

Remark 4 (Impact of the sensing waveform). The value of N, needed for Assumption
to hold and its associated pilot overhead both depend on the particular waveform
in use. The numerical results given in Section [3.6] show that the relative advantage of
AFDM over OFDM and SCM, which has been analytically established by Theorems
and [224-9 under the on-grid channel model, is still valid in the off-grid Doppler shifts

case.

Assumption is about the MSE of estimating the BEM representation of the
channel. The following corollary to Theorem [3.3.1] provides an analysis of the estimation
MSE when computed with respect to the actual channel defined by (3.1.1]) instead of its

BEM representation.

Corollary 3.4.1. Under Assumption and Definition provided that N is large
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enough and QBEM > Clog% for any € > 0 and some constant C, then

lim E

02 —0

L—-1
Zith—ﬁIBEMW <e (3.19)
=0 N ;

Proof. Apply the triangle inequality to h; — H?EM = (hl — h?EM) + (hlBEM — B?EM)
followed by applying Assumption to the first term and Theorem to the

second. O

3.5 Application to channel extrapolation and prediction

We know from the literature on the Slepian basis [43] that there is a “natural” way to
extend the finite sequences uy,, from the smaller interval [0..N — 1] to the larger one
[—Next -- N 4 Next], where Ney denotes the additional channel samples to be extrapolated.
This is achieved by letting the index n in be defined over Z instead of being confined

to [0..N — 1] leading to the following infinite discrete-time signal

N-—1
Z C’,(ﬂf\;’w)ubﬁ,n eZ. (3.20)

uext e 1
b T\ (NW)
b k=0

Signal (Uﬁﬁ)nez (“ext” stands for “extrapolation”) has a discrete-time Fourier transform
(DTFT) that is zero outside (—W, W) and is the signal that has the least energy outside
the time interval [0..N — 1] from among all the discrete-time signals band-limited to
(=W, W) [43]. Once we have estimated the multiple-BEM representation of the off-grid
DS-LTV channel on the interval [0..N — 1] as in and once we have calculated the
infinite-time version of the DPSS basis function as in , the channel can thus be

extrapolated as follows

Q QBEM
ng ~
W& > g€ N Y B, 1=0---L—-1,neZ. (3.21)
=-Q b=1
Ehin

45



Chapter 3. Estimation and Extrapolation of Off-grid DS-LTV Channels

Here, we defined

e @BEM
s, £ TN > Brgpup (3.22)
b=1
T
Defining u*t = [u‘f"fL eugt n} and referring to (3.17) gives
xt 12w 4 xt H BEM
he}qn_ e ( n ) UQBEME h (3.23)

Theorem 3.5.1. The predictor heXt defined by (3.21)) for any n > N — 1 based on extrapo-
lating multiple estimated BEMSs of order Qggm converges in the squared-mean sense in
the limit of a vanishing noise variance to a reduced-rank (with a reduced rank equal to

QBEM) MMSE estimator of sample hy, under the assumptions of Definition and

Assumption [3.4.1]

Proof. The proof of Theorem [3.5.1] is given in Appendix O

Remark 5 (Setting the value of Qpgym for prediction purposes). While Theorem
establishes the optimality in a certain sense of the predictor hext by relating it to a
reduced-rank MMSE estimator, the theorem tells nothing about the optimal value of the
BEM order Qggwm to be used while deriving heXt (or equivalently about the optimal rank
of the related reduced-rank estimator). The properties of the DPSS basis can give us

some insight. Indeed, it is known [{4)] that the b-th infinite-length DPSS has 1 — /\(()N’W)

. (N W)
(respectively \,

) of its energy outside (respectively inside) the interval [0..N — 1] as
illustrated in Figure[3.3

To get a non-vanishing value hf%', = 2N ZQBEM Brapupy forn > N —1, the
sum should include terms with large-enough samples ugf‘rf i.e., with small-enough )‘I(; W),
While this constrains Qprm to be sufficiently large, it simultaneously constrains the
estimation SNR to be high enough to guarantee a precise estimation of coefficients 3 4,

associated with basis functions that have little contribution to the signal received inside

the observation interval [0..N — 1].
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Figure 3.3: Extrapolated versions of the first four DPSS (N = 2048, W = )

Remark 6 (Relation to other DPSS extrapolation prediction methods). Our approach

applies multiple elementary DPSS-based BEMs each modeling the narrow-band channel

—27

component e %hl,qm associated with one of the delay-Doppler grid points. The DPSS-

based BEM modeling in [43], on the other hand, uses a single BEM to represent the

n(g+r;)

multi-band signal hy , = E?:_Q I, Z@]\g al7q7iel2” N of each channel delay tap to give

QBEM

hpEM = Zﬁl,qbubn, n=0,...,N—1. (3.24)

where ul(,k b=1,. ..,QBEM) are the basis vectors of the single multi-band BEM

defined as
N—

—_

SN e = ANy b=1--.Non=0---N — 1 (3.25)

k=0

where C’,gii’w) is the (k —n)-th entry of the multi-band prolate matrix:

Q .
“(NJW) & o ate=n) sin (27W (k — n))
2 . 2
D D (3.26)
9=-Q
I,=1
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The associated channel predictor is

QBEM

R 2 3" Blptst 1=0-L—1,neZ, (3.27)
b=1

where the associated extrapolated basis vector is given by

vgxt A =(
o \ ( ’W) k’
b k=0

Vi jm € 7. (3.28)

The main issue with the multi-band DPSS approach is the size of the codebook that needs
to be computed or stored at the network device performing the channel estimation. As
can be seen from , the codebook size in our approach is the number of columns
of the matriz MB which equals QpemL(2Q + 1). In the case of the multi-band BEM
approach, the codebook size would be LZing (QQkJrl)QBEM(k) > QpemL(2Q + 1) as
every different combination of k active Doppler grid points (k € [1..2Q 4 1]) would result
i a different multi-band prolate matriz C’,(Cﬁ’w) and thus in a different DPSS basis
. Note that, for the same reason, the multi-band DPSS BEM approach is not suited
for compressed sensing applications with Doppler domain sparsity. Another advantage

of the multiple shifted BEMs scheme is the fact that we can analytically quantify its
precision, as we did in Theorem and Corollary [3.4.1]

3.6 Numerical results

Since it has been theoretically proven that OFDM has a smaller overhead than SCM,
the numerical results will focus on comparing AFDM sparse recovery performance to
that of OFDM. We used 100 realizations of channels having a Type-1 delay-Doppler
sparsity with pg = 0.2, pp = 0.2 and N = 2048, L = 20,Q = 7 (corresponding to a 15
MHz transmission at a 70 GHz carrier frequency, a maximum target moving speed of 396

km/h and a maximum target range of 400 meters).
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©AFDM (P=1, N,=36) |-
7 OFDM (N, =15, N;,s=12) |

1
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SNR (dB)

Figure 3.4: Channel estimation MSE for N = 2048, L = 20,Q = 7,pq = 0.2, pp =
0.2, Ny = 32, Ngy = 64

OFDM transmission is organized in N-long frames, each constructed from Ny OFDM
symbols each of which costing L — 1 in CP overhead. Within each frame, N, ¢ subcarriers
within IV, ¢ OFDM symbols are set as pilots as it is shown by Figure As highlighted
previously in remark [ Figure illustrates that AFDM waveform maintains its su-
periority particularly in handling off-grid Doppler shifts. This is particularly evident
when comparing AFDM and OFDM, both of which have nearly identical overheads,
with overheadarpy = 767 and overheadoppy = 769. Despite the minimal difference in
overhead, AFDM shows superior performance in channel estimation. Similarly, Figure
shows in the case of additional channel samples to be extrapolated Neyxt = 500 that

AFDM has a superior performance in terms of channel prediction compared to OFDM .

Figure [3.6| compares the MSE performance of AFDM using different approaches,
including our proposed method, a single BEM approach, and grid refinement with a
refinement factor of O = 4 [46], for channel estimation and Figure for channel
prediction with Nexy = 500 (represented by the blue lines) and Neyt = 1000 (represented
by the yellow lines). All methods are evaluated under the same overhead. For channel
estimation, the multiple shifted BEMs approach and the single BEM method achieve

similar performance, both outperforming the grid refinement technique. However, for
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Figure 3.5: Channel prediction MSE for N = 2048, L = 20,Q = 7,pq = 0.2, pp =
0.2, Ng = 32, Ny = 64, Neyxt = 500

Table 3.1: Size of the codebook for each method

| Method | Codebook Size |
One BEM 2,621,360
Multiple BEMs 1,200

channel prediction, our approach exhibits a slight performance degradation compared to
the single BEM method. Nevertheless, as highlighted in Remark [6] our method requires a
significantly smaller codebook size than the single BEM approach shown by the Table [3.]]
(for the same settings as the previous simulations), making our approach more efficient

in practical implementations.

3.7 Conclusion

In this chapter, we introduced our approach for estimating and extrapolating doubly sparse
linear time-varying (DS-LTV) channels with off-grid Doppler shifts. We demonstrated
the limitations of traditional on-grid approximations and proposed an off-grid model that
accounts for fractional Doppler shifts. To address the challenges of estimating off-grid
DS-LTV channels, we leveraged multiple shifted elementary BEMs based on DPSS. This

approach allowed us to efficiently capture the sparse and structured nature of delay-
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Figure 3.6: Channel estimation MSE performance of AFDM with different approaches,
all using the same overhead for N = 2048, L =20,Q = 7,pq = 0.2,pp = 0.2
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Figure 3.7: channel prediction MSE performance of AFDM with different approaches,
all using the same overhead, for N = 2048, L = 20,Q = 7,pq = 0.2, pp = 0.2, Next €
{500, 1000}
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Doppler domain responses while ensuring minimal codebook size compared to the single
BEM approach. Theoretical analysis established the accuracy of our proposed model,
showing that the estimation error diminishes as the number of DPSS basis functions
increases logarithmically. We also extended the proposed model to channel extrapolation
and prediction, utilizing DPSS properties to extend the estimated BEM coefficients
beyond the observation interval. Theoretical proofs confirmed that our method achieves
a reduced-rank MMSE estimator in the low-noise regime. Through numerical simulations,
we validated the effectiveness of our approach, demonstrating superior channel estimation
and prediction performance compared to conventional OFDM. Our multiple shifted
BEMs approach has been compared to the single BEM method and grid-refinement
technique. Our method outperforms grid refinement for channel estimation but shows
a slight performance degradation in channel prediction compared to the single BEM
approach. However, it remains more efficient in practical implementations due to its
significantly smaller codebook size. Overall, the proposed framework offers a robust
and computationally efficient solution for DS-LTV channel estimation and extrapolation,
making it highly suitable for next-generation wireless communication systems, particularly

in high-mobility environments where precise Doppler estimation is crucial.
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Further Applications

In this chapter, further applications of delay-Doppler sparsity are discussed. More pre-
cisely, we first point to the close relation between Integrated Sensing and Communication
(ISAC) and the problem of DS-LTV channel estimation and how the results we obtained
pertaining to the latter paradigm hence extend to the former. Focusing on the application
of Affine Frequency Division Multiplexing (AFDM) in ISAC, we further demonstrate its

potential for efficient delay-Doppler estimation in sub-Nyquist settings.

4.1 Integrated sensing and communications

The results obtained in the thesis pertaining to DS-LTV channel estimation extend to
target detection and target parameter estimation in ISAC applications. Indeed, the LTV
channel model originally given in and reproduced below can be seen as the echo
signal from NV, point targets

Np

hit,7) = gpe®™ "™ s(r — 7). (4.1)
p=1

In such a case, the delays and the Doppler frequency shifts are related to the target

parameters as follows. Let ¢, fe, vp, 1p denote the speed of light (m/s), carrier frequency
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(Hz), relative velocity (m/s) and range (m) associated with the p-th point target, respec-
tively. In a mono-static setting (in which the ISAC signal transmitter and receiver are

co-located), the range and relative velocity of the p-th target are respectively

rp:c‘@ vaC-V;?f. (4.2)

4.1.1 Application of the DS-LTV model to ISAC

When the number N, of point targets is relatively small, it is thus clear from (4.1)
and that the problem of target detection and target range and relative velocity
estimation is closely related to the problem of estimation of doubly sparse LTV channels.
Indeed, under the on-grid approximation, estimating the delay-Doppler sparsity support
of the DS-LTV channel (see Definition associated with the echo signal, that is the
set {(1,q), 11,4 # 0}, gives an estimate of the targets’ range and relative velocity.

The results given in Chapters [2 and [3| pertaining to the pilot overhead needed when
using different waveforms to estimate the DS-LTV channel with an unknown delay-
Doppler profile are also relevant for comparing the pilot overhead needed by different
waveforms when these waveforms are used for sensing purposes. All that is needed is to
set the sparsity parameters of the DS-LTV model, namely pq and pp, in accordance with
the characteristics of the wireless propagation environment related to the targets to be

detected.

4.2 Sub-Nyquist radar

Traditional sub-Nyquist radar techniques exploit channel sparsity to reduce sampling
rates, but many existing methods rely on impractical random sampling strategies or
complex analog-domain processing, which introduce hardware challenges and noise
susceptibility [47, [48, [49]. These limitations hinder their applicability in real-world

scenarios, necessitating more efficient solutions. As an alternative, we show in this section
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that the optimality of AFDM in terms of pilot overhead under delay-Doppler sparsity
along with the chirp nature of its waveform make it relevant for sub-Nyquist radar
applications.

Indeed, in sensing and radar applications, the sub-Nyquist radar paradigm [47]
leverages wireless channel sparsity to allow for sub-Nyquist receivers. For example, some
of the solutions presented in [47] consider the use of random sub-Nyquist sampling to
achieve a low coherence for the sensing matrix, a property that translates into good
compressed sensing performance. However, random sub-Nyquist sampling is technically
impossible in many applications [48]. Other solutions in [47] don’t rely on random
sampling but require dedicated analog-domain processing, more precisely multi-channel
processing with multiple mixers and integrators for direct Fourier coefficient extraction.
Similarly, the sub-Nyquist sampling method in [49)] relies on dedicated analog-domain
components needed to perform continuous-time signal differentiation. This requirement
complicates hardware design and introduces noise susceptibility, making the approach less
robust. Also, the approach in [48] relies on specialized hardware components, including
radio frequency (RF) signal splitters and multiple analog delay modules, which not only
increase the complexity of implementation but also reduces signal-to-noise ratio due to

analog domain splitting.

4.2.1 AFDM-based sub-Nyquist radar

We now consider the case where the AFDM signal is destined for a sensing receiver
either co-located with the transmitter (the mono-static setting) or in a remote device
(the bi-static setting). In any of these settings, the non-zero complex gains oy 4 in
will represent a point target with a delay [ (related to the to-be-estimated range) and a

Doppler frequency shift ¢ (related to the to-be-estimated velocity).

Instead of applying DAFT to the received AFDM signal after sampling as in basic

AFDM operation [I0] (which would require a sampling rate at least equal to the signal
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-

Received echo with the maximum negative
Doppler shift and zero delay shift

Received echo with the maximum positive

& &
& &
& &
& &
& &
& &
& &
3 y ann
Doppler shift and maximum delay shift

LO

Tmax]

Frequency band of de-chirped desired signal

4
&
&
&
&
&
&
&
&
&
&
&
&
K
q
&
4

—Tcpp »

after
— [ — > 70
T sampling (L-1)P+1

fo= (L—lT)P+1

Figure 4.1: Time-frequency content of one AFDM pilot and its echoes, before and after
analog de-chirping and sampling

bandwidth), an alternative consists in first de-chirping the received signal in the analog
domain with a continuous-time version [50] of a DAFT chirp carrier e.g., of the 0-th chirp

(612”(020%%0"“1”2)) . The result is a multi-tone signal (as shown in Fig. in the case

n
of N, =1 and P = 2) with discontinuities due to the frequency wrapping characterizing

AFDM chirp carriers. In this figure, the de-chirped signal occupies two disjoint frequency

bands that get merged into one (without discontinuities) thanks to spectrum folding after

sampling at rate fs = %. In the general case of N, > 1 pilots, if we restrict the

total subset P of pilot guard indexes to be an interval, then sampling after de-chirping
can be done at rate f; = w to yield the vector y}, used for target estimation.
In most practical configurations w < % = Ait, and hence the sampling rate

needed for AFDM sensing is significantly smaller than what is needed in sensing based
on OFDM or OTFS waveforms.

The gain that can be achieved in terms of sampling rate reduction when AFDM is
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employed for sub-Nyquist sensing. This gain is illustrated (for the same setting as Fig.

by Table

Table 4.1: Minimal sampling rate at sensing receiver

Waveform OFDM OTFS AFDM
Samphng rate . o . Np((L—l)P-i-l)
£. (MHz) 30 = BW 30 = BW 3.45 = =7t

4.3 Conclusion

In this chapter, we proposed a sensing solution with simplified analog-domain processing,
specifically chirp carrier mixing, for the case where the ISAC signal was generated using
AFDM waveform. AFDM, based on the Discrete Affine Fourier Transform (DAFT),
had been shown to achieve full diversity over doubly dispersive channels, making it a
strong candidate for efficient sensing applications. To further reduce the sampling rate
requirements, we described a sensing receiver architecture that took advantage of both
the multi-chirp nature of AFDM and the optimization of the DAFT chirp rate ¢; (through
parameter P) to minimize the number of required pilots. This approach enabled accurate
delay-Doppler estimation while significantly lowering hardware complexity. The proposed
framework applied to both mono-static and bi-static sensing scenarios, where the receiver
could be co-located with the AFDM transmitter or positioned remotely, such as in a base
station-to-terminal configuration. By integrating AFDM’s unique waveform properties
with optimized sensing strategies, our method provided a practical and efficient solution

for next-generation radar and wireless sensing applications.
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Conclusion

In this thesis, we have investigated the problem of waveform design for sparse delay-
Doppler channel estimation in high-mobility wireless communication systems. Our study
focused on developing and analyzing efficient estimation techniques for DS-LTV channels,
leveraging both on-grid and off-grid approximations. The goal was to enhance channel
estimation accuracy while minimizing pilot overhead, crucial for next-generation wireless
technologies. In the first part, we explored DS-LTV channel estimation under an on-
grid assumption, where Doppler shifts align with a predefined grid. We introduced
three different sparsity models and analyzed their impact on estimation performance.
By leveraging proposed framework, we demonstrated that AFDM provides superior
performance compared to conventional waveforms such as OFDM and OTFS. The key

conclusions from this part are:

e When the delay-Doppler sparsity support is known at the receiver side, the asymp-
totic analysis of the MSE associated with sparse channel estimation can be leveraged
to compare the minimal pilot overhead requirement of different wireless waveforms.
Using this approach, we demonstrated that waveforms differ in their capacity to
exploit delay-Doppler sparsity, with AFDM offering an advantage over OTFS,
OFDM and SCM.
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e When the delay-Doppler sparsity support is not known at the receiver side, the DS-
LTV channel estimation problem can be effectively transformed into a structured
compressed sensing problem, enabling significant pilot overhead reduction. In this
context, pilot overhead comparison of the different waveforms can be analyzed
through its effect on performance criteria relevant to compressed sensing problems.
Again, it turns out that the AFDM-based approach exploits delay-Doppler sparsity

more efficiently than traditional waveforms, leading to improved estimation accuracy.

In the second part, we extended our study to off-grid DS-LTV channel estimation,
addressing the challenge of mismatches between actual Doppler shifts and predefined
grid points. We proposed novel off-grid approximation techniques using multiple shifted
elementary DPSS BEMs, leading to enhanced estimation robustness. Additionally, we
investigated the application of AFDM for sparse channel extrapolation and prediction.

The key conclusions from this part include:

e Off-grid channel estimation significantly improves accuracy in practical scenarios
where Doppler shifts do not perfectly align with predefined grid points. moreover,
the particular off-grid paradigm we propose has the advantage, thanks to its reliance
on an elementary DPSS basis, of offering channel representation precision guarantees

with a dependence on the basis size that can be analytically established.

e Thanks to the inherent extrapolation capability of the DPSS basis, the proposed
extrapolation techniques enable efficient channel prediction, crucial for adaptive

transmission in high-mobility networks.

e AFDM continues to outperform existing methods in handling off-grid Doppler shifts,

confirming its suitability for next-generation communication systems.

Beyond channel estimation, we explored further applications of our findings in radar and
sensing systems. By leveraging delay-Doppler sparsity, we demonstrated the feasibility of

AFDM based sub-Nyquist radar techniques that reduce sampling rates while preserving
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detection accuracy. This highlights the broader impact of our research beyond traditional
communication scenarios.

In summary, this thesis provides a comprehensive framework for efficient DS-LTV
channel estimation, contributing to the development of robust, low-overhead communica-
tion techniques for high-mobility environments. Our findings pave the way for future
advancements in adaptive waveform design, sparse channel estimation, and integrated

communication-sensing applications.
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Chapter 2| Appendices

A.1 Proof of Lemma [2.3.1

We only consider P = 1. The proof for P > 1 follows the same arguments. For any

ke [-Q..L—1+Q], define

QL2 {le0..L—1]st.3q€ [-Q..Q],q+ 1=k}

=[k-Q.k+Q]N[0..L —1] = [[lk,max--lk,minﬂ
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Ok
For any N, € [0..2Q + 1] define Ly n, = as the set of all Ny-size subsets of Q.
Np
| Qx|
Then ’*Ck,Np| = and
p
P[X) = Np| =
Pl U { ﬂ Ligk N ﬂ Tk}
(TN ! ) le 1€0;.\
éﬁk,lj\js {5l } {llv---ij}
S S R ) Zus n () T a2
(19, 1 ) le 1€Q;\
éckﬁs {l,elny } {11,6...,pr}
- II Pzl J[ PZu-s
(G l ) le 1€Qx\
éﬁk,;\\rfs Hasenlnp } {llf..jNP}

where the second equality follows because the terms of the union are all disjoint events and
where the third equality is due to the independence property established by Assumption
2.1.1| (in each term of the sum in the right-hand side of the second equality in ,
each pair of events is either (Z;, 4, 715,40 )> (Zt1,g15Z12,g0) OF (Zi1,g15Z1s,q,) With Iy # lo and
Q7 q2)-

IfkeQ.L—-1-Q], lgmn =k —Q and lymax = k+ Q ie., |Qx] =2Q + 1 and
19k \ {l,...,In,}| =2Q + 1 — N, as shown in Figure

Since P[Z;;—k] = papp and P[Z;;_x] = 1 — papp due to Definition we get

2Q +1 _
P[X, =Ny = (papp)™® (1 — papp)?@ T (A.3)
NP

Thus, Vk € [Q..L — Q], Xi ~ B(2Q + 1,papp). If F(n,k,p) is the cumulative distribution
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function (CDF) of B(n,p) then
P [ X >Np] = 1*F(2Q+1,Np,pdp])), Ve [Q..L—QJ. (A4)

Ifke[-Q.Q—-1JU[L -Q..L =1+ Q] then Iy min = k — Q and lj; max = kK + Q cannot
be both satisfied and |Qx| < 2Q + 1 as shown in Figure Define p;, = |Qg|. Either
pr < Np, in which case L n, = 0 and P[X; = Np] =0 or M < pp < 2Q + 1, in which
case |Qx \ {l,...,In,}| = pr — Np and

Pk

P[X, =Ny = (papp)™® (1 — papp )~ > . (A.5)
Np

We thus have X ~ B(pg, papp) leading to

P[X; > Np] =1 — F(pg, Np, papp)
<1-F(2Q+1, Ny, papp) (A.6)
VEe[-Q..Q —1JU[L—-Q..L—-1+Q].
The inequality in (A.6]) follows from the decreasing monotonicity property in n of the CDF

of the binomial distribution B(n, k,p). Combining (A.4) and (A.6]) gives us a uniform
upper bound on the CCDF of X}, for any k € [-Q..L — 1+ Q].

A.2 Proof of Theorem [2.3.1

First, write

P[X; > N, <P [B > N,]

Ny 2[£1+1-N;,
< < DdPD > o ( 1 —papD ) (A7)
A\ M/ +1) 1—No/(2[$]+1)
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where the first inequality is due to Lemma [2.3.1] and the third is due to the Chernoff’s
bound applied to B (2 (%] + 1,pdpD>. Inserting N, = O(log K) in (A.7)), it can be
shown after some manipulations that the right-hand side of (A.7)) is O (%) and hence

P[Xi > Np| = O(%)

Next, define Ay, = largl1qg — Gugligls Kig £ ¢ —2¢; N1 and note that the MSE writes
now as ZZL:_DI ZqQ:_Q E[Aiq] with

E[A7,] = E[A7 1ig = 01P[114 = 0]+
E[AZQ,(AIl,q = 1a0 < Xkl,q < NP]P[ILQ = 17 0< Xkl,q < Np]+

E[Aiqmﬂ =1,Xp,, > NP, =1,X, >Ny (A.8)

The first term in the right-hand side of is straightforwardly zero. As for the second
term, let ayy, . be the Xy, -long vector of complex gains a4 satisfying § — 2N¢ql = ki 4 of
which o 4 occupies the 7; ,-th entry. Recalling the pilot pattern definition in and
the signal input-output relation in , the pilot samples related to o ; are received at
DAFT domain positions {(my + ki 4) v }p=1.-n, Where m,, is the index of the p-th DAFT
domain pilot symbol. Let y, , be the Np-long vector formed by these samples. It relates
to oy,

Vi, = M) au,, + Wi, (A.9)

where is the vector composed of the entries associated with the received samples yy, = of
the noise vector wy, from (2.14)) and where matrix M,(;l)q is the N, X X}, ~measurement
matrix associated with configuration ¢ and formed by N}, rows and Xj, - columns of the
|P| x L(2Q + 1) matrix ApM (see (2.14)) where, we recall, |P| = Np(2|c1|N(L —1) +
2Q +1) = Np(P(L — 1) +2Q + 1). Let &, be the MMSE estimate of a, . based on

Yk, .- Using the law of total expectation and the expression of the error covariance of the
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MMSE estimator [36], (12.29)] we obtain

E [Ham —ay, |1y = 1,0 < Xy, < Np]

CNp -1
_ 1 @ e 1 @)
—Z( (ML) M+ 21)

(A.10)

2191

Xy —1

Np }le,q’ -1

A .
where Cy, = Xy, =1 is the number of

N,
<

possible delay-Doppler configurations leading to 0 < Xy, < N, and I;; =1 and p is
C .
the probability of the i-th configuration among them so that Zi:]\;p p = O(1). We thus

have

E [Aﬁqmﬂ =1,0 < Xy, < Ny

Cnp 9

CNH -1 .
= Z U%U [((M,(;l)q) ng + ?;I) ] p(z)
=1 a

(il,qvil,q)

(A.11)

From the definition of matrix M in (2.15)), (2.16) and the formula for pilot symbols

amplitude in (2.19), it can be shown that Wi Mkl,q has full rank in the case

Xk, < Np with singular values that are bounded from below by a non-zero constantﬂ

l,
uniformly in (/,q), ¢« and K. This, along with the assumption P = O <K(”d+“D_1)+)
made in the theorem statement, leads to (M,(jl)q) M,(fl)q having eigenvalues that are
O (P(L—1)+42Q+ 1) = O(K"at%P) Vi. The asymptotic order of the right-hand side of
(A.11)) is thus m#%. Combining this fact with (2.6)) we conclude that there exists

C1,1 such that for K large enough and o2 small enough the following holds uniformly in

! Assuming for simplicity that N is an integer multiple of N, and that the pilots indexes are dispersed
uniformly throughout the AFDM symbol with a minimal inter-pilot interval of size Nip, it is straightforward
to show that ———2 M is, up to a complex scalar multiplication, a sub-matrix of the Np-point

P(L—-1)+2Q+1  kiq

DFT matrix composed of Xklyq of its columns
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E[A} g =1,0< X}, S Np| < — =% (A.12)

Now note that since P [Il,q =1,0< Xy, < Np} <P 4 =1] = pgpp then there exists

C1,2 such that for K large enough the following holds V(I, ¢)

Pl =1,0< Xy, < Np| < CppKratro—2, (A.13)

In the third term of the right-hand side of (A.8)),

E[A7 g =1, Xk, > Np] = E [Jargligl g = 1, X, > Ny

=E [|O‘l7q|2}

_ 1

~ paLlpp(2Q + 1)
Ca1

— KratkD

(A.14)

where the first equality holds because whenever the problem of estimating the Xy,

unknown complex gains appearing at position k; , is infeasible (due to a number IV, of
()

pilots smaller than the number of unknowns Xj,  and hence to rank-deficient A, ) we

»q

can set &g 4 = 0, the second equality holds because ;4 is independent from {I iq}([ o )
’ ,q)7(lq

the third equality is due to (2.6)) and the inequality on the last line holds for sufficiently

large K uniformly in [, ¢ due to Assumption Also, there exists C 2 such that for

K large enough, the following holds uniformly in (I, )

P [Il’q = 17Xkl,q > Np] =P [Xkl,q > Np‘[l,q = 1] P [ILQ = 1]

1 _ 02 2K'§d+’€D
< Cgog—KRatrp=2 — Z227~ A.15
< oo - (A.15)
This is the case because on the one hand and for any l,q, P{;,=1] = psgpp =
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O (K“d+“D’2). On the other hand, P [Xkl’q > Nplli g = 1] =P {Xkl,q > Np — 1} where

X, is a random variable with a CCDF that is upper-bounded by the CCDF of a

]

B <2[%],pdpD> distribution (instead of B ( [ 1+1 pdpD) for X, ), a result that can

be proved using the same steps as the proof of Lemma [2.3.1] while replacing Qj, with

oy \ {1}
N, —1

Ok, \ {I} and Ly, with . It thus holds that P [)N(kl’q > N, — 1] =0 (+).

Putting all pieces together, we get E [A2 } < Cl%?“z + Cg% where C] £ C1,1C12 and
Cy £ C2,1C32. Recalling that L,Q = O(K) gives that there exists a constant C' such

that for K large enough the following holds Vo2,

L-1 Q
> 2 E
=0 q

=—Q

~

-1

; ZQ: <Cla %)

K?
c(+z)- (A.16)

| N

|/\
N\

Letting 0'3] tend to zero, we get

L—llN—l
lim lim E|S < ’ -
B |3 3

1.

L—1
lim lim E ZZA <hm CU =0

02, —0 K—o0 1=0 ¢= 02 —0

(A.17)

This proves that the MSE tends to zero when the number of pilots Np ymin = O(log K).
This number of pilots, each costing (L — 1)P + 2Q + 1 samples, results since P =
O(K(matrp=1)+) in a total overhead Npmin (L —1)P +2Q +1) = O (K"t p log K).

This completes the proof of Theorem [2.3.1

A.3 Proof of Lemma [2.4.1

Let Sq £ ZlL: _01 I; be the random variable representing the number of active delay

taps. From Definition and Assumption Sq ~ B (L, pq) since it is the sum of
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independent Bernoulli random variables I; ~ Bernoulli (pq). Applying Chernoff’s bound
to Sq evaluated at sq = (1 4 €)Lpq (with an € > 0 that can be set as small as needed)

gives after some algebraic manipulations

Sd . L—sq
P[Sq > sq] < (%}) (1 ]s?j) = ¢ fp0), (A.18)
L - T

As for Sp, the joint sparsity of {Iél)}l:g...L,l follows from writing

L-1

P31, =1,50; > sp] <Y Pl =1,8p; > sp]
=0
L-1

= P[Spy > spll; =1]P[I, =1]
=0
L—1

=Y P[Spy > spll =1]pa
1=0

< LpaFp2q+1,pp) (5D)

SD 2Q+1—8D
< (_Po 1 —pp
= sD 1_ D
20+1 2Q+1

_ o~ A(2Q+1pD). (A.19)

where the first inequality is due to the union bound, the second inequality is due to the fact
that Assumption upper-bounds its CCDF by that of a B (2Q + 1, pp) distribution
and the third inequality and the last equality follow from applying the Chernoff’s bound

to the latter evaluated at sp = (1 + €)(2Q + 1)pp.

Combining (A.18]) and (A.19) completes the proof of the lemma.

A.4 Proof of Theorem [2.4.1

l
In the case of SCW, defining &, 4 = ahqeﬁwﬁq, rearranging yp in into ¥, (composed

of L successive blocks, with the [-th blocks composed of the I-th sample in each of the
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N, pilot intervals) and assuming 2Q) + 1 divides N and that the p-th pilot position (for
any p € [1..Np]) satisfies m,, = quNH for some ¢, € [0..2Q], we can write y, = Mzcwd
where & is the vectorized form of a;, and l\N/IISDCW 21 ® (diag (pl, o ,pr) FQQJFLNP).
Here, F2Q+17 N, is the partial inverse Fourier measurement matrix formed from N, rows
of the (2Q) + 1)-point inverse DFT matrix. The HiRIP of M;CW can thus be derived
and proven to be equal to the value given in the theorem statement by using the known
RIP of partial inverse Fourier measurement matrices followed by applying [37, Theorem
4] pertaining to the HiRIP of hierarchical measurement matrices having the Kronecker

property. This completes the part of the proof related to SCM.

As for OFDM, it can be shown that the estimation problem has a measurement
matrix Mgfdm £ (diag (pl, ... ,pryf) FLva,f) & FQQH,NP,t where FLJ\/’p,f is the partial
Fourier measurement matrix formed from N, ¢ rows of the L-point inverse DF'T matrix.
The value of the HiRIP of Mgfdm given in the statement of the theorem follows thus from
the RIP of the partial Fourier measurement matrix and the HiRIP result pertaining to

Kronecker hierarchical measurements.

A.5 Proof of Theorem [2.4.2

First, out of the pilot samples set P, consider the subset P, associated with the p-th pilot
symbol transmitted at the DAFT index m,, (Fig. [2.5). To homogenize the sensing signal
model associated with edge samples and inner samples of P,, we apply two overlap-add
operations: adding the samples received within the index interval [m, — Q..m;, — 1] to
those received within [m, + (L —1)P — Q..mp + (L — 1)P — 1] and the samples received
within [my,+ (L —1)P+1..my+ (L —1)P+ Q] to those received within [m,+1..m,+Q].
Now, define

D1 £ {(a)st.(a+ PDzorypin =1 (A.20)
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as the set of delay-Doppler grid points that potentially contribute to the pilot sample
received at DAFT domain index [ € [my,..my, + (L — 1)P] (Fig. after the two
overlap-add operations described above. Note that D; does not depend on the pilot
symbol index p and that it has a cardinality that does not change with I and which satisfies
|Dy| < 2[%1 + 1. Next, define ap, = [alﬂ](l,q)el)l and a = [a%o a%(Lil)P}T. The
entries of a are just a permutation of the entries of av and estimating one of these vectors
directly gives an estimate of the other. Now, it can be shown that when we set P as in

the theorem and e > 0 as small as needed, then a is (54, Sp)-hierarchically sparse with

high probability.

Sa=(L—1)P+1, 35p=(1+¢)log(LP). (A.21)

Indeed, the first level (of size (L — 1)P + 1) of & is sensed without compression with
a number of measurements equal to (L — 1)P 4 1 while §p can be determined thanks
to Definition and Assumption 2.1.1} Indeed, the latter assumption implies that
random variables {Lgll)}q:,Q...Q are independent from {I(ng)}q:,Q...Q for any l; # Iy and

hence that SDJ =S Z( qu has a binomial distribution since it is the sum of mutually

Z7q)€Dl
independent Bernoulli random variables. The same approach as in the proof of Lemma

can thus be applied to S’DJ. Now, we can write the signal model of sensing a as

Yp = Mpa + wp, (A.22)

where y,, = [?go e ?g(L_l)P]T. For each [, y,; is a N, x 1 vector composed of the
pilot samples received at DAFT domain positions {m, + l}p:1-~- v, Note that by this
definition y,, is obtained by permuting y, in (2.22)) in accordance with the permutation

that gives & from a. Next, by setting for each p € [1..Np] m, = qpﬂT]\anl for some
b
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integer g, it follows from ([2.12)) and (A.20) that Mp has the following Kronecker structure

Mp =I-1)p11 ® Mp, (A.23)

with Mp = diag(pl---pNP)FQ(%]H,Np\P, FQF%HLNp is a (2(%] + 1) x Np partial
Fourier measurement matrix and ¥ is a diagonal matrix with unit-modulus entries. We
can thus use [51, Theorem 4.5] pertaining to sub-sampled Fourier matrices to get that

for sufficiently large L, @, sufficiently small §, and

1 1 log(LP
N, >0 (log2 flogM

52 5 5 log(LP)log g) (A.24)

the RIP constant 03, of l\N/ID satisfies 95, < § with probability 1 — e_Q(log 3 log 5). The
RIP of I, _q)pyq trivially satisfies d5, = 0. As for the HiRIP of l\N/Ip, we can apply [37,
Theorem 4] to (A.23) thanks to its Kronecker structure to get that, f N, and ¢ are as in

(A.24), then
55d75D < 55(1 + 05, + 5§d5§D <é. (A.25)

This completes the proof of the theorem.
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Figure A.1: Examples of interval Q. Grid points surrounded by circles represent potential
delay-Doppler taps that may appear at the k-th position in the DAFT domain.
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Figure A.2: Two examples of the set D;. In each one of the two examples, the grid points
forming D; are shown surrounded by red rings. (P =1, m, = 0)
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B.1 Proof of Theorem (3.3.1

We first need the following lemma taken from [52], Theorem 2.4].

Lemma B.1.1. [52, Theorem 2.4] Let h(t) be a continuous-time zero-mean wide-sense
stationary random process with power spectrum Py(f) = %rect[Fc,ByFﬁB](f).
Denote by h = [h(0T}) ... h((N — 1)T3)]" a vector of samples acquired from h(t)

Let W = BL: U, the matriz form of the k first

with a sampling period Ts < 22,

1
2F+B"
N, W)-DPSS wvectors, E; £ diag (2270, 2" /(N-1) gnd P, £ Ep U, UMEHR .

f T kHF.T,

Then E [||h _ thug} N (),

BEM
o hhq,n

In what follows, we use Lemma [B.1.1| to upper bound E “hl’qm

2
] . For that

sake,

we rewrite hy 4, as the sampled version of the continuous-time signal hy 4(t) defined
as

Np
hig(t) £ o ge®™, teR. (B.1)
=1

4

with f; = NLTS + w47+ To prove that the PSD of the random process hy 4(t) has the desired
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property, we derive its autocorrelation function Ry, (1) = Elhsq(t)hyq(t + 7)*] as

D
127 fit  —27 fi (47
Rhl ,q Z alﬂ,lal,q,] [ ve i )]
=1

GLE |72 (B.2)

where the first equality is due to (B.1]) and the second to f; ~ U ( [NLTS - ﬁ, ~ot ﬁ] > ,
aqi ~ CN(0,02) and the independence property of {4, i}; as per Definition

This gives:

29+ . T
Rp, () = Np 02 e TN sinc (NTS> . (B.3)

The power spectral density (PSD) is thus

Py, (f) & F{Ry, (1)} = Np ol NT rect <( f— S) NT) (B.4)

The PSD of hy4(t) thus satisfies the condition of Lemma with B = WITS and

F. = NLTS
giving
BEM |2 BEM Np 03 - (N, W)
E|lhiqn — hEE| = < [th,q—h ] =Sre > AL B
b=QBEM

Now define )\l()c) as the b-th eigenvalue of the prolate spheroidal wave functions (PSWF)
[53] with the bandwidth parameter ¢ = tNW. This allows us to exploit existing results
on the behavior of PSWF eigenvalues in the limit of ¢ — 5 (or equivalently as W tends
to zero at the rate ﬁ) to upper bound the sum of DPSS eigenvalues )\( W) in

Indeed, due to [54, Theorem 2]

AN < 4@ wp =1, N (B.6)
b
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Here, Ay is a function of W defined in [54, Eq. (45)] and whose image is fully included
in the interval [%2, 2}. Plugging into (B.5)) and noting that 2W N =1 lead to

N
E|[hgn — RPN < Npo2 aw 30 A (B.7)

b=QBEM

The right-hand side term in (B.7)) can be upper bounded due to the fact that the PSWF
eigenvalues decay at least exponentiall as b grows beyond W + O(log(nNW)) =

‘rr2
1+ O(log §). More precisely, it follows from [56, Theorem 2.5] that /\gc) =0 <61°g§b>.

Plugging this into (B.7)) results, for any ¢ > 0 and Qpgm > C log% for sufficiently

large C, in
Npo2 A
E | [hiqn — hEEA]] < =225 (B.8)
Now, note that
2
L-1 ) L-1| Q e QBEM
|3 ] [ 30 et 3 (a2
1=0 1=0 |¢=—Q b=1
L-1 @ )
=3 > Bl E||hrgn — ] (B.9)
=0 ¢=-Q
Plugging (B.8)) into the right-hand side of (B.10)) gives
L—1 L-1 Q 2
2 Np s Awe
E [Z |y — RPEM ] <> 3 En % <e (B.10)
=0 =0 ¢=—Q

where the second inequality is due to the fact that Ay < 2 and that ZZL: Bl Z?:—Q E 4] =

NDIU(% due to the power normalization condition in (3.3). This completes the proof of the

theorem.

! Actually, even super-geometric decay can be proven [55)
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B.2 Proof of Theorem 3.5.1

In what follows we use the notation hi’;’fn (ﬁEEM> to designate the DPSS extrapolation

predictor defined in (3.23)) to highlight its dependence on the estimated vector ﬁlBCJIEM.
When EEEM in (3.23)) is replaced with an arbitrary channel vector h, the DPSS predictor
generalizes to

h?fz(]t,n (h) A elQﬂ% (u(Teth)T UH

BEM

Elh. (B.11)
N

H
A [ pext
- <fQBEM>

For instance, h?’;tn (hlB;jM) is the DPSS predictor based on the actual, not the estimated,

vector hEEM. Next, we establish the link between the DPSS extrapolation predictor and
MMSE prediction given the knowledge of the channel during the observation interval.

For that sake first note that for each [, ¢ and any n € Z, the random variable h; 4 ,, as de-
fined by (3.7)) follows a complex symmetric Gaussian distribution CA” (0, Npo2) under the

conditions of Definition Moreover, the random process (hy q.1,) is stationary and

nez
o {n=—mq

has an auto-correlation E [hl’thfq m} = 02Npe®™ N W(Tﬁm) sin (”("];m)) due to (3.7)).

Similarly, by, ~ CA (0, 02NpNE g zEg) and hPEM ~ A/ <0, agNDNE%PBEMzPBEMEI;)
N ’ N

with

0. N— (B.12)

- [ L m(n — m)] _ [C(N,W)] B
n=0..N—-1 =0 N—
m=0...N—1

w(n —m) N m !

Therefore, the MMSE predictor of h; 4, given the actual channel component hy , is

g () = B [ g b) (B [ L)) ™

T

ngq _
— "N pE 4 % 1E%hl,q : (B.13)

m N-1 .
Here p £ e TR CTS%W)} . It follows that the reduced-rank MMSE predictor A}l

m=0 Lig,n

of rank @ of hy 4, given h;, (where notation ‘RR’ stands for “reduced rank”) is [57]

7 H
Mg (hig) = (£5) " hug, (B.14)
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1
NW)» " " ((NW
AP GE)

f5" £ E¢ Ugdiag UgE% . (B.15)

Next, we apply the triangle inequality to get

?|

Lg,n Lg,n

h?,)«(;t,n (hBEM) hlqn (hl,q)‘2:| <E { pext (hBEM) _pext (hBEM) ‘2] N

£ o

5 (B.16)
1 () — S ()]

B [ (B3 — 425 ()] 4|

L2F,

~
L£F,

Since lim,2 o E [HhBEM hBEMH ] due to Assumption [3.4.1] it follows from (B.11]

by standard MSE derivations that lim,2 ,o £y = 0. As for E3, and since hE;EM =

E. PBEMEE h;, per (3.10), we have that UY

QBEM

E% h,=Ug, E% hPPM. Tt follows
from (BII) that he (hy,) = het (hBEM) and hence that Fy = 0. Finally, note by

l,gn l,qn

referring to (3.21f), (B.11)) and ) that fRR = fe’gEM if @ = @prM leading to E3 = 0.
Now, due to (3.21]), A = ZlL:_Ol I ,hs*t . Moreover, due to the independence

lgn:

conditions from Definition ﬁ?}} = Zf;ol 1 thR is the reduced-rank MMSE

l,gn

estimate of h;,, given {hl,q}q:_ .-q and conditioned on a given realization of I; 4. Putting

.12
hlc’;t — hf”}f‘ . This completes the proof

all these pieces together, it follows that lim,2 o

of the theorem.
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