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Abstract—Localization is increasingly becoming an integral
component of wireless cellular networks. The advent of artificial
intelligence (AI) and machine learning (ML) based localization
algorithms presents potential for enhancing localization accu-
racy. Nevertheless, current standardization efforts in the third
generation partnership project (3GPP) and the O-RAN Alliance
do not support AI/ML-based localization. In order to close this
standardization gap, this paper describes an O-RAN framework
that enables the integration of AI/ML-based localization algo-
rithms for real-time deployments and testing. Specifically, our
framework includes an O-RAN E2 Service Model (E2SM) and
the corresponding radio access network (RAN) function , which
exposes the Uplink Sounding Reference Signal (UL-SRS) channel
estimates from the E2 agent to the Near real-time RAN Intelligent
Controller (Near-RT RIC). Moreover, our framework includes,
as an example, a real-time localization external application
(xApp), which leverages the custom E2SM-SRS in order to
execute continuous inference on a trained Channel Charting
(CC) model, which is an emerging self-supervised method for
radio-based localization. Our framework is implemented with
OpenAirInterface (OAI) and FlexRIC, democratizing access
to Al-driven positioning research and fostering collaboration.
Furthermore, we validate our approach with the CC xApp in
real-world conditions using an O-RAN based localization testbed
at EURECOM. The results demonstrate the feasibility of our
framework in enabling real-time AI/ML localization and show
the potential of O-RAN in empowering positioning use cases for
next-generation Al-native networks.

Index Terms—5G, O-RAN, Localization, xApp, Channel
Charting, OAI, FlexRIC

I. INTRODUCTION

Localization continues to evolve as a key technology for
current and next-generation networks. By leveraging large
bandwidths, high frequencies, and massive Multiple-Input-
Multiple-Output (MIMO) capabilities, fifth-generation (5G)
systems can enable precise and reliable positioning. In ad-
dition, the service-based architecture and ultra-lean design of
5G make it a cost-effective solution. Furthermore, 5G’s focus
on industrial verticals aligns with the requirements of location-
based services (LBS).

The third generation partnership project (3GPP) positioning
algorithms are geometry-based. They rely on channel parame-
ters for position estimation, such as propagation delay, angle,
or signal strength [1]. These measurements are then processed
by localization algorithms to estimate the position of the user
equipment (UE) [2]. However, these methods rely on line-
of-sight (LOS) conditions. Consequently, their performance

can degrade significantly in non-line-of-sight (NLoS) or dense
multipath environments.

While conventional methods are limited in terms of accu-
racy and performance by the propagation conditions, emerging
artificial intelligence (AI) and machine learning (ML) methods
offer a promising solution to overcome these limitations,
and provide reliable and accurate positioning. Channel state
information (CSI) contains features that can be exploited for
positioning through AI/ML data-driven tools, either to assist
traditional methods or to perform direct positioning. Moreover,
AI/ML models for positioning perform well in the presence of
NLoS conditions, in indoor environments with dense multipath
propagation, and even when the number of available antennas
is limited or the user is in motion [3].

The current 3GPP 5G positioning architecture does not
support the integration of AI/ML algorithms. However, re-
cent studies in 3GPP consider the adoption of AI/ML for
positioning [4]. This paves the way to adopting an Al-native
architecture for the sixth-generation (6G).

Building on the principles of openness, virtualization, intel-
ligence, and programmability. Open radio access network (O-
RAN) offers promising prospects for the integration of AI/ML
algorithms in the radio access network (RAN). To this end, the
O-RAN standardized interfaces and components can offer a
flexible and highly programmable solution. Moreover, the O-
RAN Alliance defines a set of requirements for integrating
AI/ML in the O-RAN architecture [5]. The Non real-time
RAN Intelligent Controller (Non-RT RIC) can be used for
training AI/ML models and providing updated models to the
Near real-time RAN Intelligent Controller (Near-RT RIC).
Furthermore, the Near-RT RIC can host external applications
(xApps) to perform the AI/ML inference. This approach
can also be applied to positioning, which is considered in
the O-RAN Alliance Use Cases Detailed Specification [6].
Nonetheless, the O-RAN Alliance does not specify the detailed
message flow, or any dedicated E2 Service Model (E2SM) for
enabling AI/ML-based positioning.

In order to address this standardization gap, this paper
proposes and validates an O-RAN framework which enables
AI/ML-based localization for real-time deployments. Our pro-
posed solution leverages the O-RAN E2 interface in order to
transport the channel estimates of the Uplink Sounding Ref-
erence Signal (UL-SRS) to the Near-RT RIC and enable real-
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time AI/ML localization inference in an xApp. We provide
a concrete open-source implementation of a new custom O-
RAN compatible E2SM using FlexRIC [7] and integrate it
with OpenAirlnterface (OAI) [8]. Furthermore, we provide,
as an example, a real-time localization xApp that performs
Channel Charting (CC) inference, which is an emerging self-
supervised data-driven method for UE localization in wireless
networks. It is based on learning the similarities between
high dimensional CSI measurements and applying dimension-
ality reduction techniques to the CSI to produce a lower
dimensional embedding called channel chart. The produced
channel chart contains information about the user location
[9]. The xApp uses a pre-trained CC model based on a novel
algorithm that we previously proposed in [10]. This paper also
discusses experimental results obtained from real-time testing
under real-world conditions with an O-RAN based localization
testbed at EURECOM.

Several works have studied and evaluated wireless local-
ization techniques in 5G using OAI. For instance, authors
in [11] provide a detailed guide on the implementation of
positioning features in OAI, mostly focusing on the physical
(PHY) layer and on the useful tools for data extraction which
is necessary for post-processing and analysis. Authors in
[12] demonstrated the integration of NR positioning protocol
annex (NRPPa) and Uplink time difference of arrival (TDoA)
using the UL-SRS for positioning in OAI Finally, authors
in [13] presented experimental results of 5G positioning in
real-conditions using experimental testbeds that are integrated
with OAI, they also demonstrate a new framework suitable
for AI/ML-based positioning in beyond-5G. However, the
implementation does not use O-RAN standardized protocols.
In summary, the primary focus of the previous works was im-
plementing and benchmarking different positioning algorithms
with OAIL However, and to the best of the authors’ knowledge,
our work is the first to propose a framework, with a concrete
implementation, which enables AI/ML localization inference
using FlexRIC and OAL

The main contributions of this paper can be summarized
as follows: we present an O-RAN-based framework, which
constitutes of a custom O-RAN E2SM and an xApp, that
enable real-time AI/ML inference for SRS positioning. We
provide a concrete open-source implementation, of the E2SM
and a specialized CC localization xApp, using OAI and
FlexRIC. We validate our solution in real-world conditions
using an O-RAN-based localization testbed at EURECOM.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model. Section III presents the
deployed CC model. Section IV discusses the implementation
details of the custom O-RAN service model, which transports
the UL-SRS channel estimates from the E2 agent to the Near-
RT RIC, it also describes the implementation of the real-
time CC-based localization xApp. Section V describes the
experimental validation conducted using the Firecell GEOSG
testbed at EURECOM, and analyzes the obtained results.
Finally, section VI concludes the paper and provides future
perspectives.
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Fig. 1: AI/ML-based localization system model

II. SYSTEM MODEL

As shown in Figure 1, our AI/ML-based 5G localization
system model consists of an O-RAN compliant 5G system,
with the Core Network (CN) and the RAN which includes
the Next Generation Node B (gNB) and the UE. The UE
transmits the UL-SRS signal to one or multiple gNBs. While
we consider one gNB in this work, the approach can be
extended to mutiple gNBs. The gNB is further disaggregated
into centralized unit (CU), distributed unit (DU), and radio
unit (RU) (O-CU, O-DU, and O-RU following the O-RAN
architecture). The O-DU and O-RU communicate via the O-
RAN 7.2 fronthaul interface.

There are K RUs each with known Transmission Reception
Points (TRP) locations X,,, where my, € {1,..., M}}. Every
TRP receives the transmitted UL-SRS signal. The O-DU esti-
mates the UL-SRS channel. The estimated channel frequency
response (CFR) of the link between the myg-th TRP of the
k-th RU and the UE at time step ¢, spanning all orthogonal
frequency division multiplexing (OFDM) Ny sub-carriers, is
denoted as wy, ,,, + € CNm_ The E2 interface transports the
estimated frequency-domain MIMO channel matrix from the
E2 agent (O-DU in our system model) to the Near-RT RIC.
An xApp, which is part of the RIC, continuously performs the
machine learning inference and updates the UE position.

We note the channel impulse response (CIR) by hy, ., + €
CNm which is obtained by applying an inverse discrete Fourier
transform (IDFT) to the CFR. In our configuration, the IDFT
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Fig. 2: CC pre-processing pipeline [10]

is performed by the xApp. Collecting the CIRs from all M}
TRPs of RU k yields the RU-level CIR matrix:

:’ o c CAIICXN“( (1)

hy
Similarly, the global CIR matrix across all K RUs is
H,,

)

H,=| : | eCMn )
Hxg
where M = Z,[f:l M, is the total number of TRPs across all
RUs. The global CIR H; is subsequently processed for ML

inference.

III. CHANNEL CHARTING

In this section, we provide a brief overview of the deployed
CC model. The development of the CC algorithm is not part
of this work, and we refer the reader to our previous work
which proposed this novel CC algorithm [10].

We aim to learn a self-supervised CC function fg(-) that
maps a high dimensional channel measurement into a two-
dimensional embedding space:

fo : RM*C 5 R?,

The objective of this mapping is to preserve the inherent
similarities of the radio channel domain within the embedded
space. For example, channel similarities caused by nearby
measurement locations in the physical space should also
appear close to each other in the embedded space. The
estimation of the CC function is carried out by training a
Convolutional Neural Network (CNN) model on a dataset
of channel measurements that have been cleaned and pre-
processed to extract relevant features. The training yields an
optimized mapping function fg, which is then used to predict
the UE position from unseen CIR data after applying the same
pre-processing steps.

A. Data Pre-Processing

Figure 2 show the pre-processing steps of the CC model.
The first step is to apply inverse fast Fourier transform (IFFT)
shifting to position the zero-frequency component at the center
of the time-domain CIR output. Then, we remove outliers,
which are the result of synchronization hardware impairments

present in the testbed. All of this results in a TDoA-aligned

RU-level CIR matrix HShifted We normalize H}®d by the
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puted from the training data and reused during testing to ensure
consistency. Finally, we truncate the result to only contain the
first C fast Fourier transform (FFT) indices. The details about
each step are explained in [10]. The final result is a normalized
and truncated channel matrix, expressed as:

e
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B. Training Phase

After collecting a substantial set of channel measurements
under diverse conditions and trajectories, the data are pre-
processed based on the principles from the previous section.
The resulting dataset is then prepared and structured for use
in training a CNN model, enabling effective feature learning
and robust performance.

The model training steps are depicted in Figure 3. To train
the model, we proceed as described in [10], we begin by
randomly selecting pairs of CIR samples (H}™™ H}*™) a
well as their corresponding TDoAs (A7, ATy,) from the
dataset, with timestamps ¢; and ¢; if their temporal interval
satisfies |t; — t;| < e. Otherwise, they are discarded, and new
pairs are drawn.

We consider two loss functions, the first loss function Zﬁﬁj
reflects the TDoA loss, which discards the NLoS-corrupted
measurements using binary masking, where a classification
function, denoted as g:b, maps normalized CIR measurements
to a binary LoS/NLoS masking vector. The second loss
function Efi’tj incorporates the displacement of the UE diﬁj
between timestamps ¢; and ¢;. The displacement is assumed
to be available (e.g., measured from an external sensor such
as laser or inertial measurement unit (IMU)). In addition, the
time interval e is chosen to avoid sensor noise and bias from
IMU.

While the TDoA loss function could embed the CIR into
two dimensions with a global scale, the purpose of displace-
ment loss is to smoothen the fluctuations in a moving scenario.
Thus, the overall training objective integrates two terms across
all T' time steps, K RUs and their M}, TRPs, can be expressed
as:

AT
Et b "‘5 tits

“4)

where the first term éA %, 18 the pair-wise TDoA measurement
loss, the second term Kti’t], is the displacement measurement
loss, and S controls the relative weight of the displacement
term.
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C. Testing Phase

During training, our model learns to jointly capture both
TDoA and displacement information in a mixed LoS/NLoS
scenario. It is important to note that the testing data are entirely
unseen and have not been used during training. Consequently,
in the testing phase, as shown in Figure 4, the optimized
mapping function f;(-) operates solely on the pre-processed
CIR inputs, without requiring explicit displacement, TDoA
feature annotation or NLoS masking.

IV. IMPLEMENTATION

In this section, we introduce and detail the implementation
of the custom O-RAN service model E2SM-SRS and define
the ”SRS Positioning” RAN function, which supports the RIC
REPORT service, which is used to expose the SRS frequency-
domain channel estimates inside the RIC indication message
via the E2 interface. In this work, the service model will be
leveraged by a localization XApp that exploits and processes
the RIC indication message in order to perform continuous
inference on a pre-trained CC model. The E2SM-SRS and
xApps are implemented in FlexRIC and integrated with the

E2 agent in OAIL All the code is available in the srs_sm [14]
branch in FlexRIC and srs_e2 [15] branch in OAL !

A. OpenAirInterface Overview

OpenAirlnterface is an open-source project that provides a
software-defined implementation of 4G and 5G 3GPP systems.
It is O-RAN compliant as well. OAI includes the CN, the
RAN and the UE. The OAI platform consists of several
coordinated projects, including the RAN, CN, Continuous
Integration/Continuous Delivery (CI/CD) pipelines, and Oper-
ations, Administration and Maintenance (OAM). The platform
is maintained by the OpenAirlnterface Software Alliance
(OSA) which defines roadmaps of each project, promotes the
software and supports the community.

OAI supports different functional splits such as the F1 split
between the CU and the DU and the E1 split between the CU
user plane (CU-UP) and the CU control plane (CU-CP). It
also supports the O-RAN 7.2 fronthaul split as well as the
eCPRI split 8, in order to work with third-party software-
defined radios (SDRs) or RUs.

OAI also supports the Functional Application Platform
Interface (FAPI) [16], which is an interface specified by the
Small Cell Forum (SCF) that shows the interplay between
Layer 1 (L1) and Layer 2 (L2). It allows in-line acceleration
with the integration with hardware-accelerated or Graphics
Processing Unit (GPU) based physical layer implementations,
such as NVIDIA’s Aerial L1 stack [17] [18].

Additionally, OAI supports the E2 interface, which allows
the OAI gNB, CU, or DU to act as an E2 agent for integration
with a Near-RT RIC, in accordance with O-RAN architecture.
This enables real-time monitoring, control, and optimization
of the RAN through xApps. For more details on OAI, we refer
the reader to [8].

B. FlexRIC

FlexRIC is a software development kit (SDK) that provides
an O-RAN compliant Near-RT RIC and xApp SDK. It consists
of server and agent library. It was designed to follow the
5G principles of ultra-lean design and it is implemented
with zero-overhead principle [7]. FlexRIC supports different
versions of the E2 Application Protocol (E2AP) (v1.0/2.0/3.0)
and implements some O-RAN specified Service Models; the
Key Performance Measurement (KPM) and Radio Control
(RC) service models. It also allows the implementation of
some custom service models including those for the Medium
Access Control (MAC), Packet Data Convergence Protocol
(PDCP), and Radio Link Control (RLC) layers. The xApps can
be developed in different high-level programming languages
such as C, C++, and Python, offering flexibility and rapid
development.

C. E2SM-SRS
The custom E2SM-SRS service model provides the seman-

tic description of specific fields which contain the data to be

UIf the branches do not exist anymore, use the dev branch in FlexRIC and
the develop branch in OAI



transported over the E2 interface. In our implementation, we
leverage the FAPI SRS procedure from SCF [16] and extend it
to the RIC, because the exchanged messages in this procedure
contain the SRS channel estimates. As specified by SCF, the
FAPI SRS.indication message contains fields related to the
SRS including a sub-sampled version of the SRS frequency
domain channel estimates. For our purposes, the E2SM-SRS
exposes a modified version of the SRS.indication message,
which instead contains the channel estimates with the full
resolution. In total, the RIC indication message contains the
SRS.indication message and a UE identifier to distinguish
between multiple UEs. Figure 5 illustrates the message flow
between the RIC and the other RAN entities using the E2SM-
SRS. The RIC establishes connection with the E2 agent
(monolithic gNB or DU in this case) via the E2 Setup
procedure. To enable the FAPI SRS procedure, the L2 should
include a SRS PDU in UL_TTLrequest. After receiving the
SRS from the UE, the L1 will process and forward the SRS
response in the SRS.indication message. The reception of the
SRS.indication message by the L2 constitutes the event trigger
for our RIC Report Service. Whenever this trigger is satisfied,
the RIC indication message gets forwarded to the Near-RT
RIC via the E2 interface.

D. Localization xApp

In our framework, the Near-RT RIC hosts an xApp that
performs localization inference. As an example, we imple-
mented a specialized localization xApp in C++, that leverages
our custom E2SM-SRS and performs continuous inference on
a pre-trained CC model. The xApp is used to evaluate the CC
model using the Firecell GEOSG testbed at EURECOM. After
the xApp receives the RIC indication message, it unpacks
the fields of the SRS.indication message. The next step is
the pre-processing of the SRS channel in order to prepare it
for ML-inference. We implemented the steps described in III
using libtorch. Then, the xApp performs the inference using
a trained model. Moreover, the CC predictions are enhanced
with a moving average filter. Furthermore, the XApp integrates
a demonstrator, in the form of a real-time graphical user
interface(GUI) that plots the SRS channel and the position
estimates in a two-dimensional representation of the testbed
map.

E. E2 Agent emulator support

For prototyping and testing purposes, we extended the O-
RAN compliant E2 agent emulators provided by FlexRIC to
support our new E2SM-SRS for AI/ML-based localization. In
our implementation, the E2 emulator reads CSI samples from
the EURECOM 5G SRS CIR dataset [19] and forwards them
to the Near-RT RIC. This can easily be configured to use
any other dataset. This setup enables testing new algorithms
within an O-RAN-compatible framework, providing a useful
intermediary step before deploying a full end-to-end system.
For reproducibility, we provide a detailed tutorial in [20].

UL_TTLrequest(SRS PDU)

SRS.indication

RIC Indication

Fig. 5: Message flow between the RIC and the RAN entities

Fig. 6: Firecell GEO-5G testbed at EURECOM: Deployment
of 2 O-RUs each with 4 distributed TRPs on the south terrace
and the north rooftop of EURECOM, with a testing area of
size 50 x 10 on the north terrace

V. EXPERIMENTAL EVALUATIONS
A. Setup

To validate the proposed framework, we conducted ex-
periments in real-world conditions using the Firecell GEO-
5G testbed at EURECOM. The testbed is built on top of
EURECOM’s OpenXG platform, which provides high-speed
fiber-connected computing and switching infrastructure. This
environment supports virtual 5G deployments with USRPs and
O-RAN radios, and integrates OAI for running virtual network
functions.

Thanks to our recent contributions to OAI RAN [12], the
testbed can flexibly operate under either a single-gNB with
multiple RUs, or a multi-gNB with multiple RUs architecture.
To evaluate the new localization features in OAI, we deployed
two VVDN O-RAN RUs [21], provided by Firecell [22],
configured with a single gNB (CU-DU) and integrated into
the OpenXG infrastructure.

Each RU is equipped with four distributed Panorama di-
rectional antennas [23], mounted on the roof railings and
connected through low-loss cables. This results in a total of
eight TRPs, providing coverage over a 50 X 10 m testing area
on the north terrace of the EURECOM building (see Figure 6).
There are 16 test points (A to P) distributed in the testing
area. All test points accurate locations in a local Cartesian



coordinate are calculated using true distances between them
and the antennas by a laser ranging tool. The reference for
our local coordinate is TRP 1 on RUI.

In our configuration, we use 5SG New Radio (5G NR) band
n77 with 100 Mhz maximum bandwidth, in time division
duplex (TDD) mode using 30 kHz subcarrier spacing. The CU
and DU run on the same server. The CN runs on a separate
server in a docker environment. FlexRIC, which includes, the
Near-RT RIC and the xApp (with the GUI) runs on bare metal
on a separate machine connected to the network. Deploying
FlexRIC in a docker environment is also possible.

B. Results

This section presents the results for the performance evalu-
ation of our O-RAN-based localization framework. We assess
the accuracy of CC, followed by an analysis of the latency. The
results are compared with the 3GPP uplink time difference of
arrival (UL-TDoA) positioning.

1) Accuracy: Two scenarios are considered: one for a static
UE and one for a moving UE. The first experimental scenario
involves placing one commercial off-the-shelf (COTS) UE on
each test point with a fixed height using a tripod. The xApp is
then executed to perform the CC inference. We store the CC
predictions on a csv file in real-time. The Euclidean distance
between the CC predictions and the ground truth measure-
ments represents the error in the measurements. We consider
the 90th percentile of the error and the mean absolute error
(MAE) as performance metrics of the positioning accuracy.

In the moving scenario, a handheld UE moves in a random
trajectory along the test points, and the CC estimations are
illustrated in real-time over the GUI. This provides valuable
qualitative insights into the model’s behavior and allows for
observation of how changes in the wireless environment affect
the CC predictions.

The box plots in Figure 7 visualize the distributions of the
error in all 16 test points. The lower whisker is set at the 10th
percentile, and the higher whisker is set at the 90th percentile.
We observe different error distributions across the test points
with varying skewness. For most test points, the median error,
represented by the orange line, lies in the expected range under
4 m in most of the test points except test points H,I and O.

Figure 8 shows the CC predictions in a moving scenario for
a UE taking the following trajectory: B - C — D — E —
L+ M—N—-0 — P — A — B. For error analysis
in this moving scenario, existing tools such as those based on
real-time kinematic positioning (RTK) can deliver cm-level
positioning accuracy which can be considered as ground truth
for outdoor deployments. However, it remains complicated to
evaluate the positioning error. This is mainly due to practical
impairments, such as synchronizing the CC predictions with
RTK measurements. In future developments, more reliable and
robust methods will be investigated to assess the positioning
accuracy for a moving UE.

We also compare the accuracy of CC with a classical 3GPP
UL-TDoA protocol employing particle swarm optimization
(PSO) algorithm to compute the position [12]. Table I shows
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Fig. 8: CC UE tracking in a moving scenario

the comparison of the MAE for the same 16 test points. It can
be observed that UL-TDoA performs better for most of the
test points, but it should be noted that the measurements were
done at different times and it could be that the environment
has changed in between. This highlights the very important
fact that neural networks for localization are very site and
environment specific and should be regularly retrained.

2) Latency: Finally, we evaluate the latency of the pro-
posed O-RAN framework and compare it with that of the
3GPP NRPPa-based positioning architecture [12]. Latency is
measured over multiple trails by recording timestamps at the
relevant entities. In the O-RAN framework, timestamps are
recorded at the E2 agent, and xApp. For the 3GPP architecture,
timestamps are recorded at the location management function
(LMF) and the overall latency is measured from the initiation
of location request until the reception of the positioning
result. In our experimental setup, all the involved servers are
synchronized using Precision Time Protocol (PTP) in order to
ensure timing consistency.

As explained in Section IV, the RIC indication procedure
is event-driven. Thus, the end-to-end latency is defined as the



TABLE I: Comparison of the MAE (in meters) for the test
points

Test point MAEcc MAEyL.tpoa
A 3.33 1.88
B 1.87 1.13
C 0.30 0.82
D 2.94 0.83
E 0.40 0.95
F 3.35 0.55
G 3.73 0.92
H 11.64 0.56
I 8.95 0.60
J 1.49 0.83
K 2.33 0.82
L 2.65 1.20
M 1.94 0.64
N 2.51 0.68
(6] 14.19 0.97
P 2.43 1.98

elapsed time between the event trigger —corresponding to
the reception of a FAPI SRS indication message— and the
delivery of the CC prediction produced by the xApp.

To provide a detailed analysis, we decompose the overall
latency into two components. First, the RIC indication mes-
sage latency is measured as the time elapsed from when the
E2 agent generates and sends the RIC indication message,
until its reception by the xApp. Second, the XxApp processing
latency is measured separately, capturing the unpacking of
the SRS.indication message, the preprocessing, and the CC
inference. The end-to-end latency corresponds to the sum of
these two components. In addition, the inference latency is
measured in isolation to quantify its contribution to the total
end-to-end latency.

Experimental results show an average end-to-end latency of
7.749 ms, out of which 4.914 ms corresponds the processing
latency. The CC inference latency is 4.230 ms, accounting for
around 86% of the processing latency.

For comparison, we also measured the latency of the 3GPP
UL-TDoA architecture where the LMF is using PSO as po-
sitioning algorithm [12]. Unlike the O-RAN architecture, the
3GPP positioning protocol is based on request and response:
the positioning process begins when an external Application
Programming Interface (API) sends a location request of a UE
to the LMF. In the implementation, this is issued via a single-
line curl command, which sends an Hypertext Transfer
Protocol (HTTP) POST request to the determine location API.
After computing the UE location, the LMF returns a response.

The overall latency is measured by collecting timing in-
formation provided by the curl command. As with the
RIC approach, we also separately measure the latency of
the PSO algorithm. However, it is important to note that
conducting a fair comparison between the two approaches
remains challenging. A substantial portion of the latency in the
3GPP architecture is spent waiting for the SRS measurement
response. Consequently, the measurements obtained via the
curl command represent an upper bound on the end-to-end
latency.

The results of the 3GPP NRPPa-based approach show that
the average overall latency is 32.125 ms while the average
latency of the PSO is 0.240 ms. While the NRPPa protocol
latency is substantially higher than that observed in the RIC
procedure, the PSO computation is significantly lower than
the CC inference time in the xApp. However, it should be
noted that we did not seek to optimize the performance of
CC and there is room for improvement by using a different
implementation on a more efficient inference engine, or GPU
acceleration.

VI. CONCLUSIONS

This paper provided an O-RAN based framework for the
integration of real-time AI/ML-based localization inference
in 3GPP and O-RAN compliant 5G systems and beyond.
The implementation is fully open-source, based on OAI and
FlexRIC, provides a new custom E2SM that successfully
transports the UL-SRS channel estimates to the NearRT-RIC
via the E2 interface. Localization is performed in an xApp
hosted in the Near-RT RIC. The approach was integrated with
a CC xApp and validated in real-world conditions using the
Firecell GEOSG testbed at EURECOM.

The purpose of the paper was to show how the O-RAN
architecture can be leveraged to perform AI/ML-based posi-
tioning. The algorithms and implementations of the xApp used
in this paper is just an example and not the main contribution
of this work.

As future work, we plan on extending this framework to
multi-cell deployments, integrating other ML methods, as well
as extending to sensing. We also consider integrating the Near
RT-RIC with a Non RT-RIC to perform the AI/ML model
training.
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