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Abstract—The Cramér-Rao bound (CRB) quantifies the vari-
ance lower bound for unbiased estimators, but it is intractable to
evaluate in linear hierarchical Bayesian models with non-Gaussian
priors due to the intractable marginal likelihood. Existing meth-
ods, including variational Bayes and Markov chain Monte Carlo
(MCMC)-based approaches, often have high computational cost
and slow convergence. We propose an efficient framework to ap-
proximate the Fisher information matrix (FIM) and the CRB by
expressing the gradient of the log marginal likelihood as a posterior
expectation. Expectation propagation (EP) is used to approximate
the posterior as a Gaussian, enabling accurate moment estimation
compared to pure sampling-based methods. Numerical experi-
ments on small-scale sparse models show that the EP-based CRB
approximation achieves lower average normalized mean squared
error (NMSE) and faster convergence than classical baselines in
non-Gaussian settings.

Index Terms—Cramér-Rao bound, expectation propagation,
fisher information matrix, Monte Carlo sampling.

1. INTRODUCTION

HE Cramér—Rao bound (CRB) provides a fundamental

benchmark for the performance of unbiased estimators,
establishing a theoretical lower bound on the estimation vari-
ance [1], [2]. In linear hierarchical Bayesian models with non-
Gaussian priors, direct evaluation of the CRB is often intractable
due to the complexity of the marginal likelihood and its deriva-
tives.

Traditional approaches to approximating the CRB, such as
the Laplace approximation [3], variational Bayes (VB) infer-
ence [4], and fully numerical methods based on Markov chain
Monte Carlo (MCMC) sampling [5], can approximate posterior
covariances or Hessians but typically suffer from high com-
putational cost or limited accuracy when relying on a single
global Gaussian/mean-field approximation under strongly non-
Gaussian posteriors. Direct Monte Carlo sampling of posterior
gradients or Fisher information matrix (FIM) terms also faces
challenges, including slow convergence in scenarios with limited
sample sizes [6].
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To address these limitations, we propose a flexible and effi-
cient framework for approximating the FIM and thus the CRB
in complex hierarchical models. The key idea is to express
the gradient of the log marginal likelihood as an expectation
over the posterior distribution of latent variables, transforming
an intractable marginal gradient computation into a tractable
posterior expectation. However, direct sampling-based approx-
imations of these posterior expectations can be computationally
demanding [7].

Instead, we leverage adaptive expectation propagation
(EP) [8], [9], [10], [11] to obtain a Gaussian-family approxi-
mation via iterative tilted moment matching, enabling tractable
posterior moments while accommodating non-Gaussian prior
factors. This approach first generates a limited number of
marginal samples from the generative model and, for each
sample, applies EP to approximate the corresponding posterior
distribution. Because EP directly yields the posterior means and
variances, only a modest number of marginal samples is needed
to accurately estimate the FIM. Compared to direct Monte Carlo
methods [7] and message-passing methods like approximate
message passing (AMP) [12], vector AMP (VAMP) [13], and
generalized AMP (GAMP), our EP-based approach achieves
significantly higher precision and faster convergence by directly
leveraging posterior moment matching—particularly important
for non-Gaussian hierarchical models.

The remainder of this letter is organized as follows.
Section II formulates the problem and presents the CRB ex-
pression. Section III introduces the two-step approximation
framework for the FIM. Section IV details the EP inference
algorithm. Section V discusses implementation and algorithmic
considerations. Section VI presents numerical experiments val-
idating the proposed approach, and Section VII concludes this
letter.

II. PROBLEM FORMULATION AND CRB EXPRESSION

We consider the following linear observation model:

y =Ax+v, ey

where y € RM denotes the observed vector, A € RM*V s a
known observation matrix, x € R” is the unknown signal vector
(latent variable vector), and v ~ N (0, oT) represents Gaussian
noise with unknown variance 2.

The entries of x are assumed to be independent and identically
distributed (i.i.d.) according to a prior distribution p(z,;8),
where @ € R” denotes a vector of hyperparameters character-
izing the prior. Specifically, the prior distribution of x can be
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written as

N
p(x;0) = [ [ p(n:0). )
n=1

For mathematical convenience, we adopt the i.i.d. assumption
in this work. Nevertheless, our framework can be extended to
the more general case in which the entries of x are independent
but not identically distributed (non-i.i.d.). In such cases, only
minor modifications are required in the subsequent derivations,
and the overall approach remains applicable.

Our primary objective is to jointly estimate the hyperparam-
eters @ of the prior distribution and the noise variance 2. To
quantify the fundamental lower bound on the variance of any

unbiased estimator <Aﬁ of the unknown hyperparameter vector
¢ =1[0",0%", we employ the Cramér-Rao Bound (CRB). The
CRB states that the covariance matrix of any unbiased estimator
satisfies

Cov() = CRB(¢) = J}(9), (3)
where the Fisher Information Matrix (FIM) is defined by

J(¢) =Eyp[Vologp(y; #)Vylogp(y: d)]. ()

As in (4), the marginal likelihood can be expressed as

p(y1d) = / p(y|x, 02) p(x; 0) dx, 5)

which is generally intractable due to the high-dimensional
integral. To address this challenge, we leverage the standard
derivation in the expectation-maximization literature [14]:

Vo logp(y; @) = Epxly:e) [Velogp(y. x;¢)].  (6)

Define the complete-data score function as following:
B(x,y;¢) = Vg logp(y,x; ¢), @)
which can be decomposed as
B(x,y;¢) = Vg logp(y[x,0%) + Vg logp(x;6).  (8)

This explicit form highlights the tractability of evaluating
B(x,y; ¢) once the posterior distribution is available.

Substituting the marginal score expression (6) into (4), the
FIM becomes

J(¢) =Ey [EP(X\Y;Q") [B(X’ Y ¢)}

X IEp(x\y;qﬁ) [B(X7 Y ¢)] Tj| 5 (9)

which directly connects the FIM to the outer product of the
posterior-averaged complete-data score.

III. FISHER INFORMATION MATRIX APPROXIMATION

We exploit the factorization structure in (9) to decompose the
joint expectation into nested conditional expectations:

J(¢) :EP()’;¢) [m(Y)m(Y)T] ) m(Y) :Ep(xly,(b) [B<X7 y; ¢)]
(10)

This separation naturally suggests a two-step approximation
scheme:

i) Outer Monte Carlo Sampling: When possible, generate

samples {y(*)}2_, from the marginal distribution p(y; ¢)

by simulating from the generative model p(y |x; ¢) and the
prior p(x;0). Alternatively, use available observed data
{y(®)} when the marginal model is intractable.

ii) Inner Posterior Expectation: For each y(®), approximate
m(y(s)) by computing the posterior expectation under
p(xly™); ).

This factorized Monte Carlo + posterior expectation frame-

work circumvents explicit posterior expectation over p(x|y; ¢).

In the outer Monte Carlo step, we approximate the expectation
overy by drawing S samples {y(*) }3_, from the marginal distri-
bution p(y; ¢), which is generally intractable due to the integral
over the latent variable x in (5). When the generative model is
available, samples of y can be obtained by first drawing x(%) ~
p(x; @) from the prior and then computing y*) = Ax(®) 4 v(*),
where v(*) ~ N(0, %I ,/) represents measurement noise. This
simulation-based approach directly reflects the generative pro-
cess implied by the model and ensures that the samples y(*) are
consistent with the underlying system parameters.

In practical scenarios where the generative model is unavail-
able or p(y;¢) cannot be evaluated, available observed data
{y(*)} can be used directly. This bypasses the need to compute
the marginal distribution explicitly and leverages real-world
measurements for performance evaluation. The sample size S
balances computational cost and approximation accuracy: larger
S improves the outer expectation approximation but at increased
computational expense. Each sampled y(*) subsequently serves
as input to the inner posterior expectation approximation de-
scribed in the following section.

IV. EXPECTATION PROPAGATION INFERENCE

Given the sampled y, we consider the intractable posterior

vy — PO T p(a6)
pody: ) I p(ylx;02) T2y p(n; 6)dx

where ¢ = [0, 5%]". The prior factors p(z,,; @) are typically
non-Gaussian, rendering exact inference infeasible.

To address this, we employ Expectation Propagation (EP) [8],
[9], which directly approximates each prior factor by a Gaussian:

, (1D

fn(zn) :N(zmpnﬂ'n); (12)
yielding the approximate posterior
2 N
X;0 n= n(Tn

[ p(ylx;0?) HL frln)dx’

where ¢(x|y) are the approximate Gaussian posterior with mean
m and covariance C,,.

A. Initialization

We initialize the Gaussian factors f,(z,) by matching the
first and second moments of the true prior:

Pn = E[l‘n]a Tn = Var[a:n], (14)
so that the initial ¢(x|y) corresponds to the linear minimum
mean square error (LMMSE) estimate. This initialization pro-
vides a practical starting point, especially when no other infor-

mation is available.



B. Iterative EP Updates

The EP algorithm refines the Gaussian factors iteratively as
follows:

1) Posterior Approximation: Given the current Gaussian fac-
tors, the approximate posterior is updated by

vy — PP Ty fo(a)
q( ‘y) fp(y|X, 0—2)1—15:1 fn(l'n) dX’

where ¢(x|y) remains Gaussian with mean m and covariance
Cun- These parameters can be computed in closed form:

Cm = (0 2ATA + C,1) 7,

15)

(16)
m = Cp, (0 *ATy + C,'p), (17)

where p collects the means p,, of the approximate prior factors,
and Cy, is a diagonal matrix with the variances 7, as its diagonal
entries. Here, ()7 denotes the matrix transpose.

2) Extrinsic Distribution: For each variable x,,, the extrinsic
distribution is computed by removing f,,(z,,) from ¢(x|y):

a(xly)
b(z,) =
Because ¢(x|y) is Gaussian, this marginalization is tractable,
yielding a Gaussian b(x,,) that captures the information about
x,, from all other factors.

3) Tilted Distribution and Moment Matching: The tilted dis-
tribution combines b(x,,) with the exact prior:

D) o< b(a,)p(x,; 0). (19)

Since p(x,,) is generally non-Gaussian, it is approximated by
matching its first and second moments:

q(zn) = proj[p(zn)], (20)

where proj[] denotes the Gaussian projection that matches the
first two moments. The new factor update is

dx,,. (18)

fre¥ () o 4(n) 21

b(xy,)
4) Damping for Stability: To ensure robust convergence and
prevent oscillations, a damping step is applied:

fn(xn) < fn(l'n)lin ’ fgew(l‘n)n, ne (07 1] (22)

A typical choice is 7 = 0.5, which balances convergence speed
and stability. In practice, 1 can also be adapted during iterations
based on the magnitude of factor updates, reducing 77 when large
oscillations are detected and increasing it as the algorithm stabi-
lizes. This adaptive damping can further improve convergence
in challenging scenarios. These steps are repeated for all n until
convergence. If an update yields non-positive values, we apply
damping and project them to a small positive threshold.

5) Convergence: The iterative updates are repeated until
convergence is reached. A typical convergence criterion is to
monitor the change in the means and variances of the Gaus-
sian factors f,,(z,,) across iterations. Convergence is declared
when the maximum relative change across all n falls below a
predefined threshold (e.g., 10~2). This ensures that the approx-
imate posterior ¢(x|y) has stabilized and no longer undergoes
significant updates.

This EP framework systematically replaces intractable ex-
pectations with tractable Gaussian updates. Initialization with

Algorithm 1: Proposed Algorithm for Fisher Information
Matrix Approximation.

Require: Number of outer samples .S, observation matrix
A, prior parameters 6, noise variance o, damping factor

N
Ensure: Approximation of the Fisher Information Matrix

3(¢)
1. fors=1,...,5do
2:  Generate latent signal x(*) ~ p(x; 6)
3: Generate observation y*) = Ax(®) 4+ v(®) with
V(S) ~ ./\/(0, O'2I]V[)
4:  Approximate the posterior p(x|y(*); ¢) by EP:

p(xly™; 9) = a(x|y) = N (™), =)
5: Compute the approximate posterior gradient
(posterior average of complete-data score):
m(y ™)) = By [Vo logp(y'™, x; ¢)].

end for
Approximate the Fisher Information Matrix:

N

S
3(@) ~ ¢ > mly®)m(y).

prior moments ensures a sensible starting point, while damping
promotes convergence stability.

V. ALGORITHM IMPLEMENTATION DETAILS

Algorithm 1 summarizes the entire procedure for approximat-
ing the Fisher Information Matrix (FIM) by combining:

® Quter Monte Carlo sampling of y (s = 1, ..., 5): captures

variability of y in the marginal FIM.

e [nner EP-based Gaussian approximation of p(x|y): di-

rectly provides a posterior mean and covariance.

® Direct Gaussian moment calculation for posterior expec-

tations m(y): no further sampling is needed.

This approach avoids high-dimensional joint sampling of
(x,¥), replacing it with a two-level hierarchical approximation.
It leverages the analytic tractability of Gaussian expectations
while retaining the flexibility of EP to adapt to non-Gaussian
prior structures (e.g., spike-and-slab). In practice, the number
of outer samples S is chosen based on convergence diagnostics
and desired accuracy, while the EP typically converges in a few
iterations per observation.

This combination of adaptive moment-matching and outer
Monte Carlo sampling provides an accurate, scalable, and nu-
merically robust way to approximate the FIM in complex latent
variable models.

VI. EXPERIMENTAL EVALUATION

A. Setup and Exact CRB Computation
We consider a spike-and-slab prior for the unknown vector
x € RV:

p(xn) = 76(xn) + (1= ) N (2050, 72), (23)



with 7 = 0.5, 72 = 1, and observation noise variance o2 =

1. The measurement matrix A € RM*N is generated with
i.i.d. Gaussian entries and normalized column-wise. We focus
on N =10, M =5, where exact posterior computations are
tractable.

For each observation y and sparse signal x, the complete-data
gradient vector B(x, y; ¢) is given by

Ny’

Z ﬁ log p(x, | 7%)

n=1

ly — Ax|3
204

Here, the derivative w.r.t. 72 depends only on x? terms and can
be written as:

B(x,y;¢) = (24)

[lex] — 2— +

Tn # 0,

z, = 0.

0
1 a2 = — 57 55— 25
87—2 ng(x | T ) [16.’1,'] 272 1377\;7'2 ’ ( )

T+ V22

Consequently, computing the exact CRB requires only the pos-
terior first and second moments of x. In this low-dimensional
setting, the exact posterior average

= Epxly;o) B(x,y; ¢)] (26)

can be computed in closed form by enumerating all posterior
configurations, as detailed in [15]. Although this approach pro-
vides accurate CRB evaluation in small-scale problems, it is
computationally prohibitive for larger dimensions. The exact
FIM and CRB are then given by

§ mexact

J- 1

exact*

Mexact (y)

Jexact = mexact ( (s) )T y (27)

CRBexact (28)

B. Approximation Methods and Evaluation

For benchmarking, we generate .S independent observations
y(®). Since the complete-data gradient expectations m(y) de-
pend only on posterior first and second moments of x, the
approximate methods are designed to estimate these moments
efficiently:

® EP-based (proposed): Adaptive-damped EP approximates

the posterior as Gaussian, directly yielding the required
first and second moments.

o AMP: Uses approximate message passing to compute ap-

proximate posterior means and variances.

® LMMSE baseline: Assumes Gaussian prior matching prior

moments, yielding analytical approximate posterior mo-
ments.

® Blocked Gibbs MCMC [7], [16]: Employs the blocked

Gibbs sampling MCMC scheme from [16] to replace the
basic MCMC in [7], using L = 100, 500, 2500 inner itera-
tions to generate posterior samples and compute posterior
means and variances.

Each method estimates the approximate posterior gradient
Mypprox (y(s)) and constructs

§ mapprox

approx = mappro ( (s))T7 (29)

-10 T T T T T T T

12+
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Fig. 1. Average NMSE of the estimated CRB diagonal variance bounds
compared to the exact CRB across 5000 independent repetitions.

CRBapprox = Jipbrox- (30)

Convergence is quantified by the normalized mean squared error
(NMSE) of the CRB diagonal elements (variance bounds):

P+1 , 35
| (dy — d)?
NMSE = 31
P+1) ; FER D

where (fn and d,, denote the n-th diagonal entries of CRBpprox
and CRB ., respectively. We perform 5000 repetitions for each
S, varying from 100 to 500 in steps of 50.

C. Results

Fig. 1 shows the average NMSE convergence of the CRB
diagonal variance bounds compared to the exact bench-
mark. The EP-based method achieves the best convergence
and lowest average NMSE, improving steadily with S.
MCMC-based estimates converge more slowly but benefit
from larger L. The LMMSE baseline outperforms AMP,
which exhibits the slowest convergence and largest average
NMSE due to mean-field limitations in this small dimension
setting.

VII. CONCLUSION

We have presented a scalable framework for approximating
the Fisher information matrix and the CRB in linear hierar-
chical Bayesian models with non-Gaussian priors. By express-
ing the intractable marginal gradient as a posterior expecta-
tion and leveraging expectation propagation to approximate the
posterior, our method achieves accurate and computationally
efficient FIM estimation. Numerical experiments demonstrate
that the proposed EP-based approach outperforms traditional
sampling-based methods, particularly in scenarios with strongly
non-Gaussian priors. This highlights the potential of combining
EP-based approximations with Monte Carlo outer sampling for
robust and scalable CRB estimation in high-dimensional signal
processing applications. Future work will focus on extending
this framework to large-scale models, paving the way for prac-
tical deployment in real-world signal processing and wireless
communication systems.
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