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Abstract—Maintaining real-time synchronization between
physical assets and their Digital Twins over bandwidth-limited
wireless links is a complex challenge. Existing approaches either
transmit all sensed data, resulting in unnecessary network
overhead, or rely solely on forecasting, which cannot guarantee
fidelity when operating conditions change. In response, we
present a risk-aware, event-driven synchronization framework
that leverages predictive modeling to minimize network traffic
while maintaining the fidelity of digital twins. Our approach uti-
lizes a Gated Recurrent Unit-based quantile forecaster to predict
key states with calibrated uncertainty. Additionally, it employs
online quantile coverage and Kullback-Leibler divergence tests
to monitor reliability and detect changes in distribution. The
system operates in a predictive mode, fetching only selected
states, and shifts to full synchronization and model retraining
when deviations are detected. We conducted experiments using
public LTE and 5G datasets, achieving R2 > 0.80 in most cases,
with a peak of 0.99. Real-world evaluations using a commercial
smartphone showed network-traffic reductions of 5.4–7.0% ver-
sus continuous synchronization, along with mean absolute error
(MAE) reductions of about 64% on average relative to simpler
predictive methods. These findings demonstrate that predictive
synchronization, coupled with awareness of drift, enables high-
fidelity digital twinning even under strict bandwidth constraints.

Index Terms—Digital Twin, IoT, Adaptive Synchronization,
Predictive Modeling, 5G Networks, Resource Efficiency

I. INTRODUCTION

A Digital Twin (DT) is a virtual representation of a physical
system that continuously reflects its state and behavior in real
time [1]. Unlike static models, a DT maintains a bidirectional
link with its Physical Twin (PT), receiving sensor data and
sending back predictive insights or control signals [2]. This
closed-loop interaction enables enhanced capabilities in the
physical systems where DTs are utilized in various domains
such as networking, manufacturing, and healthcare [3].

The emergence of the 6G paradigm envisions massive digi-
tal twinning, where DTs evolve from individual asset replicas
to large-scale, system-level models that provide comprehensive
visibility and coordinated control [4]. These deployments
may involve thousands of interconnected DTs performing
continuous monitoring, predictive analytics, and adaptive re-
source management. Achieving real-time synchronization on
this scale remains a significant challenge [5].
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Most existing works assume a consistent, high-fidelity
connection between PT and DT. However, such continuous
synchronization is often impractical over bandwidth-limited
wireless links. The frequency of synchronization introduces
a crucial trade-off: frequent updates improve accuracy but
increase communication overhead, while infrequent updates
risk state divergence [6]. This motivates the need for adaptive
approaches that intelligently balance fidelity with bandwidth
consumption [7].

Beyond immediate state mismatches, delayed or missing
updates can introduce concept drift, where the DT’s internal
models become misaligned with the evolving PT [8]. As
the underlying data distribution changes, model performance
degrades, limiting the effectiveness of analytics and con-
trol. Therefore, incorporating uncertainty estimation and drift
detection is essential to maintain DT fidelity, especially in
predictive or event-driven synchronization schemes. Rising
predictive uncertainty is often correlated with distribution
shifts, which can trigger uncertainty-driven alerts for drift
detection [9]. Early detection of such deviations enables cor-
rective actions, including retraining and recalibration, before
errors accumulate.

To address these challenges, we propose a risk-aware, event-
driven synchronization framework that integrates predictive
modeling with uncertainty quantification and distributional
drift detection. The DT utilizes a multi-output quantile-based
time series forecaster to predict multiple PT states with un-
certainty estimates. Simultaneously, Kullback–Leibler diver-
gence is employed to detect distribution shifts by comparing
current prediction distributions against a reference baseline.
When predictive uncertainty increases or divergence exceeds
a threshold, the system switches from predictive operation to
direct synchronization and retrains the model with fresh data.
This adaptive control loop reduces unnecessary transmissions
while maintaining high fidelity under changing conditions.

We evaluate our framework using real-world LTE and 5G
datasets and implement it on a commercial smartphone. The
results demonstrate that our approach significantly reduces
synchronization traffic compared to direct synchronization
while preserving state accuracy over long durations. These
enhancements arise from using uncertainty-aware forecasting
and drift detection together, demonstrating that predictive
synchronization can maintain high-quality digital twins even
under strict bandwidth limitations, offering a promising direc-



tion for future DT implementations in 6G and beyond.
This paper makes the following key contributions. We intro-

duce a risk-aware synchronization framework that (i) combines
quantile-based uncertainty estimation with KL-divergence drift
detection to decide when to synchronize vs. predict, (ii)
performs event-driven retraining using synchronized data only
when prediction reliability degrades, and (iii) is implemented
and evaluated on a real smartphone DT using LTE and 5G
datasets and live network traffic. The framework achieves
about 64% MAE reduction on average over simpler predictive
schemes while reducing synchronization traffic by 5–7% in
real deployments.

II. RELATED WORK

Existing research on DT synchronization has investigated
various strategies to reduce communication overhead while
maintaining fidelity. One approach focuses on event-driven or
threshold-based synchronization, where updates are sent only
when the deviation between the DT and its PT exceeds a
predefined error bound. For instance, TwinSync [10] employs
a lightweight shadow twin mechanism that transmits state
updates only when a user-defined error threshold is about
to be violated, significantly reducing bandwidth consump-
tion without compromising application-level accuracy. Tan
and Matta [7] frame synchronization as a stochastic control
problem, demonstrating that adaptive policies that consider the
system state outperform fixed-interval update schemes, empha-
sizing the importance of dynamic synchronization decisions.

The trade-off between synchronization accuracy and com-
munication cost has also been studied in mobile and ve-
hicular DT systems. Incentive-based and game-theoretic ap-
proaches have been proposed to coordinate resource sharing
between vehicles and edge infrastructure under bandwidth
constraints [11]. Other efforts address networking bottlenecks
by modeling synchronization delays and optimizing communi-
cation parameters. For example, Cakir et al. [12] introduce the
Twin Alignment Ratio to quantify synchronization timeliness
and show how congestion control is essential to prevent perfor-
mance degradation in dense wireless environments. Similarly,
Yang et al. [13] frame synchronization-delay minimization
as a joint optimization problem involving device selection,
transmit power allocation, and data offloading, resulting in
significant delay reductions compared to heuristic approaches.
Forecasting-based synchronization schemes have also been
explored, where sensor values are predicted locally, and the
update frequency is adjusted based on error thresholds [14].
While these solutions improve scalability and efficiency, they
generally lack mechanisms to quantify predictive uncertainty
or detect when distributional shifts render predictions unreli-
able.

Quantile regression has emerged as a powerful tool for
modeling predictive uncertainty. Unlike conventional point
forecasting, it estimates conditional quantiles and produces
prediction intervals with defined coverage probabilities [15].
These intervals are robust to outliers and heteroscedasticity,
common in wireless telemetry data. Recurrent architectures
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Fig. 1. In adaptive mode, the PT synchronizes only a subset of parameters
and buffers the rest. The DT forecasts the withheld parameters to reconstruct
the full state. When prediction quality decreases, the framework triggers full
synchronization at the next interval.

such as LSTMs and GRUs enhance this approach by capturing
nonlinear temporal dependencies, yielding well-calibrated un-
certainty bands that reduce false alarms and improve decision-
making in time-series prediction [16]. Additionally, tail quan-
tile analysis has been used to indicate concept drift [17].Fur-
thermore, composite quantile regression enables online up-
dates without costly retraining by jointly estimating multiple
quantiles using a single objective function [18]. These ad-
vances demonstrate that quantile-based forecasting can inform
risk-aware decision-making. However, prior work has yet to
combine these methods with adaptive DT synchronization.

Detecting distributional drift is another essential capabil-
ity for maintaining DT fidelity. Metrics such as the Kull-
back–Leibler (KL) divergence offer a principled measure of
divergence between observed and expected data distributions
and have been widely used in anomaly detection, streaming
analytics, and adaptive learning [19]. KL-based statistics,
like the Population Stability Index (PSI), can detect subtle
changes in data distributions before conventional systems
fail [20]. Simultaneously, applications in wireless sensing and



interference prediction demonstrate the effectiveness of these
metrics in triggering model switching and enhancing predic-
tion robustness [21]. KL divergence has also been applied
in integrated sensing and communication systems to jointly
optimize sensing and communication performance [22]. These
studies confirm that divergence-based monitoring is a reliable
signal for triggering adaptation but have not yet been tightly
integrated into DT synchronization policies.

Previous work has addressed various facets of the syn-
chronization problem, including adaptive scheduling, network
optimization, incentive-driven coordination, and forecasting-
based techniques. However, most approaches overlook predic-
tive uncertainty or assume that the predictive model remains
valid over time. Likewise, existing drift detection methods
are not incorporated into the synchronization loop. Our work
bridges these gaps by combining quantile-based forecasting
with KL-divergence-driven drift detection to create an adaptive
synchronization framework. This approach enables the DT to
dynamically decide when to rely on local predictions and when
to synchronize fully, thereby achieving high fidelity under
bandwidth constraints.

III. METHODOLOGY AND FRAMEWORK

A. Proposed Adaptive Synchronization Framework

As illustrated in Figure 1, at each synchronization interval t,
the PT transmits only a selected subset of N state variables;
the DT infers the withheld variables through a multi-output
predictor, providing a complete state vector for downstream
analytics. Because the DT operates on predicted states rather
than requiring all raw measurements, only the minimal nec-
essary data is transmitted, making the framework inherently
bandwidth- and privacy-efficient. For example, during a 2-
second synchronization interval, the PT transmits only a subset
of parameters (e.g., RSSI, SNR and RSRQ), while the DT
predicts the remaining states (e.g., RSRP and Downlink bi-
trate) and proceeds with analytics without requiring raw mea-
surements. These intervals typically range from one second
to two minutes, depending on the application requirements.
All forecasting, uncertainty monitoring, drift detection, and
retraining decisions are executed at the DT. The PT remains
lightweight: it only senses parameters and transmits data
when requested, and maintains a small temporary buffer of
recent measurements for retraining operations. The adaptive
controller periodically evaluates forecast risk and may fall
back to direct synchronization and retraining. The full decision
logic is summarized in Section III-E. To remain effective
under changing conditions, the predictor is retrained in an
event-driven manner. Retraining is triggered only when drift
is detected or when coverage remains below the threshold
over a specified monitoring window. It utilizes the most recent
synchronized data to recalibrate without unnecessary updates
during stable periods.

For multi-parameter operation, we implement a shared
buffer at the PT. Suppose any target is flagged as risky by
the drift test. In that case, the system immediately reverts
to direct synchronization for all targets in the next interval.

This design leverages cross-parameter correlations, accelerates
adaptability to evolving conditions, and shortens the time
needed to establish a reliable retraining set compared to
individual parameter buffers, which can delay model updates.

In practice, the multi-output forecaster achieves a high
R2 for withheld variables, indicating that the approximation
error between validation points remains minimal. Overall,
the framework effectively balances communication costs and
accuracy by transmitting only necessary data during stable
periods while quickly reverting to direct synchronization when
risks increase.

B. RNN-Based Quantile Prediction Model with Monotonic
Bounds

The first component of the framework is a recurrent model
that forecasts selected PT parameters while quantifying pre-
dictive uncertainty. We employ a Gated Recurrent Unit (GRU)
network to capture temporal dependencies efficiently, as GRUs
require fewer parameters and train faster than LSTMs [23].

Unlike standard regressors that output a single value, the
model predicts the mean and two quantiles (10th and 90th
percentiles) for each target parameter. Training minimizes a
composite objective combining the mean-squared error (MSE)
for µ̂ and the pinball loss [15] for q̂0.1 and q̂0.9:

Lτ (y, ŷ) =

{
τ(y − ŷ), y ≥ ŷ,

(1− τ)(ŷ − y), y < ŷ,
(1)

with τ ∈ {0.1, 0.9}. The total loss sums the two pinball
terms and MSE across all outputs and is minimized via Back-
Propagation Through Time.

To guarantee logical consistency among quantiles, we apply
a monotonic constraint inspired by MCQRNN [24]. The
network predicts an unconstrained lower quantile q̃0.1 and
positive offsets using softplus activations:

µ̂ = q̃0.1 + softplus(∆µ), q̂0.9 = µ̂+ softplus(∆q), (2)

ensuring q̂0.1 ≤ µ̂ ≤ q̂0.9. This non-crossing constraint
produces well-ordered intervals that serve as calibrated un-
certainty estimates.

Algorithm 1: Training the GRU Mean+Quantile
Model

Input: Time-series {yt}Tt=1; quantiles τ1=0.1, τ2=0.9;
learning rate η

Output: Trained model M
Initialize GRU parameters Θ
for e = 1 to E do

for mini-batch X do
r←GRUΘ(X)
Apply monotonic bounds via softplus to get
(q̂0.1, µ̂, q̂0.9)

Compute L0.1, L0.9 via Eq. (1) and MSE(µ̂, y)
L← 1

3
(L0.1 + L0.9 + MSE)

Update Θ←Θ− η∇ΘL
end

end
return M(·; Θ)



At inference, the model consumes synchronized PT fea-
tures and outputs q̂0.1(t), µ̂(t), and q̂0.9(t) for each target.
The [q̂0.1, q̂0.9] interval defines predictive uncertainty, guiding
whether the DT should rely on model forecasts or request full
synchronization. Using 10th–90th percentile bounds provides
a balanced trade-off between reliability and sensitivity to
outliers, yielding robust uncertainty calibration for adaptive
synchronization [25].

C. KL Divergence Estimation via Kernel Density

The second component of the framework quantifies the dis-
tributional drift between the predictive output of the model and
the reference (training) distribution using the Kullback–Leibler
(KL) divergence.

DKL(P ∥ Q) =

∫
p(x) log

p(x)

q(x)
dx, (3)

where p(x) denotes the reference density and q(x) the density
of recent predictions. A high DKL indicates that the model’s
output distribution has diverged from the training distribution,
indicating potential degradation of the reliability of the pre-
diction or less-confident predictions.

To estimate p(x) and q(x), we employ Kernel Density
Estimation (KDE), a non-parametric technique well suited for
streaming contexts with limited samples [26]. Given n samples
x1, . . . , xn, the KDE is:

f̂(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
, (4)

where K(·) is a kernel (Gaussian in our case) and h is the
bandwidth determined via Silverman’s rule [27]:

hSilverman = 1.06σ n−1/5. (5)

Since KDEs have no closed-form integral, we approximate
DKL numerically using a discrete Riemann sum over a com-
mon grid:

D̂KL(P ∥ Q) =
∑
j

p̂(xj) log
p̂(xj)

q̂(xj)
. (6)

To ensure numerical stability, both p̂ and q̂ are smoothed with
a small ε and renormalized to integrate to one.

Algorithm 2: KL Divergence Estimation via KDE
Input: Reference samples A = {ai}, predicted samples

Z = {zj}
Output: Estimated D̂KL(A ∥ Z)
Compute KDEs p̂ and q̂ using Gaussian kernel (bandwidth

via Silverman’s rule)
Normalize to

∑
j p̂(xj) =

∑
j q̂(xj) = 1

Compute D̂KL =
∑

j p̂(xj) log
p̂(xj)

q̂(xj)

return D̂KL

This divergence is evaluated at each synchronization inter-
val. If DKL exceeds a predefined threshold, the system flags
drift, triggers full synchronization, and retrains the predictive

model. Otherwise, the DT remains in predictive mode. This
simple yet effective approach enables real-time, drift-aware
control without imposing heavy computational overhead. KL
divergence is non-negative and unbounded, with DKL = 0
indicating identical distributions. Since DKL is estimated from
finite samples via KDE, we choose the drift threshold empir-
ically and set it to 7.5 in all experiments based on observed
distribution alignment.

D. Coverage Calculation for Prediction Intervals

The third component of the framework evaluates the em-
pirical reliability of the model’s predicted intervals through
a coverage metric. Coverage is defined as the proportion
of ground-truth observations that fall within the predicted
quantile bounds [q̂0.1(t), q̂0.9(t)]. For each time step t, we
define an indicator It = 1 if q̂0.1(t) ≤ yt ≤ q̂0.9(t), and
It = 0 otherwise. The empirical coverage over a window of
N samples is then:

Coverage =
1

N

N∑
t=1

It. (7)

Ideally, the empirical coverage should match the nominal
interval (80%). However, due to sampling variability, slight
deviations are acceptable [28]. We set a tolerance threshold of
0.75 (75%) to indicate adequate calibration. When coverage
falls below this level, the model is deemed unreliable, trigger-
ing full synchronization until recalibration is achieved.

Coverage is recomputed periodically during direct synchro-
nization using the most recent N ground-truth samples. Each
non-overlapping block of samples is processed independently,
with coverage serving as a key signal for deciding when to
revert from direct to predictive mode. High coverage confirms
that the model’s uncertainty estimates are well-calibrated,
allowing the twin to resume bandwidth-efficient operation.

Algorithm 3: Coverage Computation
Input: N , bounds q̂0.1(k), q̂0.9(k), ground-truth Y
Output: Coverage C
hits←0
for k = 1 to N do

hits+= (q̂0.1(k)≤Yk≤ q̂0.9(k))
end
C←hits/N
return C

E. Adaptive Synchronization Decision Logic and Retraining
Mechanism

The adaptive decision logic integrates the components in-
troduced earlier; quantile-based forecasts, KL divergence, and
empirical coverage to decide whether the DT should operate
in PREDICTIVE or DIRECT mode at each synchronization
interval. The goal is to minimize bandwidth use without
compromising fidelity.

At each interval, if the DT is in predictive mode, the
framework first computes the KL divergence between the



predicted and reference distributions (Algorithm 2). If the di-
vergence DKL remains below the predefined threshold Dmax,
predictions are deemed reliable, and the DT is updated without
transmitting new data. Otherwise, the system switches to direct
synchronization for the next interval, streaming all ground-
truth values from the PT.

During direct mode, the framework evaluates the empirical
coverage of recent prediction intervals using Algorithm 3. If
the coverage Ct exceeds the threshold Cmin (set to 0.75 in our
experiments), the DT returns to predictive mode. If coverage
remains below threshold across multiple intervals, the system
triggers a retraining phase, using the newly synchronized
data to fine-tune the GRU model. This retraining is event-
driven, ensuring computational efficiency by updating only
when significant drift or calibration loss is detected.

The logic naturally extends to multi-output forecasting: KL
divergence is monitored per parameter, and a switch to direct
mode occurs if any target violates its threshold. Retraining
then leverages shared data buffers, enabling faster adaptation
to the evolving PT dynamics. This cooperative design prevents
prolonged degradation of accuracy while maintaining commu-
nication efficiency.

Algorithm 4: Adaptive Synchronization Decision
Logic

Input: Predicted samples Z, ground-truth Y (only if direct
mode), model M , state St∈{PREDICTIVE, DIRECT},
thresholds Dmax, Cmin

Output: Next state St+1

if St = PREDICTIVE then
Compute DKL via Algorithm 2
if DKL ≤ Dmax then

Update DT with predictions; St+1←PREDICTIVE
else

Switch to direct mode; synchronize actual Y
Compute coverage Ct via Algorithm 3
if Ct < Cmin then

Retrain M using recent data;
end
St+1←DIRECT

end
end
else

Update DT with synchronized Y
Compute Ct; Retrain M incrementally
St+1←(Ct ≥ Cmin)?PREDICTIVE : DIRECT

end
return St+1

This decision process ensures the DT maintains high ac-
curacy while minimizing unnecessary data transfer. When
the model exhibits stable performance (low divergence, high
coverage), the system prioritizes predictive synchronization.
Conversely, unexpected behavior or poor calibration triggers
direct updates and selective retraining, allowing the twin
to adapt swiftly to new operating conditions with minimal
bandwidth overhead.

TABLE I
DIGITAL TWIN PARAMETER SYNCHRONIZATION MODES

Parameter Synchronization Mode

Reference Signal Received Power (RSRP) Adaptive Sync.
Downlink bitrate Adaptive Sync.
Uplink bitrate Direct Sync.
Longitude of user equipment Direct Sync.
Latitude of user equipment Direct Sync.
Speed of user equipment Direct Sync.
Channel Quality Indicator (CQI) Direct Sync.
Received Signal Strength Indicator (RSSI) Direct Sync.
Signal-to-Noise Ratio (SNR) Direct Sync.
Reference Signal Received Quality (RSRQ) Direct Sync.

F. Experiment Design and Overhead Analysis

To evaluate the proposed framework, we implement the
adaptive synchronization system on our developed DT of a
smartphone operating in a cellular environment, as described
in [29]. The smartphone DT models radio and network per-
formance indicators in real time, enabling predictive analytics,
energy-efficient optimization, and dynamic network adapta-
tion.

This approach can extend to Bluetooth and Wi-Fi, as noted
in [29], provided reliable inter-parameter correlations and
accurate prediction models exist. However, scalability depends
on correlation strength and predictive accuracy: expanding
to more parameters without sufficiently accurate models can
reduce DT fidelity, trigger frequent direct-synchronization
fallbacks, and diminish overall gains.

The multi-output forecasting model simultaneously predicts
two parameters: Reference Signal Received Power (RSRP) and
downlink bitrate at the DT, while the remaining eight Key
Performance Indicators (KPIs) are synchronized periodically.
These two variables were selected based on a correlation
study showing strong dependence on other metrics such as
SNR, CQI, and RSSI. Table I summarizes the synchronization
assignment.

To quantify efficiency, we define synchronization overhead
as the proportion of parameters transmitted in direct mode.
The reduction in synchronization overhead is:

Overhead
Reduction = 1−

Directly synchronized
parameter count

Total parameter count
(Ptotal)

. (8)

where the total parameter count is:

Ptotal = Psample × Ssync ×Nsync, (9)

with Psample the number of parameters per sample, Ssync

the samples per synchronization interval, and Nsync the total
number of intervals. All parameters are assumed to have
uniform payload size; control overhead and retransmissions
are omitted for clarity.



TABLE II
PREDICTION R2 AND OVERHEAD REDUCTION FOR PREDICTIVE-ONLY

VS. PROPOSED ADAPTIVE APPROACH (MULTI-OUTPUT MODEL)

Dataset R2 (RSRP) R2 (DL bitrate) Reduction (%)
Pred. Proposed Pred. Proposed Pred. Proposed

Car (LTE) 0.941 0.995 0.793 0.973 20 2.15
Static (LTE) 0.619 0.900 0.356 0.856 20 14.89
Train (LTE) 0.829 0.951 0.774 0.915 20 10.00
Bus (LTE) 0.863 0.960 0.656 0.984 20 4.35
Pedestrian (LTE) 0.932 0.983 0.906 0.985 20 4.81
Car (5G) 0.709 0.725 0.436 0.477 20 19.13

TABLE III
PREDICTION MAE FOR PREDICTIVE-ONLY VS. PROPOSED ADAPTIVE

APPROACH (MULTI-OUTPUT MODEL)

Dataset MAE (RSRP) [dBm] MAE (DL rate) [kbit/s]
Pred. Proposed Pred. Proposed

Car (LTE) 1.71 0.16 5095 535
Static (LTE) 2.15 0.73 1257 379
Train (LTE) 4.17 1.46 3405 1376
Bus (LTE) 2.88 0.74 4896 587
Pedestrian (LTE) 2.36 0.59 1741 368
Car (5G) 4.03 3.81 21877 20313

When two of ten parameters are managed adaptively, the
theoretical maximum payload reduction is 20%. However, the
proposed event-driven framework achieves nearly a similar
reduction while maintaining a higher fidelity through dynamic
switching and retraining, unlike a predictive-only scheme that
risks long-term drift. More generally, if M of N parameters
are reliably predicted, the payload reduction approaches M/N ,
provided update frequencies are similar.

IV. EXPERIMENTS AND RESULTS

A. Prediction Accuracy

To validate the framework in a setting that resembles the
smartphone DT use case described in the Methodology section,
we conducted experiments on two publicly available cellular
network datasets. These datasets captured the same KPIs, as
listed in Table I, with one dataset for 4G LTE and the other
for 5G NR. Both were collected under static and mobile
conditions [30], [31].

The model was benchmarked against a predictive-only base-
line, which performs continuous forecasting without adaptive
retraining or divergence-based switching. The performance
was assessed using the coefficient of determination (R2), Mean
Absolute Error (MAE), and synchronization overhead reduc-
tion compared to direct synchronization (default: DKL = 7.5,
Cmin = 75%, T = 60 s).

Tables II and III show the adaptive strategy outperforms
predictive-only across LTE and 5G scenarios. In all LTE mo-
bility patterns, the adaptive model achieves higher R2 values
and lower MAE for both RSRP and downlink bitrate, while

TABLE IV
IMPACT OF THE KL DIVERGENCE THRESHOLD (DKL)

(Cmin = 75%, T = 60 S)

DKL R2 MAE Overhead
RSRP DL rate RSRP (dBm) DL rate (kbit/s) Reduction (%)

1.0 0.998 0.990 0.07 105 0.62
2.5 0.986 0.991 0.32 175 1.25
5.0 0.951 0.915 1.46 1376 10.00
7.5 0.951 0.915 1.46 1376 10.00
10.0 0.829 0.774 4.17 3405 20.00

providing significant synchronization overhead reduction. The
improvement is most pronounced in the train and static LTE
cases, where the MAE decreases by more than 59% and
the R2 exceeds 0.85 for both targets. The results confirm
that the proposed multi-output approach effectively captures
cross-parameter correlations and maintains high-fidelity digital
twinning.

B. Effects of Adaptive Synchronization Criteria

To analyze the sensitivity of our framework to its adaptive
synchronization criteria, we conducted experiments on the
LTE train dataset while varying the KL divergence threshold
(DKL), the coverage threshold (Cmin), and the base syn-
chronization interval. These parameters determine when the
DT transitions between predictive and direct synchronization
modes. The evaluation quantifies the trade-off between predic-
tion accuracy and synchronization overhead reduction, with R2

and MAE serving as accuracy measures.
KL Divergence Threshold (DKL): As shown in Table IV,

a low threshold (for instance, DKL = 1.0) results in frequent
synchronization, producing near-perfect accuracy (R2 = 0.998
for RSRP and 0.990 for downlink bitrate) but with minimal
reduction in communication overhead (0.62%). Increasing the
threshold allows the DT to remain in predictive mode for
longer periods, improving payload efficiency but introducing
greater model drift. At DKL = 5.0, the framework achieves
a balanced performance, with R2 = 0.951 for RSRP and
0.915 for bitrate, and approximately a 10% reduction in
overhead. Very high thresholds (DKL = 10.0) further lower
overhead to about 20%, although accuracy degrades noticeably
(R2 ≈ 0.83). Therefore, moderate thresholds in the range
of 5.0 to 7.5 provide the best trade-off between fidelity and
efficiency for the dataset considered.

A plateau occurs for 5.0 ≤ DKL ≤ 7.5: Table IV shows
identical R2, MAE, and overhead reductions. With Cmin =
75% and 60 s intervals, increasing DKL in this range does not
change drift-trigger times because decisions are made only at
discrete instants, yielding the same synchronize decision.

Coverage Threshold (Cmin): As summarized in Table V,
higher coverage thresholds lead to more frequent synchro-
nizations and higher accuracy but reduce overhead savings.
A strict threshold of Cmin = 90% maintains excellent fidelity
(R2 ≈ 0.96) but limits overhead reduction to 3.75%. In con-
trast, setting Cmin = 75% allows a modest decline in accuracy



TABLE V
IMPACT OF THE COVERAGE THRESHOLD

(Cmin) (DKL = 7.5, T = 60 S)

Cmin (%) R2 MAE Overhead
RSRP DL rate RSRP (dBm) DL rate (kbit/s) Reduction (%)

70 0.875 0.872 2.98 2222 16.25
75 0.951 0.915 1.46 1376 10.00
80 0.961 0.960 0.95 657 3.75
85 0.961 0.960 0.95 657 3.75
90 0.961 0.960 0.95 657 3.75

TABLE VI
IMPACT OF THE BASE SYNCHRONIZATION INTERVAL (T )

(DKL = 7.5, Cmin = 75%)

T (s) R2 MAE Overhead
RSRP DL rate RSRP (dBm) DL rate (kbit/s) Reduction (%)

5 0.978 0.956 0.74 766 5.50
30 0.870 0.879 2.97 2021 16.00
60 0.951 0.915 1.46 1376 10.00
90 0.959 0.946 1.07 870 5.71
120 0.959 0.951 1.06 786 5.00

(R2 = 0.951 for RSRP, 0.915 for bitrate) while increasing
overhead reduction to 10%. Lowering the threshold further to
70% increases overhead reductions to 16.25% but introduces
greater prediction errors. Hence, a coverage threshold around
75% offers the most balanced configuration for the dataset we
consider.

A plateau is observed for Cmin ≥ 80%: Table V reports
identical R2, MAE, and overhead reductions. With DKL = 7.5
and 60 s intervals, increasing Cmin beyond 80% does not
change trigger times because coverage is checked only at
discrete decision instants, yielding the same synchronization
decision.

Base Synchronization Interval: This shows how varying
the synchronization interval (T seconds) affects the balance
between DT accuracy and communication efficiency. The
results in Table VI indicate a non-linear dependency. Very
short intervals (e.g., T = 5 s) ensure high accuracy (R2 = 0.98
for RSRP, 0.96 for bitrate) but yield only a 5.5% reduction in
overhead due to frequent drift triggers caused by smaller sam-
ple sizes. As T increases to 30 s, synchronization frequency
decreases and overhead reduction improves to 16%, albeit with
lower accuracy (R2 ≈ 0.87). The optimal balance occurs
near T = 60 s, where accuracy remains above R2 = 0.91
with a 10% overhead reduction. Longer intervals (90–120 s)
again slightly reduce efficiency due to accumulated model drift
requiring more corrective synchronizations.

Joint Effect and Design Trade-Offs: Across all experi-
ments, we observe a consistent trade-off between synchroniza-
tion efficiency and model accuracy. Stricter policies (low DKL,
high Cmin, or short synchronization intervals) maintain near-
perfect fidelity but incur higher communication costs, whereas
more relaxed configurations substantially reduce synchroniza-

TABLE VII
LATENCY AND RESOURCE UTILIZATION OF THE PROPOSED FRAMEWORK

Mode Total latency CPU utilization Memory utilization
(ms) (%) (%)

Predictive (no retraining) 26 2.1 5.0
Predictive (with retraining) 769 11.1 5.0
Direct (with retraining) 433 7.4 5.0

tion overhead at the expense of moderate drift in the DT state.
The optimal operating point depends on the application’s tol-
erance for latency and accuracy degradation. For the analyzed
dataset, moderate configurations with DKL ∈ [5, 7.5], Cmin =
75%, and T = 60 s provide a balanced regime, achieving
R2 > 0.91 for both target variables and approximately 10%
reduction in synchronization overhead. These results confirm
that the proposed adaptive synchronization framework can be
tuned flexibly to meet the performance requirements of diverse
DT deployments.

C. Runtime Efficiency of the Proposed Framework

We evaluated the computational efficiency of the proposed
framework using the static LTE dataset on a mid-range laptop
equipped with an Apple M2 processor, 16 GB RAM, and
macOS 15.5 (24F74). The profiling results, summarized in Ta-
ble VII, quantify total latency and average resource utilization
for the main operating modes of the system.

Across all modes, the total processing latency remains well
below one second, indicating that the framework can sup-
port synchronization periods significantly shorter than those
typically required in operational deployments. Predictive syn-
chronization without retraining exhibits the lowest latency of
26 ms, as it only performs divergence tests on the model’s
predictive distributions. When retraining is enabled, latency
increases to approximately 0.77 s due to the additional steps
of divergence estimation, coverage verification, and model up-
dating. Direct synchronization, which includes both coverage
evaluation and retraining, incurs a moderate latency of 0.43 s.

Resource utilization follows a similar trend: predictive syn-
chronization with retraining averages about 11% CPU usage,
direct mode about 7%, and predictive mode without retraining
only 2%. Memory consumption remains stable at roughly 5%
across all modes, demonstrating consistent and lightweight
operation.

D. Empirical Network-Traffic Evaluation

We validated the network traffic savings using our developed
DT solution [29], where a commercial Android smartphone
(PT) transmitted KPI streams over an LTE network to a remote
DT endpoint. The phone replays KPI payloads identical to
those in the labeled dataset, and no real-time ground-truth
labels are collected during deployment; hence, no on-device
accuracy is measured. Accuracy (MAE/R2) is evaluated offline
on the labeled dataset (Tables II and III), while trace replay is
used only to analyze DT synchronization overhead.
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Fig. 2. Data transmission savings relative to direct synchronization. Across
all protocols, the adaptive method consistently reduces network traffic while
preserving fidelity. The predictive-only baseline achieves higher savings but
leads to substantially degraded accuracy (cf. Table III).

In these experiments, the DT server executed no control
logic in order to isolate the communication overhead. We
evaluated two synchronization strategies: predictive only (sup-
pressing two target KPIs) and the proposed adaptive approach,
and compared both against the overhead of direct synchroniza-
tion. The experiments were conducted across three transport
protocols commonly used in DT systems (MQTT, WebSocket,
and CoAP) [32]–[34]. Each trial lasted 47 minutes, using the
same static dataset payload as in Tables II and III.

As shown in Fig. 2, across all protocols the adaptive method
reduces traffic relative to direct synchronization (MQTT:
5.41%, WebSocket: 5.64%, CoAP: 7.01%). The predictive-
only baseline saves slightly more bytes (11–12%) but substan-
tially degrades fidelity (cf. Table III); across LTE scenarios,
the adaptive approach reduces MAE by about 74% (RSRP)
and 77% (downlink bitrate) relative to predictive-only.

Compared to the analytical payload-only reduction in Ta-
ble II, empirical savings are smaller (predictive-only: 55–
59% of the theoretical figure; proposed-adaptive: 36–47%),
primarily due to protocol headers and JSON wrappers omitted
from the analytical model (Eq. (8)) and because the byte
length of sensed parameters varies with value. In practice,
the adaptive strategy strikes the intended balance: it identifies
risky predictions via KL divergence and coverage checks,
triggers direct synchronization and retraining when needed,
and thereby maintains close alignment with PT states while
still delivering tangible network savings across diverse DT
transport protocols.

E. Operational Cost and Scalability Analysis

Wireless data transmission dominates power consumption in
most constrained IoT nodes, particularly in low-power wide-
area network (LPWAN) technologies such as LoRa and NB-
IoT [35]. As each transmitted bit incurs an energy cost, even
modest traffic reductions translate into nearly proportional
power savings, effectively extending device lifetime. Reducing
data volume by 5-7% yields a comparable reduction in radio
activity, which not only conserves energy but also mitigates

TABLE VIII
COST SAVINGS PER DEVICE UNDER VARIOUS CELLULAR IOT OPERATORS

Operator Rate Saving Saving
(per MB) (per month) (per year)

Telnyx $0.01 $0.32 $3.84
Hologram $0.03 $0.96 $11.52
ThingsMobile $0.10 $3.20 $38.40

the impact of data caps and bandwidth quotas in pay-as-you-
go IoT subscriptions. Because these plans charge directly by
data usage, small traffic reductions can produce measurable
financial savings.

We quantified the cost benefits of the adaptive synchro-
nization framework using three global IoT service providers:
Telnyx, Hologram, and ThingsMobile, each employing pay-
per-megabyte billing. Their respective rates are $0.01/MB,
$0.03/MB, and $0.10/MB [36]–[38]. Based on our CoAP
evaluation, the adaptive framework reduces traffic by approx-
imately 31.996MB per month for each device. This reduction
translates to monthly savings of $0.32 with Telnyx, $0.96 with
Hologram, and $3.20 with ThingsMobile, corresponding to
annual savings of $3.84, $11.52, and $38.40, respectively (Ta-
ble VIII). Even modest reductions in data traffic, on the order
of a few tens of megabytes, can therefore result in meaningful
cost savings, particularly in large-scale IoT deployments.

In large-scale IoT networks, such per-device savings accu-
mulate rapidly. For example, a deployment of 250 devices,
each saving approximately 32MB per month, results in a
cumulative reduction of around 8GB per month. This reduction
corresponds to annual network-wide cost savings of about
$960 with Telnyx, $2,880 with Hologram, and $9,600 with
ThingsMobile. In addition to lowering operational costs, re-
duced data transmissions help minimize channel contention,
airtime occupancy, and interference, which are critical con-
siderations for bandwidth-constrained IoT systems. Fewer
transmissions also shorten radio-on time, thereby reducing per-
node power consumption and extending battery life across the
device fleet.

V. CONCLUSION

This paper presented an adaptive synchronization frame-
work for DTs designed to maintain high-fidelity state rep-
resentation under constrained network conditions. The key
idea is to predict DT states that exhibit temporal stability and
synchronize only when forecasts become unreliable. Overall,
the adaptive synchronization strategy achieves measurable cost
and energy efficiency gains without compromising DT fidelity.
By transmitting only essential updates and dynamically re-
training the predictive model upon drift detection, it minimizes
communication overhead while maintaining alignment be-
tween the DT and PT. These advantages make the framework
particularly suitable for cost-sensitive, energy-constrained IoT
deployments, enabling scalable and sustainable DT ecosys-
tems.
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